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Abstract

Growing global demand for learning a second language (L2), particularly English, has led to
considerable interest in automatic spoken language assessment, whether for use in computer-
assisted language learning (CALL) tools or for grading candidates for formal qualifications.
This thesis presents research conducted into the automatic assessment of spontaneous non-
native English speech, with a view to be able to provide meaningful feedback to learners. One
of the challenges in automatic spoken language assessment is giving candidates feedback on
particular aspects, or views, of their spoken language proficiency, in addition to the overall
holistic score normally provided. Another is detecting pronunciation and other types of errors
at the word or utterance level and feeding them back to the learner in a useful way.

It is usually difficult to obtain accurate training data with separate scores for different
views and, as examiners are often trained to give holistic grades, single-view scores can
suffer issues of consistency. Conversely, holistic scores are available for various standard
assessment tasks such as Linguaskill. An investigation is thus conducted into whether
assessment scores linked to particular views of the speaker’s ability can be obtained from
systems trained using only holistic scores.

End-to-end neural systems are designed with structures and forms of input tuned to single
views, specifically each of pronunciation, rhythm, intonation and text. By training each
system on large quantities of candidate data, individual-view information should be possible
to extract. The relationships between the predictions of each system are evaluated to examine
whether they are, in fact, extracting different information about the speaker. Three methods
of combining the systems to predict holistic score are investigated, namely averaging their
predictions and concatenating and attending over their intermediate representations. The
combined graders are compared to each other and to baseline approaches.

The tasks of error detection and error tendency diagnosis become particularly challenging
when the speech in question is spontaneous and particularly given the challenges posed by
the inconsistency of human annotation of pronunciation errors. An approach to these tasks is
presented by distinguishing between lexical errors, wherein the speaker does not know how a
particular word is pronounced, and accent errors, wherein the candidate’s speech exhibits

consistent patterns of phone substitution, deletion and insertion. Three annotated corpora



of non-native English speech by speakers of multiple L1s are analysed, the consistency of
human annotation investigated and a method presented for detecting individual accent and

lexical errors and diagnosing accent error tendencies at the speaker level.
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Chapter 1
Introduction

Over a billion people are learning English around the world [99] and millions take assess-
ments every year. Rising demand is causing a growing shortage of qualified educators and
assessors which, combined with the increasing availability of effective online platforms, is
leading to rapid growth in the market for Computer Assisted Language Learning (CALL)
[263]. Central to effective CALL systems is the ability to automatically assess the user’s
language proficiency and provide useful feedback. It is therefore unsurprising that there
has been considerable interest in the development of speech processing and machine learn-
ing techniques with which to improve tools, as well as in automating the expensive and
time-consuming process of spoken language proficiency assessment [100].

The scope of this work is to investigate novel statistical techniques to automatically assess
the proficiency of non-native English speakers based on recordings of their speech and provide
useful feedback which could be used to help them improve it. As a statistical approach is
taken, a speaker is considered proficient for the purposes of this thesis if they would be
perceived as such by listeners. A system is thus considered better at evaluating proficiency the
closer it matches the feedback that would be given by human annotators, who have themselves
demonstrated consistency with themselves and other listeners. Feedback on proficiency based
on recorded speech is considered more useful the more representative the input speech is
of speech the speaker would be expected to produce in normal communication, such that
spontaneous speech is preferred to read speech. The main forms of feedback investigated
are holistic proficiency grades, grades with respect to particular views (i.e. aspects such
as pronunciation, rhythm etc.) of proficiency, and feedback on the types and locations of
pronunciation errors.

Given the highly complex, non-linear, and largely unknown nature of the precise relation-
ship between input audio and a concept such as proficiency, the investigation concentrates

mainly on the application of deep learning techniques to enable representational learning
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based on training on human-annotated data (see discussion in Chapter 4). Finally, this work
primarily focuses on those aspects of proficiency which are particular to speech over writing,
namely pronunciation and prosody.

One of the main challenges to statistical automatic assessment of spoken proficiency is
the limited quantity and variability of publicly available data. Almost all publicly available
data is based on read speech which has been shown to differ considerably from spontaneous
speech that is more representative of normal conversation (see discussion in introduction of
Chapter 2 and in §3.6). Available data sources with word-label annotations of pronunciation
and other types of errors suffer problematically low inter-annotator agreement (see discussion
in §3.6 and §7.3).

Corpora of overall graded data do exist but, as they come primarily from the context
of examinations and/or language teaching, it is almost never possible to make such data
public. For the purposes of this research, it was possible to obtain access to such a non-public
corpus of cross-L.1 annotated data from Cambridge Assessment. As is predominantly the
case with corpora of its kind, speakers have been graded holistically and not with respect to
individual views of proficiency (see discussion in §2.1) and there is a relatively low level of
inter-annotator agreement between operational graders.

Given the above constraints, methods in the literature for error detection have focused on
read speech rather than spontaneous speech, have been limited in their ability to distinguish
different types of errors in a way that gives useful feedback to learners, and have been
constrained by the underlying inconsistency of the data on which they are trained and/or
evaluated, the causes of which were not fully explored (see discussion in Chapter 3).

Approaches to grading speakers overall (see discussion in Chapter 2) have similarly
focused on read speech rather than spontaneous speech. Single-view grading has been limited
by the availability of single-view human annotations, which suffer issues of inconsistency
due to the lack of generally accepted single-view grading standards, and has been focused
on methods based on handcrafted features, which are interpretable but assumption laden,
extracting information in a way that can’t be tuned to different tasks and coarsely discards
potentially useful information. Holistic grading has been approached using either handcrafted
features corresponding to different single views or end-to-end approaches, which can be
flexibly tuned to individual tasks but lack interpretability and have difficulty generalising to
data different to that on which they are trained.

To tackle the challenges described, this thesis presents contributions in two main areas.
First, in the area of proficiency grading (see Chapters 5 and 6), a novel approach is introduced
to grade speakers on single-views based on their spontaneous speech by leveraging and

designing end-to-end networks incorporating domain knowledge to constrain the information



extracted to characterise only the desired view. This approach combines the advantages of
handcrafted features with those of the black-box end-to-end approach. The systems also are
designed so that they can be trained on holistic grades, yet yield single-view predictions, thus
addressing the data availability and consistency issue. Systems based on this approach are
presented for the views of pronunciation, thythm and intonation. Novel research is conducted
comparing the performance of these systems to other approaches and examining whether
the single-view grades they predict when trained on holistic grades have the properties that
would be expected of measures of single-view proficiency. A novel approach to holistic
grading based on combining these end-to-end single-view systems is also presented and
compared to baselines.

In the area of pronunciation error detection (see Chapter 7), novel research is first
conducted into the quality of human word-level annotations and the phenomenon of under-
annotation in error-annotated versus phonetically transcribed datasets. A novel approach is
presented for pronunciation error detection in spontaneous speech based on dividing pronun-
ciation errors into lexical errors and different types of accent errors and using a modification
of a common approach from the literature for read speech (Extended Recognition Methods).
Common accent errors in English for a large number of L1s are also collected from the
literature to create a framework that can predict an exhaustive list of candidate errorful
pronunciations of any word in English. The novel system can detect the probability of a
particular type of error at a particular word and yield separate feedback at the word-level for
lexical errors, but at utterance or speaker level for accent errors. Novel research is conducted
into the performance of this system as well as into the relationship between the number of
detected pronunciation errors and overall proficiency grade.

In making the contributions discussed above, the work in this thesis specifically answers

nine main research questions (see Chapters 5, 6 and 7):

1. Do deep learning approaches offer superior accuracy and generalisability to alternative
machine learning approaches (specifically Gaussian Processes) on the task of grading

the proficiency of non-native speakers?

2. Can single-view end-to-end neural graders (i.e. end-to-end neural systems constrained
by their input and structure to grade on the basis of specific views) offer superior
accuracy and generalisability at the task of single-view proficiency grading to methods
based on hand-crafted features?

3. Can single-view end-to-end neural graders be interpretable as to their reasons for
assigning grades?
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4. Can single-view end-to-end neural graders still validly grade on the basis of those

views when trained on holistic grades?

5. Do systems based on combining multiple single-view end-to-end neural graders offer
superior accuracy at the task of holistic grading to systems based on concatenating
single-view handcrafted features and neural systems trained end-to-end on holistic
grades?

6. Does the approach of phonetic transcription (asking annotators to exhaustively tran-
scribe the way a speaker pronounced each word) capture the pronunciation errors made
by non-native speakers in their spontaneous speech than the approach of pronunciation
error annotation (asking annotators to mark which words in recorded speech contain

pronunciation errors)?

7. Are accent errors (errors caused by the speaker systematically inserting, deleting or sub-
stituting phones across their speech) distinct and capable of being separately detected
to lexical errors (errors caused by a speaker not knowing the correct pronunciation of
specific words based on their spelling)?

8. Can a system based on calculating word-level probabilities from lattice path likelihoods
obtained using force alignment of spontaneous non-native utterances with multiple
candidate pronunciations be used to accurately detect individual lexical errors made by
the speaker as well as the overall tendency of the speaker to make different types of

accent errors?

9. Is the number of pronunciation errors detected by an error detection system predictive

of their holistic proficiency grade?

The original work reported in this thesis continues from the work documented in Kyri-
akopoulos et al. (MEng final report) [151] regarding two-stage pronunciation assessment
using a novel form of feature extraction based on phone distances (which is cited as previous
work in §2.3.2). Parts of this thesis’ original work have been reported in a number of publica-
tions authored during the course of the research, most of which are cited for reference in the
corresponding chapters of this thesis [147, 152, 277, 153, 154].

The work reported in this thesis falls within the framework of the Engineering Department
branch of the Cambridge University ALTA (Automatic Language Teaching and Assessment)
Institute, the goal of which is to develop techniques for automatically assessing and providing
feedback to non-native English speakers based on both spontaneous and non-spontaneous



spoken utterances. Data and funding were provided by Cambridge Assessment, University
of Cambridge.

The structure of this thesis is illustrated in Figure 1.1. Chapters 2 and 3 review the
literature on spoken language grading and pronunciation error detection respectively. Chapter
4 then reviews deep learning techniques from the broader literature which are to be applied
to the automatic assessment field in this thesis. Using these techniques, Chapter 5 presents a
novel framework for single-view and holistic grading, experiments conducted on which are
reported in Chapter 6. Finally, Chapter 7 presents the novel work undertaken in the area of
pronunciation error detection. The implications and limitations of the results of Chapters 6
and 7 as well as avenues for future work are discussed in Chapter 8, while conclusions, as

they relate to the research questions enumerated above, are summarised in Chapter 9.
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Fig. 1.1 Structure of this thesis







Chapter 2

Spoken Language Proficiency
Assessment

This chapter reviews the literature on automatic spoken language proficiency assessment.
For the purposes of this thesis, proficiency assessment refers to the task of assigning a
grade to quantify the level of proficiency of a non-native speaker based on recorded audio
of their speech. The investigation is motivated by Computer Assisted Language Learning
(CALL) and auto-marking applications. Techniques should thus be feasible using realistically
obtainable data, closely predict the grade that would be given by a human expert, and avoid
bias to speaker attributes that are irrelevant to proficiency.

A speaker can be assessed on spontaneous speech (e.g. from interview-style questions)
or read speech i.e. recordings of them reading aloud a provided text. Spontaneous speech
is more representative of the conversational speech a learner will be called on to use in
day-to-day life and in which they will need to be proficient. Read speech has been shown to
differ considerably from spontaneous speech acoustically [182, 182], prosodically [189, 192],
phonetically [4], in terms of fluency [62], and in the numbers and types of pronunciation errors
non-native speakers make [162]. Assessing proficiency using only read speech therefore risks
providing misleading or incomplete feedback. For this reason, another important criterion
when evaluating assessment techniques is how applicable they are to spontaneous speech.

The concept of language proficiency and its constituent aspects, or views, are discussed
in §2.1. The speech audio processing methods which form the basis of most approaches
to assessing them, namely automatic speech recognition (ASR) and forced alignment, are
then reviewed in §2.2. Approaches to grading speakers on the basis of individual views
(specifically text, pronunciation, tempo, stress, rhythm and intonation) are then reviewed in
§2.3, while approaches to holistic grading are examined in §2.4. The systems reviewed are

compared to the novel systems introduced later in this thesis in §2.5.
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2.1 Views of Proficiency

While language proficiency is a contentious concept, there are accepted standards for grading
the proficiency of non-native speakers [122], notably those described in the CEFR [207].
These generally do not involve separating proficiency into facets, but rather ask graders to
make holistic assessments of communicative competence e.g. the candidate can interact with
a degree of fluency and spontaneity that makes regular interaction with native speakers quite
possible (from CEFR B2). It has nevertheless been demonstrated that grades assigned using
such holistic criteria do have a componential structure, being partitionable into individual
facets, or views, of proficiency (e.g. pronunciation, intonation, vocabulary and grammar),
human-assigned scores for each of which correlate strongly with holistic grade [67].

CALL applications also distinguish between these different views of proficiency during
teaching, with different systems used to separately teach facets such as pronunciation [266],
prosody [184], and vocabulary [106]. It follows that separately assessing a learner’s progress
in terms of each of these views (single-view grading) should be useful for feedback to the
learner and to inform further teaching adaptively.

A key challenge in such grading is the difficulty in obtaining a reliable ground-truth.
Guidelines to annotate speakers on single-view proficiency necessarily deviate from the
generally accepted holistic standards. Such scores are thus harder to obtain and have been
shown to be subjective and have relatively low inter-annotator agreement [201, 224, 217],
compared to the strong agreement usually found with holistic scoring [66, 119].

The names, definitions and categorisation of different views of proficiency for single-view
assessment vary across the literature. For the purposes of this thesis, the framework illustrated
in Figure 2.1 is used to classify the approaches considered.

Holistic
Proficiency
|
v v
Text Realisation
Pronunciation Prosody
|
v v v v
Tempo Stress Rhythm Intonation

Fig. 2.1 Categorisation of views of spoken language proficiency used in this thesis

Approaches that assess the proficiency of spontaneous speech based on the sequence of

words recognised by the speech recogniser are termed text assessment. Approaches that take
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the sequence of words as a given (i.e. assess the speaker’s realisation of the text) are further
divided into pronunciation and prosody assessment. Pronunciation assessment includes those
approaches that divide each word into discrete units of sound and use the acoustic properties
of those sounds to characterise the speaker’s proficiency. Prosody assessment approaches
instead use the variation of pitch, loudness, and duration over the speaker’s utterances. [61]

Prosody is itself partitioned into four main views. Tempo is the overall speed and
consistency with which speech is rendered. More proficient speakers tend to speak faster
and more consistently [67]. Stress is the relative emphasis of syllables within words or
words within utterances through increased loudness and duration. Every English word has a
canonical stressed syllable and there are rules for the stressing of words within sentences in
order to convey grammatical, syntactic and semantic information. Deviating from these rules
has been shown to considerably decrease the intelligibility and perceived correctness of non-
native speech [104]. Rhythm is the pattern of phone, syllable and word durations in a person’s
speech. Native English speech has a distinctive rhythm, the nature of which is controversial
among linguists, but which nonetheless varies between languages and between proficient
and non-proficient non-native speakers [98, 117]. Finally, intonation is the variation of pitch
during speaking. In English, pitch contours occur at the syllable, word and utterance level and
mark emphasis, grammar and other forms of meaning [241, 139] (e.g. indicating a question).
Typical and acceptable-sounding pitch contours differ between languages. Matching the
intonational patterns of English is thus an important component of proficiency.

After discussing the speech processing techniques that form the basis of most approaches
to assessment in §2.2, approaches for grading speakers on the basis of each of the views
of text, pronunciation, tempo, stress, rhythm and intonation are reviewed in §2.3, while

approaches for holistic grading are reviewed in §2.4.

2.2 Speech Processing

In traditional phonology, sound is analysed in terms of phonemes and phones. A phoneme is
commonly defined as the minimal unit of sound within the system of a language, such that
changing one phoneme to another in the same context can change the meaning of a word.
For example, switching the [p] in [pet] to [b] makes it a different word bet, so the sounds [p]
and [b] are each instances of two different phonemes /p/ and /b/. No pair of English words
exist where the only difference is switching [p] to [ph], however, so [p] and [ph] belong to the
same phoneme /p/. In Hindi, by contrast, switching the [p] in [pal] (T — moment) to [p"]
turns it into the word [p"al] (FeT — fruit), so /p/ and /p"/ are said to be different phonemes.
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A phone is defined as a perceptible discrete segment of sound. In the above examples, [p],
[p"] and [b] are all phones, regardless of the language being discussed. [61]

Phonemes are an abstract linguistic concept [190] subject to controversy over their
precise definition. The literature is divided as to the number and identity of phonemes in the
English language [23]. As the work in this thesis involves statistically processing speech
and characterising it in terms of its constituent sounds (e.g. when evaluating pronunciation),
the term phone is used to describe the sound segments into which words can be divided for
recognition and processing, while discussion of phonemes is avoided.

Phones can be defined and transcribed narrowly, giving detail on place and manner of
articulation (e.g. transcribing pen as [p"en] to specify that the speaker aspirated the [p] and
used the standard open-mid front unrounded pronunciation of €), or broadly, giving only
the minimal detail required to identify the word (i.e. [pen]), and therefore more closely
corresponding to the word’s phonemes [61]. Broad transcriptions define phones in a way
that relies more heavily on the rules of the language being spoken and so are less powerful
than narrow transcriptions in precisely transcribing accented non-native pronunciations, as

illustrated in the example in Fig. 2.2.

word transcription red red
broad phone transcription [r] [e] [d] [r] [e] [d]
narrow phone transcription [X] [€] [d] [4] [€] [d]

. T T, g
Jtleftefolet]e oftsfoe]e

Fig. 2.2 French accented (left) and native (right) speakers saying the word red, each narrowly
and broadly transcribed. In broad notation, both are [red] (as the broad alphabet does not
contain the non-English phone [Y]), failing to capture the difference in pronunciation.

The first step in processing speech is extracting salient information from the audio into
a compact and informative format. Audio is usually considered in 10-25ms frames, with
feature vectors o, extracted to characterise each frame ¢. Standard features inspired by the
information that the human auditory system uses to convert sound into meaning include
MFCCs and PLPs (see Appendix A).

A T-frame recording can thus be represented as a sequence of feature vectors o1.7, which
in turn can be used to determine the sequence of  words being spoken w7, the corresponding

sequence of M phones @;.)7, and the sequence of states s;.7 describing to which phone and
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word each frame ¢ corresponds (Fig. 2.3). Aligning to syllables instead of phones is also

useful in some applications [25] but is not focused on in this thesis.

w1 = the 2 = sil w3 = cat
P A Y S T LN NN
cp1—[dh] tpz—[ax] <P3—[SII] cp4 K @s= [ae] ¢e=I1]
’ /*;‘ r

53-11 35 12 57-23 59'23 /Sﬁ 34 315_35 si= 36

I/ 11{54- 2 5i1i ﬁsm_uw 35 dom 35i51s=36‘ $1=3,6

094 O 03 04 05 Og O7 Og Og O4p 0910192 013 014015 046 0497 O4g

Fig. 2.3 Illustration of word sequence wy.;, phone sequence ¢;. and state sequence s;.1g
(encoding the word and phone at each frame) for 18-frame recording 01.;g of phrase the cat.

Automatic Speech Recognition (ASR) finds the most likely word sequence wy.; given o01.7:

qu;[:argmaxP(w1;1|01;T) (21)
Wi
Wiy =argmax$ Pwiy) Y, P(¢rmwin) Y, plovr,sir|dim) (2.2)
Wi ¢1;M€9pvl:] sur|91m

where:

o the acoustic model p(o1.7,s1.7|91.1) models the realisation of phones as audio

* the pronunciation dictionary & contains the possible sequences of phones (phonetic

pronunciations) for each word, in broad or narrow transcription, as needed, e.g.

Dman = {[m ae n|}) (2.3)

such that &, , represents all possible phone sequences corresponding to wy.z, €.g.

D{the many = {[dh ax sil m ae n], [dh iy sil m ae n]}) (2.4)

o P(@1.p|w1.r) reflects any prior information on the likelihood of the different candidate

pronunciations in the dictionary entry for each word (by default uniform)

o the language model P(wy.;) represents the prior likelihood of sequences of words
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Acoustic models for ASR are typically based on Hidden Markov Models (HMMs) [295]
of which si.7 are the hidden states. HMM-based acoustic models are further discussed
in Appendix B. The ASR systems used in this thesis and their choices of acoustic model,
pronunciation dictionary and language model, as well as the methods used to extract the
observations used to train them, are outlined in Appendix C.

Given a recognised (or otherwise known) word sequence wy.;, forced alignment finds the

most likely phone sequence ;.

Q1. = argmax P(1.y|01.7,Wiy) = argmax P(@1.,01.7|W1y) (2.5)
RVISZ P1:mME D,
1.v = argmax {P(¢1;M!W1:1) Y P(01:T,S1:T!¢1:M)} (2.6)
P1:mE€Dy StT|91m
followed by the most likely state sequence §;.7:
St = argmax p(o1.7,s1.7|¢1:m) (2.7)
Sl:T|¢1:M

From §y.7 it is in turn possible to determine:

e The start and end frames %" and 7{%") of each recognised phone @,, and thus the
corresponding acoustic observation sequence (used for assessing how each phone is
pronounced):

(ém) _
O1:ty = O (4m).,(6m) (2.8)
1 2
and duration (used when assessing rhythm):

~

d(Om) =1—1 (2.9)

 The start and end frames tl(wi) and téw' ) of each word w; and thus:

(i) _
Onnty = O, (), (9 (2.10)

* the phones qS,E,T’,l,Z corresponding to each word w;

As forced alignment takes Wy.; as a given, it requires an acoustic model and a pronuncia-
tion dictionary but no language model. Standard dictionaries of canonical pronunciations (i.e.
pronunciations a listener would recognise as correct) using broad transcription are available

for this purpose and generally used [281, 81]. When recognising non-native speech, it is
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possible to supplement canonical pronunciations with candidate errorful pronunciations (e.g.
the as [d ah]), which can be made particularly detailed if narrow transcriptions are used and
the L1 is known (e.g. man as [mien] for a Russian speaker).

In the implementations of ASR used in this thesis, the Viterbi algorithm is used to
determine the most likely path through the states, thus estimating wj., qSl; um and §q.7 simul-
taneously in the ASR stage. Running forced alignment as a separate task is still expedient,
however, as it allows more possible alignments to be considered by limiting the choice of
word sequence. The acoustic model is trained on word-transcribed data using a pronunciation
dictionary to infer phones. Rather than returning the 1-best alignment, the Viterbi decoder
can instead be configured to return a lattice of the most likely paths, as in the example
illustrated in Fig. 2.4. Each possible path 7 through the lattice represents a possible {s;.7,
®1.m, wi.7} and comes with its likelihood p(o1.7, 7). [296]

S4.7=[1y]

$10:111K] S16:18" (]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Fig. 2.4 Illustration of a lattice of possible alignments of a realisation of the phrase the cat,
allowing two possible pronunciations of the word the and two possible durations of the
final phone [ax] in the. The path in red corresponds to the word, phone and state sequences
illustrated in Fig. 2.3.

Approaches to ASR confidence estimation can further be used to obtain estimates for
the confidence in the predicted word sequence P(W.;|0}.7) and the confidence of each word

given its aligned location P(Wl|ot(lwt’2)) [34, 286, 130, 150]. Given an output lattice, path

likelihoods can be summed and normalised to obtain more advanced confidence metrics as
well (see §7.2).

2.3 Single-view grading

In automatic L2 speech assessment, input sequential data xgn% from a speaker 7 is used to

5.") representing proficiency
(n)

with respect to a particular view j (single-view grading). The input x;.; may consist, as

(n) (n)

needed, of acoustic features 0.7, recognised words wy.;, phones ¢1(';)4 and/or time-alignment

predict a holistic grade $() (holistic grading) and/or a grade y
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(n)

information s;.;, obtained as discussed in §2.2, or other information, such as fundamental
frequency extracted from audio. This section reviews approaches in the literature to single

view grading.
(n)

Most approaches extract sets of expert features v ; to capture their chosen view j, using

pre-defined, non-trainable, feature extractors .% IE

v =70) @2.11)

The features are then fed into (usually parametric) graders ¢; to predict single-view
(n).

scores y i

3 =, 4)) (2.12)
(n).

with ¢; trained on human-annotated single-view scores y ;

A

A ; = argmin i (31 iy (2.13)
Aj  n=l1

Alternatively, .7 can take the form of a parametric model trained either to extract features
using a cost function other than grade prediction (e.g. as an unsupervised dimensionality
reduction task) or in an end-to-end configuration, together with ¢ i» such that the combined
system learns to predict grade directly from the inputs.

The following sub-sections review approaches according to the classification of views
set out in §2.1, namely text (§2.3.1), pronunciation (§2.3.2), tempo (§2.3.3), stress (§2.3.4),

rhythm (§2.3.5), and intonation (§2.3.6).

2.3.1 Text

Text assessment is defined in this thesis as assigning a grade to a speaker based on the
sequence of words recognised by an ASR for a sample of their speech. There is a broad
literature on automatic grading of written material, particularly essays, including by extracting
linguistically-inspired handcrafted features on grammar, topic relevance, coherence and
syntactic complexity, by detecting grammatical errors, or by training end-to-end neural
systems to predict grade directly from the tokenised word sequences [288, 70, 245, 7, 123, 19].
Spoken language differs considerably from written language in terms of grammar, syntax,
vocabulary use and standards of proficiency, however [6, 72]. There are also challenges

unique to spoken text assessment, including the prospect of ASR errors and the need to
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deal with hesitations (words such as um, er) and disfluencies (including repetitions and false
starts).

There has therefore been interest in text assessment for the spoken context, including
extracting handcrafted features to capture the frequencies of hesitations and disfluencies
[270] (usually grouped into the category of fluency) and to measure lexical complexity in the
spoken context [24]. The application of deep learning methods to off-topic response detection
[179], grammatical error correction [175] and end-to-end text grading [223] in spontaneous
speech was investigated by other members of ALTA in parallel to the investigations into
pronunciation and prosody described in this thesis. The end-to-end text grader from Raina et

al. [223] is used in experiments on grader combination in Chapter 5.

2.3.2 Pronunciation

Pronunciation assessment was defined in §2.1 as characterising the proficiency of a speaker
based on the way they realise words as sequences of discrete units of sound. It therefore
includes those methods which force align candidate utterances to sequences of phones (or

syllables), as discussed in §2.2, and then use the recognised sequence of phone instances @17,
(‘ﬁm)

1,1, and/or measures of the confidence

the acoustic features corresponding to each instance o
of the acoustic model in each phone instance as inputs to assess proficiency.
Most approaches in the literature act locally, identifying individually mispronounced

words or phones or utterances containing them (pronunciation error detection). This is
(0m)

n,n
187, 136, 132], using acoustic model confidence in each word as indicative of its intelligibility

variously achieved by comparing o;,;, to realisations produced by native speakers [37, 205,
[128, 280, 289, 180, 73], aligning with an expanded dictionary containing non-canonical
pronunciations, then assessing whether the canonical or non-canonical pronunciations of
each word are more likely [238, 107, 134, 133], or training a supervised neural system to
classify each word or phone instance as correct or errorful based on the acoustic observations
corresponding to each phone instance [71, 80].

These approaches are reviewed in more detail in Chapter 3. The main advantage of error
detection approaches over overall grading is their ability to provide rich feedback on the
types of pronunciation errors that a learner is making to help adaptively drive further learning
(§3.7). However, they have a number of disadvantages related to their data requirements and
likely sources of error and bias. In the case of spontaneous speech, all approaches suffer
from the issue that some of the words will be recognised incorrectly, making predictions
as to their errorfullness meaningless. Native speaker comparison methods (§3.1) are also
sensitive to the voice qualities and accents of the native speaker training corpus which may
lead to biased evaluation of speakers in the non-native corpus. Confidence measures (§3.2)
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are sensitive to a large number of irrelevant factors (background noise, speaker voice quality)
that may affect ASR confidence at a particular time, as well as to the initial determination of
the boundaries of each word and phone by the acoustic model. Alignment methods (§3.3 and
§3.4) are sensitive to the candidate non-canonical pronunciations included in the dictionary.
Finally, supervised methods (§3.5) require labelled error data, which is difficult to obtain and
has been shown to be unreliable [172, 103].

Having run error detection, pronunciation features vgizm for a speaker can then be obtained
by simply counting the numbers of detected errors or aggregating the word- or phone-level
errorfullness metrics. Metallinou et al. [183] count the numbers of words and phones where
confidence measures fall below a certain threshold and average the phone-level native to
non-native acoustic model likelihood ratio, weighted by the duration of each phone. In Lee
et al. [159], DTW distance metrics between native and non-native speech samples (see §3.1)
are compiled into a similarity matrix, which is used as a feature to predict human-assigned
scores. These features can then be passed through graders ¢ to predict speaker grades.

The main family of approaches for overall grading without first locally characterising
individual words or phones is that of phone distances. Features are extracted to represent
the way the speaker realises phones across all their recorded speech and used to predict the
speaker’s grade. The first step is to aggregate the feature sequences ot(l 7’,"2) corresponding to
instances ¢,, = v of each phone V, to obtain a representation of how the speaker realises
v overall (a form of speaker-specific acoustic model). These representations are then
characterised relative to each other (phone distances), with the aim of compressing the
representation and eliminate the effect of acoustic properties that do not vary between phones.

These relative phone representations then act as features to predict grade.

Fig. 2.5 Illustration of phone distance feature concept. Representations of phones are obtained
in acoustic space. Each phone (violet point) is characterised by its pair-wise distance to every
other phone (blue points).
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Alignment should be performed using broad transcriptions, canonical pronunciation
dictionaries, and acoustic models trained on non-native speakers, such that each @, is as
likely as possible to represent the canonical phone that the speaker was trying to realise (or
should have realised). The phone-level representation should then capture the distribution
of the actual sounds that these broad phones were realised as by the speaker, including any
incorrect realisations, to be used to determine their overall pronunciation proficiency.

This approach does not require native speakers and is expected to be more robust to
distortions introduced by incorrectly recognised words, as they are more likely to average
out over multiple phones. No assumptions are made about the nature of good pronunciation;
instead, criteria are learned statistically from human-assigned grades. Such grades are easier
to obtain and have been shown to be more internally consistent than annotations of individual
errors [172].

An early use of distances between representations of phone instances (segments) to
characterise pronunciation in an unbiased way was presented by Huckvale [120] in the context
of accent clustering. Chen and Evanini [47] introduced vowel space features introduced by,
which measure the overall range of coverage of the vowel space (specifically overall ranges,
overall area, overall dispersion and individual dispersion) based on the first two formants of
each phone. Graham [100] showed that human-assigned grades can be better predicted by
calculating Euclidean distances between formant features of pairs of vowels.

Minematsu et al. [10, 185] trained monophone acoustic models .#y, to represent each
vowel phone W based on all its instances in a speaker’s aligned utterance o;.7:

//ZW = argmax Z p( o,l(p't”2 , Atl ) |¢m,//lv,) (2.14)
%W m|¢m
where @, is the mth phone of the 1-best recognised sequence, s,(f) ’;12) is the corresponding state

(@)

1,0
They then computed the Bhattacharyya distances between the distributions of each pair

sequence and o, ;. is the corresponding segment.

of vowels v, y»:

AB(WI,WZ):/\/p(01:1|=//1m)p(01:1|//w2)d01:r (2.15)

to act as features for pronunciation grading.
A generalisation of vowel distances to all pairs of phones using symmetric K-L divergence

instead of Bhattacharyya distance was introduced in Kyriakopoulos et al. [151]:

1 1
AskL (V1| y2) = QAKL(%H%) + EAKL(%H%) (2.16)
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where:

o p<01:r|=//y/1))
AKL(‘I’IH‘Ifz)—/P(01:r|///w1)10g (—p(01:r|///q/2) doy.¢ (2.17)

with all pair-wise K-L divergences passed through a Gaussian Process to predict grade.

These features capture the speaker’s pronunciation of each phone relative to each of
the others compactly and effectively and were shown to predict grade with high accuracy.
Their main weaknesses lie in the inability of the acoustic model training stage to account for
the different salience of different phone instances and different frames within each phone
instance to proficiency, as it is disconnected from the grading stage. To deal with these issues,
phone distance features are built on to develop a tunable, end-to-end deep pronunciation
grader in §5.2.1.

2.3.3 Tempo

The statistics of speed and hesitations in a person’s speech can help predict proficiency in a
direct and straightforward manner, as better speakers speak more quickly and hesitate less.

The main features used to characterise tempo extracted from wy.;, ¢1.3s and §;.7 include:

* Rate of speech: The number of words spoken per second

1

rg = (2.18)
* Articulation rate: The number of phones spoken per second
M
.= = 2.19
o= (2.19)

e Mean and standard deviation of the duration of disfluencies .7#. This includes words
such as ‘um’ and ‘eh’, false starts, repetitions, and other pauses and sounds classified

as disfluencies or hesitations by the speech recogniser and its post-processing stages :

1 w; Wi
== Y (=) (2.20)
wieH

1 wi wi
ch:\/7 Y () =2 2 2.21)
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e Mean and standard deviation of duration of silences:

1 wi wi
= Z.l(é )y (2.22)
w; =si
1 wi wi
oh=/7 Z'l(té )—tf ))2—;1,% (2.23)

These features have been shown to be consistent within the speech produced by the same
individual and vary among individuals [95], suggesting they are valid characterisations of the
speech of individual speakers. They have been shown to be strong predictors of proficiency
score [227, 117, 270], mainly characterising the speaker’s general fluency (how fast they
speak, how long their words and sentences are, how often and for how long they hesitate
etc.). They are each prone to considerable bias due to individual voice quality, which may be
somewhat reduced by using them all in combination. They are extremely commonly used in
the literature, especially as baseline features [255, 117, 227, 270].

Given the definition of tempo as the overall speed and consistency of speech, which
these features directly measure, the strong grading performance they already have, the bias
inherent in them, and the fact that their main raw input, duration, is also the main input of
rhythm, the grading of tempo is not the subject of further investigation in this thesis. Tempo
features are, however, included in the baseline feature set (Appendix H) against which the
systems developed in Chapter 5 are evaluated.

2.3.4 Stress

Every word in the English language has a canonical syllable on which it is stressed. These
can be found in widely available pronunciation dictionaries (e.g. CMU [281]). Stressing
words on the wrong syllable (e.g. ‘CORR-ect’ instead of ‘corr-ECT’) sounds unnatural and
non-proficient.

Speakers also stress particular words within sentences in order to convey grammatical,
syntactic and semantic information. For example, in the phrase “I prefer red wine to white
wine", a proficient speaker of English would normally stress the words ‘red” and ‘white’
relative to the two instances of ‘wine’ to indicate contrastive information. The word ‘I" or
the word ‘prefer’ might also be stressed for emphasis, however stressing the word ‘wine’
or the word ‘to’, not stressing any of the words, or stressing all of the words would sound
unnatural. Such errors have been shown to considerably decrease the intelligibility and

perceived correctness of non-native speakers [104].



20 Spoken Language Proficiency Assessment

Given the above, stress, as with pronunciation, is usually assessed in an error detection
configuration. Pitch, duration and energy features are first used to determine which syllables
of each word are stressed and the results compared against canonical rules for lexical or
sentence stress. Grading is then performed using aggregated likelihood or frequency of
detected errors.

A syllable by definition consists of a single vowel phone as its nucleus, with optional
consonants before and after it [171]. It is the properties of this vowel nucleus that mainly
determine whether or not the syllable is stressed [262]. Features used across the literature
[14, 264, 262, 49] to detect which syllables are stressed include:

* Duration of the vowel, normalised by dividing by average vowel duration for that
speaker (so as to compensate for the speaker’s speaking rate):

L(0n) _(0n)

d(norm) (¢m) = 2 1 (2.24)
W Z%G“//(é%) — t1(¢”))

Tepperman [264] additionally applies a series of fixed transformations based on the

identity of the next phone.

* RMS of the energies E,(f) of the samples s in the frame:

(2.25)

E(norm) . E; — %Zszl E;
) =
1 vT 1vT
7 Lzt (B — 7 Ly Er)?

(2.26)

ugbm)_ B Z gl (2.27)

median QEO 5, max maxg)’”) and lower and upper quartiles Q £0. 25 and Q 20, 75 [49)).

* Pitch (fp) extracted for each frame (see §2.3. 6) normalised in the same way as RMS
energy and represented by the same statistics ,u f Q 0. 5 , max Q f%’"zs nd Q 0. 75.
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Having obtained a normalised feature vector with the above metrics for each vowel ¢,,,
Tepperman [264] then trains a binary classifier to recognise whether a given vowel is stressed
or not. If two vowels are recognised as stressed, the one with the highest probability is
selected as the actual stressed syllable for that word. Chen and Jang [49] take Tepperman’s
method one step further by feeding the features for all the vowels of each word into a
word-length dependent GMM classifier. Thus, for a word with N vowels, the system acts
as an N-way classifier of which vowel the speaker has stressed. Shahin et al. [243] instead
use a DNN classifier, with the variable number of syllables accounted for by zero padding
the input. The detected stressed syllable in each case is then compared to the entry in the
canonical dictionary.

Training such systems requires either stress-annotated non-native speech or a training set
of speech known to be stressed correctly, in which lexical stress can be assumed to follow
the canonical dictionary. The latter approach risks introducing biases if the voice qualities of
the speakers of the sample are not representative of those likely to use the system (e.g. if
they are native speakers or non-natives of a different L1, or if they are reading set text when
the system is to be used on spontaneous speech).

Imoto et al. [126] approach sentence stress detection as an extension of lexical stress
detection. Since the stressing of a word mainly manifests through its stressed syllable,
each vowel in each word is classified as either not stressed (NS), secondary stressed (SS) —
meaning it is the stressed vowel of its word but not of the sentence — or primary stressed
(PS) — meaning it is the stressed vowel of its word which is in turn stressed within the
sentence. Three-way classification is then performed, using an HMM to take context within
the utterance into account. Minematsu et al. [186] extend this to six-way classification, also
distinguishing between sentence stresses marking the beginning and end of a phrase. Lee
et al. [160] perform lexical stress detection first, then combine the stress features of the
stressed syllable of each word with lexical and syntactic features, specifically its identity w;,
a part of speech (POS) tag and class tag (function word vs. content word) obtained from a
sentence analyser [35] and the number of vowels and syllables it contains. The combined
feature vector for each word is passed, along with the vectors for the two preceding and three
following words, through a linear chain Conditional Random Field (CRF) classifier, trained
on a stress-annotated corpus, to detect whether each word is sentence-stressed. A second
CREF classifier is then trained on a native speaker corpus to predict correct sentence stress
position from the lexico-syntactic features only. Lee’s combined system was therefore able
to detect the sentence stressed words in any arbitrary utterance of spontaneous non-native
speech, then automatically determine where the correct stress positions should have been

and compare the two to provide feedback to the learner. The thresholds for the magnitude of
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the difference between predicted and detected probability values to be identified as an error
for feedback were optimised to maximise correlation between number of errors detected and
human assigned proficiency score.

Considering the limits on feasibility placed by the requirements for detailed stress-
annotated training data and the low weight placed on stress as a component of proficiency
[57, 289, 122, 67], stress is not the subject of further investigation in this thesis, with the
exception of the experiments on annotation in §7.4.1. The implementation of overall stress
graders and/or deep stress detectors is discussed as part of future work in Chapter 8.

2.3.5 Rhythm

Traditionally, the natural rhythm of languages was believed to be governed by a principle
known as isochrony, first introduced by Pike [211]. In languages such as French, known
as syllable-timed, every syllable takes an equal amount of time to pronounce, while in
languages such as English, known as stress-timed, it is the time between the stressed syllables
of adjacent words which remains constant. The duration of individual syllables in English is
therefore highly variable, depending on where they are relative to the stress of the current
and adjacent words.

Part of what sounds strange about non-native speech under this theory is a failure to
match the stress-timing rhythm of English [2]. This would suggest that the standard deviation
of stress-to-stress intervals should be indicative of English proficiency. On the basis of this

theory, Honig et al. [116] introduced isochrony features:
1. mean and standard deviation of length of time between consecutive stressed syllables
2. mean and standard deviation of length of time between consecutive unstressed syllables
3. ratios of above two means and above two standard deviations

These features are extracted based on the start and end times obtained from the output of
syllable-based forced alignment (or phone-based forced alignment followed by grouping of
phones into syllables).

The main problem with this approach arises from issues with the underlying theory.
Firstly, not all varieties' of English are stress-timed and those that are are stress-timed to
different extents [68]. This could lead to bias based on the variety of native English speech
the learner is trying to emulate. In addition, the paradigm of isochrony itself is highly

Wariety is used here to refer to the different dialects, accents, registers and other systems of expression used
by native speakers of the English language of different backgrounds or in different situations [61]
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controversial, due to lack of direct empirical evidence of the phenomenon and the failure to
classify many languages [65, 9].

The problems with simple isochrony features led Ramus et al. [226] to develop three new
features which could be more reliably used to classify languages, based on the properties of
adjacent vowels and the intervals between them. The phone sequence obtained from forced
alignment is used to group speech into vocalic and intervocalic intervals Tl(z{)v and Tl(ggc’ the
former consisting of adjacent vowels, and the latter of consonants and silences, and obtain

the start and end time of each. These are used to compute the following statistics:

1. The proportion of time devoted to vocalic intervals in the sentence, disregarding word
boundaries: (V)
K
Ylidt )
Ky d c dlt (©€)
Y1 (Tk )+Zk 1d(te)
(C))

where d (*L',EV)) is the duration of the kth vocalic interval and d(7,
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is the duration of
the kth intervocalic interval
2. The standard deviation of the duration of vocalic intervals:
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3. The standard deviation of the duration of consonantal intervals:
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In a language such as English in which vowels are routinely shortened depending on their
position within a word, AV and AC are very high, while %V is very low (in fact they were
respectively the highest and lowest of all languages tested). A low-proficiency non-native
speaker with an L1 in which this is not the case is likely to fail to shorten vowels correctly
and should therefore fall more closely to their L1 on these three axes. Honig named these
features (together with normalised versions of the latter two) Global Interval Proportions

(GIP) and used them with limited success to predict proficiency [116].
Grabe and Low [173, 98] generalised this concept to develop a more robust metric of
rhythm based on the pairwise variability index (PVI), which measures the variability between
successive intervals. PVI is applied to the duration of vowels as well as of inter-vocalic

intervals.
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Raw PVI, for each of vocalic and intervocalic intervals, is defined as:

Ky—1

rpvI(” v—l Z (g —a@¥))| (2.31)
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Segment durations d1

Sub-segment d4 dp (N dg(‘?) d2(3) ds (1 (2) d5 d6
durations

Aligned phones [oh] [n] | [sil] [dh]ih [ax] [sil] | [m]| [ae] [t]-

Words mat

Fig. 2.6 Illustration of extraction of r-PVI features from sample phrase ‘on the mat’
A normalised version of PVI (nPVI) is also defined:
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Normalised PVI was found to improve on rPVI as it adjusts for the speaker’s articulation

rate and the duration of the particular syllables in question. The authors found that both rPVI
and nPVI significantly outperform the Ramus metrics as well as other isochrony metrics at

npvI©) = (2.34)

classifying languages based on their rhythmic properties.
Bertinetto et al. [22] modified PVI based on the idea that it is the lengths of individual

vowels and consonants, rather than vocalic and consonantal intervals, the variation of which
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is key to the rhythmic properties of languages. They therefore divided the duration of each
interval by the number of phones it contained to yield a measure which they term the Control
Compensation Index (CCI):

@)Y d(e)
V) _ k k+1
cctV=——— ¥ = —w (2.35)
v n=1] I s
1 f&EMd(w) 9 d(en)
cc1© = Y — = (2.36)
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where [ ,EV) is the number of sub-segments (phones and silences) in the kth vocalic interval

and l,gc) the number of sub-segments in the kth intervocalic interval.

Languages such as English are in their analysis termed ‘compensation’ languages, in
that the sizes of adjacent vowels and adjacent consonants vary to compensate for each other,
resulting in them having high CCls. Speakers of ‘control’ languages such as Italian, try to
keep phones at a constant length and so have low CCI.

Based on the above work, Honig et al. [116] define six PVI-based features for use in
proficiency assessment, namely rPVI, nPVI and CCI for each of vocalic and consonantal
intervals. Support Vector Machine (SVM) regression is then used to predict human judgments
of the acceptability of subjects’ rhythm and melody using these and the previous features.
The PVI-based features outperform both isochrony and GIP features, but the combination of
PVI and GIP performs even better, suggesting that they each contribute different information
about the speaker’s rhythm. Honig’s six features are combined with the three GIP features,
mean vocalic and consonant interval durations and the ratio of mean to standard deviation of
each of vocalic and consonant interval durations to form a 13-feature baseline set used in
§6.3.3.

Gharsellaoui et al. [92] defined optimised PVI (oPVI) as a generalisation of rPVI, nPVI
and CCI:

La(e") = 2d (g )V
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where 1 <a <100,0<B<1,0<e<1,and, 0< 0 <1 are parameters.
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It can be seen that oPVI collapses to PVI when 68 = € = 0, specifically rPVI when f =0
and @ = 1 and nPVI when 8 =1 and @ =2, and to CCI when 6 = e =a =1 and 8 = 0.
The values of the parameters can be trained for the desired task of L1 detection and/or
proficiency assessment, allowing the feature extraction to be tuned for optimal prediction
of the ground-truth. This approach was shown to significantly improve performance on
language classification tasks.

However, as with all previous approaches, this approach still treats all successive interval
pairs identically, whereas different pairs would in practice be expected to have different
effects and levels of salience for characterising rhythm and predicting proficiency. For
example, a proficient speaker would be expected to give stressed syllables a larger duration
than adjacent unstressed syllables and such contrasts would be more important for proficiency
than the contrast between two adjacent unstressed syllables.

To address this issue, Kato et al. [137] use audio of native speakers reading identical text

to measure a reference duration d (‘L'k)(R) for each vocalic interval 7. They then define:
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to measure each pairwise duration ratio in the same direction as the equivalent ratio in the

reference speaker.

Pairs with a duration ratio of greater magnitude in the reference native speaker are taken
to be more important for proficiency and so the log of this magnitude is used as a weight in
aggregating the log pairwise ry scores to produce a speaker-level Referential Vowel Duration
Ratio (RVDR) score:
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The main issue with this method, as with native speaker comparison methods in pronun-

ciation error detection (§3.1), is its reliance on recordings of native speakers reading identical
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text. Obtaining such references beforehand is cumbersome in read speech assessment tasks
and impossible in spontaneous speech assessment tasks. The reference utterances also risk
introducing biases towards irrelevant attributes of the native speakers (especially if only one
is used for each utterance).

In Kitamura et al. [142], the authors address the first of these problems by replacing

® . . . . . .
In % with a weight u(xg, x4 1) to represent the importance and direction of the ratio
k
In dé?‘r:)l) , where x; is a vector representing phonemic, contextual and prosodic information

extracted about vocalic interval 7;. Equation 2.42 thus becomes:
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A decision tree is then trained on adjacent vowel pairs from native speaker utterances to
(R . . ..
% given x; and x, ;. The tree is then used on every adjacent pair in each

candidate non-native speaker, with the output used as u(xy, X1 1)-

WVDR =

(2.43)

predict In

This method has the advantage of not requiring matching native speakers for every
utterance, though it still requires a native speaker training set and could thus suffer biases to
properties of the rhythm of the native speakers which may not be necessary for proficiency.
Weighting by the expected magnitude of the duration ratio is also limiting as it is not necessary
that a larger pairwise ratio will be more indicative of proficiency. Finally, none of these
methods are able to capture relationships beyond the interval-pair level.

In §5.2.2, a further generalisation of duration variability features using deep learning will
be presented, to learn to predict human-assigned grade from duration features in a tunable
end-to-end fashion, capturing the entire duration pattern across the utterance as well as the

relative salience and different effects of different intervals and sub-segments.

2.3.6 Intonation

Intonation in this thesis refers to patterns of variation of pitch over an utterance. Pitch is an
auditory sensation of sounds on a scale of low to high. The variation of pitch over a word or
utterance can communicate semantic and grammatical information about the message being
rendered. [61]

Pitch contours that carry meaning can be identified and analysed. For example, rising or
falling pitch contours over particular words can indicate emphasis, while rising pitch at the
end of an utterance can communicate that it is a question. Intonation patterns over sentences
vary between languages, and so the way a speaker varies pitch over their utterances can be an

important determiner of whether non-native speech sounds proficient.
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During vowels and voiced consonants (collectively called voiced phones), when the
source of speech is vibration of the speaker’s vocal folds, pitch corresponds to the frequency
of the vocal fold vibration [61]. This fundamental frequency (fp) can be identified from
the audio and used to characterise pitch. Fundamental frequency extraction tools such as
REAPER [260] first detect the probability p, that each frame is part of a region of voiced
speech. In sections of speech more likely to be voiced, the quasi-periodicity caused by
vocal fold vibrations is isolated by detecting regular glottal closure instants (GCls), the time
between which is used to deduce the fundamental frequency f(gt) at each frame ¢, which in
turn serves as a measure of pitch. Features are then extracted to represent the variation of f
over the course of the utterance, thereby characterising intonation.

In the simplest case, overall statistics of fy over all the frames of a candidate’s speech

can be computed to characterise that speaker’s use of pitch, including mean:

Ly )

Lp = 7,; f (2.44)
median Q(f(;.s), maximum maxi.r( fét)) and lower and upper quartiles Q;g'zs) and QECSJS) .
Such features are commonly employed as parts of larger sets to predict overall proficiency
with considerable success [227, 270, 117]. However, as they do not take into account the
variation of pitch over words and phones, their ability to assess adherence to the rules of
phrasal intonation in English is limited. As with similar simple statistical features in other
contexts, they also risk incurring bias towards irrelevant aspects of the speaker’s voice quality.
In particular, they can be biased to overall voice pitch (including gender variation) and the
number and proportion of voiced regions.

A second group of methods is based on native speaker comparison, analogously to the
corresponding methods for pronunciation assessment (§3.1). Ito et al. [129] compare the
frame-by-frame fj sequence (normalised by its mean and standard deviation to minimise
gender bias) for a non-native rendering of a known word sequence with that for a native
speaker reading the same text, using a difference measure between the two as a predictor
of correctness. This method allows phrasal annotation to be taken into account, by using
the native as reference. As with other native speaker comparison methods, they can only
work for read speech, since they require a recording of a native speaker reading identical text.
They also risk being biased towards elements of the native speakers’ prosody which may
represent only one of multiple possible versions of correct intonation.

Kim and Sung [139] rank the syllables in an utterance by their mean pitch and compare
these rankings between native and non-native speakers reading the same text. At the syllable-

level, they divide each syllable into three subsections, compute the mean fy of each and use
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them to classify the syllables into ‘rise-then-fall’, ‘rise-rise’, ‘fall-then-rise’, ‘fall-fall’ and
‘constant’. These classifications are made for both native and non-native speakers reading the
same text and compared to grade the non-natives.

Most other approaches in the literature rely on using fj to detect meaning-carrying pitch
contours and comparing them to a representation of the canonical contours for the phrase
being assessed. The tone breaks and indices (ToBI) framework [16, 15, 17] provides a
set of conventions for annotating pitch contours in English. Contours are separated into
pitch stresses”, which indicate word-level emphasis, and boundary tones which mark the

boundaries of intonational phrases (see Appendix F). An example is seen in Figure 2.7.
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[d] [ih][d] [si] [m] [ax] [] [iy] [ax] [sil] [th] [r] [ow] {sil] {dh][ax]{[b] [ao] [I]
Did Maria throw the ball? :

Fig. 2.7 Illustration of words, phones, emphases, ToBI annotations and f profile for question
Did Maria throw the ball? (Fig. F.5). Equal emphasis on Maria and ball using lower pitch
(L* pitch stress). Pitch rises at the end (H-H%) to indicate a yes/no question.

Li et al. [166] use syllable level pitch statistics to detect ToBI annotations using a
hierarchical neural network classifier based on a labeled corpus, then compare the results to
a canonical representation.

To avoid the need for such manually annotated canonical contours, Kang et al. [135]
trained a model to predict the correct intonation pattern for any given sequence of words,
using lexicosyntactic features extracted from the word sequence, following the established
practice when generating pitch labels before rendering using fj templates in speech synthesis
(e.g. the approach in Ronanki et al. [232] using LSTMs). This part of the system was trained
using transcriptions and intonation labels from a corpus of native British English speakers.
The mean pitch of each syllable in the speech of each non-native candidate, together with
its mean MFCCs, are then used as features to predict the pitch contours actually present.
Detected pitch contours can then be compared to the predicted canonical contours to evaluate

ZMore commonly called pitch accents. The term stress is used in this thesis to avoid confusion with the
other meaning of the word accent.
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the correctness of the speaker’s intonation and detect individual errors. This approach
identifies proficiency with similarity to native speakers and thus suffers similar problems
and biases to the native speaker training set, as discussed in the case of pronunciation in
§3.1. The extraction of lexicosyntactic features is also dependent on the accuracy of the word
sequence, which can be an issue with spontaneous speech. Another important weakness
of these approaches is that they assume only one correct intonation pattern for each word
sequence. As seen in the examples in Appendix F, the same word sequence can be realised
with many different intonation patterns, to produce often subtle differences in meaning.
Speakers may thus be penalised for using a less common pattern. These approaches also
ignore pitch information not captured by the contours.

An alternative approach utilising pitch contours is to detect which of the ToBI contours
are present and then compare the actual fj trajectory to what would be expected for that
contour. Rather than evaluating whether the ToBI contour was correct, this approach assumes
that any of the ToBI annotations would constitute correct English intonation and instead
focuses on evaluating how well the contours were followed. In Batliner et al. [14], contour-
based features are extracted by fitting the fj values for each frame in each syllable believed
to contain a contour to a line representing the contour trend by regression. The slope of the
line together with the statistics of the deviation of actual fy from the line are then used to

characterise the contour (Figure 2.8).
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Fig. 2.8 Ilustration of pitch contour and features used to describe it. Reproduced from [14]

In Honig et al. [117], the mean of the mean squared error about the regression line

of the pitch of syllables immediately following stressed syllables is used as a predictor of
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proficiency, since it is believed that these syllables have smooth pitch progression in native
speakers and high degrees of fj variability in non-natives. In Coutinho et al. [58], contour-
extracted features are extracted for each syllable and their means, standard deviations and
other statistics used as feature to grade the overall proficiency of the speaker.

These techniques still rely on accurate ToBI annotations (whether labelled or predicted
by a system trained on natives) and so suffer from the same associated biases. Another
problem across all methods is the inability to extract pitch contours over voiceless consonants
and periods of silence. These gaps in the pitch contours distort fj statistics calculation,
contour extraction, and contour fitting alike. In §5.2.3, a number of novel approaches are
considered to predict proficiency directly from fj, taking unvoiced regions into account
and avoiding both the coarseness of f statistics and the loss of information and need for

references associated with contour and native speaker methods.

2.4 Holistic Grading

As discussed in §2.1, a speaker n can be graded on their holistic proficiency y™ or their
(n)
J

of more readily available reliable data for training and evaluation, while the latter has the

single-view proficiency y; ’ with respect to a particular view j. The former has the advantage
advantage of richer and more useful feedback for CALL purposes.
In §2.3, approaches in the literature to single-view grading for each of the views of

text, pronunciation, tempo, stress, thythm, and intonation were reviewed. Most approaches
(n)

defined handcrafted algorithms .%; to extract sets of expert features v i

to represent their

chosen view j:

vg-") = Z;(0\")) (2.45)

(n),

which were then fed into graders ¥; to predict single-view scores y ;

3 =4,(v" A)) (2.46)

j
To perform holistic grading, a number of authors [195, 60, 170] concatenate view-specific
hand-crafted features for multiple views 1..J to produce a holistic feature set y().

v = [wi" 0] (2.47)

which is then passed through a grader ¢, to predict holistic grades :

g(v" A) — 5" (2.48)



32 Spoken Language Proficiency Assessment

This grader can now be trained on human-assigned holistic scores .

A N
A = argmin Z (F) — 5(m)2 (2.49)
A n=1

It is particularly common for prosodic features to be combined with each other [282, 64,
225, 139, 46, 257] as well as with pronunciation features [201, 200, 86, 85, 159, 183, 54]. A
feature set consisting of concatenated tempo, rhythm, intonation and text features (Appendix
H) is used as a baseline against which to compare the systems developed in Chapter 5.

If both holistic and single-view annotations are available, these approaches allow a form
of multi-view grading, with each single-view feature set used to predict single-view grades
and the concatenated set used to predict holistic grades. However, the single view grading
is still reliant on difficult to obtain and often inconsistent human-annotated single-view
grades. Further, hand-crafted features are, by their nature, inflexible, and each is reliant on
a particular set of assumptions, on the basis of which it discards information which may
turn out to be relevant. As was discussed in §2.3, the feature extraction processes could be
improved if they could be tuned to extract information that is salient to proficiency.

Chen et al. [48] address this issue with a tunable feature extractor .% that projects
acoustic observations and recognised words to fixed-length vectors concatenated to a hidden

representation v, trained end-to-end with a grader ¢ using v to predict holistic grade.

F (& A) 5 v g™ 2) = 50 (2.50)
A N -
A =argmin ) (") — 52 (2.51)
A n=1

In contrast to the hand-crafted approach, .% is free to learn any mapping that will extract
features predictive of grade. This increases representational capacity and predictive power at
the expense of interpretability. Other approaches achieve the same outcome in two stages,
with .# taking the form of an unsupervised feature extractor learning to extract compact
representations of the speaker’s utterances (such as i-vectors and GMM parameters), and ¢
trained separately [259, 51]. Both the end-to-end and two stage systems can be trained on
readily available holistic scores and automatically learn to best extract features predictive
of grade rather than relying on the assumptions inherent in hand-crafted features. However,
neither can be used for multi-view assessment as no single-view information is encoded.

In Chapter 5, end-to-end single-view graders able to be trained using only holistic scores
are investigated, thereby allowing multi-view grading while combining the tunability and

training data reliability of the end-to-end holistic graders.
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2.5 Comparison of approaches

Table 2.1 compares the grading systems reviewed in this chapter, including previous work
(PDF), to the single view (§5.2) and combined (§5.3) graders introduced in this thesis.

Approach View(s) Tun. FE Ref. Ind. Ann. Ind. Spont. Grades
Neumeyer [201, 200] P No Yes Yes No P
Franco [85, 86] P No Yes Yes No P
Cheng [51] P No Yes Yes No P
Muller [195] P No Yes Yes No H
Liu [170] PX Yes Yes No Yes H
Cucchiarini [64] TPRX No Yes Yes No TPRX

Lee [159] P No No Yes No P
Chen [47] P No Yes Yes No P

Honig [117] PRI No Yes Yes No PRI
Kato [137] R No No Yes No R
Kitamura [142] R No Yes Yes No R
Kim [139] I No Yes No No 1

Coutinho [58] TRI No Yes Yes No TRI
Strik [255] T No Yes Yes Yes T
Honig [116] RI No Yes Yes Yes RI
van Dalen [270] TIX No Yes Yes Yes H
Bhat [24] X No Yes Yes Yes H
Crossley [60] TPX No Yes Yes Yes H
Metallinou [183] P No Yes Yes Yes H
Graham [100] P No Yes Yes Yes H
Rashid [227] TIX No Yes Yes Yes H
PDF [151] P No Yes Yes Yes H
Chen [48] H Yes Yes Yes Yes H
Takai [259] H Yes Yes Yes Yes H
Raina [223] X Yes Yes Yes Yes H
§5.2 PRI Yes Yes Yes Yes H

8§5.3 PRIX Yes Yes Yes Yes H

Table 2.1 Proficiency graders compared by input/structure views (T=Tempo, P=Pronunciation,
R=Rhythm, I=Intonation, X=Text, H=Holistic), tunability of feature extraction (Tun. FE),
independence to reference speakers (Ref. Ind.), independence to additional annotation (Ann.
Ind.), application to spontaneous speech (Spont.), and ground-truth grade views.

It is seen that most approaches (Neumeyer—Coutinho) are either only designed for read
speech or are not able to be trained without the need for additional manual annotation or
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references. They also mostly use custom methods for obtaining ground-truth single-view
grades which are not connected to the CEFR or other broadly accepted standards. The
remainder are divided into single-view handcrafted feature approaches with non-tunable
feature extractors (Strik—PDF) and holistic end-to-end systems which cannot give feedback
on individual views (Chen and Takai). The novelty of the systems proposed in §5.2 and
§5.3, as well as, on the basis of the same work and within the ALTA project by Raina, is that
they are end-to-end systems with tunable feature extractors that can still make single-view
predictions.

2.6 Chapter Summary

This chapter reviewed the literature on spoken language assessment. In §2.1, the tasks of
single-view and holistic grading were distinguished. Single-view grading aids adaptive
learning by providing targeted feedback on an individual aspect of proficiency. However,
reliable single-view grades to train and test such systems are difficult to obtain, whereas
holistic grading follows accepted standards and is both more readily available and more
consistent.

Methodologies for converting raw audio into sequences of acoustic features and time-
aligned words and phones were discussed in §2.2. Approaches using this information to
assign single-view proficiency grades were then reviewed in §2.3, for each of the views
of text, pronunciation, tempo, stress, rhythm, and intonation. The approaches reviewed
mostly involved extracting hand-crafted features from the original information to represent
each view. These features were then fed into a graders trained to predict human-annotated
single-view grades. The approaches found to be the most promising were phone distance
features to represent pronunciation (§2.3.2), pairwise variability metrics for rhythm (§2.3.5)
and various features extracted from fj to characterise intonation (§2.3.6). These methods
incorporate domain knowledge to ensure they only extract information representative of
their respective views. However, this causes them to be inflexible and overly reliant on the
assumptions used to define each of them, such that they risk discarding potentially useful
information.

Two approaches to holistic grading were then reviewed in §2.4. The first involves
concatenating the handcrafted features for various views and feeding them into a grader to
predict holistic score. This method suffers the same issues of inflexibility as the single-view
graders. The second approach uses neural feature extractors which can be trained in an
end-to-end configuration to extract features so as to optimise grade prediction. This allows

the feature extraction process to be flexible and tunable to the grading task, such that it thus
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learns to preserve the information most representative of proficiency as defined by the human
annotators rather than based on the assumptions used in the design of the features. However,
it lacks the interpretability and view specificity possible with the first method.

In Chapter 5, a compromise between these two approaches is introduced, aiming to
combine the advantages of the end-to-end holistic grader with those of the handcrafted
feature single-view graders. The hand-crafted feature extractors for pronunciation, rhythm
and intonation are each generalised into hierarchical neural analogues. These continue to
limit the information available for grading in a way that exploits domain knowledge to ensure
view specificity, while also allowing the parameters of the process to be learned so as to best
predict human-assigned grade. The graders are trained using holistic, rather than single-view
scores, and their ability to still yield scores linked to their respective views is investigated.
Finally, the graders are combined to yield a single holistic grader, which is compared to
versions of the two baselines described in §2.4. A comparison of all the systems reviewed in
this Chapter with those introduced in Chapter 5 is displayed in §2.5.






Chapter 3

Pronunciation Error Detection

This chapter reviews the literature on pronunciation error detection. Pronunciation, for the
purposes of this thesis, refers to the way a speaker realises words as sequences of discrete
units of sound. Pronunciation error detection involves evaluating whether each word in a
speaker’s utterances is pronounced correctly or incorrectly (word-level detection) or whether
a particular utterance contains such word-level errors (utterance-level detection). It contrasts
with overall pronunciation assessment which involves directly assigning a grade to the
pronunciation of the speaker as a whole.

The first step in any pronunciation assessment method as defined above must be to recog-
nise the words and sounds that were spoken and identify the segment of audio corresponding
to each. The speech audio processing methods used to achieve this, namely automatic speech
recognition (ASR) and forced alignment, were reviewed in §2.2. ASR, which involves recog-
nising the words, is particularly important when dealing with spontaneous speech, where the
text being spoken isn’t known beforehand. Having identified the acoustic realisations of the
sounds making up each word, authors differ on what properties of these constitute proficient
pronunciation. Answers include similarity to the way a native speaker would pronounce
the same word, intelligibility of the way the word was pronounced to a listener, adherence
to a canonical pronunciation defined for the word, and, finally, to make no assumption and
learn criteria statistically from human annotations. These different answers lead to different
families of approaches, namely native speaker comparison methods, confidence measure
methods, recognition methods, and supervised methods respectively.

The first sections of this chapter explore the main categories of approaches for detecting
pronunciation errors in the literature, based on these different implicit assumptions about the
nature of good pronunciation. Native speaker similarity methods (§3.1) approach proficiency
as similarity to the pronunciation of native speakers. ASR confidence methods (§3.2) attempt

to assess intelligibility of the word as spoken to a listener. Extended recognition networks
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(§3.3) and phone recognition methods (§3.4) define good pronunciation as adherence to the
canonical sequence of phones for the word being uttered. Finally supervised methods (§3.5)
learn the criteria of good pronunciation implicitly from human annotators.

The availability and quality of read and spontaneous speech corpora for feasibly training
and evaluating methods are discussed in §3.6, while §3.7 discusses results from the literature
on how to best provide useful types of feedback to learners. Finally, §3.8 compares all

reviewed systems to that introduced in Chapter 7.

3.1 Native speaker similarity methods

If proficiency is defined as similarity to native speakers, assessment requires measuring the
distance between the way the candidate speaker pronounces the phones of the language and
the way reference native speakers pronounce them.

An early approach developed at SRI [21, 86, 201, 200] uses utterances of native speakers

(native) (native)
A

o,.;  and their transcribed word sequences w to train a parametric acoustic model

p(01.7,51.7|01.0, .4 ) to capture the way native speakers pronounce the phones of English:

'//"(native) _ arg;/laxp(og7;tive)‘Wgr:llative),%) (3.1

A (native) _ arg/r//nax Z Z P(Oglj?ive)ﬁl:TWl:M,«///) (3.2)

native . .
o€ D) sur|Oran

(native)

where .@V(Vrz”ve) = g\ , represents all possible canonical pronunciations of wy.;

(narive

The likelihood p(1;1;7|w1;1,//f (”"”ve)) given the trained native speaker model M of a
non-native candidate utterance 0.7 with known word sequence w.7 is then used to indicate
the degree of nativeness and thus proficiency of the candidate’s speech. The idea is that the
more similar the candidate’s pronunciation is to the native pronunciation, the easier it will
be for the native-trained models to recognise the candidate’s speech. Utterance-level errors

e(w1.7) could thus be detected by directly thresholding this likelihood:

e(wi:1) = plor.r|wip, A ")) < Oy (3.3)

e(WI:I) = Z Z p(olzTysl:T|¢1:M7%(native)) < Onar (34)

O1:MEDwy .y S1.T101.M

where ®,,, is a tunable threshold.
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A more computationally feasible approach is to first use the model to force align each

non-native utterance, obtaining the most likely phone sequence ;.3 and state sequence §).7:

1.y = argmax {P(¢1:M!W1:1) Y P(OI:T;SI:TW]:M;«//A(nmive))} (3.5)

¢1:M€—@»(vtl(fl;) S1.T WI:M

S1.r = argmax p(oy.7, s:7 |G, A ")) (3.6)
Sl:T“ﬁl:M
Utterance-level errors can then be detected by thresholding the likelihood of the 1-best

state sequence:

e(wi) = p(o1.7,81.7|wi.p, A ")) < Oy (3.7)

where 6, is a tunable threshold.
To detect word-level errors, §;.7 is used to identify the phones M'?M and frames ot(lwt’z)
corresponding to each word w; and a threshold 7., applied to the likelihood:
e(Wi) = p(O,(;t};),fl;Tl(ﬁgr%z, jj(native)) < Nnar (3.8)

2

An advantage of this technique is that it does not require the natives and non-natives to
have spoken the same text and so can be used on spontaneous speech. Its main weakness
is that the likelihood will be affected by factors other than the nativeness of the candidate’s
pronunciation, including the text being spoken (especially with spontaneous speech), the
similarity of other speech attributes between the native and non-native data, and background
acoustic conditions. The method thus risks yielding unreliable results, generalising poorly
and introducing biases to irrelevant attributes of the speech being assessed.

Another approach, only applicable with read speech, is to have a native reference speaker
read out an identical text to the non-native candidate and compare their realisations to each
other. Karhila et al. [136] perform free phone recognition on each of the non-native o1.7 and

a reference native speaker orllf;i,"e to obtain the most likely phone sequences for each:

1.4 = argmax { Y p(OI:T731:T|¢1:M)} (3.9)
Prmed SI:T|¢1:M

f