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Abstract
Many forms of time varying acoustic models have been applied
to the area of speech recognition. However, there has been little
success in applying these models to Large Vocabulary Contin-
uous Speech Recognition (LVCSR). Recently, fMPE was intro-
duced as a discriminative feature space estimation scheme for
the HMM-based LVCSR. This method estimates a projection
matrix from a high dimensional space (∼ 100,000) down to a
standard feature space (typically 39). This projection is then
added on to the original feature vector (e.g. MFCC or PLP) to
yield a feature vector to train the final model. This paper con-
siders fMPE as a time varying model for the mean vectors by
applying the time varying feature offset to the Gaussian mean
vectors. This approach naturally yields the update formulae for
fMPE and motivates an alternative style of training systems.
This concept is then extended to the temporal precision ma-
trix modelling (pMPE). In pMPE, a temporally varying positive
scale is applied to each element of the diagonal precision ma-
trices. Experimental results are presented on a conversational
telephone speech English task.

1. Introduction
Hidden Markov Models (HMMs) [1] are the most commonly
used acoustic models in state-of-the-art Large Vocabulary Con-
tinuous Speech Recognition (LVCSR) [2]. However, HMMs
assume that the probability of generating a speech frame given
the state is conditionally independent of the previous frames,
which is not valid for speech. Trajectory models and switching
linear dynamical systems [3] have been proposed to overcome
this limitation on small or medium vocabulary systems, but with
little success on LVCSR. Recently, fMPE [4] was introduced as
a Minimum Phone Error (MPE) training of the feature space for
the HMM-based LVCSR. This method projects a high dimen-
sion vector of posteriors down to a standard feature space (typ-
ically 39). The parameters of the projection matrix are trained
using a gradient-based optimisation of the MPE criterion with
an initial model set.

This paper considers fMPE as a form of temporally varying
model of the Gaussian mean vectors and extends the concept to
the temporal precision matrix modelling (pMPE). In pMPE, a
temporally varying positive scale is applied to each element of
the diagonal precision matrices. pMPE shares a similar struc-
ture of basis interpolation as several existing structured preci-
sion matrix approximation schemes [5]. Within the same frame-
work, pMPE can be viewed as modelling the precision matrices
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by superimposing a set ofdiagonalbasis matrices using some
temporally varying weights, which are obtained from the pos-
teriors of the observation vectors given a set of Gaussian com-
ponents. In addition, this view of temporally varying model
parameters motivates an alternative form of system training.

The rest of this paper is organised as follows. Section 2
describes the temporally varying model for the Gaussian mean
vectors and the precision matrices. Next, Section 3 derives the
estimation formulae for the temporally varying model parame-
ters and discusses several implementation issues. Experimental
results are given in Section 4.

2. Temporally Varying Parameters
A time varying mean vector can be expressed as

µmt = µm + bt = µm +

nX
i=1

hitbi (1)

wherebt is a temporally varying shift applied to the original
Gaussian mean vectors. This temporally varying shift is given
by interpolatingn basis vectors,bi. The time dependent inter-
polation weights,hit, are calculated as the posterior probabili-
ties of the feature vector givenn Gaussian components,gi:

hit = P (gi|ot) =
p(ot|gi)Pn

j=1 p(ot|gj)
(2)

wherep(ot|gi) is the likelihood of the componentgi givenot.
This formulation is the same as the fMPE [4] technique, which
was viewed as MPE training of the feature space. This method
estimates a projection matrix from a high dimensional space (∼
100,000) down to a standard feature space (typically 39). The
columns of this projection matrix corresponds tobi in equation
(1) and the elements of the high dimensional features are given
by hit.

A natural extension to the temporally varying mean model
is the temporal precision matrix modelling. One possible form,
in its most generic expression, is given by

Smt = A′
tSmAt (3)

whereSm andSmt are the original and temporal precision ma-
trices.At is ad× d time varying transformation matrix:

At = I +

nX
i=1

hitAi (4)

The expression in equation (3) can be viewed as atemporal
Semi-tied Covariance (STC) [6] precision matrix models. How-
ever, applying a time varying full transformation matrix,At,



can be computationally expensive. This paper considers a sim-
ple form of temporal precision matrix modelling, where diago-
nal precision matrices and diagonal transforms are used. This
simplifies equation (3) to an independent scaling of the diagonal
precision matrix elements:

smtj = a2
tjsmj =

Ã
1 +

nX
i=1

hitaij

!2

smj (5)

wheresmj andsmtj are the static and temporally varying pre-
cision of thejth dimension.atj andaij are thejth diagonal
element ofAt andAi respectively. The scaling factor at each
time is positive to ensure positive-definite precision matrices.

3. Parameters Estimation
The model parameters,θ, can be divided into two sets:static
(µm andSm) anddynamic(bij andatj) parameters. This sec-
tion describes how these parameters can be estimated using the
MPE training criterion. In MPE training, the objective function
to be maximised is given by

F(θ) =

RX
r=1

UrX
u=1

Pθ(u|Or)A(u, ur) (6)

whereR is the total number of training sentences andUr is
the total number of hypothesised sentences for therth acoustic
data.A(u, ur) is theraw phone accuracyof the sentenceu with
respect to the reference sentenceur. Pθ(s|Or) is the posterior
sentence probability [7]. Standard MPE training of the HMM
parameters is realised by maximising theweak senseauxiliary
function [7],Qmpe =

PT
t=1

PM
m=1 γmpe

m (t)Lm(ot), where

Lm(ot) = Km +
1

2

dX
j=1

log smtj − smtj (otj − µmtj)
2 (7)

Km subsumes terms independent of the model parameters.T
is the total number of training speech frames andM is the to-
tal number of Gaussian components in the system.γmpe

m (t) is
calculated in normal MPE training [7].

First, consider the update of the dynamic parameters by
keeping the static parameters constant. Due to the large num-
ber of posteriors (∼ 100, 000), it is not feasible to accumulate
the full second order statistics. Thus, a simple gradient optimi-
sation approach proposed in [4] will be used. For fMPE, each
element ofbi is updated along the gradient ofQmpe with respect
to the element,bij . The gradient is given by

dQmpe

dbij
=

TX
t=1

MX
m=1

dQmpe
mt

dbij
(8)

whereQmpe
mt = γmpe

m (t)Lm(ot) and

dQmpe
mt

dbij
=

∂Qmpe
mt

∂bij
+

∂Qmpe
mt

∂µmj

∂µmj

∂bij
+

∂Qmpe
mt

∂σ2
mj

∂σ2
mj

∂bij
(9)

Equation (9) is thecompletedifferential ofQmpe
mt with respect

to bij . In addition to finding the direction that maximisesQmpe
mt,

the last two terms in the right hand side of equation (9) (referred
to as theindirect differentials in [4]) also take into account the
fact that the global shifting and scaling of the mean should be
reflected by updating the static parameters. The actual forms of

the differentials
∂µmj

∂bij
and

∂σ2
mj

∂bij
depend on the update methods

for the static parameters,µmj andσ2
mj . Ideally, MPE update

of the static parameters is preferred. Unfortunately, the use of
the D-smoothing and theI-smoothing with dynamic ML (or
dynamic MMI) priors in standard MPE training [7] complicates
the calculation of theindirect differentials. In the following,
two simpler forms of update are described.

3.1. Interleaved Dynamic-Static Parameters Estimation

The training method proposed by [4] takes a Maximum Likeli-
hood (ML) trained model and trains the fMPE projection ma-
trix. This projection matrix is then used to train the static model
parameters using the ML criterion. Repeating this procedure
yields an interleaving update for the dynamic and static param-
eters. The static parameters are updated using the ML criterion
by keeping the dynamic parameters constant. The update for-
mulae are derived by maximising the following auxiliary func-
tion

Q(θ, θ̂) =

TX
t=1

MX
m=1

γml
m(t)Lm(ot) (10)

whereθ andθ̂ denote the set of original and reestimated model
parameters respectively.Lm(ot) is the likelihood ofot given
the Gaussian componentm. γml

m(t) is the posterior of Gaus-
sian componentm at timet. Differentiating equation (10) with
respect toµmj andσ2

mj and equating them to zero yield:

µmj =
xml

mj

β̃ml
mj

and σ2
mj =

yml
mj

βml
m

(11)

where the required ML statistics are

xml
mj =

TX
t=1

γml
m(t)a2

tj(otj − btj) (12)

yml
mj =

TX
t=1

γml
m(t)a2

tj(otj − µmtj)
2 (13)

βml
m =

PT
t=1 γml

m(t) and β̃ml
mj =

PT
t=1 γml

m(t)a2
tj . The suffi-

cient statistics given by equations (12) and (13) are similar to
the standard ones except that the observation vectors are shifted
by btj and the occupancy counts,γml

m(t) are scaled bya2
tj for

each dimensionj.
The dynamic model parameters are then estimated using the

gradient in equation (9) where

∂Qmpe
mt

∂bij
=

hitγ
mpe
m (t)(ot − µmtj)

σ2
mj

(14)

∂Qmpe
mt

∂µmj
=

ą
xn

mj − xd
mj

ć

σ2
mj

(15)

∂Qmpe
mt

∂σ2
mj

=
(yn

mj − yd
mj)/σ2

mj − βmpe
m

2σ2
mj

(16)

where the MPE numerator and denominator statistics are calcu-
lated in the similar way as the ML statistics given by equations
(12) and (13), replacingγml

m(t) by γn
m(t) and γd

m(t) respec-
tively. γn

m(t) and γd
m(t) are the numerator and denominator

occupancy counts given by [7].
∂µmj

∂bij
and

∂σ2
mj

∂bij
are computed

by differentiating the equations in (11) with respect tobij . For
the case whereatj = 1, these are the standard fMPE update
formulae [4].



The dynamic precision matrix parameters,aij , in pMPE are
estimated using a similar gradient-descent based optimisation
scheme. Here

âij = aij + ηij
dQmpe

daij
(17)

whereâij is the updated version ofaij . The gradient is evalu-
ated as

dQmpe

daij
=

TX
t=1

MX
m=1

dQmpe
mt

daij
(18)

where the complete differential ofQmpe
mt with respect toaij is

given by

dQmpe
mt

daij
=

∂Qmpe
mt

∂aij
+

∂Qmpe
mt

∂µmj

∂µmj

∂aij
+

∂Qmpe
mt

∂σ2
mj

∂σ2
mj

∂aij
(19)

and

∂Qmpe
mt

∂aij
=

hitγ
mpe
m (t)(1− smtj(otj − µmtj)

2)

atj
(20)

∂µmj

∂aij
=

2hitγ
ml
m(t)(otj − µmtj)

β̃ml
mj

(21)

∂σ2
mj

∂aij
=

2hitatjγ
ml
m(t)(otj − µmtj)

2

βml
m

(22)

The element specific learning rateηij is given by

ηij =
α

pij + nij
(23)

whereα is a scalar parameter for adjusting the learning rate.pij

andnij are the sum of the positive and negative contributions to
the gradient at each time,t, computed in a similar way as those
for fMPE [4].

3.2. Direct Dynamic Parameters Estimation

The estimation method described in 3.1 requires thecomplete
differential to take into account of the change in the model pa-
rameters in the subsequent ML training. If only thepartial dif-
ferential is considered, the gain from fMPE and pMPE disap-
pears as soon as the static model parameters are updated [4].
However, computing thecompletedifferential requires two
passes over the training data. The first pass accumulates the
normal MPE statistics (xn

mj , xd
mj , yn

mj , yd
mj , βn

m andβd
m) re-

quired by equations (15) and (16).
The training time can be reduced if the starting HMM is a

well trained MPE model. In this case, the differentials in equa-
tions (15) and (16) will have values small enough that can be
safely approximated as zero. This conveniently eliminates the
need to accumulate the normal MPE statistics. Furthermore,
no subsequent reestimation of the static parameters is required.
Hence, fMPE and pMPE can be estimated with only a single
pass over the training data.

3.3. Approximating the pMPE Training

The mean update in equation (11) requires an additionald-
dimensional vector,̃βml

mj (or β̃mpe
mj), to be accumulated for each

componentm. Furthermore, this also complicates the calcula-
tion of the D-smoothing constant [7],Dm, for the subsequent
MPE training. To simplify the update of the mean vectors, the
temporal variation in the scaling factora2

tj is ignored when ac-
cumulating the mean statistics. Thus, the terma2

tj in equation
(12) may be dropped and̃βml

mj (or β̃mpe
mj) simplifies toβml

m (or

βmpe
m ). Since the approximated mean update is independent of

a2
tj ,

∂µmj

∂smtj
in equation (21) becomes zero. For this approxi-

mation to work well,atj should becloseto the average value
of atj over time. This approach has been found empirically to
yield consistent improvement in both MPE criterion and WER
performance, as shown in Section 4.

3.4. Implementation Issues

fMPE has minimal additional cost in terms of likelihood calcu-
lation. For pMPE there is a slight increase in this cost. The
likelihood of an observation vector,ot, given the model pa-
rameters,θm is given by equation (7) This requires an extrad
multiplications and 1 addition require. It also requiresatj andPd

j=1 log atj to be cached for each frame,t.
Unlike fMPE, pMPE is more likely to get overtrained, par-

ticularly when a higher learning rate is used (α > 1.0). In such
a case, the resulting temporal varying scale,a2

tj may tend to a
value close to zero. To prevent this, a minimum value is asserted
ontoatj , similar to the concept of variance flooring:

ãtj = max{atj , amin} (24)

whereãtj is the floored scale factor andamin is the scale floor.
In this paper,amin of 0.1 was used.

As mentioned in [4], the update of the dynamic parameters
should not result in aglobalshift or scale in the acoustic space,
as this should be accounted for by the static parameters. This
was achieved by taking thecompletedifferentials (including the
indirect differential). These provide convenient checks against
any implementation errors [4]. Similar checks can also be car-
ried out for pMPE implementation by ensuring:

0 =

TX
t=1

∂Qmpe
mt

∂aij

ŕŕŕ
hit=atj

+
∂Qmpe

mt

∂σ2
mj

∂σ2
mj

∂aij

ŕŕŕ
hit=atj

(25)

0 =

TX
t=1

∂Qmpe
mt

∂µmj

∂µmj

∂aij

ŕŕŕ
hit=atj

(26)

Equations (25) and (26) ensure that there will be no global scal-
ing of the precision matrices. This is also true for the approxi-
mation described in Section 3.3 where only equation (25) needs
to be checked.

4. Experimental Results
This section presents the preliminary experimental results of
temporal varying Gaussian model on LVCSR based on the Con-
versational Telephone Speech (CTS) English task. Systems are
trained using the 296 hours switchboard data (h5etrain03 )
and evaluated on a 3-hour test set (dev01sub ). All systems
in this paper used 12 PLP coefficients with theC0 term plus
the first, second and third derivatives to yield a 52-dimensional
feature. A39 × 52 HLDA transformation matrix was used to
project the features onto a 39-dimensional space. Side-based
Cepstral Mean, Cepstral Variance and Vocal Tract Length Nor-
malisations were also employed. The baseline system was
speaker independent with approximately 6000 states and 16
Gaussian components per state (∼ 99,000 Gaussians in total).

The posteriors,hit, are calculated based on the same Gaus-
sians in the system. These Gaussians are grouped into 1024
clusters. The posteriors are calculated by evaluating only the
Gaussians in the 5 most likely clusters. Posteriors below 0.1 are
set to zero to yield approximately 2 non-zero posteriors at each
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Figure 1: MPE criterion against training iteration

time. No context expansion [4] was used. First, the fMPE and
pMPE models were built using four interleaved updates (Sec-
tion 3.1). 8 MPE iterations were then performed on top of them
to give the fMPE+MPE and pMPE+MPE models. MPE+fMPE
and MPE+pMPE system were also built using the direct esti-
mation (Section 3.2). The approximation method in Section
3.3 was used for pMPE and pMPE+MPE systems.

Figure 1 shows the change in MPE criteria with increasing
training iterations for various systems. The MPE criterion of
the ML baseline was 0.74. This was improved by about 0.11 af-
ter 12 MPE iterations. The criterion gains for fMPE and pMPE
were smaller compared to MPE training. Further MPE train-
ing increased the criteria of fMPE+MPE and pMPE+MPE to
be similar to the MPE system, with the latter marginally better.
The larger criterion gain for pMPE did not generalise to recog-
nition performance (see later). This suggests that pMPE is less
robust to overtraining, unlike fMPE [4]. Further criterion gain
were obtained with the MPE+fMPE and MPE+pMPE systems.

System Initial Model Iter 0 Iter 4 Iter 8

MPE ML 33.5 30.7 30.2
fMPE+MPE fMPE 31.9 29.9 29.4
pMPE+MPE pMPE (α = 1.0) 32.5 30.4 30.0

Table 1: WER performance ondev01sub for 16-component
models usinginterleavedparameters estimation

The Word Error Rate (WER) performance ondev01sub
for fMPE+MPE and pMPE+MPE systems are shown in Ta-
ble 1. The ML baseline performance was 33.5%. MPE alone
reduced the WER by 3.2% absolute. fMPE and pMPE gave
1.6% and 1.0% absolute WER reduction respectively. Despite
the good MPE criterion improvement, the WER performance
of the pMPE system converged much quicker (after two iter-
ations). MPE training on top of these systems each gained a
further 2.5% absolute, which are respectively 0.8% and 0.2-
0.3% absolute better than the MPE system alone. The perfor-
mance difference between MPE and pMPE+MPE gradually di-
minished as the number of MPE training increases. The gains
from fMPE and pMPE are notadditive. Initial experiment of
pMPE training on top of the fMPE system (fpMPE) showed
0.5% absolute improvement over the fMPE system. Unfortu-
nately, this gain decreases with increasing MPE training itera-
tions. This may be due to the approximation described in Sec-
tion 3.3. More investigation is required to study the interaction

System Iter 0 Iter 2 Iter 4

MPE 30.2 30.2 30.2
MPE+fMPE 30.2 29.6 29.4

MPE+pMPE (α = 0.5) 30.2 30.0 29.8

Table 2: WER performance ondev01sub for 16-component
systems usingdirectparameters estimation

between the fMPE and pMPE training.
Table 2 compares the WER performance of MPE+fMPE

and MPE+pMPE using the direct estimation scheme. The initial
model used by all systems was the MPE system trained with 8
iterations. Four additional standard MPE iterations gave no fur-
ther improvement. The MPE+fMPE system gave similar per-
formance to the fMPE+MPE system, but the training time for
the former is more efficient. Also, four additional direct pMPE
training is 0.2% better than the pMPE+MPE system. All the
gains presented were found to be statistically significant1, ex-
cept the 0.2% gain from the pMPE+MPE system.

5. Conclusions
This paper presented the temporal varying model for Gaussian
parameters. Applying a temporal varying shift to the mean vec-
tor yields the fMPE model. A simple form of temporal preci-
sion matrix model is also described. Here the precision matrix
is scaled by a temporally varying factor. An alternative training
scheme to the standard fMPE is also described. A well trained
MPE system is used as the initial model for estimating the dy-
namic parameters. Both fMPE, temporally varying means, and
pMPE, temporally varying precision matrices, yield gains over
standard MPE. Future work is required to investigate the inter-
action the between fMPE and pMPE training.
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