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ABSTRACT
The task in keyword spotting (KWS) is to hypothesise times at which
any of a set of key terms occurs in audio. An important aspect of such
systems are the scores assigned to these hypotheses, the accuracy of
which have a significant impact on performance. Estimating these
scores may be formulated as a confidence estimation problem, where
a measure of confidence is assigned to each key term hypothesis. In
this work, a set of discriminative features is defined, and combined
using a conditional random field (CRF) model for improved confi-
dence estimation. An extension to this model to directly address the
problem of score normalisation across key terms is also introduced.
The implicit score normalisation which results from applying this
approach to separate systems in a hybrid configuration yields further
benefits. Results are presented which show notable improvements in
KWS performance using the techniques presented in this work.

Index Terms— keyword spotting, confidence estimation, con-
ditional random fields, spoken term detection

1. INTRODUCTION

The keyword spotting task addresses the problem of reliably detect-
ing the occurrence of specific single or multi-word key terms within
audio data. A two-stage approach to KWS is commonly employed to
achieve this. Firstly, an automatic speech recognition system is used
to recognise the audio and generate an “index” of words and times
for the audio from the recognition lattices. Thereafter, a search is
performed within the indexed data for the key terms. The result of
this process is a list of key term occurrences, each with a correspond-
ing time at which it was hypothesised to exist in the audio.

A score is associated with every key term hypothesis. This score
is the basis for the decision of whether to accept the hypothesis as a
“hit” or reject it as a false alarm, and is therefore crucial to KWS per-
formance. These scores are effectively confidence measures, and the
task of computing them is therefore cast as a confidence estimation
problem in this work. Typically, lattice-based keyword posteriors are
employed as confidence measures [1, 2, 3, 4], however other mea-
sures such as those based on the coherence of the surrounding word
context have been proposed in the literature [5, 6, 7, 8].

Many confidence measures are computed in a manner which is
not dependent on the actual identity of the key term. Such “term
independent” measures are flawed in that they imply the assump-
tion in decision making that hypotheses for different key terms hav-
ing the same term-independent score can be treated equally. This
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is however not the case, as differences in characteristics of the key
terms such as length, frequency of occurrence, and language model
scores mean that the key term scores naturally tend to fall in differ-
ent ranges. Rank-based and term-weighted normalisation [1, 9, 10]
have proven to be effective solutions to this problem. Discriminative
score mapping [11, 12] is another approach which aims to achieve
this normalisation through direct modelling.

In this work we propose the use of linear-chain CRF models
as a unifying framework to perform confidence estimation for key
term hypotheses, and account for score normalisation. In contrast to
approaches based on support vector machines and multi-layer per-
ceptrons [11, 12], this approach operates on sequences of observa-
tions for words within key terms to estimate a confidence score. The
CRF model is also extended through the formulation of novel fea-
ture functions, which enable it to capture differences between the
nature of key terms directly. Features extracted from the recogni-
tion lattices and language model are defined, with contextual lat-
tice posteriors being introduced in this work as highly discriminative
features which are useful for confidence estimation. Improvements
are achieved when applying the approach separately in a word and
sub-word level KWS system, with further performance gains being
achieved in the combined (hybrid) configuration.

The first section of this paper describes the hybrid KWS system
on which this work is based, and defines the features used for con-
fidence estimation. Thereafter, the application of the CRF model to
confidence estimation for key term hypotheses is detailed. Finally,
the experimental setup and results of applying this technique in KWS
are presented.

2. HYBRID KEYWORD SPOTTING

In the KWS approach taken in this work, the audio data is decoded
once by the ASR system to generate lattices. These lattices can be
represented as an index of words along with the times at which they
occur in the audio. Key term search is carried out by looking up
the entries for words of a key term. This is referred to as a pre-
indexed approach, as the mapping of words to times is static and is
pre-computed for given audio data. Techniques in which the ASR
decoding phase uses knowledge of the key term list to adapt the
search [10] may yield improved performance over the pre-indexed
approach. However, adapting to the key term list requires that the
audio be re-decoded by the ASR system whenever it is modified.
This is not the case with the pre-indexing approach used in this work,
which is for this reason more scalable.

The hypothesis space for KWS using this approach is restricted
by the size of the ASR system lattices and the vocabulary used. This
problem is addressed by generating lattices and carrying out key
term search at both the word and sub-word levels, as was investi-



gated in [13, 14, 15]. In KWS systems, a trade-off between the num-
ber of false positives and false negatives generated must typically be
made. The word and sub-word systems represent different operating
points within this trade-off, with the combination of the two yielding
a hybrid solution with the benefits of both.

2.1. Word-Level Key Term Search

All occurrences of words within the word-level system lattices which
constitute key terms are considered as partial key term hypotheses.
A start time and a set of features is associated with each such hypoth-
esis. Given the set of partial hypotheses, individual word hypotheses
are grouped into key term hypotheses where possible, provided the
relevant partial hypotheses follow one another. This approach yields
a fairly low number of key term hypotheses, as the lattices naturally
represent a constrained hypothesis space. This results in the system
having a relatively short range of possible operating points. Further-
more, as an exact match is sought, only key terms which are covered
by the ASR vocabulary can be found.

2.2. Sub-Word-Level Key Term Search

In order to perform key term search at the sub-word level, the word-
level lattices are marked up with sub-word timing and acoustic score
information. Key term search is performed by considering all occur-
rences of sub-words which constitute any of the key terms as partial
hypotheses. Individual sub-word partial hypotheses are clustered to-
gether to form longer key term hypotheses. This is permitted pro-
vided these partial hypotheses occur in the correct order, and satisfy
constraints on the length of time allowed between sub-words. In this
process, sub-words which form part of different word-level hypothe-
ses can be grouped together as part of new key term hypotheses that
are not present in the lattice. This results in a large number of hy-
potheses being generated (which can include out-of-vocabulary key
terms), therefore covering a large range of KWS operating points.

3. FEATURES

During key term search, features which are indicative of the quality
of the hypotheses are extracted from the lattices. One such feature
is the word-level Lattice Arc Posterior Ratio (LAPR) [16]. Arc pos-
terior probabilities p(a|O) are calculated for each of the word-level
arcs a in a lattice given the acoustic observation vectors O (as de-
scribed in [17]). For a word k, the set of intersecting arcs I is defined
as all arcs which overlap with the median time of the word arc for
k. The LAPR for a word/keyword k is then calculated by summing
the posterior probabilities p(a|O) for all word-level arcs in the in-
tersecting set I with the same word identity wa as the word k. This
sum is normalised by the sum of the posterior probabilities for all
word arcs in I yielding:

LAPR(k) =

∑
a∈I δ(wa, k)p(a|O)∑

a∈I p(a|O)
(1)

where δ is the Kronecker delta function which returns 1 when its ar-
guments match and 0 otherwise. Similarly, a Lattice Sub-Arc Acous-
tic Ratio (LSAAR) is computed from a sub-word lattice for a key
term k by averaging over the N sub-words it contains as follows:

LSAAR(k) =
1

N

N∑
g=1

∑
s∈I δ(ws, kg)p(s|O)∑

s∈I p(s|O)

where kg is the identity of the sub-word at index g, the sub-word arc
s has the identity ws, and I is the set of intersecting sub-word arcs
over which the acoustic model scores p(s|O) are summed.

3.1. Contextual Posterior Features

Features which represent the confidence of the ASR system in the
words immediately preceding and following the keyword itself (the
context) are of interest. Such features serve to indicate whether
the keyword hypothesis occurs within a sequence of likely words.
For a lattice arc corresponding to a keyword hypothesis, the most
likely preceding arc k′ and following arc k′′ within the lattice are
found. These arcs represent the localised context for the word. Ap-
plying Equation 1 to these word arcs yields the contextual features
LAPR(k′) and LAPR(k′′). These features are particularly relevant
in the word-level system. However, a similar set of contextual pos-
teriors can be computed in the sub-word level system. In this case,
the preceding context posterior corresponds to that of the parent arc
of the first sub-word, and the following context posterior is that of
the parent arc for the last sub-word.

3.2. Unigram Prior Features

Certain key terms are generally more likely to occur than others.
A feature indicative of this prior information is therefore of interest.
Unigram probabilities for words within a given key term are obtained
from the language model of the ASR system and multiplied together.
The logarithm of this value is used as the unigram prior (UP) feature
for this key term. The aim of this feature is to provide some contrast
to the posterior scores, and inform the confidence estimation model
when confidence scores should be boosted or discounted to account
for the differences between key terms.

4. APPLYING THE CRF MODEL TO KEYWORD
CONFIDENCE ESTIMATION

Linear-chain CRF models were first proposed as a discriminative
modelling framework for segmenting and labelling sequence data
[18]. These models define the distribution of a label sequence y
conditioned on an observation sequence X as follows:

p(y|X) ∝ exp
(∑

k

λktk(y) +
∑
l

µlgl(y,X)
)

where tk(y) are the transition feature functions and gl(y,X) are
the observation feature functions, with parameters λk and µl respec-
tively. In applying this model to confidence estimation for key terms,
the label sequence y corresponds to a sequence of True Positive (TP)
or False Positive (FP) labels for the words in the key term. The ob-
servation sequence X corresponds to a sequence of vectors for each
word or key term, which includes the features described in section 3.

During training, the model parameters λk and µl are estimated
by optimising the conditional log-likelihood of the model using a
gradient-based approach (Limited-Memory BFGS [19]). During
test, the marginal probability of the model assigning the label for
a true positive (“TP”) to each word/observation in the sequence is
calculated. The overall confidence score for the key term is obtained
by averaging these individual scores.

4.1. Feature Functions

CRF models are highly flexible as they allow arbitrary feature func-
tions which act on the features to be defined. In this work, we make



use of the CRF modelling toolkit developed for confidence estima-
tion in previous work [16]. Within this framework, it is possible for
a set of custom observation feature functions (gl) to be engineered,
which are aimed at addressing a specific aspect of the task. These
feature functions take a literal feature as an argument, and return the
value of a continuous feature, provided the literal value matches that
for which the feature function is defined. These “Literal Moment”
feature functions are defined as follows:

LITM1y,l(x
p
i , x

s
i ) = xpi δ(x

s
i , l) δ(yi, y)

where y and l are the label and literal value for which the feature
function is defined, xsi and xpi are the literal (string) and continuous
feature values corresponding to the current observation and yi is the
label for the current observation. These feature functions therefore
learn separate firs- order moment statistics of a continuous feature,
for each possible value the literal feature can take. The model also
allows for continuous features to be represented using spline feature
functions [20], which have been shown to yield good performance
for confidence estimation with CRFs in previous work [16].

5. EXPERIMENTS

Key term spotting experiments were carried out on a state-of-the-art
recogniser which was built using data from the DARPA Robust
Automatic Transcription of Speech (RATS) program for Arabic
keyword-spotting [21]. The data consists of Levantine Arabic
conversational telephone speech retransmitted over 8 degraded com-
munication channels. This is a highly challenging recognition task,
and the recogniser used employs link and speaker adaptive training,
as well as front-end CMLLR to compensate for the difficulty of
the task. The WER achieved varies between 62% and 81% across
communication links, which naturally has an effect on the level of
difficulty in performing KWS. The decoding structure of the ASR
system consists of multiple passes, the first two of which are the
main lattice generation phase, with adaptation being applied in the
final phase. A bigram language model (LM) is used during initial
decoding of this final phase, before the lattices are rescored using
a trigram LM. It was found that using an LM scaling factor value
lower than that tuned for optimal ASR performance resulted in im-
proved KWS performance. The system lattices output from the final
rescoring phase are used for KWS experiments. These lattices are
converted from their romanised form to a normalised UTF-8 Arabic
representation before the key term search is carried out entirely in
this domain. The recogniser uses graphemes as a sub-word level
representation, which is therefore the sub-word unit used in the
KWS system.

The RATS program defines a list of 219 key terms for KWS
evaluation, 64 of which are single word terms with 155 multi-word
terms. The KWS operating point which is of particular interest in
this program is that at a false alarm rate of 4%. All experiments in
this work are based on the dev-1 dataset, which comprises data held
out from the original training set for each channel. This dataset was
further split into a training set for the CRF models, and a test set
for evaluation. The training subset contains 181 of the total 401 key
term occurrences, with the remaining 220 occurrences in the test
subset. The results shown in Table 1 for the word and grapheme-
based KWS systems are obtained when all key term hypotheses are
accepted (i.e. no score threshold is applied below which hypotheses
are rejected). Scoring the training data provides supervised training
data labels (“TP/FP”) for the CRF models, which are augmented
with the set of features relevant for each system.

Train Test

System TP R P TP R P

Word 103 0.569 0.138 102 0.464 0.128
Grapheme 150 0.829 0.003 174 0.790 0.003

Table 1. Results for the word and grapheme-based KWS systems on
training and test subsets of dev-1, with no threshold applied to con-
fidence scores. TP = True Positives, R = Recall and P = Precision.

5.1. Word-Based System Results
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Fig. 1. DET curves showing performance of CRF-based confidence
estimation applied in the word-level KWS system.

The DET plot in Figure 1 shows the results of various exper-
iments in applying the CRF model to assign confidence scores in
the word-based system. As relatively few key term hypotheses are
generated by this system, the range of possible operating points is
limited. Spline feature functions were applied to the continuous fea-
tures in all CRF experiments. Five evenly-spaced knot points are
used in the cubic spline approximation, as this was found to yield
the best performance. In the baseline system, the confidence score
is calculated by taking the product of the posteriors (LAPR(k)) for
words making up a key term. It can be seen from the plot that using
the LAPR(k) feature in isolation with the CRF model yields per-
formance similar to that of the baseline. This is however not sur-
prising as no additional information is incorporated in the model to
improve the confidence scores. Incremental improvements are ob-
served when adding features to the model, but are not shown in 1
for clarity. The best performance is achieved using the combination
of LAPR(k), the unigram prior (UP) and the contextual posteriors
(LAPR(k′) and LAPR(k′′)). The results using this configuration are
shown in Figure 1. The sequential CRF approach is shown to out-



perform an equivalent non-sequential maximum entropy (MaxEnt)
model which makes use of the same features. The inclusion of the
LITM1 feature functions do not improve performance in this system.
This is due to the fact that there are very few training examples for
each key term, such that generalisation becomes an issue.

5.2. Grapheme-Based System Results
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Fig. 2. DET curves showing performance of CRF-based confidence
estimation in grapheme-based KWS, as well as in the combined
word and grapheme-based KWS systems.

In the grapheme-based system, a significant number of key term
hypotheses are generated. It is therefore possible to apply the lit-
eral moment (LITM1) feature functions here, as there is significant
training data to reliably estimate the parameters for individual key
terms. The continuous feature related to the LITM1 feature func-
tions, for which moment statistics are estimated, is the acoustic score
ratio (LSAAR(k)). First-order moment parameters are estimated for
all key terms which occur at least 100 times in the training data, of
which there are 197. An additional “out-of-shortlist” parameter is
estimated to cover the remaining 22 less frequent key terms.

The results for grapheme-based KWS experiments are presented
in the DET plot of Figure 2. As this system is able to achieve a wider
range of operating points than the word-based system, this DET ex-
tends beyond the 4% false alarm rate of interest. The acoustic score
ratio features (LSAAR(k)) are used as the confidence measure in
the baseline system. Using this feature in isolation with the CRF
model results in performance similar to the baseline, which is to
be expected. However, incremental performance gains are achieved
when adding more features to the model. A configuration which
uses the extended model with LITM1 feature functions, and com-
bines LSAAR(k), the contextual posterior features (LAPR(k) and
LAPR(k′)) and the unigram prior (UP) yields the best performance.
The results using this system configuration are shown in Figure 2.

The contextual posteriors proved to be less useful here than in the
word-based system. An explanation for this is that the graphemes
used to form a key term hypothesis in the sub-word system can form
part of any word. The confidence in the context of these parent words
therefore has no real bearing on the quality of the key term hypothe-
sis. The performance gains evident in the figure for the best config-
uration are therefore primarily due to the LITM1 feature functions.
This result highlights the importance of score normalisation across
key terms, which is particularly useful in this system.

5.3. Combined System Results

Results showing the effect of combining the outputs of the word and
grapheme-based systems in the hybrid KWS configuration are also
shown in Figure 2. The baseline for these comparisons is formed
by combining the individual word and grapheme-based system base-
lines. These confidence scores are therefore not mapped before com-
bination. After combination, this baseline performance is improved
over a grapheme-based system used in isolation. This is a result of
the additional true positives gained from the word-based system, at
a cost of relatively few false alarms. Combining systems for which
confidence scores have been estimated using the approach presented
in this work however, yields greatly improved performance. The
DET plot for the combined CRF system in Figure 2 corresponds
to the combination of the best word and grapheme-based systems.
The individual performance of these systems is improved over their
respective baselines to begin with. However, when these systems
employing CRF-based confidence estimation are combined, further
gains are achieved. This is due to the fact that the assigned con-
fidence scores in each system are effectively normalised. The key
term hypothesis scores generated by these different systems can thus
be treated equally for decision making purposes. The performance
of the word-based system is therefore maintained in the combined
configuration, with the grapheme-based system contributing many
additional key term hypotheses, extending the operating range to de-
sired levels. This results in a consistent relative improvement over
the baseline of 22.6% in miss probability at false alarm rates of both
0.2% and 4%, as well as a relative improvement of 27.3% in the false
alarm rate at a miss probability of 30%.

6. CONCLUSION

A CRF-based approach for estimating confidence scores of key
terms in KWS was investigated in this work. This was shown to
yield promising results, particularly when applied to systems that
are combined in a hybrid KWS configuration. In the approach taken,
multiple discriminative features are combined using a CRF model
to estimate accurate confidence scores. Amongst these features, the
contextual posteriors and unigram priors introduced here proved to
be highly informative. The sequential nature of the CRF model used
was shown to yield gains over a comparable non-sequential model,
thus supporting its use in this task. An elegant approach to the
problem of score normalisation across keywords, which makes use
of key term-specific CRF feature functions was presented. This was
also shown to improve KWS performance in the grapheme-based
KWS system. Overall, in both the word and grapheme-based KWS
systems, the techniques described in this work resulted in notable
performance gains. Furthermore, large improvements were achieved
in the combined (hybrid) system. This is because accurate confi-
dence scores are estimated for each system using essentially the
same technique, which results in implicit inter-system normalisation
of the confidence scores.
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