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ABSTRACT

Recently there has been increased interest in Automatic Speech
Recognition (ASR) and Key Word Spotting (KWS) systems for low
resource languages. One of the driving forces for this research di-
rection is the IARPA Babel project. This paper describes some of
the research funded by this project at Cambridge University, as part
of the Lorelei team co-ordinated by IBM. A range of topics are dis-
cussed including: deep neural network based acoustic models; data
augmentation; and zero acoustic model resource systems. Perfor-
mance for all approaches is evaluated using the Limited (approx-
imately 10 hours) and/or Full (approximately 80 hours) language
packs distributed by IARPA. Both KWS and ASR performance fig-
ures are given. Though absolute performance varies from language
to language, and keyword list, the approaches described show con-
sistent trends over the languages investigated to date. Using com-
parable systems over the five Option Period 1 languages indicates
a strong correlation between ASR performance and KWS perfor-
mance.
Index Terms: keyword spotting, deep neural network, low-resource
languages, multi-lingual systems.

1. INTRODUCTION

In recent years there has been an increasing interest in Automatic
Speech Recognition (ASR) and Key Word Spotting (KWS) for low
resource languages. One of the driving forces for this research direc-
tion is the IARPA Babel project [1]. The aim of the project is to de-
velop robust KWS and ASR technologies that can be rapidly applied
to any human language. To enable both rapid development of sys-
tems, and performance on languages for which there has traditionally
been little research, to be evaluated the program has focused systems
built using limited quantities of data. This paper gives an overview
of the research undertaken at the Cambridge University Engineering
Department (CUED) as part of the Lorelei team led by IBM. Three
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main research areas will be discussed: deep neural network acous-
tic models; data augmentation; and zero resource acoustic models.
The performance of these approaches is evaluated on data released
under the Babel program. Two language packs are released for each
language: a full language pack (FLP) comprising about 80 hours of
transcribed audio data; and a limited language pack (LLP) compris-
ing about 10 hours of transcribed audio data. For the LLPs (and some
of the FLPs) additional untranscribed audio data is also available.

Speech recognition systems using neural networks have had a
long history [2]. Recently there has been renewed interest in this area
with the development of deep neural network (DNN) systems [3,
4]. Currently two configurations of DNN are commonly used. The
DNN can be used as feature extractor for a standard GMM-based
HMM system [5, 6], this approach is referred to as Tandem. The
second configuration, known as Hybrid uses the network to compute
state posteriors, which are then converted into scaled likelihoods by
normalising by the state priors. In this work both forms of network
are trained for the FLP and LLP releases. System combination for
both ASR [7, 8] and KWS [9, 10, 11] are standard approaches for
improving final system performance. In addition to the performance
of the individual system performance for both ASR and KWS, the
impact of combining these two form of DNN system is described.

Data augmentation is a class of approaches where the effective
quantity of data used to train the system is increased. In this paper
these approaches are split into two distinct groups. The first is where
only the data from the target language is considered. In this case
it is necessary to use automated approaches to increase the amount
of transcribed data. One technique is to artificially create more data
with known transcriptions, for example using acoustic data perturba-
tion [12, 13, 14] or speech synthesis [15]. Another scheme assumes
that additional, untranscribed, audio data is available. In this sce-
nario it is possible to use semi-supervised training [16, 17, 18]. An
alternative class of approaches is to make use of data from other
languages to increase the available data. This has become increas-
ingly popular as DNNs are more commonly used as they are well
suited to these schemes. Two approaches have been adopted. The
first is to build multi-lingual bottleneck features for use in a Tandem
system [6, 19, 20, 21]. Alternatively Hybrid systems, with target lan-
guage specific output layers, have also been investigated [22, 6, 23].
In this work the impact of multi-lingual bottleneck features, using
the configuration discussed in [21], will be discussed.

The above approaches have assumed that there is some tran-
scribed audio data available for the target language. For some sit-
uations, it may not be possible to transcribe any audio. The final re-
search area will be referred to as zero acoustic model resources [21].
Here it is assumed that there is no transcribed audio data, just a lim-
ited amount of language model data and a lexicon. The aim here



is to build a language-independent (LI) acoustic model. This model
can then be used directly for ASR, or KWS. Alternatively the LI
acoustic model can be used to transcribe audio data in the target lan-
guage, which can then be used for training. This is effectively an
unsupervised acoustic model training process [24, 25].

For all experiments the core ASR toolkit, used for acoustic
feature generation, clustering, decoding and GMM-based acoustic
model training, was an extended version of the HTK-3.4.1 [26]
toolkit. The MLP training used an extended version (to allows
deeper network configurations) of ICSI’s QuickNet [27], to train
both Tandem and Hybrid systems. The results given in this paper
were generated at various stages of system development. Thus re-
sults are not necessarily consistent across tables, however within a
table all results are comparable unless otherwise stated. The focus
of this paper is acoustic modelling. The language models for all
systems used the vocabulary and training data from the audio tran-
scriptions. For all systems N-gram language models (either bigram
or trigram) were used, optionally interpolated with class-based lan-
guage models.

For all ASR systems in this work, the underlying context-
dependent states were specified using state, rather than phone-state,
roots of the decision tree. Here questions involving X-SAMPA at-
tributes and position of the phone in the word were used for both left,
right and centre context. This was found to yield additional robust
to rare phones, for example the X-SAMPA phone /kx/ in Zulu. If
phone/state-position decision tree roots are used for these rare phone,
there is insufficient data to train any context models. Effectively
these rare phones are modelled as monophones. To further improve
the ability to model rare phones, diphthongs (and triphthongs) were
split into their constituent parts, with additional markers added to
indicate that the unit was derived from a diphthong.

2. TASK DESCRIPTION

The work reported in this paper was undertaken as part pf the IARPA
Babel [1] program, which aims to foster research on speech recog-
nition and keyword spotting for low resource languages. The Ba-
bel speech corpora covers a range of diverse languages and is dis-
tributed under two configurations for each language - the “full” lan-
guage pack (FLP) and the “limited” language pack (LLP). The FLP
and LLP packs consist of approximately 80 hours and 10 hours of
speech for training, respectively. The data is recorded in “real-life”
scenarios, such as conversational telephone speech, over a range of
acoustic conditions, such as mobile phone conversation made from
car. The FLP and LLP share the same development set of about 10
hours of conversational speech. The phone set and phonetic lexicon
are supplied for every language pack and contains only those words
occurring in the transcribed audio data for that language pack.

In the Option Period 1 (OP1) phase of the project, five languages
were released for development: Assamese; Bengali; Haitian Creole;
Lao; and Zulu. The ASR and KWS experiments reported in this pa-
per are primarily conducted on these OP1 languages (both FLP and
LLP), and the performance is evaluated on the development data.
The official metric to measure the accuracy of the system perfor-
mance has been defined to be the Maximum Term Weighted Value
(MTWV), which is the best term weighted value [28] (TWV) that
can be achieved over all choices of detection threshold. The TWV is
defined as

TWV (θ) = 1− [Pmiss(θ) + βPfa(θ)] (1)

where Pmiss(θ) and Pfa(θ) denote the probability of miss and false
alarm, respectively and β is 999.9.

Below are listed the releases of the languages that are used in
the experiments. The languages marked in bold are the development
language from OP1. The languages marked with a † are used as
training languages for the multi-language and language-independent
system in sections 5.2 and 6 respectively.

Language Id Release
Cantonese† 101 IARPA-babel101-v0.4c
Assamese† 102 IARPA-babel102b-v0.5a
Bengali 103 IARPA-babel103b-v0.4b
Pashto† 104 IARPA-babel104b-v0.4aY
Turkish† 105 IARPA-babel105b-v0.4
Tagalog† 106 IARPA-babel106-v0.2f
Vietnamese 107 IARPA-babel107b-v0.7
Haitian Creole 201 IARPA-babel201b-v0.2b
Lao† 203 IARPA-babel203b-v3.1a
Zulu† 206 IARPA-babel206b-v0.1e

For all the experiments there is approximately 10 hours of audio
to recognise, and 2000 KW terms for the KWS task 1. In this paper
Token Error Rate (TER), rather than WER, is used when discussing
ASR results. For the broad range of languages investigated under the
Babel program, some languages, for example Vietnamese, do not
have references at the word level. Thus TER removes the concept
of word (though measured in the same fashion). The TER results
quoted are based on Confusion Network (CN) decoding [29] applied
to the lattices that were used for KWS unless otherwise stated.

It is worth emphasising that given the targets of the project,
KWS performance of greater than 0.3, where choices of system con-
figuration have been made they were based on KWS performance,
not ASR performance.

3. KWS SYSTEM DESCRIPTION

The focus of the research at CUED is on improving ASR systems for
low-resources languages. However, since the Babel program uses
KWS to assess performance, this section gives a brief description of
the Lorelei team KWS system, and the approaches adopted to handle
KWS with low-resource languages.

The KWS system is based on a weighted finite state transducer
(WFST) framework [30]. First an ASR system is used to gener-
ate word lattices. These lattices are then processed to generate the
word indices for the in-vocabulary (IV) search and phonetic indices
to accommodate out-of-vocabulary (OOV) search. The timing in-
formation is pushed to the output labels of the arcs of the resulting
WFSTs. The arcs in the resulting WFST after the push operation can
be expressed as a 5-tuple (p, i, o, w, q), where p and q indicate the
start and end states, i denotes the input label, which can be a word in
case of IV search or a phoneme in case of OOV search, w indicates
the posterior probability associated with the input label, and finally
o denotes the output label.

The IV queries are searched in the word index, whereas the OOV
queries are searched in the phonetic index. More specifically, for the
IV search, each query is converted to a word weighted finite state
acceptor (WFSA) and a composition operation is carried out with
the word index in order to retrieve the hit list for the query. Each hit
list is identified by the name of the audio file, the starting time of the
query, duration and the score, which is the posterior probability de-
rived from the WSFT. On the other hand, for the OOV search, each

1For Vietnamese, the base period surprise language, a more limited set of
about 900 keywords was used.



query is first expanded to a reasonable phonetic representation using
a grapheme-to-phoneme converter, which may not give accurate pro-
nunciation for all query terms. The resulting pronunciation is then
represented as a phonetic WFSA, and a composition with the pho-
netic WFST is carried out to retrieve the hit lists for the OOV terms.
It is possible to vary the number of phone query confusions [31]. In
the simplest case no confusions are included, the identity P2P case.
For the experiments in this work the number of confusions was in
the range 100 to 50000. The IV queries that did not return hits were
searched again in the phoneme index which is known as the cascaded
search. Finally the IV, OOV and cascaded search hit lists are com-
bined and sum-to-one (STO) [30] score normalisation is applied to
make sure that sum of all normalised detection scores for each query
is 1.0.

For some languages that are morphologically rich the number
of OOV terms can become very large impacting performance. For
example for the Zulu LLP 61% of the query terms were OOV, com-
pared to 31% for the Bengali LLP. To address this problem a mor-
phological KWS can be used [32]. Here initially IV word terms are
found. Then IV morph terms are found, finally OOV morph terms
are found.

KWS Process MTWV
IV OOV Tot

Word 0.2655 0.0000 0.1033
+phone 0.2596 0.0970 0.1606
+cascade 0.2609 0.0970 0.1611
+lm0 0.2649 0.1338 0.1851
+morph 0.2615 0.2073 0.2287

Table 1: MTWV scores comparing KWS system stages for Zulu LLP.

The impact of the various stages for KWS are shown for the
Zulu LLP in Table 1. The ASR system is the Tandem system used
in section 7. The most basic search just examines the in-vocabulary
terms, a word search (Word). To handle OOV terms phone confu-
sions can be added (+phone). This handles the OOV terms, but the
performance on these terms is significantly worse than for the IV
terms. To improve IV performance, cascade search can be added
(+cascade). For Zulu this gave only a small improvement, but for
some languages, such as Vietnamese, large gains were observed. For
the OOV search, there is not expected to be any benefit from using
the language model scores from the IV terms, but these influence the
scores associated with the phones. To address this, the lattices gener-
ated by the ASR system are mapped to remove the language model
component (+lm0) for the OOV search. This improves the OOV
search. Finally by using morphological decomposition (+morph),
some of the OOV terms are mapped to be IV in terms of the mor-
phology lattices. This further improves the OOV performance. Note,
the slight variation in the IV word performance is due to shifts in the
MTWV operating point.

4. DEEP NEURAL NETWORK ACOUSTIC MODELS

In common with most state-of-the-art speech recognition system,
significant performance gains can be obtained using DNNs [3, 4]
for limited resource systems. In this work both Hybrid and Tandem
systems were constructed. The Tandem configuration used a single
network with PLP and pitch features at the input. The output of this
network was then used in a hybrid system yielding a stacked config-
uration. This is illustrated in Figure 1. All networks were initialised
with layer-by-layer discriminative pre-training [4]. Further details of

Fig. 1. Tandem and Stacked Hybrid systems

the two acoustic models are given below. The results for the individ-
ual systems, and combination, are given in section 7.

4.1. Tandem System

The development of the Tandem systems was based on [33]. An
MLP was trained using cross-entropy, and context dependent targets
defined by a phonetic decision tree. The input to the network was
9 frames of PLP with pitch2 appended, and delta, delta-deltas and
triples added. This yields a total input vector size of 504. The net-
work was configured to have a bottleneck layer of 26. The 26 dimen-
sional bottleneck features were transformed using a global semi-tied
covariance matrix [34] and then appended to HLDA projected PLP
features (39 dimensions) and pitch with delta and delta-delta param-
eters. This yields a complete feature of 68 dimensions. These are
the baseline features for the hybrid system below.

A speaker adaptive training (SAT) system using global con-
strained maximum likelihood linear regression (CMLLR) at a
speaker level [35], was then constructed incorporating both Min-
imum Phone Error (MPE) [36] training and feature-space MPE
(fMPE) [37]. The CMLLR transforms were estimated using max-
imum likelihood (ML) on the ML estimated acoustic models. These
were then fixed and MPE and fMPE estimated using these trans-
forms.

A multi-pass decoding and adaptation process was used for all
experiments in this paper:

1. speaker-independent (SI) decoding with a PLP-based MPE
system;

2. a global CMLLR transform was estimated for each speaker
using the Tandem ML-SAT model;

3. global CMLLR and MLLR transforms were estimated using
the Tandem-SAT fMPE+MPE acoustic model;

4. speaker adapted decoding using the Tandem-SAT
fMPE+MPE system and a bigram word-based language
model;

5. lattice rescore with a class-based language model and confu-
sion network (CN) generation.

2Initial experiments showed that using pitch as an input to the MLP sig-
nificantly improved the performance of tonal languages such as Lao, with
smaller improvements for non-tonal languages



The configuration of the Tandem systems for the two language
packs was tuned to the quantities of data available.

Full Language Pack: the target number of states was set at about
6000 for both the MLP and HMM system. Five hidden layers,
including the bottleneck layer, were used. The network configu-
ration was (including input and target layers): 504x10004x26x6000.

Limited Language Pack: the target number of states was set at
about 1000 for both the MLP and HMM system. Four hidden layers,
including the bottleneck layer, were used. The network configuration
was (including input and target layers): 504x1000x5002x26x1000.

4.2. Stacked Hybrid System

As shown in Figure 1 the hybrid system was trained in a stacked
fashion. First the bottleneck MLP for the Tandem system was con-
structed. Using the ML Tandem-SAT system, and the ML-estimated
CMLLR transforms these features were transformed to be speaker
specific. Again 9 vectors, each of 68-dimensions, were then stacked
together to yield a total input vector the network of 612 features.
Speaker adapted decoding with the Hybrid system, used the trans-
forms generated at stage (2) of the Tandem decoding process to
transform the features to be speaker specific. Hybrid decoding with
a bigram language model, was then followed by the lattice rescoring
and CN generation as in step (5) of the Tandem decoding.

The configuration of the Hybrid systems for the two language
packs was tuned to the quantities of data available.

Full Language Pack: the target number of states was set at about
6000 for the MLP. Five hidden layers were used, the network con-
figuration was (including input and target layers): 612x10005x6000.

Limited Language Pack: the default target number of states was
set at about 1000 for the MLP. Four hidden layers were used as the
default network configuration, (including input and target layers):
612x1000x5003x1000.

5. DATA AUGMENTATION

When there is very limited training data, approaches that increase
the quantity of training data available have been proposed. In this
paper the approaches are split into two broad categories. The first
is data and transcription generation, where audio data is either ar-
tificially generated [12, 13, 14], or additional transcriptions gener-
ated in a semi-supervised fashion [16, 17, 18]. An alternative ap-
proach is to make use of data from other languages [6, 19, 20, 21],
multi-language resources. The form of these approaches examined
at CUED, and preliminary results, are discussed in the next two sec-
tions.

5.1. Data and Transcription Generation

Two forms of within language data augmentation were investigated:
vocal tract length perturbation; and semi-supervised training. For
vocal tract length perturbation (VTLP) [12], 8 warp factors were
randomly selected in the range 0.8 to 1.2. The data was then per-
turbed by the selected warp factor. This increased the quantity of
training data to be approximately the same as the FLP. For the semi-
supervised training, the LLP system was used to recognise the un-
transcribed data. Confidence based-selection was then used to select

about 50% of the data with no transcriptions. This data was then
added to the supervised LLP data and used to train a system. Finally
discriminative MAP of the semi-supervised system to the (super-
vised) LLP data was performed. It is also possible to combine these
two approaches to further increase the quantity of data. For further
information about the experimental configuration, and additional re-
sults, see [38].

Data Augmentation TER MTWV
HMM BN-MLP (%) Tot

— — 78.4 0.1362
— vtlp 77.1 0.1496
— semi 77.7 0.1468
— semi+vtlp 76.7 0.1446

semi semi 76.9 0.1490
semi semi+vtlp 76.1 0.1441

semi+vtlp semi+vtlp 76.1 0.1454

Table 2: %TER (no CN) and MTWV for Zulu (206) LLP perfor-
mance using data augmentation approaches - semi-supervised train-
ing (semi) and Vocal Tract Length Perturbation (vtlp) .

Table 2 shows the impact of the two data augmentation ap-
proaches on the LLP Zulu system. The acoustic model configura-
tion used for these experiments was Tandem-SAT. First considering
the ASR performance. Data augmentation for training the BN MLP
yielded performance gains. At these high TERs, 78.4%, the gains
from semi-supervised training were smaller than those from VTLP.
However combining the two approaches yielded additional gains.
Applying semi-supervised approaches to also training the acoustic
model HMM gave further gains. However for this task combining
both semi-supervised training and VTLP to train the HMM did not
yield gains over just using semi-supervised training.

The performance on KWS was not as consistent as the ASR per-
formance. Again using any form of data augmentation yielded a
performance gain. However the best performing system used only
VTLP data augmentation.

5.2. Multi-Language Resources

Rather than artificially generating data or transcriptions, it is also
possible to make use of data from other languages. In this work only
the Tandem configuration was used and the MLPs used to extract
the bottleneck features were trained on multi-lingual data, the LLPs
from seven training languages described in section 2 were used for
this purpose.

 State Position

 Tagalog  Pashto  Cantonese

Fig. 2. Context Dependent MLP Targets

When training these multi-language networks there are two
forms of targets that can be used, illustrated in Figure 2. The option
on the left is where the MLP targets are context-dependent (though
context independent targets can be used) and language-specific, for



example [20]. Thus the normalisation summation (shown in blue)
acts on single language. This approach is useful as there is no re-
quirements for consistency in the phonetic labels from the individual
languages. The network will attempt to generate a projection layer
that maximises the average within-language discrimination over the
training languages.

The second approach, and the one adapted in these experiments,
is to have a single decision tree that covers all languages [21]. This
requires that there is a consistent phonetic labelling scheme for all
languages, which is the case for Babel where X-SAMPA is used.
Now the normalisation term is over all context dependent targets.
Thus the projection layer is optimised to discriminate between all
context-dependent labels. The rationale for this approach is that
when the network is to be applied to an unseen language, the phone-
set and important phonetic context structure is unknown when the
MLP are being trained. By maximising discrimination over all pos-
sible context dependent phones, it is hoped that any unseen phonetic
contexts will also be easily separated.

Language Id BN TER MTWV
MLP (%) Tot

Assamese† 102 UL 68.0 0.2132
ML 66.4 0.2382

Zulu† 206 UL 75.8 0.1274
ML 74.4 0.1396

Bengali? 103 UL 68.6 0.2392
ML 67.0 0.2551

Haitian 201 UL 62.2 0.4054
Creole ML 61.1 0.4266

Vietnamese 107 UL 69.3 0.1851
ML 68.2 0.1908

Table 3: %TER and MTWV LLP performance using Target Lan-
guage BN features (UL) or Multi-Language BN (ML). † indicates
that the language was seen in the ML BN training data, ? indicates
“identity” phone-mapping OOV search.

Table 5.2 shows the ASR and KWS results for languages seen
in the training data (Assamese and Zulu) and languages not seen
in the training data (Bengali, Haitian Creole and Vietnamese). The
combination of the seven languages yields comparable quantities of
data to a single language FLP. Thus for these experiments the FLP
BN MLP configuration, 504×10004×26×6000, was used. For all
languages, even those that are not represented in the training data,
performance gains are obtained for both ASR and KWS.

The systems shown above have only included a limited amount
of data from each language. Additional gains have been obtained
by including data from the FLPs, and also “fine-tuning” to the target
language [39].

6. “ZERO ACOUSTIC MODEL RESOURCE” SYSTEMS

Using phonetic labels from X-SAMPA, for example, it is possible to
generate lexicons that have the same set of labels for all languages.
However even if the X-SAMPA label is consistent across two lan-
guages the realisation of that phone may vary significantly between
languages. This limitation impacts the ability to generate language-
independent (LI) acoustic models. Despite this, it is still an interest-
ing goal to see what performance can be obtained using state-of-the-
art approaches for language-independent modelling as well as inves-

tigating whether these approaches can be used to bootstrap acoustic
models in an unsupervised fashion.

Fig. 3. Cumulative Phone Occurrences against Language Release

One of the first issues to be considered when constructing these
LI acoustic models is the phone coverage. Figure 3 shows the cumu-
lative phone coverage over the ten languages considered. The order-
ing is the base period development languages (101,104,105,106), the
base period surprise language (107) and then the five option period 1
development languages (102,103,201,203,206). Note for these plots
diphthongs (and triphthongs) are split into their constituent units. It
is clear from the plot that the phone coverage has not yet converged.
Indeed the overall X-SAMPA attribute file at CUED comprises 215
entries, of which only 62% have currently been seen.

Fig. 4. Language Independent Acoustic Models

The overall structure of the LI acoustic models is shown in Fig-
ure 4. The same decision tree is used for the targets of the BN-MLP
and the acoustic model, though this is not a requirement. The states
for unseen phones for the target language are determined using the
phonetic attributes from X-SAMPA. It is possible to use language
questions in the decision tree construction process. For the results in
this section language questions were not used. For additional details
of the experimental set-up see [40].

As discussed in section 2 seven languages were used as training
data for the LI acoustic model (these were the same languages as
used to train the BN features in the previous section). The LLPs for
each of the languages were used. For the three unseen languages,
the number of unseen phones were: Vietnamese (107) 7; Bengali
(103) 12; and Haitian Creole (201) 2. To handle this issue, the state-
position roots to the decision trees were used. Thus unseen phones
were mapped to leaf nodes using X-SAMPA phone attributes. The



language model training data and lexicon were taken from the LLPs
for the training languages. To avoid any bias from using the tran-
scriptions from the LLP to train the language model, the LLP tran-
scribed data was not used. For all experiments a Tandem-SAT sys-
tem was used.

System TER MTWV
(%) IV OOV Tot

Haitian Creole (201)
LD fMPE 61.7 0.4673 0.2347 0.4317
LI fMPE 77.2 0.2250 0.0966 0.2058
UN ML 71.4 0.2907 0.1462 0.2691

Bengali (103)
LD fMPE 68.5 0.3173 0.0987 0.2504
LI fMPE 81.1 0.1929 0.0775 0.1573
UN ML 75.9 0.2068 0.0913 0.1723

Vietnamese (107)
LD† fMPE 69.3 0.1962 0.1081 0.1851
LI fMPE 87.6 0.0255 0.0268 0.0257
UN ML 84.9 0.0086 0.0357 0.0174

Table 4: LLP performance using Language Dependent (LD), Lan-
guage Independent (LI), and Unsupervised (UN) models. † indicates
that plp features were used as the input to the BN MLP.

Table 4 shows the performance of the LI acoustic models against
the language dependent acoustic models (LD) on the three unseen
languages. As expected the performance of the LI acoustic models
is significantly worse in terms of both ASR and KWS performance
for all languages. For Vietnamese (107) the performance is very
poor. For additional analysis of these results see [40].

In addition Table 4 shows the performance of using the LI acous-
tic models to bootstrap a new language in a completely unsuper-
vised fashion. In this preliminary work the transcriptions from the LI
acoustic models were used in the standard system build framework.
Using these unsupervised transcriptions for discriminative training
(either MPE or fMPE) degraded performance 3. The MLP to obtain
the bottleneck features was not retrained, so the multi-lingual BN
features from section 5.2 were used. Note none of the languages in
Table 4 were in the training data for this network. For Haitian Creole
and Bengali unsupervised trained acoustic models (UN) improved
performance, both for ASR and KWS, over the LI acoustic models.
This indicates the limitations of assuming phone consistency over
multiple languages (as used in the LI models).

For Vietnamese, where the ASR performance was significantly
worse than Haitian Creole and Bengali, there were slight gains in
TER, however no gain in KWS performance. In some way this is not
surprising as extrapolating the graph in Figure 5 at ASR performance
levels of about 85% the KWS performance is starting to just look like
noise.

The above results have been generated using transcriptions from
the LI acoustic models. It is also possible to use the unsupervised
acoustic models to retranscribe the data. This mode will be investi-
gated in future work.

3The default parameter settings for I-smoothing were used. It is possible
to tune the system to ensure than MPE does not degrade performance, but
this tuning was not done.

7. HYBRID AND TANDEM SYSTEM COMBINATION

Given the different forms of classifier being used for the Tandem
and Hybrid system, they may be expected to be complementary to
one another. To investigate this for ASR , the confusion networks
generated by the Tandem and Hybrid systems were combined us-
ing CN combination (CNC) [8]. Before combining the two sys-
tem, the posterior probability associated with the CN of each sys-
tem, based on the arc posteriors from the lattice, were mapped to re-
move any biases in the confidence measures. In this work, a simple
merging of the posting lists from each of the systems, prior to STO
normalisation, was used for combining the KWS systems together,
rather than a more complicated approach such as MTWV-weighted
CombMNZ method discussed in [30]. In initial experiments, there
was a slight degradation in performance by using the merging, rather
than CombMNZ, but it simplifies the pipeline.

To moderate the impact of the quality of data in the LLP ei-
ther Vocal Tract Length Perturbation (VTLP) was used (Bengali,
Haitian Creole, and Lao) or semi-supervised approaches (Assamese
and Zulu) were used to train the BN MLP for the Tandem system.
For both VTLP and semi-supervised training, the approaches de-
scribed in section 5.1 were used. Due to time constraints, data aug-
mentation was only applied to the Zulu Hybrid system. Here semi-
supervised training, in the same fashion as the Tandem system was
used, and the number of target states increased to 3000.

Language Id LP TER (%)
Tandem Hybrid CNC

Assamese 102 FLP 54.2 55.1 52.8
LLP 65.1 67.8 64.3

Bengali 103 FLP 54.9 56.6 54.3
LLP 67.0 69.5 66.8

Haitian 201 FLP 48.7 50.3 48.2
Creole LLP 60.5 63.4 60.4

Lao 203 FLP 48.5 51.9 48.9
LLP 61.2 65.8 61.3

Zulu 206 FLP 62.1 64.4 61.2
LLP 71.5 74.1 70.6

Table 5: %TER with CN decoding for Tandem and Hybrid and CNC
for Full (FLP) and Limited (LLP) Language Packs.

Table 5 shows the STT system performance on each of the lan-
guages, and each configuration. There are some general trends. For
these DNN systems, the Tandem system consistently outperformed
the Hybrid configuration. Part of this difference in performance may
be because of the use of cross-entropy, rather than sequence train-
ing [41]. The difference in performance was also greater for the
LLP than the FLP. This can partly be attributed to the use of data
augmentation for the Tandem system, but not the Hybrid system.
In general the combination of the Tandem and Hybrid STT results
yielded gains. The outlier for this was Lao, where the difference in
performance between the Tandem and Hybrid systems was greatest.

Table 6 shows the performance of the KWS system on each of
the languages and language packs. For the FLPs the performance of
both the Tandem and Hybrid systems was very similar, for Assamese
the Hybrid system yielded the best performance. For the LLPs there
was still a gap in performance with the Tandem system outperform-
ing the Hybrid. This was also true when comparing the Tandem with
no data augmentation to the Hybrid system. In contrast to the ASR
combination, merging posting lists improved KWS performance in



Language Id LP MTWV
Tandem Hybrid Merge

Assamese 102 FLP 0.4660 0.4730 0.4946
LLP 0.2569 0.2360 0.2771

Bengali 103 FLP 0.5151 0.5121 0.5388
LLP 0.2992 0.2615 0.3100

Haitian 201 FLP 0.6387 0.6329 0.6602
Creole LLP 0.4648 0.4336 0.4867

Lao 203 FLP 0.5951 0.5881 0.6149
LLP 0.4262 0.3790 0.4439

Zulu 206 FLP 0.3770 0.3654 0.4084
LLP 0.2287 0.1924 0.2366

Table 6: MTWV for Tandem and Hybrid and their combination for
Full (FLP) and Limited (LLP) Language Packs.

every configuration, even for Lao LLP where there were large dif-
ferences in KWS performance. For the combined system, 8 out of
the 10 configurations achieved the program goals of 0.3 TWV. Note
these numbers are based on the MTWV, not the performance with an
automatically determined threshold. However, there is usually only
a slight degradation when the threshold is automatically determined
rather than using the MTWV.
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Fig. 5. MTWV against TER, ♦ indicates FLP,4 LLP

Given that configurations for five languages, and two language
pack sizes, have been run in a consistent framework, it is interesting
to examine the correlation between the ASR performance and the
KWS performance. Figure 5 shows the plot of MTWV against TER
(%) for all five option period 1 languages in both LLP and FLP con-
figurations. Here the CNC TER% and the Merged MTWV values
are given. The correlation between the two is high (Pearson Corre-
lation Coefficient -0.945, R2 value 0.911). From the plot it is also
clear that some languages, Haitian Creole and Lao, are simpler at
least for this task. Also the performance of Assamese on the devel-
opment Keyword List, is lower for both FLP and LLP than expected
for the ASR performance.

8. CONCLUSIONS

This paper has described some of the research undertaken at CUED
under the Babel program as part of the Lorelei team led by IBM. The
aim of the project is to develop robust KWS and ASR technologies

that can be rapidly applied to any human language. Data distributed
under the Babel project has been used throughout this paper to il-
lustrate both ASR and KWS performance. Primarily the languages
from Option Period 1 (OP1) have been used: Assamese, Bengali,
Haitian Creole, Lao and Zulu. Two sizes of language pack are dis-
tributed for each language: a Full Language Pack (FLP) with approx-
imately 80 hours of transcribed audio data; and a Limited Language
Pack (LLP) with about 10 hours of transcribed data. Three main
research areas have been described: deep neural networks (DNNs)
for acoustic modelling; data augmentation; and zero-acoustic model
resource systems. Finally contrasts between Tandem and Hybrid
DNN systems, and their combination for both ASR and KWS are
described.

It is clear from the level of performance of the systems described
in this paper, that though it is possible to construct ASR and KWS
systems that can achievable useful levels of performance, there is
still a significant amount of work required in the area of low-resource
language speech processing systems.
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mrasta features for low-resource keyword search and speech
recognition systems,” in Proc ICASSP, 2014, pp. 7349–7353.

[40] K. M. Knill, M. J. F. Gales, A. Ragni, and S. P. Rath,
“Language independent and unsupervised acoustic models for
speech recognition and keyword spotting,” in Proc Inter-
Speech, 2014, submitted.

[41] B. Kingsbury, “Lattice-based optimization of sequence clas-
sification criteria for neural-network acoustic modeling,” in
Proc. ICASSP, 2009.


