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Summary

Selecting the optimal model structure with the “appropriate” complexity is a standard prob-
lem for training large vocabulary continuous speechrecognition (LVCSR) systems,and machine
learning in general. State-ofthe-art LVCSR systemsare highly complex. A wide variety of tech-
niques may be used which alter the system complexity and word error rate (WER). Explicitly
evaluating systemsfor all possible con gurations is infeasible. Automatic model complexity
control criteria are needed. Most existing complexity control schemescan be classi ed into two
types, Bayesianlearning techniquesand information theory approaches.An implicit assumption
is made in both that increasing the likelihood on held-out data decreasesthe WER. However,
this correlation is found to be quite weak for current speechrecognition systems. Hence it is
preferable to employ discriminative methods for complexity control. In this thesis a novel dis-
criminative model selection technique, the marginalization of a discriminative growth function,
is presented. This is a closer approximation to the true WER than standard likelihood based
approaches. The number of Gaussiancomponents and feature dimensions of an HMM based
LVCSR systemis controlled. Experimental results on a wide rage of LVCSR tasks showed that
marginalized discriminative growth functions outperformed the best manually tuned systems
using conventional complexity control techniques, suchasBIC, in terms of WER.

Another important aspectof a speechrecognition problem is to derive a good and com-
pact feature representation for the data. This should contain suf cient discriminant information
to distinguish between linguistic units. Features consisting of non-discriminating information
should be removed. One category of such techniques are linear projection schemes. For these
schemethe linear projections are normally estimated using the maximum likelihood (ML) cri-
terion. It is well known that certain incorrect modeling assumptionsare made in current HMM
based speechrecognition systems. Hence, in addition to a discriminative selection of number
of subspacedimensions, it is also preferable to use discriminative criteria to estimate these pro-
jections. The commonly used extended Baum\elch (EBW) algorithm provides an ef cient,
iterative, EM-like optimization schemefor discriminative criteria. However, using this algorithm
the forms of model parametersthat can be optimized are fairly restricted. Hence, it is useful to
have a more general approachto discriminatively train a variety of forms of model parameters.
In this thesis the recently proposed weak-senseauxilary function approach is used for discrimi-
native estimation of linear projection schemes.Experimental results on a range of LVCSRtasks
show that discriminative training of linear projections may be useful for improving the perfor-
mancesof current LVCSR systems.

Keywords
SpeechRecognition, acousticmodeling, complexity control, discriminative growth functions,
linear projection schemes,discriminative training, hidden Markov models.
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Introduction

Automatic speechrecognition (ASR) has been the subject of active researchfor the past three
decades.Asthe commercial and military interest hasgrown, investigation of ASRtaskshas pro-
gressedto increasing dif culty and large scales.There have beensigni cant advancesin speech
recognition technology in these years. Many techniques have been developed to improve the
performance of speechrecognition systems. The most signi cant technical breakthrough was
made in the 1970s when hidden Markov models (HMMs) were introduced for speechrecog-
nition [5, 58]. In the following years hidden Markov models gradually becamethe dominant
technique for acoustic modeling. Theseapproacheshave been applied to adapt them to a wide
range of speechrecognition tasks. ASRresearchhas been applied to tasks ranging from clean
and well controlled environments, suchasWall Street Journal (WSJ), to spontaneous,noisy and
limited bandwidth domains, such as broadcastnews (BN) and conversational telephone speech
(CTS). Asthe complexity of the task hasincreased,the amount of date required for “good” per-
formancesis alsoincreasing. Thousandsof hours of audio data are being usedfor the training of
state-of-the-art large vocabulary continuous speechrecognition (LVCSR) systems. On the other
hand, the rapid development of computing power in terms of speedand storage capability has
further boosted the use of large amounts of training data. For these reasons state-of-the-art
LVCSR systemsare becoming more and more complex.

Many challenging problems still remain unsolved in speechrecognition research. The per-
formance of current speechrecognition systemsis still worse than human recognition. The per-
formance of current ASR systemsdegradesrapidly asthe level of background noise increases.
In addition, the optimal complexity, or number of parameters, in a speechrecognition system
also affects the performance. This is the main areainvestigated in this thesis. Like many other
pattern classi cation tasks, the correct model complexity, or structural con guration, needsto
be determined to yield a good generalization to unseendata. For current speechrecognition
systems,especially on large vocabulary tasks, explicitly building and evaluating all possible sys-
tems is infeasible. Hence, automatic model complexity control criteria are needed. Another
challenging problem in speechrecognition researchis how to extract a compact set of features
that contain the most discriminant information. They should contain no redundant information,



and more importantly should improve the classi cation accuracy In this thesis the automatic
complexity control and feature selection problems for HMM based speechrecognition systems
are investigated.

1.1 Speech Recognition Systems

A speechrecognition systemis normally decomposedinto individual parts. The basic structure
of atypical ASRsystemis shownin gure 1.1. The rst stageinvolves the front-end processing
of the speechwaveforms. The speechsignals are compressedinto streams of acoustic feature
vectors. Theseextracted feature vectors are assumedto contain suf cient information for the
classi cation of speechpatterns. An acousticmodel language model and lexicon are used to
infer the most likely hypothesisfor the spokenutterance given this set of acoustic features. The
language model representsthe syntactic and semanticinformation of the spokensentence.The
acousticmodel mapseachstreamsof acousticfeature vectorsinto individual words, or sub-word
units. For LVCSRtasksthe lexicon, or commonly referred to asdictionary, provides a mapping
between words and sub-word units, re ecting the pronunciation variation of eachword in the
vocabulary. A wide range of techniques, such as parameter tying and discriminative training
schemes,may be employed to improve the performance of speechrecognition systems. These
techniques may interact with eachother. Hence, the development of an ASR systemis complex
and requires careful analysis, design and implementation of its individual parts.

Acoustic
Models

Front End Search and Recognized
Processing Decoding Hypothesis

Language
Models

Lexicon

Figure 1.1 An overviewof a speeclrecognition system

A statistical framework is usually usedfor speechrecognition. The problem may be expressed
as nding the most likely word sequenceW, given a sequenceof acoustic observation vectors,
O = fog;::;0 ;5 0709, where o denote the acoustic observation at sometime instance . This

may be written as

n 0
W = argmax P(WjO) : (1.1)
w



Applying Bayesrule yields

)
p(OjW)P (W)

W = argmax
I p(O)
n 0
= argmax p(OjW)P (W) (1.2)
w

since the most likely word sequenceis not dependent on the probability of the acoustic obser-
vations p(O). The calculation of the optimal word sequenceconsistsof two probability distri-
butions: the probability of the acoustic vectors given a word sequence,p(OjW), given by the
acoustic model; and the prior probability of a given word sequence,P (W), given by the lan-
guage model. This thesisis only concentrated on the complexity control problem for acoustic
models and the selection of front-end features.

1.2 Model Complexity Control

Selecting the model structure with the “appropriate” complexity is a standard problem when
training LVCSR systemsand for machine learning in general. Systemswith the optimal com-
plexity have a good generalization to unseendata. For speechrecognition systems,this general-
ization is usually measuredby the word error rate (WER). Unfortunately, state-ofthe-art LVCSR
systemsare highly complex. A wide range of techniques may be used which alter the system
complexity and affect the WER performance. Examplesof these techniques are using mixtures
of Gaussiansas state distributions, dimensionality reduction schemes,decision tree basedstate
tying and linear transforms basedspeakeradaptation. Explicitly evaluating the WERfor all pos-
sible model structural con gurations is infeasible. It is therefore necessaryto nd a criterion
that accurately predicts the WERranking order, without explicitly requiring all the systemsto be
built and evaluated.

Most existing complexity control schemescan be classi ed into two types. In Bayesiantech-
nigues the model parametersare treated asrandom variables. The likelihood is integrated over
the model parameters as random variables. This yields the Bayesianevidence[2, 122, 41].
In the information theory approachesthe complexity control problem is viewed as nding a
minimum code length for an underlying data generation process[ 16, 6, 96, 54]. Thesetwo
approachesare closely related to each other. They asymptotically tend to the Bayesianinfor-
mation criterion (BIC) [104] rst order expansion,or Laplace'sapproximation for secondorder
expansion [122] with increasing amounts of data. These approximation schemeshave been
previously studied for various complexity control problems for speechrecognition systems. For
instance, they have been applied to determine the number of statesin a decision tree based
clustering [12, 13, 15, 59, 105, 107, 117, 130], or the number of linear transforms for speaker
and environment adaptation [106]. An implicit assumption is made in both sets of schemes
that increasing the likelihood on held-out data will decreasethe WER.However, this correlation
has beenfound to be weak for current speechrecognition systems[ 71, 70]. This is due to two
well known incorrect modeling assumptionswith the HMM basedframework: the observation



independence assumption and the quasi-stationary assumption. Thus it would be preferable to
use a complexity control schemethat is more closely related to WER. Discriminative measure
has previously been used for building speechrecognition systems. In [4, 88, 85], it was used
as a method of incrementally splitting Gaussianmixture components. However, no stopping
criterion was provided to penalize over-complex model structures.

This thesis presentsa novel complexity control technique that usesthe marginalization of
a discriminative measure, rather than using the likelihood asin standard Bayesianapproaches.
Due to sensitivity to outliers, the direct marginalization of discriminative criteria, such as maxi-
mum mutual information (MMI) [3], is inappropriate for complexity control. Instead a related
discriminative growth function is marginalized. This growth function retains certain attributes of
the original discriminative criterion but hasreduced sensitivity to outliers. The calculation of the
“discriminative evidence” is still impractical for LVCSR systems. Hence, for ef ciency Laplace's
approximation is used for the integration of discriminative growth functions. The growth func-
tions proposedin this thesis are basedon the MMI and minimum phone error (MPE) [93, 62]
criteria.

This work usesASR systemsbuilt from HMM based acoustic models that have mixtures of
Gaussiansas the state output distributions and multiple linear feature projections. Two forms
of systemcomplexity attributes are to be investigated, the number of components per state and
the number of dimensions for each projection. In addition to a discriminative selection of the
dimensionality, a secondareainvestigatesin this thesisis the discriminative estimation of linear
projection schemes.

1.3 Discriminative Linear Projection Schemes

In common with other pattern classi cation tasks,an important aspectof the speechrecognition
problem is to derive a good, compact, feature representation for the data. This should contain
suf cient discriminant information to distinguish between classes. Features consisting of non-
discriminating information should be removed. One family of such techniques usedin speech
recognition systemsare linear projection schemes. Standard linear projection schemes,such
as linear discriminant analysis (LDA) [26, 121] and its heteroscedasticextensions[66, 102,
34], attempt to generate one or more uncorrelated subspaceswithin the maximum likelihood
(ML) framework. When using multiple projections, a consistent likelihood comparison may be
ensured acrossdifferent subspacesassociatedwith each projection. However, it is well known
that certain incorrect modeling assumptionsare made in current HMM basedspeechrecognition
systems. Hence, in addition to a discriminative control of the number of subspacedimensions,
it is also preferable to usediscriminative criteria to estimate linear projections.

Most state-of-the-art LVCSR systemsare built using discriminative training techniques|[ 124,
51, 23, 64]. Usually the extended Baum-\Welch (EBW) algorithm is usedasit providesan ef cient
iterative EM-like optimization schemefor discriminative training criteria. However, using the
EBW algorithm the forms of model parametersthat may be optimized are restricted to standard



HMM parameters, such as Gaussian means, covariances. Gradient descent based numerical
techniques are expensivefor LVCSR training and have dif culty guaranteeing convergencein
practice. Recently the weak-senseauxiliary function approach was introduced. This method
provides a exible and intuitive derivation of the EBW algorithm [91, 89, 93]. In this thesis
weak-senseauxiliary functions are usedto discriminatively optimize linear projections.

1.4 Thesis Structure

This thesis is structured as follows: In the following chapter the basic theory of using hidden
Markov models for speechrecognition, and the maximum likelihood training schemeare pre-
sented. Other details of the development of a large vocabulary recognizer, including the param-
eterization of human speech,selection of recognition units and parameter tying, language and
pronunciation modeling are also briey reviewed. Then the basic search and decoding algo-
rithms are brie y described. Finally, two categoriesof acousticmodeling techniqueswidely used
in state-ofthe-art speechrecognition systems, linear feature projection schemesand speaker
adaptation techniques, are presented.

Chapter 3 presents standard complexity control techniques. First, the word error rate is
the most widely used performance evaluation metric for current ASR tasks, hence minizing
the WER on test data may be viewed as the ultimate aim, or a zero risk complexity control
criterion, for speechrecognition. In standard complexity control techniqguesa model correctness
assumption is made that the likelihood on unseenspeechdata is strongly correlated with the
systems'WER. Under this general likelihood basedframework, two major categories of model
selection schemes,Bayesianlearning techniquesand information theory methods, are outlined.
This is followed by a brief review on existing complexity control researchfor speechrecognition.
Finally, the limitations of likelihood basedcomplexity control schemesare discussed.

Chapter 4 presents standard discriminative training techniques for speechrecognition. In
this chapter several commonly used discriminative criteria are presented rst, followed by a
discussionon the optimization schemesfor discriminative training. In particular, the extended
Baum-\elch (EBW) algorithm, and a recently introduced weak-senseauxiliary function based
approach are presented.

In chapter 5 a novel discriminative model complexity control technique is presented. First,
some previous work on discriminative complexity control is reviewed. Then issueswith a di-
rect marginalization of discriminative criteria for complexity control are discussed. Due to the
sensitivity to outliers, direct marginalization of discriminative training criteria is inappropriate
for complexity control. Instead the criteria are transformed into a closely related discrimina-
tive growth function to be marginalized over. A discriminative growth function retains certain
attributes of the original criterion and has reduced sensitivity to outliers. In this chapter two
forms of growth functions basedon the MPE and MMI criteria are presented. This is followed
by a discussionon implementation issueswhen using growth functions for complexity control.
Detailed derivations for discriminative growth functions can be found in appendix A and B.



In chapter 6 the discriminative training algorithms for linear projections schemesare pre-
sented. First, an introduction and motivation of the work is presented. Then previous research
on the discriminative training of linear transformations for speechrecognition is reviewed. This
is followed by an investigation of using weak-senseauxiliary functions for discriminative train-
ing of linear projection schemes. Someimplementations issuesare also discussedin this chap-
ter. Some detailed derivations of using weak-senseauxiliary functions to derive the update
algorithms can be found in appendix C.

In chapter 7 experimental results are presentedfor model complexity control using marginal-
ized discriminative growth functions. Initially, complexity control schemesare usedto optimize
multiple model complexity attributes on a global level. This allows all systemsto be trained and
evaluated explicitly. The correlation with WER and the performance ranking error is examined
for a variety of complexity control schemes. This is followed by the optimization of multiple
complexity attributes on alocal level for an LVCSRtask on CTSEnglish data. The generalization
to two other LVCSR tasks is also investigated using marginalized discriminative growth func-
tions. The interaction with discriminative training and speaker adaptation techniques is also
investigated. Finally, the performancesof complexity controlled systemsare evaluated within a
state-of-the-art 10 time real-time LVCSR system.

Chapter 8 presentsthe performancesof discriminatively trained linear projections on LVCSR
tasks. Initially , experimental results for CTSEnglish data are presented. Then the generalization
to two other LVCSRtasksare investigated. This is followed by an investigation of using matched
lattices for the discriminative training of standard HMM parameters after linear projections are
estimated. Finally, the optimization of both model complexity and parameter are integrated
into a consistent, discriminative, framework. The complexity of discriminatively trained model
structures is optimized for CTStasks.

In chapter 9 a summary of the work in this thesisis presented. Potential future directions of
researchare also discussed.
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Fundamentalsof SpeecRecognition

In this chapter the basic theory of using Hidden Markov models for speechrecognition is out-
lined. The standard maximum likelihood training of these modelsis presented. In addition, the
parameterization of speech,the selection of recognition units and parameter tying, language
and pronunciation modeling, and the decoding algorithm are briey described. Finally two
categoriesof techniquesthat are widely usedin state-of-the-art speechrecognition systemsare
presented. The two categories are linear feature projection schemesand speaker adaptation
techniques.

2.1 HMMs as Acoustic Models

Currently the most popular and successfulapproachfor modeling the variations of speechsignals
is to use hidden Markov models (HMM). Sincetheir introduction in the 1970's HMMs have been
applied to a wide range of speechrecognition tasks[5, 58]. In this section the basic conceptsof
HMMs are presented. The structural assumptionsthat underly HMMs are also discussed.

2.1.1 Model Topology

Speechproduction is a non-stationary process.Preciselymodeling all the complexities of the sig-
nals is impossible. When using HMMs to model speechsignals, certain simplifying assumptions
are made about the nature of speech. Although HMMs have been the most successfulform of
acoustic models for ASRsystems,they are not the correctmodels for modeling speechpatterns.
When using HMMs the following assumptionsare made about the nature of the speechsignals:

Speechsignals may be split into discrete statesin which the waveform is stationary and
transitions between statesare instantaneous. This is often referred to asthe quasi-stationary
assumption.

The probability of an acoustic observation is only conditionally dependent on the vector
and the current hidden state. Eachobservation vector is conditionally independent of the



g R R V= Al N vVl vl Yl el Ve el R e ¥ e

sequenceof vectors preceding and following it, given the current state. This is commonly
referred to asthe observationindependencassumption.

Neither of thesetwo assumptionsare true for speechsignals. The rst assumptionis not valid
becausespeechproduction is a non-stationary process. The second assumption is not true for
multiple reasons. For instance, the dynamics of speecharticulator constrain its trajectory to be
continuous, rather than discrete. Furthermore, techniqueslike the use of overlapping framesin
speechparameterization may also introduce correlation between acoustic observations. These
assumptionsare further discussedin later sections.

Transition
. 345

Emlttl ng
state

State 1 5 Q

Non-emitting
state

bs(O )

Figure 2.1 An HMM with a left-to-right topologyand three emitting states

Under these assumptionsspeechsignals that are expressedas a sequenceof n dimensional
acousticobservationsof nite length, O = foq;:::; 01 g, are assumedto be generatedby a Markov
model asis shown in gure 2.1.1. Here self-loop transitions are allowed. In the gure asimple
left-to-right model topology is used. There are a total of ve states, including three emitting
statesand non-emitting entrance and exit states. Let denote the model parametersand an
arbitrary hidden state sequence.The model parametersdescribethe probability density function
(PDF) associatedwith eachemitting state and transition probabilities associatedwith each pair

of states. In the gure an observationPDE (0 ) = p(oj = S§j; ), is associatedwith each
emitting state. Here = §j indicates that at time instance , an acoustic observationo was
generated by a hidden state j. In addition, a transition probability, aj = P( = §jj 1=

), is associatedwith each pair of states. For any state, the transition probabilities satis es
a sum-to-one constraint, j aj = 1. Note that self-looping transitions are not allowed for non-
emitting states. These non-emitting states allows multiple HMMs to be simply concatenated

together to form a composite model.
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2.1.2 State Output Distributions

The state emission PDF may have a variety of forms of distribution. Its form dependson the
front-end feature extraction for speechsignals. A more detailed discussionof frond-end process-
ing techniques for speechrecognition may be found in section 2.3.1. If the input speechdata
is discrete, or the data has been vector quantized, then discrete state PDFsmay be used. How-
ever the majority of the current speechrecognition systemsuse continuous acoustic features. A
commonly used form is a multivariate Gaussiandistribution given by

n o4 1 o> .
2
where @) and () are the Gaussianmean and covariance respectively

Using full covariancesfor large HMM systemsis computationally expensive. Let h denotes
the dimensionality of the acoustic space. The number of covariance parametersis increasedby
0O(n?) asn increases. The number of HMM statesin an LVCSR systemcan be in the thousands.
In order to obtain robust parameter estimates, the training of full covariance Gaussiansmay
alsorequire a large amount of data. To overcomethis problem, diagonal matrices may be used.
However for complex patterns like speechsuch an approximation may be poor. Alternatively,
more complicated methods may be used. Thesetechniquesinclude linear projection schemes
that attempt to remove the spatial correlation, and advanced forms of covariance parameter
tying. Thesetechniquesare discussedin more detalil in later sections.

By using a Gaussiandistribution it is assumedthat the state emissiondistribution hasa single
mode at the mean. However, the characteristics of speechmay vary substantially depending on
the speakerand acousticenvironment. This may result in a mismatch between models and data.
Hence, instead of using diagonal covariance Gaussiandistributions, Gaussianmixture models
(GMM) are widely used as the state emission PDFs[69]. A GMM based state emission PDFis
given by,

Wi

h(o) = GmN o; Om; Om (2.2)

m=1
where M; the number of mixture componentsfor statej, and N () denotesa multivariate Gaus-
sian distributionpof the form given in equation 2.1. The component prior ¢;m Satis es a sum-to-
one constraint, mjzl Cim = 1, to ensurethat by (o ) is a valid PDF Usually diagonal covariance
matrices are usedfor eachcomponent. Using GMMsthe spatial correlation in the acousticspace
may be implicitly accountedfor. Alternatively, other more complicated forms of covariancesmay
be used[31, 45, 99, 98, 108].

There are two issueswhen using GMMs as state distributions for an HMM based speech
recognition system. First, the number of Gaussiancomponentsin each GMM affects the overall
complexity of the systemand needsto be determined. This may be manually tuned by explicitly
building and evaluating all possible systems. However, this is only applicable when the same
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number of components is assignedto all statesin the system. A more complicated scenario
is that the complexity is locally varied acrossdifferent states. In these casesautomatic model
complexity control techniques are required. Second, the number of Gaussiancomponents in
LVCSR systemscan be in the millions. A signi cant portion of the run time is consumed by
likelihood calculation on mixture component level. To achieve ef ciency, appropriate caching
and pruning of Gaussianprobabilities may be used|[32].

2.2 Maximum Likelihood Training of HMMs

Maximum likelihood (ML) training is a standard machine learning scheme. The underlying
model is assumedto be closeto the “correct” one sothat increasingthe likelihood of the training
data will decreasethe classi cation error on the unseendata. For an HMM basedspeechrecog-
nition system,the aimisto nd the optimal parameterestimates,’\, suchthat the log likelihood
of the given observation sequenceis maximized. This may be expressedas

= argmaxflogp(OjW; )g (2.3)

where W is the referencetranscription. Directly maximizing equation 2.3, for example by setting
the gradient with respectto to zero, is non-trivial. This is becausethe likelihood may be
expressedas a marginalization over a set of unknown hidden state sequences g, allowed by
the referencetranscription,

8 9
< X =
" = argmax_log p(O; jW; ).
8 9
< XY =
= argmax, log PC 1 w)p(oj ;). (2.4)

where denotes the hidden state an acoustic observation at time instance was generated
from. For HMMs the expectationmaximization algorithm [19] is normally usedto maximize the
log-likelihood of the training data.

2.2.1 EM Algorithm

The EM algorithm is a standard optimization schemefor statistical models which may contain
latent variables. An HMM is an example of these models. Its hidden states may be viewed
as latent variables. Rather than directly maximizing the log likelihood in equation 2.4, the
following strict lower bound of the training data log likelihood, derived using Jensen'snequality,
will be optimized,

X oy - X PO W)
log p(O; jW; ) = log P( jO;W; )W
X p(O; jW; )

P( jO;W; ) log (2.5)

P( jO;W;"7)
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where ~ is the current estimate of model parameters. Applying Jensen'sinequality requires
that the hidden state sequenceposteriors P( jO; W; ™) satis es a non-negative and sum-to-one
constraint. AsP( jO;W; ™) is a probability, this constraint holds. This lower bound may be
re-arranged as

logp(Oj ; W) logp(OjT W) + Qmi(; ) Qmi(T37) (2.6)
where the auxiliary function Q(; 7) is given by

X
Qm(; 7) = P( jO;W;7)logp(O; j ) (2.7)

The EM algorithm is performed in an iterative fashion. In the E-step,the hidden state sequence
posteriors, P( jO;W; ™), are computed given the current parameters estimates, ~, obtained
from the previous iteration. In the M-step, the lower bound in equation 2.6 is optimized given
the xed statistics computed in the E-step. Note that equation 2.6 becomesan equality when

= ~. Maximizing the lower bound given in equation 2.6 is guaranteed not to decreasethe log
likelihood of the training data. During the M-step, this is equivalent to maximizing the auxiliary
function, Q(; 7), given the xed statistics. One limitation with the EM algorithm is that it can
only nd alocal optimum for the model parameterswhen the log likelihood converges.

2.2.2 Forward-backward Algorithm and Parameter Re-estimation

Using the observation independence assumption discussedin section 2.1.1, the EM auxiliary
function in equation 2.7 may be written asthe following for HMMs,

X X
Qm(; 7) = j( )logh(o )+ ij ()logay (2.8)

is il
where the hidden state posterior probability,
i() = P( =S§jO;W;7) (2.9)
and the pairwise hidden state transition posterior.
i() = P(C 1=S; =S§jO;W;7) (2.10)

Here = §j denotesthat an acoustic observation vector was generated at time instance by
hidden statej .

Thesetwo hidden state posterior probabilities are usually computed using the forward and
backward probabilities. The forward probability is de ned asthe joint likelihood of the partial
observation sequenceup to time instance and frame o is emitted from state S;. This is
expressedas

i() = plog;zz0; = §jW;0) (2.11)
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Using the observation independenceassumption the forward probability may be computed by

8
1 j =1 =1
ajjb (o) 1< j < Ng; =1
() = PlJNhS : S (2.12)
§ Pi=2 i( 1)aijtq(o) 1<) <Ng 1< T
Oy j = Ns; =T

where Ng is the number of statesin eachHMM, including the non-emitting entry and exit states.
The backward probability, de ned as

i() = p(o+szmor) =S W), (2.13)

is also recursively calculated for the partial observation sequencefrom time instance + 1up to
T.

8 p
3 5 N Taibi(o1) (1) =15 =1

i) =5 5 Yaib(041) i( 1) 1<j<Ng 1 <T (2.14)
" ajN, j = Ng; =T

Using the forward and backward probabilities, the hidden state posterior probability, ( ), and
the transition posterior, jj ( ), may be ef ciently computed using

i()0)

p(OjW; ™)

(D3 h(g ) i() (2.15)
pP(OjW; ")

i()

i ()
The total likelihood of the complete observation sequencemay be calculated as
p(OW;7) = n.(T); (2.16)
or
p(OW;7) = 1(1): (2.17)

For HMMs using GMMs as state emission PDFs,Gaussianmixture component may be treated
as hidden variables. The component posteriors, jm( ), are required as suf cient statistics for
re-estimating the parameters. This is given by

Png 1 e .
i=2 i( Daj gmbm(0 ) ()

- - 2.18
im() p(OjW;; ) (2.18)

Given these suf cient statistics the parameter re-estimation formula for HMM may be de-
rived. For the state transition probabilities, the update formula is given by

8
% jD(l) i=1 1<j<Ns
a =  Pe2 10 1ci<Ng 1<j<Ns (2.19)
) § =2 |( 1)

P% 1<i<Ns; J=Ns
=2 i
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The re-estimation formula for the weights, meansand covariancesof the component m of emit-
ting statej are given by

P
Gm = p jm()
pm im( ")
(im) - ) im( )o
jm()
. . >
(im) jm() OP (jm) o (jm)

im( ) (2.20)
In the above update the re-estimation of full covariance Gaussiansrequires the second order
momentsto be stored asfull matricesfor eachcomponent. Again the computational requirement
during training is dramatically increased as the feature dimensionality increases. Hence, it is
preferable to use more complicated forms of covariance modeling techniques.

One limitation with ML training is that no prior knowledge about the model parametersis
considered. This leadsto unreliable estimateswhen the training datais limited. Prior knowledge
about model parametersmay be incorporated, for example, in maximum a-posteriori(MAP) [ 36]
training and Bayesianlearning [2]. Thus uncertainty about model parameters may be more
robustly handled. Furthermore, in ML training the underlying statistical model is assumedto
be the “correct” one. For current ASR systemsusing HMMs, this model correctnessassumption
may be too strong due to the two structural assumptionsexplained in section 2.1.1. Henceit is
preferable to employ training schemesthat explicitly aim to reduce the classi cation error rate,
such asdiscriminative training criteria.

2.3 Recognition of Speech Using HMMs

In this section the application of HMMs for recognizing speechis outlined. First, the parameter-
ization of speechsignalsasthe input for HMMs is presented. Then the selection of recognition
units and parameter tying is discussed. This is followed by an outline of the usageof language
models and the modeling of pronunciation variants. Finally, the searchand decoding algorithms
are briey described.

2.3.1 Parameterization of Speech

When using HMMs for speechrecognition several assumptions are made about the nature of
the speechsignals, asdescribedin section2.1.1. One assumptionis that speechwaveforms may
be partitioned into seriesof quasi-stationary discrete segments,or frames. The standard front-
end processingschemesare basedon this assumption. The spectral envelope of the signalsis
extracted for each frame, which contains most of the useful information of speech[18]. Two
types of speechparameterization are widely used in current speechrecognition systems,Mel-
frequencycepstralcoef cients (MFCC) [17] and perceptuallinear prediction (PLP) [55]. In both
casesthe frame length is xed by a prede ned widowing function, for example, at 10 ms. For
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eachframe an acoustic observation vector is produced using cepstral analysis for a segment of
speech. The span of the widowing function is often setas 25ms. The widowing functions may
be over-lapping over adjacent frames.

S( n) speech signal wavefori
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Figure 2.2 Extraction of acousticfeaturesusing overlapping widowing functions

Figure 2.3.1 illustrates the extraction of acousticfeatures using over-lapping widowing func-
tions. The rst stageis to apply a windowing function, such as Hamming or Hanning win-
dow [18]. Both aim at smooth the over-lapping regions of speechsignalsthat belong to different
frames, so that the boundary effects may be reduced. For each frame a short term analysis of
the speechsignalsis performed using a Fourier transform to obtain the frequency domain power
spectrum. The linear frequency scaleis then warped. For MFCC front-ends a Mel-frequency
scaleis used. This is given by

fhz
f = 1125l 1+ = 2.21
mel 509 625 ( )

where f e denotes the warped frequency on the Mel scale. The power spectrum is down-
sampled using a bank of triangular lters, for instance 24. The log amplitudes of the down-
sampled spectrum are then transformed using a discretecosinetransform (DCT) to reduce the
spatial correlation between lter bank amplitudes. The DCT transform is given by

r __
i(b 05)

5 (2.22)

2
0y = = log(x s)cos
b=1
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where x ., is the amplitude of Iter bank b at time instance , and B is the total number of Mel
scale lters. The cepstral coef cients used are often the lower 12. A 13 dimensional acoustic
feature vector is constructed by further including either the zeroth order cepstra or the nor-
malized log energy Higher order cepstrasrepresent the high frequency range variation in the
spectrum and little information about speech,and hence may be removed. For PLPfront-ends,

the following Bark-frequencyscaleis usedto warp the spectrum.

8 9
< 2 Mo =

f frz
fpak = log. hz + 2

600 500: (2.23)

where f ok denotesthe warped frequency on the Bark scale. Critical band lters are then used
for spectrum down-sampling. Equal-loudness,pre-emphasisand intensity-loudness power law
are then applied. Finally linear prediction (LP) analysisis performed and the LP coef cients are
transformed to the cepstral domain. In common with MFCCfeatures, the order of LP analysisis
often setas12.

The observation independence assumption of HMMs ignores the temporal correlation of
speechsignals. Acoustic feature vectors are assumedindependently against one another. Hence
it is desirable to incorporate more information of the correlation between frames. One widely
adopted approachis to include dynamic coef cients into the feature vector [27]. The rst order
dynamic coef cients, 0 , or the delta coef cients are calculated by

Ppb
g=1 (0 +d O q)

o = P 2.24
AR (2.24)

where 2D, + 1is the size of the regressionwidow. The secondorder dynamic coef cients, 20
or the delta-delta features, are calculated in the samefashion asequation 2.24, by replacing the
static parameterswith the deltas features. Appending both the delta and delta-delta coef cients
to the standard feature constructs a 39 dimensional acoustic vector. If D, is setto 2, then the
regressionwidow size for the delta-delta coef cients will span acrossa total of 9 consecutive
frames.

Using dynamic coef cients, the observation independence assumption of HMMs may be
compensatedfor to some degree without changing the model structure. However, the use of
over-lapping widowing functions may introduce correlation between frames of speechsamples.
Hence some correlation may be introduced to the feature spacewhen using dynamic features
computed in equation 2.24. In this case, using diagonal Gaussiancovariancesmay be a poor
choice.

2.3.2 Recognition Units and Tying

For speechrecognition tasksusing a very small vocabulary; it is possibleto use HMMs to model
individual words. However, when the vocabulary size is increased, it is dif cult to obtain suf -
cient data to robustly estimate HMM parameters for each word in the dictionary. In addition,
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the appropriate HMM topology needsto be determined for eachword. The standard approach
to solvethis problem is to split words into smaller sub-word units, phoneg[57]. A phone may be
a linguistic unit, such asa phonemeor syllable Phonemesare the smallest atomic sub-units of
speech.They are elementary sound units and representthe smallestdistinct elementsof speech.
Syllablesare the intermediate units between phonemesand words. Models basedon phonemes
are more commonly used than syllable models and often referred to as phone models. The
selection of the phone set may depend on the amount of training data available. A phone set
may not contain every single phoneme in the language being considered, and in practice often
includes silence and short pause. A dictionary, or lexicon, contains the mapping from words to
sub-word units. It is usedto obtain the corresponding sequencesof sub-word units given a word
sequence.For continuous speechrecognition all sub-word level HMMs are concatenatedto form
a composite model to representwords and sentences.

Conventional triphones
f-ih+

i

State clustered single Gaussian triphones

t-ih+n t-ih+ng f-in+l d-ih+l

AN JANE VAN AN

VANERVAN

Figure 2.3 Stateleveltying for single Gaussiantriphone HMMs

When HMMs are used to model the basic phone set, without taking phonetic contexts into
account, they are normally referred to as context independentor monophonemodels. Due to
the co-articulatory effect, the acoustic realization of the same phone can vary substantially de-
pending on the surrounding phonetic contexts. To model these variations, context dependent
phonesare often used. One commonly usedtype of context dependent phone is triphone, which
considers both the preceding and following phones. It is possible to build up larger contexts
using more phoneson either side of the current phone, for instance, quinphone units [51], but
only triphones are consideredin this work. Triphones may be further split into two categories
depending on the spanning of the phonetic contexts. Crossword triphones span acrossword
boundaries, while word internal triphones do not. For word internal triphone systems,biphones
are used to model the start and end phonesat the word boundaries. For systemsusing context
dependent phone models, given limited training data, parameter tying may be usedto robustly
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estimate the model parameters[132, 133]. The tying of parameterscan be exible. It may be
performed on different levels, such as phones, statesor Gaussiancomponents[53]. One com-
monly used approach for LVCSR systemsis to perform state level parameter tying, such that
certain stateswill sharethe sameoutput distribution [125, 51]. Figure 2.3 showsan example of
state level tying for four triphone HMMs with the samecenter phone /ih/ . A triphone with the
central phone /ih/ , the left context /t/ , and right context /n/ is written as/t-ih+n/ . After the
tying there are a total of 6 distinct state distributions sharedamong 12 states.
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Figure 2.4 Clusteringof central statesfor triphoneswith centerphone/aw/

In order to perform state tying appropriate clustering schemesare required. One standard
approachis to usea phonetic decisiontree [ 132, 133]. A phonetic decisiontree is a binary tree
with a setof "yes” or "no” questionsat eachnode related to the context surrounding eachmodel.
Figure 2.4 shows an example section of a phonetic decision tree for triphone models with the
center phone /aw/ . The clustering proceedsin a top-down fashion, with all states clustered
together at the root node of the tree. The state clusters are then split basedon the questionsin
the tree. The questionsused are chosento locally maximize the likelihood of the training data
whilst ensuring that each clustered state also has a minimum amount of data observed. This
ensuresthat rarely seenor unseen contexts may be robustly handled. In the nal stage, tree
nodesare merged if the likelihood lossis beneath a given threshold, until no such nodescan be
found.

One disadvantage of decision tree based clustering is that the cluster splits are only local
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maximization, and not all questionsthat could split the state clusters are considered. Another
issuewith this method is that the complexity of the nal tied HMM systemis only manually con-
trolled. Two thresholdsrequire manual tuning: the minimum amount of training data associated
with each tree node during splitting clusters, and the minimum likelihood loss when merging
tree nodes. The setting of these two thresholds is often heuristic and largely on an empirical
basis. Hencethe optimal cut for the decision tree can not be automatically determined.

2.3.3 Pronunciation Modeling

In HMM basedspeechrecognition systemsthe mapping between words and phonesis provided
by the lexicon, or dictionary. Characteristicsof speechmay vary substantially depending on the
linguistic “environments”. For example, differencesin accentsmay lead to different phonemere-
alizations of the sameword. Spontaneousspeechmay also introduce variability in the speaking
style. Hence appropriate modeling of pronunciation variability is an important part of current
speechrecognition systems. The commonly used approach to model such variability is to in-
clude multiple pronunciation variants for eachword in the dictionary. For instance, the English
word “the” may have two pronunciation variants to choose, depending on the rst phone of
the following word. Thesevariants are often generated automatically using a rule basedsystem
and then corrected manually [37]. The use of multiple pronunciation variants may increasethe
confusion between words, becausethe distance in pronunciation between words may become
smaller. Thusthe bene t from adding new variants hasto be balancedwith added confusability.
One approach to solve this problem is to assigna probability to eachvariant. For most state-of
the-art LVCSRsystemsprobabilities for pronunciation variants are estimated from the alignment
of the training data [51, 126].

As discussedin section 2.3.2, state-of-the-art speechrecognition systemsmake use of con-
text dependent phones and parameter tying techniques. Note that a variety of tying schemes
for HMM parameters may also be viewed asimplicit ways to model the pronunciation variabil-
ity [52]. Thesetechniques include the phonetic decision tree based state clustering discussed
in section 2.3.2, the use of tied-mixture models [8] and soft tying of statesby sharing Gaussian
components [103]. A more general form of stochastictying of HMM parameters, the hidden
model sequenceHMMs proposed in [53], may also be viewed as an implicit modeling of pro-
nunciation variation. For this reasonthere is no exactboundary between acoustic modeling and
pronunciation modeling. However implicit pronunciation modeling using parameter tying are
not consideredin this thesis. Standard multiple pronunciation dictionaries with variant proba-
bilities are usedin the experiments.

2.3.4 Language Modeling

As discussedin section 1.1, the prior probability of a word sequencein a speechrecognizer,
P (W), is given by a language model. Using the chain rule, the probability of a sequenceof L
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individual words given its history.
* .
PW) = PWijwi 1;wW) 2;:wy) (2.25)
I=1
For LVCSR systemsthe vocabulary size is too big to allow a robust estimate of P (W) for every
possibleword sequence.Thus it is hecessaryto reduce the parameter spaceto obtain a reason-
able coverageand reliable probability estimation. This can be achieved by clustering the set of

of equivalenceclasseshasbeende ned, the probability of a word sequenceW in equation 2.25,
may be written as
% .
PW) = P(wijh(w 1;w o we)) (2.26)
I=1
N-gram language models are one standard approach to cluster histories into equivalence
classes.For N-gram language models, word histories may be de ned by how many words they
are truncated before the current word. For example in caseof a tri-gram language model equiv-
alence classesare constrained asthe set of all possibleword pairs.

h(w 13wy 25 wa) (W 1w 2) (2.27)
Using this approximation, it is straightforward to obtain ML estimates for tri-gram language

models. Theseare are given by

. N(W;w ;W 2)
P(wjw, 1;w = P 2.28
(Wijw 1;w 2) ONWW LW 2) (2.28)

where N (w;;w; 1;wW, ») denotesthe frequency counts of the word triplet observedin the train-
ing data. In order to robustly estimate these probabilities, suf cient coverageof possible word
triplets in the training data is required. For a vocabulary of V words the number of possible
tri-grams is V 3. Complete coveragefor all tri-grams in the observeddata is infeasible.

To obtain robust estimates of N-gram probabilities, smoothing approachesare commonly
used. One category of techniques smooth the N-gram probability estimatesby allocating a cer-
tain amount of the overall probability massto those unseenevents. Thesemethods are referred
to as discounting schemes. The portion of probability mass re-distributed is controlled by a
discounting factor. Popular discounting techniques include Good-Turing discounting [46, 63],
Witten-Bell discounting [ 123] and absolutediscounting [ 83]. Another type of techniquesis back-
off. Instead of allocating a certain amount of probability massto all possiblehistories, including
those that are highly unlikely, back-off makes use of distributions with shorter histories and
thus can be estimated more robustly. Thesedistributions are called back-off distributions. The
probabilities for unseenand rare events are taken from the back-off distributions after proper
normalization. In practice a hierarchical back-off may be used. For example, a hierarchy might
back-off 4-gram distributions to tri-gram, bi-gram and ultimately uni-gram distributions. A third
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category of smoothing techniquesis deleted interpolation. For instance, uni-gram, bi-gram and
tri-gram distributions are interpolated using weights. Theseweights may be tuned on held-out
data.

2.3.5 Decoding Algorithms

In a speechrecognition system, decodingor searchrefers to the processof nding the most

probable word sequence,W, given an observation sequence,O. This can be expressedas
n o]
argmax P(WjO; )
W o o}
argmax p(Ojw; )P(W) : (2.29)
w

w

The word sequencewith the highest posterior probability given the observation sequenceand
model parameters is selected. As discussedin section 1.1, a speechrecognition system may
be split into three components: the acoustic model basedon HMMs, the pronunciation model
and the language model. A word sequencemay have more than one phone representations
associatedwith it, due to the presenceof multiple pronunciation variants. Meanwhile a sequence
of HMM phone models may correspondto more than one possiblehidden state sequencesHence
equation 2.29 may be expanded asa hierarchical marginalization over all possible sequencesof
HMM modelsf g given a sequenceof words, and then all possible sequencesof hidden states
f ggiven a sequenceof HMMs.

8 9
< =

W = arng?x. P(W)X P( jW)X p(O; j ;W; ). (2.30)

Here the prior probability of a word sequence,P (W), is given by the language model. The
conditional probability of a HMM model sequencegiven a string of words, P( jW), is provided
by the pronunciation model, and the joint conditional probability of an observation sequence
and a state sequence,p(O; j ;W; ), is determined by the acoustic model.

Direct evaluation of equation 2.30 is very expensiveand rapidly becomesimpractical asthe
sentencelength increases. To overcome this problem, the summation over all HMMs and state
sequencesmay be approximated by a maximum.

)
W = argmax P(W)maxP( jW)maxp(O; | ;W; ) (2.31)
w

The selection of the most likely word sequenceis basedon the ML state sequence.

Finding the ML state sequencefor an HMM using equation 2.31 is realized via the Viterbi
algorithm [57]. Let ;( ) denote the maximum likelihood of the partial observation sequence,
foyq;:ii 0 g, staying in statej at time instance . j( ) may be computed using the following
recursion

i()
Ns(T)

miaxf i(  1ajgg(o)
maxt i( Dan.g (2.32)
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where Ng denotesthe number of statesin an HMM and

1) = 1
i(1) = ah(o1) (2.33)

for any statel1< j < Nq.

An implementation of the Viterbi algorithm for continuous speechrecognition is the token
passingalgorithm [131]. Eachstate hasone or more tokens associatedwith eachtime instance.
The token contains a word-end link and the value of the partial likelihood ( ). Thesetokens
are updated for eachtime instance and the most likely token at the end of eachHMM model is
propagated onto all connecting models. At the end of the utterance, the token with the highest
log probability can be traced back to give the most likely sequenceof words. The number of
connecting modelswill be considerablyincreasedif phone modelswith long crossword contexts
are used. Using a language model can also expand the size of the decoding network. This is
becausetokens can only be merged if the word histories are identical. If an N-gram language
model is used, the word probabilities may depend on previous word histories and there must
be a separatepath through the network for eachdistinct word history. The searchcost may be
reduced by pruning, or removing the tokens which fall below a given threshold. The threshold,
or beam-width is set as a certain likelihood loss below the current most likely path. All active
tokens with a likelihood below that level will be deleted. Pruning may also be performed at
the end of words when the language model is applied with a more punitive threshold. If the
pruning beam-width is too tight, the most likely path could be pruned before the token reaches
the end of the utterance. This will result in a searcherror. The choice of pruning beam-width
is a trade off between avoiding searcherrors and reducing the computational cost. The ef cient
implementation of large vocabulary decodersis in active research.

One problem with the use of language and pronunciation models is that there is a consider-
able mismatch between the dynamic ranges of those two models and the acoustic model. This
is partly becausethe probabilities from the acoustic model can often be very small due to the
assumptionsof HMMs as describedin section 2.1.1. To handle this problem, the language and
pronunciation model probabilities are scaled. The scaling factor may be empirically set and
xed for a particular task. Another related issueis the use of word insertion penalties. They
penalize a higher number of words in a sentence. This is desirable as a signi cant proportion
of recognition errors stem from the insertion of short words. These short words tend to have
higher acoustic likelihood and frequencies of occurrencein the text copora used for language
model training. Similar to the language model and pronunciation probability scaling, insertion
penalties can be manually tuned to improve the balance of word insertions versusdeletions on
speci ¢ tasks. Now equation 2.31 may be modi ed as

)
W = argmax logP(W)+ maxlogp( jW) + maxlogp(O; j ;W; )+ L (2.34)
w

where and arethe language model and pronunciation probability scalingfactors, the word
insertion penalty, and L is the length of word sequenceW.
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2.4 Linear Projection Schemes

For any pattern recognition task it is important to derive a good, compact, feature representa-
tion. The feature set should contain suf cient discriminant information to distinguish between
classes.Features consisting of non-discriminating information should be removed. As discussed
in section 2.3.1, current speechrecognition systemsoften use 39 dimensional MFCC or PLP
cepstral features including dynamic parameters. Although they have been widely adopted in
current speechrecognition systems,it is still unclear whether such a feature representation is
the best choice. First, the use of dynamic features, computed using equation 2.24, further in-
troduces correlation between static and dynamic coef cients in the acoustic space. Second,the
correlation betweenlow, and high order cepstral coef cients is not completely removed after the
DCT transform is applied [ 77]. Henceit is preferable to appropriately model this correlation.

Various techniquesfor this purpose have been proposed over the years. They can be roughly
classi ed into two main categories: covariance modeling and linear projection schemes.In co-
variancemodeling or precisionmatrix modeling various tying of covariance parametersare used
to allow Gaussiancomponentsto effectively have full covariance matrices without dramatically
increasethe model complexity [31, 45, 99, 98, 108]. In linear projection schemes,the original
acoustic spaceis projected into one or more un-correlated subspaces. Within each subspace,
diagonal Gaussiancovariancesmay still be used. In this section several forms of linear sub-
spaceprojection schemesare brie y reviewed. They are discussedwithin the linear discriminant
analysis (LDA) framework.

2.4.1 Linear Discriminant Analysis

Linear discriminant analysis (LDA) is a standard dimensionality reduction scheme[ 26, 121]. A
p nlinear transform A, projects the original n dimensional feature spaceto a lower dimen-
sional, uncorrelated subspace.The projected feature vector, o py, is given by

Op = A[p]O (2.35)

The matrix transform A, is estimated by maximizing the ratios of the projected between class
covariance, B, and the averagewithin classcovariance
8 N 9
Apjaa = argmax, — . (2.36)
Ap - diag A o A

Both the between class,B , and within classcovariance, , are constrained to be diagonal in
the projected subspace.For HMM basedspeechrecognition systems,the de nition of a “class”
may correspond either to individual states or Gaussiancomponents. In this work, Gaussian
components are considered as classes. The between class covariance, B, is then computed
as the average distance between the global and component speci c means. The within class
covariance, ,is computed asthe averageof component speci c full covariances.
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It can be shown that a closedform solution for the LDA transform is the Eigen vectors asso-
ciated with top p Eigenvaluesof B [26, 121]. A maximum likelihood basedestimation of
LDA was proposedin [10]. The ML estimation of LDA requires optimizing an n squarelinear
transform A. Using this transform, the complete acoustic spaceis partitioned into two parts:
a useful subspaceassociatedwith A, and a nuisance subspaceassociatedwith A, ;, where

Gaussianmeansand diagonal covariancesare globally tied. This is given by

" #
A
A = [Pl (2.37)

Amn p

and the transformed acoustic vector in the complete feature space,o0 , may be expressedasthe
following

" #
A0
0 [P} (2.38)
A p0
The ML estimation of the LDA transform, A, requires maximizing
8 9
< X =
Rga = arg max im( ) logjAj® log (2.39)

jim;

where jm( ) is the Gaussianposterior occupancygiven in equation 2.18, and s the trans-
formed average within class covariance in the complete feature spaceof A. For LDA, is
constrained to be diagonal.

Gaussianlikelihood calculation is ef cient for LDA in the projected subspaceof A ;, asthe
Jacobian of the global transform may be ignored. However LDA suffers from a strong assump-
tion that the within classcovariancesfor all components are restricted to be the same. This
assumption may be too strong for LVCSR systemswhich contain thousands of Gaussiancompo-
nents.

2.4.2 Heteroscedastic LDA

The uniform within class covariance assumption of standard LDA is strong. It may be a poor
assumptionfor speechrecognition systemscontaining a large number of Gaussianmixture com-
ponents. To overcome this problem, two forms of heteroscedasticextensionsto standard LDA
have beenproposedin recent years.

The rst is an intuitive extension of the LDA objective function given in equation 2.36, al-
lowing the within class covariancesto vary across Gaussiancomponents. This is referred to
as the heteroscedasticdiscriminant analysis (HDA) [102]. The HDA projection is estimated by
optimizing the following objective function

8 0 . 1
Aphda = argmax im( ) log@— . N A
b1 g, diag A MAR

Il ©

(2.40)
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Compared with the LDA objective function in equation 2.36, the average within class covari-
ance, , is replaced by Gaussiancomponent specic covariances, (™). Hence the uniform
within classcovariance assumptionis removed. Unfortunately, HDA does not have a maximum
likelihood interpretation like LDA. This is becausethe Jacobiannormalization term for the HDA
projection, Ay , can not be computed for likelihood calculation. Hencethere is no simple EM
based optimization schemefor HDA. Numerical methods must be used to estimate the trans-
form parameters. This can be very expensivedue to the iterative computation of the objective
function and its gradient [ 73].

LDA Projection
HLDA Projection

Class a

D Class B

/\Misclassificatio

Nuisance Dimension

7

L)

Figure 2.5 HLDA and LDA projection

Another form of heteroscedasticextension to standard LDA is the heteroscedasticlinear dis-
criminant analysis (HLDA) [66]. This method is widely used in LVCSR systemstraining [51,
64, 23, 127]. In contrast to HDA, HLDA has an ML interpretation and an ef cient EM based
optimization schemeis available [31]. Aswith the ML interpretation of LDA in section 2.4.1,
HLDA may be viewed asa square,n n, linear transform. The complete acoustic spaceis also
partitioned into two parts. The difference from LDA is that in the useful subspacemeansand di-
agonal covariancesare Gaussiancomponentspeci c. In gure 2.5 an example of HLDA is shown.
Under the uniform within classvariance assumption, the standard LDA choosesa projection in
which the between classconfusion is considerably stronger than HLDA.

The HLDA transform parameters are estimated by maximizing the following objective func-

tion
8 9
< X ) =
Anga = argmax.  jm() logjAj® log U™ (2.41)
A R, i)
jim;
where U™ is the transformed component covariancesin the complete feature spaceof A . For

HLDA, again Um) is constrained to be diagonal. HLDA is closely related to semi-tied covari-
ances(STC) [31]. The two are equivalent to one another when the STC transform is globally
shared and all feature dimensions are retained by HLDA. An ef cient iterative optimization
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schemeproposedfor STCmay also be used maximize the objective function for HLDA [ 31, 34].
For both LDA and HLDA, the number of useful dimensionsretained signi cantly affectsthe over-
all complexity of the underlying HMM system. This is an important issuethat must be resolved
using appropriate complexity control techniques.

2.4.3 Multiple Subspace Projection Schemes

For complex patterns, such ashuman speech,multiple setsof feature representation may be re-
quired to incorporate more classspeci ¢ information. The acousticrealization of speechsignals
may be better modeled in different subspacesdepending on whether, for instance, a vowel or
constant is generated. This is particularly important for state-ofthe-art LVCSR systems. Con-
text dependent phone models and a large number of Gaussiancomponents are typically used
in these systems,as discussedin section 2.3.2. Therefore a local projection of the speechsig-
nals may yield performance gains over a global one. For multiple linear projection schemes,it
is important that the likelihood calculation in different subspacesbe directly comparable. The
Jacobian terms associatedwith each projection must be computed for this purpose. Unfortu-
nately, HDA doesnot have an ML interpretation becausea non-squarelinear projection is used,
as discussedin section 2.4.2. Hence HDA can not be extended to have multiple projections.
In contrast, an ML interpretation is available for both LDA and HLDA. Since a square linear
transform is used, the likelihood calculation may be performed in the complete feature space.
Both standard LDA and HLDA may be extended to have multiple projections that are shared
locally [34] and are referred to as multiple HLDA and multiple LDA.

Nuisance Dimension

HLDA projection

Class A Class D

HLDA projection .

q’ Class B

v,
A

Nuisance Dimension 1

Figure 2.6 multiple HLDA projections
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Multiple HLDA is a simple extension to standard HLDA. It allows multiple useful and nui-
sancesubspacesto be locally sharedin the system. Let A(") denote the rth HLDA projection,

and the transformed feature vector, o(r), is given by
0,
0 Ap)
o] = (E) : (2.42)
A o]
n pl
An example of multiple HLDA is shown in gure 2.6. In the gure there are two HLDA
projections. Model parametersin both the useful and nuisance subspacesare locally shared.
The presenceof multiple nuisance subspacesneansthat likelihood calculation for the nuisance
dimensions can not be discardedasin standard LDA or HLDA.
The estimation of multiple HLDA transforms requires maximizing the following objective

function
8 9
< X . =

n  _ 2 (jm)
Amha = argmax. im( ) log A®) " log (2.43)
A imor

where j;m 2 r denotesthat component m of statej is assignedto projection r. Asthe Jaco-
bian normalization terms are different acrossprojections, they can no longer be ignored during

likelihood calculation. For component m of statej, this is given by
pOj =Sm ) = AON Alg; Gm; UM (2.44)

where (M js transformed Gaussianmeansin the complete feature spaceof A ("). The number
of Gaussianparametersin an multiple HLDA systemmay be computed as r(n2+ 2N pr + 2(n
pr)), where N, denotesthe number of Gaussiansassignedto projection r, and p; the number of
useful dimensionsfor projection r.

The same EM basediterative optimization schemefor standard HLDA may also be used to
estimate multiple HLDA transforms on a projection by projection basis. Multiple HLDA also has
a structural exibility asthe useful subspacedimensionality may be varied locally acrossprojec-
tions. Again the number of useful dimensionsfor eachprojection signi cantly affectsthe overall
system complexity. This important issue must be resolved by a appropriate model complexity
control scheme. In addition, it may be argued that multiple HLDA is not a “true” projection
schemeasthe nuisance subspaceparametersare still neededfor likelihood calculation.

In contrast, multiple LDA is a “true” multiple projection scheme.lIts difference from multiple
HLDA is that there is only one globally tied nuisance subspace,despite multiple projections are
used. For multiple LDA, the transformed feature vector, o"), of the r the projection is given by

#
o = Al (2.45)
Aln p©
where model parametersin the single nuisancesubspace A, , are globally tied.

An example of multiple LDA is shownin gure 2.7. In the gure there are two LDA projec-

tion. Only one global nuisance subspaceis available and is shared between the two projections.
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Figure 2.7 multiple LDA projections

For multiple LDA systems,the likelihood calculation in the nuisance subspacemay be ignored,
asit remains constant for all Gaussiancomponents.

Unfortunately, there no ef cient optimization schemefor multiple LDA due to the fact that
model parametersare globally tied in the nuisance subspace.Numerical methods may be used
to optimize the projections. Furthermore, multiple LDA doesnot have the exibility of multiple
HLDA in locally varying the useful subspacedimensionality. It was reported that multiple LDA
was outperformed by both multiple HLDA and STCusing ML training on an LVCSRtask [ 34].

One important issue when using multiple projections is the appropriate tying of transform
parameters. They may be loosely tied on state level asin [31, 34] or on HMM model level
using phonetic expert knowledge. Alternatively, data driven methods may be used to cluster
Gaussiansinto groups for each projection, based on distance measuring of Gaussiancompo-
nents in the acoustic space. By using this assignment schemesigni cant WER reduction over
a single projection was reported on an LVCSRtask in [ 70]. This distance measuring based as-
signment schemewas originally proposed for linear transformation based speaker adaptation
techniques[68, 30] and is further discussedin the next section.

2.5 Speaker Adaptation

Characteristicsof speechsignals vary substantially depending on the speakerand acoustic envi-
ronment. Models trained on speakerspeci ¢ data outperform thosetrained on speakerindepen-
dent data. Speakerindependent (SI) systemsmay be adapted to the characteristics of a target
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speakeror environment. This approach is referred to as speakeradaptation and is widely used
in state-ofthe-art LVCSR systems[ 125, 51].

Oneapproachfor building speakerdependent(SD) modelsis maximum a posteriori (MAP) [ 36].
This technique allows prior knowledge about HMM parametersto be incorporated into parame-
ter estimation. SI model parameters, for example, may be used asthe parameter priors. Model
parametersare gradually updated using speakerdependentdata toward the target speaker MAP
training may be viewed as a parameter smoothing schemewhere the parameter posterior is a
combination of the prior and the ML estimates. In caseof insuf cient data the posterior dis-
tribution is close to the prior. The MAP estimatestend to the ML estimates as the amount of
training data is increased. One limitation with MAP training is that a large quantity of speaker
or environment speci ¢ data is required to adapt all the parametersin the system.

Maximum likelihood linear regression(MLLR) is another model basedadaptation scheme[ 68,
30]. The speakerspeci ¢ information is representedby one or more linear transformations that
are applied to the model parameters. The advantage of this method over MAP is that rapid
adaptation may be performed using a small amount of speakerspeci ¢ enrollment data. For
instance, the adapted Gaussianmean, (™), of component m and state j, may be expressedas

(im) = W im) Gm) (2.46)

where W (im) is an  (n + 1) linear transform assignedto component m of state j, and

(im) = (Gm)> 17 js the extended mean vector. The transform parameters are optimized
using the EM algorithm with adaptation data from the target speaker The ith row of the ex-
tended transform matrix, Wirj ™, can be estimated as[68],

wi(rjm) = gUimid) 1im:i) (2.47)

and the suf cient statistics G"im#) and k("im ) are accumulated on a row by row basis,

- X (im) (jm)>
GlimH = im()—m—
Im2rim; i
o X o, (im
K(rimi) = jm( )W (2.48)
im2rim; i

(im)2
|

j th state. The above estimation formulas are only valid for systemsusing diagonal covariances.

where is the ith dimensional diagonal variance element of the mth component and the
For systemsusing full covariance Gaussiansthe transform estimation requiresinverting an (n?+
n) (n?+ n) matrix and henceis computationally expensive.A detailed derivation of transform
estimation for this casewas proposedin [68].

A globally tied MLLR transform may be applied to all the componentsin the system. To
further improve the performance, the number of MLLR transforms may be increased as long
as enough adaptation data is available. To determine the number of transforms and assign
the componentsto these transform classes,a regressionclasstree is often used[28]. A binary
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regressionclasstree is constructed to cluster Gaussiancomponentsthat are closein the acoustic
space. This clustering method may also be used for the assignmentof Gaussiancomponents for
multiple projections discussedin section 2.4.3. The number of transforms, or equivalently the
tree cut, is determined by a manually tuned threshold of occupancy counts for eachtree node.
The regressiontree is constructed using a top-down procedure. Creation of a children tree node

(1)
7N
() (&

\
’/ \
v _ _
@ (55 (6 (7))
AS -_ / AS -_ 7/ AS -_ 7/
Figure 2.8 Exampleof a binary regressiortree for MLLR speakeradaptation.

is considered if the occupancy count assignedto it is above a pre-de ned threshold. The tree
construction is complete when there is no children tree node to be created. A simple example of
aregressiontree is shown in gure 2.8. The root node correspondsto all the componentsbeing
assignedto a global MLLR transform. In the gure, nodes6 and 7, for instance, do not have
suf cient data, and the transform estimation is backed-offto the statistics of parental node 3. In
contrast, there is suf cient data available for leaf node 4, and a distinct MLLR transform will be
generated. The nal number of transform classesin this exampleis three.

2.6 Adapting Multiple HLDA Systems

As discussedin section 2.5, in order to compensatefor the speakerand environment variation,
standard adaptation techniqueslike MLLR may be used. However, for the systemsusing multiple
linear projection schemes,such as multiple HLDA discussedin section 2.4.3, there is one issue
with using MLLR. This is due to the presenceof multiple feature subspaces.In earlier research
adapting Gaussianparameters within individual subspaces,referred to as normalized domain
MLLR in [29], was found to yield poor recognition performance. To overcome this problem,
the approach adopted in this work is to estimate the MLLR mean transforms in the original
acoustic space. Hence the suf cient statistics for transform estimation, given in equation 2.48,
will be accumulated in the standard feature spaceprior to linear projections. A matrix inverse
operation is required to yield the un-projected component parametersfrom individual subspaces.
For ef ciency when estimating the MLLR transforms, a diagonal approximation to the covariance
in the original feature spaceis also used. The Gaussianmeans and covariancesin the original
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spaceare computed as below.
(im = Alim) 1 (m)
Gm  diag ACim) 1 UMAGm) > (2.49)

After the MLLR transforms are estimated, the adapted component meansin the original space
are then projected backinto individual subspacedor eachprojection. This allows systemsusing
multiple linear projections to be ef ciently adapted.

2.7 Summary

The statistical framework for automatic speechrecognition systemswas outlined in this chapter.
First, hidden Markov models were discussedas acoustic models. The optimization of HMM pa-
rameters was presented using ML training. Then the standard feature extraction schemeswere
briey reviewed for HMM basedspeechrecognition systems. The selection of recognition units
and parameter tying were also discussed. Languagemodeling and pronunciation modeling ap-
proacheswere outlined, along together with the basicsearchalgorithm usedin a state-of-the-art
large vocabulary decoder This wasfollowed by a brief review of linear projection schemesunder
the framework of linear discriminant analysis. Finally, popular speakeradaptation techniques
were brie y described.
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Model ComplexityControl

A standard problem in LVCSRtraining, and machine learning in general, is how to selecta model
structure that generalizeswell to unseendata. Model structures which are too simple lack the
power to fully representthe observeddata. On the other hand, structures that are too complex
do not generalize well and yield poor performance on unseendata. This chapter presentsa sur-
vey of techniquesto control model complexity. First, word error rate (WER) is introduced asa
“golden” complexity control criterion for most ASRtasks. Then existing complexity control tech-
niques are presented. Theseschemesare classi ed into two broad categories: Bayesianlearning
techniques and information theory methods. A survey of previous applications of these tech-
niquesto speechrecognition is also given. Finally, the limitations of likelihood basedcomplexity
control schemesis discussed.

3.1 WER- A Zero Risk Criterion

The aim of model complexity control is to selectthe optimal number of parametersto train to
achieve good generalization to unseendata. For speechrecognition the generalization to the
unseentest data, D, is commonly measuredby the word error rate (WER). Hence, for the ma-
jority of speechrecognition tasksthe aim of model complexity control is to achieve a minimum
WERon the unseendata. A good complexity control technique should predict the correct WER
performance ranking for all systemswith arange of con gurations. Therefore WERis a “golden”
complexity control criterion with zero ranking risk, since the ordering according to WERis the
correct ranking. For speechrecognition the task is to select of an optimal structural con gura-
tion, M, with a minimum WER on unseendata, from a set of candidate models, fMg , given
a T length training data set, O = foj;::;;01 g, and the reference transcription W [122, 121].
However, WERIs dif cult to directly measurefor highly complex state-of-the-art LVCSRsystems.
A wide range of techniques are currently used which alter the system complexity and WER.
Examples of these techniques include the use of mixtures of Gaussiansas state distributions,
dimensionality reduction schemes,decision tree based state tying and linear transform based
speakeradaptation. For current LVCSR systems,explicitly building and evaluating systemswith
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various structural con gurations to accessWER is infeasible. Therefore, automatic complex-
ity control techniques are needed so that individual systemsare not required to be built and
evaluated.

3.2 Likelihood Based Model Complexity Control

Standard complexity control schemesdo not require direct measurementof the WER for each
candidate structure. Instead an inherent model correctnessassumption is made. All candidate
model structures are assumedto be “close” to the correct model for speechsignals. Thusincreas-
ing the likelihood on the unseendata will decreasethe systems'WER. Under this assumption,
likelihood validation test may be used as an alternative to directly accessingWER[122, 121].
When performing likelihood validation test, the optimal model parameters are normally esti-
mated using either the maximum likelihood (ML) or maximum a posteriori (MAP) criterion. Dis-
criminative training criteria, suchasthe maximum mutual information (MMI) criterion [ 3], may
also be used. However, in most statistical inference literature, the “optimal” model parameters
are trained using the ML or MAP criterion. This is the caseconsideredin this chapter. Using the

likelihood held-out data set, D, the model selection is basedon the following:

n (0]
M = argmax p(Dj";W;M)p("jM )P(M) (3.1)

where " denotesthe optimal parameter estimates. Oneissuewith this method is that the training
of individual systemsis still required. State-of-the-art LVCSR systemsare highly complex. Hence
explicitly building all possible systemsfor held-out likelihood test is infeasible. Another issueis
how to appropriately determine the the size of the held-out data set. In the statistical inference
literature, the power of a likelihood validation test is increasedasthe held-out data size grows,
when measuredwith a xed level of statistical signi cance [122]. However, the computational
cost for validation test also increasesasthe amount of held-out data is increased. Using a large
held-out data set will reduce the amount of training data available. Furthermore, it is a non-
trivial problem to evaluate the reliability of the selectedheld-out data.

To overcomethis problem many complexity control techniques make use of only the training
data. It is assumedthat there is a strong correlation between the unseen data likelihood and
the training data marginal likelihood, given a particular model structure. Theseschemesmay be
further classi ed into two major categories. In Bayesianlearning technigues, model parameters
are treated as random variables and integrated out in the parametric space. In information
theory approaches, the complexity control problem is viewed as nding an appropriate code
length [6]. Thesetwo approachesare closely related to each other. Both can be explicitly
expressedas the training data marginal likelihood given a model structure and asymptotically
tend to the Bayesianinformation Criterion (BIC) approximation [ 104]. In the following sections
thesetwo categoriesof complexity control schemesare presented. Someinherent assumptions
made by these schemesand their limitations are also discussed.



3.3 Bayesian Techniques

In Bayesiancomplexity control techniques, it is assumedthat the the training data marginal
likelihood over model parameters is strongly correlated with the unseen data likelihood. A
Bayesianmodel selection is basedon

z

M arg max P(M) p(Oj; W:M)p( jM)d

argng/lafo(M )p(OjW ;M )g (3.2)

where denotesa parameterization of M , and p(OjW ; M ) is referred to asthe Bayesianevidence
in the literature.
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Figure 3.1 Threemodelstructureswith different complexity

In equation 3.2, p( jM ) and P(M ) are the prior distribution of a set of model parameters,
, and the prior distribution of a particular model structure M . For Bayesianevidence, the se-
lection of a good form of the parameter prior distribution, p( jM ), is a subjective process.Often
simplifying assumptionsare made about this distribution, which typically constrain it to be a
conjugate prior distribution for p(Oj; W;M ). Under these assumptionsthe evidence integra-
tion may be more tractable [39, 59, 118]. Commonly used forms are the exponential family,
such as Gaussian,Gamma and Dirichlet distributions. However, due to the lack of knowledge
about the underlying distribution and number of parameters, the parameter prior, p( jM ), is
assumedto be uninformative in this work.

If also assumingthere is no prior information given by P(M ), the optimal model is selected
by evaluating the evidence integral for each candidate structure. The model parameters are
treated asunknown random variablesto be integrated out in the parametric space.By marginal-
izing over the parameters the model complexity may be controlled. Over-simple model struc-
tures are not powerful enough to model the observeddata. On the other hand, over-complex
model structures are penalized for allowing too much freedom in the parametric space. They



are over- tted to the observeddata, which leads to bad generalization performance, despite
modeling the training data well. Thisis shownin gure 3.1. The ve observeddata samplesare
represented using crossesalong the horizontal axis. A Gaussiandistribution, a two component
and a 4 component GMMs are used as examples. The GMM with four component marked as
“too complex” has been over- tted to the data. It has more power in modeling the observed
data, but generalizespoorly. In contrast the single Gaussiandistribution marked as*“ too simple”
has insuf cient power to model the observeddata. The two component GMM marked as “just
right” hasthe optimal complexity among the three. It is capable of modeling a certain range of
interesting observedor unseendata sets. It will give a high Bayesianevidence for that range of
data setsbut little for others. In a word, the simplest model structure that can suf ciently de-
scribe the observeddata should be selected. This property of Bayesianevidenceis often referred
to asOckham'sRazor[122, 41].

Having simpli ed the forms of prior distributions, the evidence must be computed for model
selection. For HMM based speechrecognition systems,it is often computationally intractable
to directly integrate out the marginal likelihood in equation 3.2. Appropriate approximation
schemesare required to practically evaluate the Bayesianevidence. In the following sections
four approximation schemesare discussed. Theseare a rst order expansion using Bayesian
information criterion (BIC), a secondorder Laplace'sapproximation, a lower bound approxima-
tion using EM or variational method and Markov chain Monte Carlo (MCMC) style sampling
schemes.

3.3.1 Bayesian Information Criterion (BIC)

The Bayesianevidence integration in equation 3.2, may be asymptotically approximated via a

Taylor seriesexpansionaround the parameter optimum . When the number of training samples

T becomesin nitely large, this givesthe Bayesianinformation Criterion (BIC) [ 104]. BICis the

most widely used approximation schemefor the evidenceintegral. This criterion can be simply

expressedin terms of a penalized log likelihood evaluated at the ML or MAP estimate of model
N . . . . .

parameters” . The model selectionis basedon the following approximation,

0gP(OMW;M)  Togp(Oj;WiM) % logT (3.3)

where k denotesthe number of free parametersin M and is a penalization coef cient which
may be tuned to speci ¢ tasks[15]. Schwartz originally proved that when = 1, BICis a rst
order asymptotic expansion of the log of the evidence integral in equation 3.2, under certain
regular assumptionsupon the density p(Oj ; W;M ) [104]. In [15] it was suggestedthat the
tuning of may compensatefor the higher order terms unaccounted for in the BIC expansion,
and the temporal correlation of speechsignalsignored by HMMs.

There are two issuesto consider when BIC is used to approximate the Bayesianevidence.
First, BICis only a rst order approximation to the Bayesianevidence. Under the large number
assumption, higher order terms from the Taylor seriesexpansion are ignored. However, when



the amount of training data is “small” the BIC approximation to the Bayesianevidencebecomes
increasingly poor. In this casethe higher order terms that have been ignored may actually
contain important information about model complexity. Hence it would be preferable to have
an approximation schemethat can incorporate more information from the higher order terms.
The second issue with this method is that the complexity penalization term in equation 3.3,

%IogT, does not account for the difference in terms of the form of model parameters. k
representsonly the total number of free parameters, regardlessof their individual nature. In
recent researchthis was found to be a limitation of the BIC metric when optimizing multiple
complexity attributes of different forms [71]. This limitation was investigated on an LVCSR
taskin [71], in which both the number of Gaussiancomponents per state and number of useful
dimensions of an HLDA systemwere optimized. The BIC metric failed to selectthe appropriate
model complexity.

3.3.2 Akaike Information Criterion (AIC)

Another approximation scheme,which is closely related to BIC, is the Akaike Information Crite-
rion (AIC) [1]. AICwas originally developedfrom researchwork on hypothesisand signi cance
test. Akaike also gave a Bayesianinterpretation to AIC using a likelihood ratio test [1]. The
criterion itself is a simple trade-off between the tness to the observeddata, and the number
of free parametersin the system. The tness to the observeddata is again expressedin terms
of log-likelihood, evaluated at the optimal parameter estimates. Model selection using the AIC
criterion is basedon the following:

n 0
M = argmax logp(Oj® W;M) k : (3.4)

For AIC the complexity penalization term is only associatedwith the total number of free
parameters,k. Comparedwith BIC, AlICis a simpler complexity control criterion. No information
about the sizeof the training data, T, is accountedfor in the AIC penalization term, k. In contrast
to the complexity term of BIC in equation 3.3, ¥ log T, AIC lacks of power in penalizing over-
complex systemswhen the amount of training data is increased. Thus, for larger data setsAIC
may favor more complex systemsthan BIC.

3.3.3 Laplace Approximation

To incorporate more information from the higher terms ignored in BIC, a secondorder Taylor
series expansion for the Bayesianevidence may be used. This leads to the Laplace'sapproxi-
mation [122, 78]. The basicidea is to make a local Gaussianapproximation of the likelihood
curvature in the parametric space. The Gaussianmean is set to the optimum of the model
parameters. These parameters are normally estimated using either ML or MAP criterion. The
covariancematrix is setto the Hessianevaluated at the optimum of model parameters. The Hes-
sianis alsoreferred to asthe Fisherinformation matrix in the statistical inference literature. The



volume under that Gaussianis computed as an approximation to the evidence. The Bayesian
evidencein equation 3.2 is then approximated asthe following:

logp(OjW ;M) logp(0j” W;M) %Iog r 2=Alogp(0j; W;M) + g|092 (3.5)

Using this approximation, difference among forms of model parameters can be accounted for
in the Hessian, r 2=A logp(Oj ; W;M ), of equation 3.5. A general example of the Laplace's
approximation is shownin gure 3.2. Asimple caseisillustrated in the gure where the variable
x only hasone single dimension. A Gaussiandistribution is tted to an arbitary function curve,
f (x). The Gaussianmean is at the optimal estimate, ®, estimated using either ML or MAP
criterion. Its variance is the secondorder derivative with respectto x, r )%:k logf (x), which is
also computed at the parameter optimum R.

A

f(x)

,r 2_,logf (x) 2

Figure 3.2 LaplaceApproximation

For many practical situations it is infeasible to compute and store the Hessianasa full matrix
when the number of parametersin the system,k, is far too large. In current LVCSR systemsthe
number of model parameters can be in the millions. Asthe Hessiancontain O(k?) parameters,
storing it as a complete matrix rapidly becomesinfeasible as k increases. Therefore, for these
systemsa memory ef cient approximation is required. One practical solution is to use a block
diagonal approximation. It is assumedthat model parametersbelonging to different parts of the
system, such as individual Gaussiancomponents, are independent of one other. This may be
expressedin equation 3.6,

2 3
- 0
r2_.logp(Oj; W;M) = g r2,,_~g 10gp(0j; W;M ) z (3.6)
0 :

where () denotes the parameters of some Gaussiancomponent j . This is the approach
adopted in this work and is addressedwith more detail in later chapters. It should also be noted

1Gaussiancomponents are treated as “hidden states” of HMMs in this work. For clarity in the rest of the thesis,



that under a large number assumption, when the number of training data samplesT is in nitely
large, Laplace'sapproximation tends to the sameasymptotic expansionasBIC.

3.3.4 EM Method

One issuewith both of the previous two approximation schemesis that the log-likelihood and
optimal parametersfor eachmodel structure are required. For LVCSRtasksexplicitly building all
possible systemsto obtain the log-likelihood is infeasible. One method to addressthis problem
is to derive an appropriate lower bound for the ML criterion. Such a lower bound should be
in a tractable form and marginalized over for complexity control, assumingit yields the same
ranking as using the log-likelihood. Let ~ denote the current parameterization for M andf ¢
the setof hidden state sequencesllowed by the referencetranscription W. Using an expectation
maximization (EM) approach[19], asdescribedin section 2.2.1, a lower bound to the training
data log-likelihood may be expressedas

logp(Oj ; W;M ) logp(OjT WM )+ Qmi(; 7)) Qm(™7)
= Lm(; 7) (3.7)

where the standard EM auxiliary function for HMMs is given by

X
Qm(; ) = i( )logp(o j = Sj;; M): (3.8)
i
= §j indicates that an acousticfeature vector o was generatedby statej at time instance ,
and the hidden state posterior

i() = P( =SjO;W;"M): (3.9)

To compute the above auxiliary function, the rst and secondorder moments,
X X
i()o

X X
i()oo”

P( SjO;W; ™M )o

P( SjjO;W; ;M )o 07; (3.10)

are also required. Comparedwith the training data log-likelihood, the dependencyupon latent
variable sequenceshas been removed in L y(; 7). Thus the above lower bound has a more
tractable form.

For LVCSRtraining the majority of the time is spent accumulating suf cient statisticsto es-
timate the model parameters. Thus, accumulating these statistics for all possible systemsis
infeasible. To handle this problem, a range of model structures may be required to use infor-
mation derived from the same set of statistics generated using a single system. For example
when determining the number of components, statistics for systemswith fewer componentsper

the notation j is usedto denote a component. However, this should not be confusedwith those notations used earlier
in chapter 2.



state may be derived by merging statistics de ned in equations 3.9 and 3.10 together from a
more complex system. For example, when merging Gaussiancomponents| and k to form a new
component j, the statistics given in equation 3.9 may be mergedas j( )= ( )+ «( ). This
allows the lower bound in equation 3.7 to be ef ciently computed. In fact this approachis also
usedin decision tree basedstate clustering, as discussedin section 2.3.2. When tree nodes are
merged, the same statistics merging is performed among stateswith a single Gaussian. This ef-
cient component merging processwill be discussedin more details in chapter 5. The following

lower bound for the evidence may then be usedfor model selection:
Z

logp(OjW ;M) log exp Lm(; ™) p( jM)d: (3.11)

Though the right hand side of inequality 3.11 may have a closed form solution, in many sit-
uations it is still impossible to compute. To further reduce the computational cost, the right
hand side of the inequality in equation 3.11 may be ef ciently approximated using numerical
approximation schemes,such as Laplace'sapproximation.

One important feature of the lower bound marginalization in equation 3.11 is that it may
be related to the integration of the ML auxiliary function in equation 3.8. The only term in
the lower bound which is dependent on the model parameters, , is the auxiliary function
Qmi(; 7). When multiple model structures use the same set of statistics, f j( )g, the rank
ordering derived from the marginalization of L y(; ) is equivalent to the ranking of the inte-
gral over Qmi(; 7). However, when multiple setsof statistics are used, the other terms in the
lower bound, logp(Oj~;W;M ) and Qmi(~; ), may vary. In this casethey can longer be ignored
and must be computed. Directly comparing of the marginalization of Qm(; ™) between model
structures is not meaningful, unlessthey sharethe sameset of statistics.

One basicassumption is made in the lower bound basedapproximation in equation 3.11. It
is assumedthat the ordering of the Bayesianevidenceis the sameasthat of its lower bound. The
looser the bound is, the poorer the approximation may become. For the EM lower bound given
in equation 3.7, this meansthat aggressivelysharing statistics among very different model struc-
tures may lead to a poor evidenceapproximation. Hence,when sharing statisticsthe complexity
variation among model structures must be constrained to ensure the reliability of statistics, and
the bound. This issuewill be further discussedin detail in chapter 5.

3.3.5 Variational Method

The ML bound in equation 3.7 requires the the hidden state posterior, P( = §;jO;W; ™M ).
However, in many practical situations when more complicated forms of acousticmodels are used
this distribution is intractable. To handle this problem, another related approximation scheme,
variational approximation [2, 38, 39], may be used. In a similar formula to the EM algorithm,
Jensen'sinequality is applied to derive an evidence lower bound. If the joint posterior distri-
bution over both model parameters and hidden states, P ( = §j; JO;W;M), isintractable,
a variational approximation may be made. A computationally tractable variational distribution



P( ; ) will beusedin the modied E stepinstead of the original joint posterior. The evidence
lower bound derived using a variational approximation may be written as

‘X (O; ; M)

log p(OjW : M ) P( ; )log? sy (3.12)

Maximizing the lower bound in the above equation is equivalent to minimizing the Kullback-
Leibler (KL) divergence between the variational distribution, P( ; ), and the true joint pos-
terior, P( = §j; JO;W;M). Variational methods provide an alternative form of evidence
lower bound. It is sometimesreferred to as Variational Bayesianlearning in the literature. The
key issue with this approach is how to selectan appropriate form of variational distribution.
Sucha selectionis always subjective. One commonly used form assumesthe statistical indepen-
dence between model parameters, , and hidden states, S, so the variational distribution is in
asimplied factorial form, P( ; )= P( )P( ), for example,in [118, 117].

The sameassumption of the EM lower bound in equation 3.11 is made in variational meth-
ods. It is assumedthat the ordering of the Bayesianevidenceis the sameasthat of the variational
lower bound. Similar to the log-likelihood lower bound derived using EM, the looser the varia-
tional lower bound is, the poorer the evidence approximation may be. Hence, the selection of
the variational distribution P( ; ) should tighten the bound as much aspossible.

3.3.6 Markov Chain Monte Carlo (MCMC) Sampling

Another family of approximation methods for the Bayesianevidence are Markov chain Monte
Carlo (MCMC) sampling schemeg[ 79, 97, 82]. The simplest MCMC sampling basedapproxima-
tion is to averageout a nite number of random samplesdrawn in the parametric space.This is

given in the following equation and is often referred to asthe simple Monte Carlo:
Z

p(OjW;M ) = p(Oj; W;M)p( jM )d
1 X

p(Oj i;W;M) (3.13)

where ; is the ith sample of the model parameters and N is the total number of samples
drawn. It is assumedthat the drawn samplesare statistically independent against one another.
However, in many practical situations it may dif cult to obtain suchsamplesfrom p( jM ).

To overcome this problem other forms of sampling schemesmay be used. In rejectionsam-
pling, a proposaldistribution, g( ), andaconstant,c< 1 , areintroduced suchthat 8 ; p( jM )
cq ). Samplesthat are drawn from the proposaldistribution q( ) with a probability p( jM )=c( )
are acceptedand used for the simple Monte Carlo in equation 3.13 [82, 79]. Oneissuewith re-
jection sampling is that the schemeonly works well if the proposal distribution g( ) is a good
approximation to the parameter prior p( jM ). It may be dif cult to nd cq( ) with a small c
which is easyto sample from.



Another closely related sampling schemeis importance sampling Using this method the
Bayesianevidenceis approximated asthe following [82, 79]:

POWIM) Xi p(O] 1w )P (3.14)
where the proposal distribution g( ) is required to be non-zero when p( jM ) is. Similar to
rejection sampling, the issue with this approach is also how to select a suitable form of the
proposal distribution g( ) asagood approximation to p( jM ). Another issuewith both rejection
sampling and importance sampling is that an improper weighting or rejection of samplescan
causethe Monte Carlo averageto be dominated by a few samples. This may lead to a poor
approximation of the Bayesianevidence.

In many situations when p( jM ) is a high dimensional distribution, it may be dif cult to nd
a good form of proposal distribution gq( ) asan approximation. In this casemore complicated
sampling schemes,such as Gibbssampling may be used[97]. In Gibbs sampling, it is assumed
that p( jM ) is too complex to draw samplesfrom directly. Instead, its conditional distribution,
p M M My Y Y, may be used as the proposal distribution.  The super-
script refers to the nth sampling iteration. The algorithm iteratively picks up a model parameter
sample, either in turn or randomly, which is then replaced by a sample selectedusing the pro-
posal distribution. This form of proposal distribution accounts for the statistical dependence
between samples.

Unfortunately, MCMC sampling schemesare impractical to useon current LVCSRsystemsfor
Bayesianevidence approximation. A state-ofthe-art recognition systemmay contain millions of
free parameters. This leads to a very high-dimensional parameter spacefrom which to draw
samples. For this reason MCMC basedsampling schemesare computationally lessfeasible than
other approximation schemes. They are not consideredin this thesis for the approximation of
Bayesianevidence.

3.4 Information Theory Methods

The second category of complexity control techniques are basedon information theory. These
approachestreat the complexity control problem as nding an appropriate code length [6] for a
data transmission process.Probabilistic distributions may be viewed ascode generators. Assume
that both the sender and the receiver know from which distribution, p(OjW ;M ), a code O is
generated from. Then according to Shannon'sSource Coding Theorem, the tness to the data,

log p(Oj’} W; M ), penalized by a channel cost, C(O; M ), forms a two-part code description
length [16, 6, 96, 54],

n 0
M = argmin logp(Oj® W;M )+ CO;M) : (3.15)
The channel cost may be interpreted asthe part of description length which correspondsto

the complexity of the code generator. In this sectiontwo complexity control criteria within the
information theory framework are presented.



3.4.1 Minimum Description Length (MDL)

One commonly used information theory approach is the minimum description length (MDL)
criterion. The MDL principle selectsthe optimal model structure with the shortesttwo-part code
length. For the two-part code given in equation 3.15, the complexity term, C(O; M ), needsto
be explicitly given. Hence the two-part code basedMDL criterion in equation 3.15 may not be
directly usedfor complexity control unlessthe penalization term, C(O; M ), is explicitly known.
The MDL code length may be expressedin multiple forms [95, 47]. A two-part code is only
one of these forms. There are other forms of description length that do not require knowing
the exact form of the complexity penalization term. One example is the normalized maximum

likelihood (NML) proposedin [95]. The standard form is the mixture codelength [16, 6, 54].
A

M = argmax P(M) p(Oj; W;M)p( jM )d (3.16)

It is in the same form as the Bayesian evidence integral in equation 3.2. However, it is
derived asaform of codedescription from an information theoretic perspective.In common with
Bayesianevidence, this form of code length may be approximated via a rst order asymptotic
expansionequivalent to BIC, or a secondorder Laplace'sapproximation.

3.4.2 Minimum MessageLength (MML)

Another information theory approach is the Minimum MessagelLength (MML) principle [47].

The basicidea of MML isto nd a two-part code generator to minimize the expected message
length (number of bits neededto encodethe data) of the observeddata. The MML principle is
closelyrelated to MDL. The MML codelength hasthe sameform of de nition asthe mixture MDL
given in equation 3.16. However there are some differences between the two schemes. First,

the MML code length can only be expressedas a mixture distribution, while MDL may have
multiple forms of code length. A mixture distribution is only one of them. Second,the MML
principle is more closely related to Bayesianapproachesthan MDL. A prior distribution over
model parametersis always required asin equation 3.16. In contrast, such a prior distribution

is not required by the MDL principle when a two-part code length is used. Like the mixture code
length of MDL in equation 3.16, the MML code length may be approximated via a BIC style rst

order, or Laplace'ssecondorder approximation.

3.5 Previous Application to Speech Recognition

As discussedin section 3.1, state-ofthe-art LVCSR systemsare highly complex and many tech-
niques are usedto enhancethe recognition performance and also alter the systems'complexity.
When thesetechniquesare usedit is desirable to optimize the model complexity to achievethe
optimal WER. However the application of complexity control techniquesfor speechrecognition
has beenlimited, especiallyfor LVCSRtasks. In this section a survey of previous applications of
model selectiontechniquesis presented.



BIC is a most commonly used complexity control technique for speechrecognition [12, 13,
15, 130]. For example, this method was usedin [12, 15] for HMM state tying on LVCSRtasks.
Asdescribedin section 2.3.2, in decision tree basedstate clustering the threshold for likelihood
gain must be manually tuned. Such a threshold actsto control the depth of the tree, or equiv-
alently the total number of distinct statesafter tying [132, 133, 131]. This meansthe system's
complexity can not be automatically determined. In contrast, the optimal tree cut was automati-
cally determined using BIC and “penalized” BIC( = 2:0in equation 3.3) in [15]. The EM lower
bound of log-likelihood discussedin section 3.3.4 was usedto ef ciently compute the BIC crite-
rion during clustering. It wasreported that comparedwith a standard likelihood basedapproach
a more compact HMM systemwith the same WER was obtained. It was also reported that the
standard BIC criterion lacked penalization power to prune over-grown trees. In [118, 117] on
a JapaneselVCSRtask it was also found that BIC yielded a poor approximation to the evidence
integral when the training data is limited. The problem may be causedthe large number as-
sumption made in BIC, as discussedin section 3.3.1, which may be too strong for small data
sets. Soasthe amount of training data is reduced, the BIC approximation is increasingly poor.

As an alternative to BIC, the variational method has also been used to approximate the evi-
denceintegral for complexity control. The large number assumptionof BICis no longer required.
The schemeis often referred to as the variational Bayesian method [2, 119, 120, 117, 59].
In [117] this approach was used for decision tree based state clustering. The approximated
Bayesianevidence was used instead of likelihood asin a standard approach. Performance im-
provementswere reported with a small vocabulary English name entity recognition task. In [ 59]
on experiments of a small vocabulary Japaneserecognition task, the variational Bayesianap-
proach was also found to selecta more compact decision tree cut than the standard maximum
likelihood method. Performance gains were also obtained over an MDL (equivalent to BIC)
based clustering proposed in [105, 107]. As described in section 3.4, when using the MDL
principle a certain form of code length is required. In [105, 107], the mixture code length in
equation 3.16 was used. A rst order approximation to it is equivalent to the BIC metric.

In addition to HMM statetying, another areawhich complexity control techniqueshave been
applied to is speakeradaption. For thesetasksthe amount of enrollment data is often sparse. It
is therefore important to determine the optimal number of parametersto be robustly estimated
when building speakerspeci ¢ models. For linear transformation schemes,such as MLLR, this
correspondsto the number of transforms. As previously discussedin section 2.5, a standard ap-
proach usesthe training data associatedwith eachregressiontree node [ 128, 28]. If the amount
of data assignedto a tree node exceedsa given threshold, an MLLR transform will be generated.
Otherwise, the transform estimation will back-off to the parental node'sstatistics. The occupancy
threshold requires empirical tuning. Essentially this is a simply “more data more parameters”
approach. In [106] the MDL principle was used to determine the optimal cut of a regression
classtree. The form of code length usedwas the mixture distribution given in equation 3.16, ap-
proximated via a rst order expansion (equivalent to BIC). EachMLLR transform was restricted
to be a simple bias vector. Experimental results on a medium vocabulary Japaneserecognition



task showed that marginal WERimprovement was obtained over the standard approach.

3.6 Limitations of the Likelihood Paradigm

There is an inherent assumption made in standard evidence based complexity control tech-
nigques: there is a strong correlation between WER and likelihood on unseendata. Thus in-
creasing the likelihood on the unseen data should decreasethe WER. However, for a speech
recognition systemusing HMMs, such an assumption is not true. As previously discussedin
section 2.1.1, when using HMMs two assumptionsare made about the nature of the speechsig-
nals: the quasi-stationary assumption and the observation independence assumption. Neither
assumption is actually true for speechsignals. Speechproduction is a non-stationary process
even within minute time intervals. Furthermore, the dynamics of articulators and the use of
overlapping frames in speechparameterization, as discussedin section 2.3.1, result in correla-
tion between frames. Hence HMMs are not the correct models for speechsignals. Consequently
in recent researchthe correlation between WER and likelihood has been found fairly weak for
current speechrecognition systems.In this case,using held-out data likelihood, or equivalently
marginalizing the ML criterion asin Bayesianlearning and Information theory, may be inappro-
priate for complexity control. It leadsto anincorrect WERranking and a poor selection of model
complexity. For this reasonit would be preferable to marginalize a criterion that is more closely
related to the recognition error, rather than likelihood.

3.7 Summary

In this chapter standard complexity control techniqueswere presented. Theseschemeswere de-
veloped within a maximum likelihood paradigm and may be classi ed into two major categories.
In Bayesianlearning techniques model selectionis basedon the evidence, or the marginal likeli-
hood of training data. In information theory approaches,a complexity control problem is viewed
as nding the optimal code length for a data transmission process. The code length is often ex-
pressedasthe penalized log likelihood. For both types of techniques numerical approximation
is often required to practically compute the Bayesianevidenceor the mixture code length.

For these techniques to work well, a strong correlation between the WER and likelihood
on unseendata must exist. However, for current speechrecognition systemsusing HMMs this
correlation may be fairly weak, asthe modelsusedare far from the “ideal” ones. Thusthesestan-
dard likelihood basedapproachesmay be inappropriate for model complexity control on current
ASRtasks. It would be preferable to employ a complexity control criterion that is more directly
related to WER.In chapter 5 a novel discriminative method for model selection is presented.
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Discriminative Training

This chapter presentsdiscriminative training techniquesfor speechrecognition. First the limita-
tions of maximum likelihood training is discussed. Then severalcommonly used discriminative
criteria are presented. This is followed by a survey of the optimization schemesfor discrimina-
tive training criteria. In particular, the extended Baum-Welch (EBW) algorithm, and a recently
introduced weak-senseauxiliary function basedapproach are discussed.

4.1 Limitations of ML Training

In maximum likelihood training it is assumedthat HMMs are the “correct” models for speech
signals. It is further assumedthat given in nite amount of training data, the global ML estimates
tend to the optimum of model parameters. However, for current speechrecognition systems
neither assumptionis true.

First, HMMs are not the “correct” models for speechsignals. As discussedin section 2.1.1,
two assumptionswere made about the nature of speechsignals when using HMMs: the quasi-
stationary assumption and the observation independence assumption. As discussedin sec-
tion 3.6, neither is true. Since current HMM based ASR systemsare not the correct models
for speechsignals, the correlation between the WER and likelihood may be weak. Merely in-
creasing the likelihood on the observedor unseendata asin ML training may not necessarily
improve the recognition performance.

Second, the training data quantity is limited in practical situations. A large collection of
audio data with detailed transcription is highly expensive. The majority of state-ofthe-art LVCSR
systemsare trained using no more than ve thousand hours of audio data [11, 24, 65]. To
produce accurate manual transcriptions for these large collections of acoustic training data is
very expensive.

Third, the EM algorithm usedin ML training is only guaranteedto nd alocal optimum for
the model parameters. Even if the above two conditions are met, an EM based optimization
still cannot guarantee to yield a global optimal estimate for the model parameters during ML
training.

44



For thesereasons,ML training doesnot guarantee the optimal recognition performance for
current speechrecognition systems. Henceit is preferable to employ training schemesthat ex-
plicitly aim at improving the recognition accuracy One obvious form is to use the recognition
error rate. However, the recognition error rate is not in a continuous form and may not be
directly used for training basedon standard optimization schemes,such as gradient descent.
In contrast, discriminative training criteria, such as maximum mutual information (MMI), are
continuous approximations to the error rate. Thesecriteria do not make the model correctness
assumptionasin ML training. They are explicitly aimed at reducing the approximated recogni-
tion error rate on either a sentenceor word level.

4.2 Discriminative Training Criteria

Discriminative criteria have been successfullyapplied to LVCSR training [124, 93, 90]. In this
section three commonly used discriminative training criteria, maximum mutual information
(MMI), minimum phone error (MPE) and minimum classi cation error (MCE), are presented
in detail.

4.2.1 Maximum Mutual Information (MMI)

One of the most widely used discriminative criteria is the maximum mutual information (MMI)
criterion [3]. This is equivalent to maximizing the a posteriori probability of the correct tran-
scription, W, for the given training data and model. The MMI criterion may be expressedas

: p(O;Wj; M)
R C R N
= P(WjO; ; M) (4.1)

When the language model parameters, P (W), are xed during training, the MMI criterion is
equivalent to conditional maximum likelihood (CML) criterion [81]. In addition to optimizing
the ML criterion, p(O; Wj; M), the likelihood of a “composite” model p(Oj ; M) is decreased.

The composite model, p(Oj ; M), is obtained by summing over all possible hypotheses,f Wg.

X
p(Cj; M) = p(Cj; W;M )P (W) (4.2)

w
In the literature thesetwo parts of the MMI criterion are usually referred to asthe numerator and
denominatorterms respectively[ 84, 124]. For LVCSRsystemsit is infeasible to store all possible
hypothesesto obtain the composite model, p(Oj ; M ). In practice a nite number of confusable
word sequencesare stored either in an N-bestlist or lattice. Theseare usedasa compactformat
to representthe model confusionsover the training data[112]. Asdiscussedin section2.3.5, the
dynamic range of likelihood may be very different between the acousticmodel and the language
model. To overcomethis problem, the language model probability is scaledby a constant > 0
to compensatefor the difference in dynamic range [124]. The acoustic likelihood is also de-
weighted using the inverse of the language model probability scale. This broadensthe posterior



distribution of different word pathsin a lattice. Suchan increasein confusabledata canimprove
generalization performance [124]. By doing so the likelihood given the composite model may
be expressedas
PO M) = O} WiM) P(W) -
w

MMI baseddiscriminative training has been extensively usedin state-of-the-art LVCSR sys-
tems. Signi cant improvements over ML trained models have been reported [124, 129, 126].
However, it has beenfound that the MMI criterion can give undue weights to outliers that have
very low posterior probability over the correct transcription [113]. Considerthe casewhen the
observeddata O is segmentedinto individual segmentsfor training, fO 1;:::; Or;::;; Org, where
O, denotesthe rth utterance. The following MMI criterion calculation will be heavily dominated

by utteranceswith very low posteriors.
. _ X p(Or;Wj; M)
Fom(; M) = log (0] M)

r

(4.3)

4.2.2 Minimum Classication Error (MCE)

Another discriminative criterion closelyrelated to MMI is the minimum classi cation error (MCE)

criterion [14, 60]. The MCEcriterion wasoriginally proposedfor isolated word recognition [ 14].

In [110, 109] a form of MCE criterion was modi ed for continuous speechrecognition tasks.

As with the MMI criterion, word lattices or N-best lists may be used to represent the model's

confusion over the training data. The MCE criterion is given by
p(O;Wj; M)

wew P(O]; W;M )P (W)

Fned ; M) = f logP (4.4)

where f () is the smoothing function. Commonly used forms of f () are either an identity,
f (x) = x, or a Sigmoid function given by
1

f(x) = T+ e & (4.5)
where a is a tunable parameter. Note that the denominator term in equation 4.4 only contains
incorrect word sequencesfor the MCE criterion, rather than all the possibleword sequencesas
in the MMI criterion. This is a difference between the MCE and MMI criteria. A unied view
of both the MMI and MCE criteria was given in [110, 109]. It was shown that both MMI and
MCE criteria provide an upper bound to the sentenceerror rate from a Bayesianperspective.
However, compared with MMI training MCE training is lesscommonly used in state-of-the-art

LVCSR systems.

4.2.3 Minimum Phone Error (MPE)

Both the MMI and MCE criteria provide an approximation to the recognition error rate on a
sentencelevel. However, in speechrecognition the most commonly used performance measure-
ment is the WER. Therefore, it would be preferable to have a training criterion that is directly



related to the WER rather than the sentenceerror rate. The Overall Risk Criterion (ORC), or
equivalently the minimum word error (MWE), is one such criterion. It hasa continuous form of
WER approximation and may be usedfor training speechrecognition systems[62, 42].

A closelyrelated criterion is the minimum phone error (MPE) criterion. Instead of evaluating
recognition accuracyon a word level, a phone level accuracyis computed under the constraint
of the referenceword transcription [ 90, 93]. The MPEdcriterion is expressedasthe averageaccu-
racy of all possibleword sequenced W g, measuredagainst the reference transcription in terms
of WER. The accuracy contribution from each hypothesis is simply weighted by its posterior
probability. The MPE criterion is given by

X
Fmpd ; M) = P(WjO; ; M)A(W;W)
W
X p(O;Wj; M)A(W;W)

p(O}; M) (40
where A(W ;W) is the phone level accuracyof a word sequence,W, against the referencetran-
scription, W. The computation of A(W; W) normally requires a dynamic programming proce-
dure. An ef cient approximation of phone accuracyin alattice context was proposedin [90, 93].
The algorithm rst computesthe phone level accuracyfor eacharc in the lattice againstthe ref-
erencetranscript. Recognition errors causedby either substitution, deletion or insertion will be
accounted for. Then the accuracy measuring of each arc is further smoothed using a forward-
backward algorithm like procedure. This actsto de-weight the accuracyof lattice arcsthat have
very low “combined” accuracyfor all the hypothesesthat passthrough it, and scaleup that of
those which are more correct. A more detailed description of the algorithms was given in [ 93].
MPE training has consistently outperformed MMI training on a range of LVCSRtasks[93].
Many state-of-the-art LVCSR systemsare trained using the MPE criterion [51, 127, 64, 65, 23,
24]. No signi cant difference wasfound between MPEand MWE training in terms of recognition
performance, although MWE training was found to be more powerful to t the training data.

4.3 Optimization of Discriminative Criteria

The optimization of discriminative criteria is non-trivial. The EM algorithm for ML training can
not be directly used for these criteria. In this section optimization schemesfor discriminative
training criteria are presented. First, the extended Baum-Welch (EBW) algorithm and a weak-
senseauxiliary function basedapproach are discussed.Both approachesyield similar parameter
updates. Then gradient descentbasednumerical techniques are discussedfor the optimization
of discriminative criteria.

4.3.1 Extended Baum-Welch Algorithm

The extended Baum\Welch (EBW) algorithm is the most commonly used method for the opti-
mization of discriminative criteria [43, 44, 84, 113, 110]. The algorithm was originally proposed



for discrete density HMMs and then extended to the continuous case,but in this sectionthe BW
algorithm for ML training is revisited rst. Then the EBW update formula for discrete density
HMMs are presented. The relationship betweenthe derivation of the EBW and the BW algorithm
is also discussed.Then the extensionto the EBW algorithm for continuous density HMMs is pre-
sentedfor both the MMI and MPE criteria. Finally, a recently introduced I-smoothing technique
for the EBW algorithm is discussed.

4.3.1.1 Baum-Welch Algorithm

The BaumiWelch (BW) algorithm provides a way to iteratively maximize polynomials which
satisfy the following two conditions [ 7]:

All coef cients in the polynomial are non-negative.

All variablesin the polynomial are non-negative and subjectto a sum-to-one constraint.

This is exactly the caseencounteredin the parameter optimization of discrete density HMMs
during ML training. These discrete parameters may include the transition probabilities and
hidden state densities. Let j denote the j th free parameter of the ith distribution of the model,
the Baum-Welch (BW) re-estimation formula is given by

~i @fé@;l\/l)
—- - ij ="
TP @M (4.7)
i @i _~

where again ~is the current parameter estimate. During ML training the derivatives with respect
to model parametersin equation 4.7 are equivalent to the hidden state posterior occupancies
for an HMM system. These statistics may be ef ciently computed using a forward-backward
approach, as described in section 2.2.2. However, the BW algorithm cannot be used for the
optimization of discriminative criteria, such as MMI in equation 4.1. This is becausethese
criteria cannot be expressedasvalid polynomials that satisfy the abovetwo conditions required
by the BW algorithm.

4.3.1.2 EBW for Discrete Density HMMs

To overcome the limitation of the Baum-Welch algorithm, the extended Baum-\Welch (EBW)
algorithm was introduced for the discriminative training of discrete density HMMs [43, 44]. The
EBW algorithm can be shown to convergeto a local optimum for discriminative training criteria
that may be classi ed as a certain family of rational objective functions. The type of rational
objective function consideredby the algorithm is expressedasa ratio of two polynomials,

. _ Founl: M)

where the numerator Fny{ ; M ) and denominator Fgen(; M ) are rational polynomials with
non-negative coef cients, and variables that are non-negative and subjectto a sum-to-one con-
straint. Hence both the numerator and denominator polynomials satisfy the two conditions



required by the BW algorithm, asexplained in section4.3.1.1. Againlet j denote the jth free
parameter of the ith distribution of the model, the EBW re-estimation formula is given by

~ @ (; M
.. _ IJ C‘(ZDij ) :~+D (49)
i = P . .
~ @FGM)
i @j =~+D

where D is aregularization constant. The convergenceof the algorithm is only guaranteedgiven
asufciently large D.

Although the BW and EBW algorithms are usedto optimize training criterion in very differ-
ent forms, the derivation of the EBW update in equation 4.9 may be related to the BW algorithm.
A direct maximization of discriminative criteria, expressedin the form of equation 4.8, can be
dif cult. The approach adopted in [43, 44] is to convert the original criterion to a related
polynomial, R(; M), which may then be optimized using the BW algorithm. First, the two
conditions required by the BW algorithm given in section 4.3.1.1 must be met by a valid poly-
nomial, R(; M ). Second, maximizing a valid polynomial, R(; M), should be equivalent to
that of the original criterion, F(; M ). This last condition is essentialasto guarantee that the
original objective function will never be decreased.Let C > 0 denote a regularization constant.

The form of the related polynomial proposedin [43, 44] is given by

h | Y X
R(; M) = Fgen(; M) F(; M) F(5M) +C i (4.10)

where ~is the current parameter estimate.
It can be shown that the polynomial in equation 4.10 satis es the following three conditions:

R(; M) is a polynomial of discrete probabilities f jj g that are non-negative and subject

to a sum-to-oneconstraint  ; j = 1.
Aslong asthe regularization constant C is big enough, all the coef cients in R(; M ) can

be non-negative.

Around the current parameter estimates ~, maximizing R(; M ) is equivalent to maximize
F(; M). Thisis becauseF8nﬂo; M ) > Oholdsfor anyvalid , and the third regularization

}Derm in equation 4.10, C j is invariant of , under the sum-to-one constraint

]
p i = 1. Hence one may write

R(;M)>R(TM) ) F(GM)>F(M):

Under thesethree conditions, a direct maximization of the rational objective function in the
form of equation 4.8 may be converted to the maximization of the polynomial, R(; M), using
the BW algorithm in equation 4.7. Thus one may write the update formula for j , the jth free
parameter of the ith distribution of the model.

~ @®RGM)

. fay ! @” ="
T P T @®GM) (4.11)




In order to prove that the above update is equivalent to the EBW update in equation 4.9, the
gradients of the polynomial, R(; M), and the original criterion, F(; M), needto be exam-
ined. The gradient of the polynomial R(; M) in equation 4.10 around the current parameter
estimates, 7, is given by

@R( M) @ nunf ; M) ~ @ den(; M)
= —une 77 F(m) =20 =7 4.12
@ .- @i . (M) @i :~+C (4.12)
Furthermore, the gradient of the original criterion in equation 4.8 around ~ is given by,
@( M) 1 @ nunf ; M) ~ @ den(; M)
= FCO,M) ———= 4.13
@U =~ Faen(T;M) @ij == ( ) @ij =~( )

Combining the gradient of the criterion, F(; M), in equation 4.13, and the gradient of the
polynomial, R(; M), in equation 4.12, yields the following.

@ M) _ ~ @(;, M)
@IJ L - Fden(: M) @” o

+ C=Fgen(T;M) (4.14)

Substituting the polynomial's gradient abovein equation 4.14 into the update formula of equa-
tion 4.11 yields

W EGM 4 CoFgen(TM) s
i = p = 415
i P

i i @c@(@ L 4+ C=Fgen(TM)

which is equivalent to the EBW algorithm in equation 4.9 if we let D = C=Fgen(™; M ).

A variety of discriminative training criteria may be optimized using this iterative EM-like
scheme. Theseinclude all three discriminative training criteria presentedin section 4.2. The
EBW re-estimation formula was originally shown to be valid only for discrete density HMMs.
Hence it can not be directly used for parameters of HMMs with continuous densities, such as
Gaussianmeans and covariances®. State-ofthe-art speechrecognition systemsnormally use
continuous density HMM models. In the next section the extension of the EBW update to con-
tinuous density HMMs is presented.

4.3.1.3 EBW for Continuous Density HMMs

The extension of the EBW update formula in equation 4.9 to continuous density HMMs is a
non-trivial problem. The approach adopted in [84] was to use a simple discrete Gaussianap-
proximation. The number of codebookentries for eachdiscrete distribution in the HMM setwas
raised to in nity . This gives the following the re-estimation formula for Gaussianmeans and
covariances

d ]
() PUW(O) j en(o) + DJ )

num den 4 Dj
] ]
d () —( ~()
o jnun(OZ) jen(o2)+ D; (1) ~()> 4 0 i)
- num den ;. D; (4.16)
J J

YIn practice the update rule in equation 4.9 is not used for estimating component priors and state transitions in
LVCSRtraining, due to the algorithm's high sensitivity to small-valued parameters. Instead a more robust update is
proposedin [124, 93] by maximizing a different objective function.



where the numerator statistics are given by
num X nu
i = i ")
"M0) " )o

jmo?) MM Yo 07 (4.17)
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and the denominator statistics are

den X den
i = i ()

Jden(o) jden( )0

X
deno?) = den( )o 07: (4.18)

" ) and jde”( ) are the numerator and denominator Gaussianposterior occupanciesrespec-
tively. Rather than using a global setting for D, a Gaussianspeci ¢ smoothing constant, Dj, is
used in equation 4.16. It was found that by using a Gaussianspeci ¢ smoothing constant, a
faster and more stable criterion convergencemay be achievedthan a global setting [ 124, 93].
The exactform of ™M ) and jde”( ) dependson the underlying criterion being optimized.

In the caseof MMI training, the numerator occupancy [ ) is equivalent to the ML Gaus-
sian posterior probability given the correct transcription. The denominator jde”( ) is computed
from all possibleword sequenceq 124]. The MMI numerator and denominator Gaussianoccu-

panciesare given by

M) = P( =SjO;W; ™M)
dency = P( = §j0;TM) (4.19)
where again = §j indicates that acoustic observation o was generated by hidden statej at

time instance .

For MPEand MWE training, both the numerator and denominator occupanciesmust be com-
puted from the recognition lattices. Theselattices contain both the correct and incorrect word
sequences.It hasbeenfound that applying a binary decision on lattices paths ( or equivalently
on word arcs), basedon whether the the accuracy of the current path is below the average of
the whole lattice, yields an ef cient MPE criterion optimization [93, 90]. The numerator and
denominator occupanciesfor MPEtraining may be written asbelow,

X
ey = P( =Sjo;mwW;M) 7% (% 0)

x
dency = P( =Sj0;5W;M) o ( F°< 0) (4.20)
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where the MPE path occupancy \rlnvpeis the gradient of the MPE criterion against the log likeli-
hood of a word sequenceW,

;M
W= @ rmpd _ ) ; (4.21)
@ogp(O;Wj; M) _-
Following equation 4.6, the above may be re-written as[93],
h [
W= P(WO;TIM) A(W;W)  FrpdT M) (4.22)

where A(W ;W) is the phone level accuracy of W against the reference transcription W, as
discussedin section4.2.3.

4.3.1.4 Setting of Smoothing Constant for EBW

An important issue for the EBW algorithm is the value of the smoothing constant D in equa-
tion 4.9 for discrete density HMMs, or the component speci ¢ D; in equation 4.16 for continu-
ous cases. This constant controls the convergenceof the underlying criterion. Hence setting its
value is important for discriminative training. In the original EBW update given in equation 4.9,
a global D value is setsothat all derivatives are positive. This may be achievedusing

D = max ni1;jax @(@”M) N

where is small positive constant [43, 44]. As discussedin section 4.3.1.2, D must be suf -

0+ (4.23)

ciently large to guaranteethe criterion convergence.However, it appearsthat no proof hasbeen
published to show the convergenceis also guaranteed when using a nite valued D. Hence it
was argued in [110] that the aboveform of D may no longer guarantee the convergenceof the
algorithm.

For the EBW update of continuous density HMMs, various ways of setting D; were inves-
tigated for MMI training in [113, 124, 93]. It was reported that the following form of D;
outperformed other alternatives,

X
Dj = E () (4.24)

where E > 0, and is typically setto 1 or 2. However using this form of setting for Dj, the
Gaussianvariances may not necessarilybe positive. To overcome this problem, an even bigger
D; may be used. Such D; should be twice the value that ensuresthe re-estimated variance
elementsare positive [ 124, 93]. Aswith the original EBW algorithm there hasbeenno published
proof showing this form of nite valued setting of D; still guaranteesthe convergenceof the
algorithm.

4.3.2 Weak-sense and Strong-sense Auxiliary Functions

The EBW update formula in equation 4.16 has been successfully applied for LVCSR training
of continuous density HMM models. However its extension from discrete to continuous density



HMMs was basedon a discrete Gaussianapproximation, asdiscussedin section4.3.1.3. Recently
a weak-sensa@uxiliary function basedapproach was proposed as an alternative exible and in-
tuitive derivation of the EBW update for continuous HMMs [91, 89]. The conceptof weak-sense
auxiliary functions is the opposite to that of strong-senseuxiliary functions. A strong-sense
auxiliary function is closely related to the original criterion becauseof two constraints. First, it
sharesthe samegradient information with the criterion, around the current parameter estimate.
Second, increasing a strong-senseauxiliary function guarantees not to decreasethe original
criterion. The auxiliary function used for ML training describedin section 2.2.1, for instance,
may be referred to as a strong-senseauxiliary function. In contrast, the relationship between
a weak-senseauxiliary function and the criterion is looser. The only constraint imposed is that
the criterion and its weak-senseauxiliary function sharethe samegradient around the current
parameter estimates. Increasing the weak-senseauxiliary function may not guarantee not to
decreasethe original criterion. An example of a strong-senseand weak-senseauxiliary function
is shown in gure 4.1. In the left gure, the criterion, F(; M), and its strong-senseauxiliary

r F(G M) r F(; M)

F(; M) ‘

Q(; M

Q(; )

F(; M)

N N ~ N N

Q F F Q

Figure 4.1 Strong-senséleft) and weak-senséright) auxiliary functions

function, Q(; 7), share the same gradient around the current parameter estimate ~. Further-
more, the strong-senseauxiliary function, Q(; ~), and the original criterion, F(; M), reach
their maximum at "o and "¢ respectively The maximization of Q(; ~) guaranteesnot to de-
creaseF (; M). In the right gure which showsan example of weak-senseauxiliary functions,
the criterion and the weak-senseauxiliary function sharethe samegradient around the current
parameter estimate. However, in the interval between "t and AQ, maximizing Q( ; ~) actually
decreases-(; M).
In [91, 89] a weak-senseauxiliary function is formulated as:

Q(; 7)) = QMM ) QU M)+ QS ) (4.25)



Q™ M) ™ ) logp(o | Sj; s M)

Qden(; ~) Si;; M) (4.26)

f( ) logp(o ]
i
and again ™" ) and jde”( ) are the numerator and denominator Gaussian posterior occu-
panciesrespectively The third term in equation 4.25, Q3"('; 7), is closely associatedwith the
smoothing term of the EBW update formula in equation 4.16. This term must satisfy the follow-

ing constraint.

@)y (4.27)

@

The common used Q3" ; ™) that satis es this constraint may be expressedin the following
general form,
X z
Q(; 7)) = Dj p(oj o= Sj;7 M)logp(oj o= Sj;; M)do (4.28)
i
where slightly different from previously usednotations, o = S§j, indicates acousticobservation
0 is generated by a hidden state j. Note that the integral in equation 4.28 is over the entire
observation space. Hence, the discrete time instanceshave to be omitted. The above form of
smoothing term was originally proposedin [84], but was only employedto interpret the discrete
Gaussianapproximation used to derive the EBW algorithm in 4.16 for meansand covariances.
However, it should be noted that the smoothing term in equation 4.28 may be applied to a variety
of forms of model parameters, asno assumption about the underlying structure of hidden state
distribution p(oj o = Sj; ; M) is made.

When using the aboveform of weak-senseauxiliary function to derive the EBW algorithm for
Gaussiandensities, the exactform of the smoothing term, Q™ ; 7), needsto be explicitly given.
For example, in caseof using diagonal covariances,the appropriate form of the smoothing term
is given by

Q™ ; ") = %X D; hI092 + log i(i)2+ i(J') 2 i(j)2 2~i(j) i(j)+ ~i(j)2+ ~i(J')2I (4.29)

jii
where i is the index of the feature dimensions, and i(j %2 is the ith dimensional variance element
of component j. Using the above form of smoothing term, the EBW update formula for Gaus-
sian means and diagonal covariancesin equation 4.16 may be derived. Weak-senseauxiliary

functions provide a heuristic and exible derivation of the EBW algorithm.

4.3.3 |-Smoothing

For MPEand MWE training, both the lattice arc accuracy A(W; W), and the criterion, Fmpd ; M),
are positive numbers between 0 and 1. In this casethe MPE, or MWE lattice arc occupanciesin



equation 4.22 may be very small. Soalsoare the numerator and denominator occupanciesgiven
in equation 5.11. This may lead to un-reliable estimation of model parameters. To overcome
this problem, it has beenfound important to add a portion of standard ML or MMI statistics to
the numerator. This is referred to asl-smoothing [90, 93, 24]. This technique is closely related
to the use of parameter priors in maximum a posteriori (MAP) estimation [36]. From a MAP
training perspective, l-smoothing introduces an ML or MMI statistics basedprior over Gaussian
parameters. Using a weak-senseauxiliary function, this may be expressedas

Q(; 7)) = QMM M) QU5 )+ Q% ; )+ logP( ): (4.30)

where P( ) is prior distribution over model parameters, . In caseof using an ML statistics
basedP( ), the smoothed numerator statistics are given by

jnunﬁ) — jnum+ |
m(0)
oy = pmoy+
i
m(02)
jnum)(oz) = jnu"(oz)+ IJW (4.31)

i
where the I-smoothing prior ' > 0. In practice ' may be tuned for speci ¢ tasks[93, 24]. The
ML smoothing statistics are given by

ml X
= i()
| X
"(0) = i()o
ml 2 X >
(09 = j()oo (4.32)
where ()= P( = §jO;W;™;M) is the frame Gaussianposterior probability usedin ML

training. Recently it has been found that using MMI statistics for I-smoothing outperformed
using the ML statistics [ 24] for LVCSRtasks. This is due to the nature of the I-smoothing statis-
tics being used. The MMI smoothing statistics correspond to a parameter prior which typically
outperforms the ML prior in terms of recognition performance.

4.3.4 Gradient Descent Based Optimization

Like many other forms of objective functions, discriminative training criteria may also be op-
timized using gradient descent style numerical methods. The steepestdescentalgorithm is a
simple numerical schemefor optimizing multivariate functions. At each iteration the parame-
ters to be optimized are modi ed in the direction of the the objective function's gradient. The
gradient of the objective function is evaluated at the current parameter estimates. The mag-
nitude of change to the parameters is a constant portion of the gradient. The proportion is
commonly referred to asthe learning rate, or step size. The update formula is given by

) = ™M F( M) (4.33)



where (" isthe current parameter estimated at iteration n, and is the learning rate. If a more
complex Newton searchis used, the Hessian,or the secondorder derivative, is also required. At
eachiteration the gradient information is required for the update.

1

(n+1) - = () r 2= mF(; M) r - mF(G M) (4.34)

It may be shown that for discriminative training criteria, suchasMMI and MPE,the gradient
with respectto model parametersis closely related to the numerator and denominator occu-
pancies used for the EBW update of equation 4.16. First, the following useful derivations are
given, before examining the gradient information for individual criteria. The gradient of the log
likelihood given the word sequence W, against Gaussianmeans, (), and covariances, ), for
HMMs are given below [113].

@ogp(0j; W;M) _ X e ey @ogpoj =S5 M)
@0 B PC = S0 WiM) @0
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For the MMI criterion, given in equation 4.1, the gradient information may be written asthe
following:
@ogFmm(; M) _ @ogp(Oj; W;M)  @ogp(Oj; M), (4.37)
@ @ @ ' '

Now, using the gradient information in equation 4.35 and 4.36 and the numerator and de-
nominator occupanciesde ned in equation 4.19, the MMI gradient at the current estimatesfor
Gaussianmeansand covariancesare given by

@ogF mm( ; M X ~() 1 |
g @mra() ) ) - jnurr‘( ) jden( ) J 0 ~()
@ogFmm(; M) _ X nu den 1 ~()
@ O . ) 0 50
. > i i
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In the above equation the MMI criterion's gradient information at the current parameter es-
timates is closely related to the numerator and denominator statistics required by the EBWV
algorithm in equation 4.16.

For MPE a closerelationship to the criterion also exists. Following the MPE criterion in equa-
tion 4.6, applying the chain rule for derivatives, and using the statisticsde ned in equation 4.21



and 4.22, one may write the following.
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Combing the gradient information in equation 4.35, 4.36 and the MPEnumerator and denomi-
nator occupanciesin equation 4.20, the gradient direction of the MPE criterion against Gaussian
meansand covariancesmay be expressedas
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mé - ~ / jnun( ) jden( ) J 0 ()
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Hencethe gradient information of the MPEcriterion, given in equation 4.40, may also be related
to the MPE statistics required by the EBV update.

Though gradient descent style numerical schemesmay be used for optimizing discrimina-
tive training criteria, in practice these techniques are slow and have dif culty guaranteeing
convergence. In early researchit was reported that the EBW algorithm is a more ef cient op-
timization schemefor discriminative objection functions than numerical methods [44]. The
majority of state-ofthe-art LVCSR systemsemploy the EBW algorithm for discriminative train-
ing [124, 126, 127, 23, 64].

4.4 Summary

In this chapter several commonly used discriminative training criteria and the associatedop-
timization schemeswere presented. The model correctnessassumption made in ML training
may be too strong for current speechrecognition systemsusing HMMs. As is discussedearlier
in section 3.6, this is also an issue for standard complexity control techniques under the maxi-
mum likelihood paradigm. It would therefore be preferable to use discriminative methods that
are more explicitly related to classi cation error for complexity control and parameter estima-
tion. The model correctnessassumption of ML learning may then be removed from both the
structural and parametric optimization. In the following chapter a novel complexity control ap-
proach is proposed using the marginalization of a discriminative measure. Then it is followed
by an investigation of discriminative training of linear projection schemesdiscussedearlier in
section 2.4.
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Discriminative Model ComplexityControl

In this chapter a novel model complexity control technique using a discriminative measureis
presented. First, some previous work related to discriminative complexity control is briey
reviewed. Then issueswith a direct marginalization of discriminative criteria for complexity
control will be discussed.Due to the sensitivity to outliers, discriminative training criteria, such
as MMI, cannot be directly integrated over for complexity control. This motivates the use of
a closely related discriminative growth function, rather than the original criterion itself. This
growth function maintains some of the attributes of the original discriminative criterion, but is
less sensitive to outliers. The marginalization of the growth function is usedto determine the
appropriate model complexity. Two forms of growth functions for the MMI and MPE criteria are
presented. Finally, someimportant implementation issuesthat arise when using marginalized
discriminative growth functions for complexity control are discussed,in particular for the HLDA
systemsdiscussedin section 2.4.

5.1 Toward Discriminative Complexity Control

As discussedin chapter 3 the majority of complexity control researchfor speechrecognition
has focused on methods within the maximum likelihood paradigm. Under this likelihood based
framework, HMMs are implicitly assumedto be the “correct” models for speechsignals. Unfor-
tunately the assumptionsabout the nature of speechsignalswhen using HMMs are not valid, as
discussedin section 3.6. Hence the model correctnessassumption of existing techniques may
be too strong for current ASRsystems,and it is preferable to employ discriminative criteria for
complexity control. They are more directly related to the recognition error, rather than likeli-
hood.

A discriminative measure has previously been used in [4, 88], as a method of incremen-
tally splitting Gaussianmixture componentsin an HMM based speechrecognition system. The
method proposed may be describedin two steps. First, the state level alignment is obtained for
both the correct and incorrect word sequences.In the secondstep, these alignments are kept
xed during the splitting of Gaussiancomponents. For each state a splitting operation is consid-
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ered if it increasesthe posterior probability of the correct state label. Using this method WER
improvements were reported on a Wall Street Journal task. The main issuewith this approach
is that the complexity of the underlying model structure is not considered during the splitting
process.No penalty is given to penalize over-complex structures. Strictly this method cannot be
regarded asa control of model complexity, becauseno stopping criterion is provided. Instead it
is more appropriate to view it asa discriminative increaseof model complexity.

A similar approachusing the MMI statistics given in equation 4.19 was also proposedin [ 85]
to split Gaussiancomponents in a discriminative fashion. The numerator and denominator
statistics, given in equations 4.17 and 4.18, are accumulated on a component level, using a
standard forward-backward procedure for both the referencetranscription and confusableword
sequences For Gaussiancomponentj, if the difference betweenthe numerator and denominator
occupancies, ™ jde” had a high ranking, for instancein the top 20% among all components,
then the component is selectedfor splitting. Error rate reduction on a digit recognition task was
reported using this component splitting method. Again, the same issue discussedabove also
appliesto this approach. No penalty is assignedto model structures that are over-complex, and
the splitting processcannot be terminated automatically.

Complexity control using a discriminative measure has also been investigated for speech
recognition systemsusing more complicated acoustic models rather than HMMs. In [9] the
MMI criterion was usedto determine the appropriate complexity for a graph model. The system
complexity considered was the conditional dependenciesbetween random variables, which are
denoted by nodes and edgesin a graph model. The aim was to increasethe model's discrim-
inative power and reduce the recognition error rate, in common with the complexity control
problem for HMMs. Unfortunately the issuewith this method, in the samefashion asthe above
two approaches,is that over-complex model structures are not penalized. Hencethe over- tting
problem cannot be prevented.

5.2 Marginalizing Discriminative Training Criteria

Sofar the major issuewith the existing discriminative approachesfor model selectionis the lack
of a complexity penalty term. As describedin section 3.3, the marginalization of the conven-
tional ML criterion in the parametric spacemay automatically penalize over-complex models.
Hence one natural form of discriminative model complexity control is to marginalize a discrim-
inative measureinstead. This ensuresthe generalization of discriminative measuresto unseen
data. Replacing the ML criterion in the evidence integral of equation 3.2 by a discriminative
criterion yields a “discriminative evidence”. This should be more closely related to recognition
error than likelihood basedschemes.If the MMI criterion is usedand the model prior, P(M ), is

assumeduninformative, this yields
VA
M = argmax  Fmm(; M)p( M )d (5.1)
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A similar form of integral of MPE criterion may also be consideredfor complexity control. How-
ever, for both criteria, such a direct marginalization may be inappropriate. The primary reason
is that undue weights are given to outliers. State-ofthe-art large vocabulary speechrecognition
systemsare trained with hundreds of hours of data. Outliers, which are far from the decision
boundary, are likely to exist in the training data. They are often utterances with very low like-
lihood, or explicitly associatedwith high recognition error rate. In may situations these may be
causedby problems associatedwith the collection of the data, for instance, the corruption of the
audio recording or human errors when producing the reference transcriptions. The sensitivity
to outliers is a well known feature of the MMI criterion [56, 113]. Sentenceswith very low
posteriors are heavily weighted. The performance ranking prediction will be distorted due to
the presenceof these outliers. The sameissue exists with the MPE criterion for sentenceswith
very high recognition error rate.

5.3 Discriminative Growth Functions

One approachto compensatefor the sensitivity to outliers is to explicitly de-weight the outliers
utterances. The use of a sigmoid function for the smoothing of the MMI criterion was studied
in [113]. Unfortunately, using this method the smoothed MMI criterion isin a complicated form
and dif cult to integrate over. To handle this problem, the approach proposedin this thesisis to
transform the original discriminative criterion into a closely related polynomial that hasa more
tractable form. This method is similar to the use of the polynomial R(; M) in section4.3.1.2 to
derive the EBW algorithm for discrete HMMs. For complexity control the proposed polynomial
should maintain certain attributes of the original discriminative criterion, but must also be less
sensitiveto outliers. Note that the removal the sensitivity to outliers doesnot imply ignoring any
dif cult data during complexity control. Once again it should be made clear that only those are
far from the decision boundary, typically with very low likelihood, or very high error rate, are
consideredasoutliers. The marginalization of this polynomial function is then usedto determine
the appropriate model complexity. To ef ciently compute this “discriminative evidence”, similar
approximations to those used for the standard Bayesianevidence, as discussedin chapter 3,
may be used. In this section a general form of polynomial function for a certain family of
discriminative criteria is introduced.

The form of polynomial function considered here is applicable to any discriminative crite-
rion which may be expressedas a ratio between two polynomials with positive coef cients and
variables. The MMI and MPE criteria are in this category Consider a discriminative training
criterion expressedin the following form (the model structure M is omitted for clarity).

Fnun’( )
F 5.2
( ) I:den( ) ( )
The general form of a polynomial function proposed here may be expressedas,
h [

&) = Faen( ) F() F()+CFsil; 7) (5.3)
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where ~ is the current parameter estimate. The rst two terms in the bracket give information
about the curvature of the criterion surface in the parametric space. Since they describe the
variation, or growth, of the underlying criterion value between different parameter estimates,
the polynomial in equation 5.3 will be renamed asa discriminative growth function in the rest of
this thesis. Thethird term in the bracketis a smoothing term, scaledby a positive constant, C. To
reducethe growth function's sensitivity to outliers, the smoothing criterion should be selectedto
compensatefor the low likelihood, or high error rate, contribution from theseoutliers. Thusthe
smoothing term may be associatedwith the likelihood or WER. The constant C in equation 5.3
determines the effect from this smoothing criterion. The exactform of F¢{ ; ™) dependson the
underlying discriminative criterion being considered and is further discussedin the following
section for the MPE and MMI criteria. In addition, the denominator term, Fgen( ), outside the
bracket in equation 5.3 may also help to reduce the sensitivity to outliers. This is the casefor
both the MMI and MPE criteria where the smoothing term is associatedwith the likelihood of
a sentence,Fgen( ) = p(Oj ). Thus highly unlikely word sequenceswill have a smaller effect
on the growth function. However, it should be noted that the smoothing criterion, Fgso{ ; 7),
plays a more explicit, and exible, role in reducing the sensitivity to outliers than F gen( ). This
especially the casewhen the original criterion, F( ), is an approximation to recognition error
rate, rather than likelihood.
The gradient of the growth function, G( ), may be expressedas

a() _ N . @ gen( )
@ F() F"()+Canr(, )7@

@ ( )+C@Sm(; )
@ @

When C approacheszero, around the current parameter estimate, =, a turning point of the

+Fden( )

(5.4)

original criterion is also a turning point of the growth function. This may be expressedas

im S R S5

This constrains the attributes of the growth function to be related to those of the original crite-

(5.5)

rion.

The proposeddiscriminative growth function in equation 5.3 is in a similar form to the poly-
nomial R(; M) of equation 4.10. However, it is more appropriate to use the growth function
in equation 5.3 for complexity control due to two reasons. First, the use of the smoothing term
Fs( ; ) may explicitly reduce the sensitivity to outliers. In contrast, the third term of R(; M)
in equation 4.10 doesnot have such properties. As discussedabove, the reduction of sensitivity
to outliers is very important when using discriminative criteria for complexity control. Second,
the proposed growth function in equation 5.3 has a more general form, and is not restricted
to models with discrete densities. This is also a preferable feature as models with continuous
densities are widely usedin current ASRsystems.However, one disadvantageis that increasing
the growth function in equation 5.3 does not guarantee not to decreasethe original criterion,
becausethe smoothing term, Fq{ ; 7), is also dependent on the model parameters.
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As discussedin chapter 4, the majority of state-ofthe-art LVCSR systemsare trained using
either the MMI or MPEcriterion. Thereforein the following sectionstwo forms of discriminative
growth functions are proposed for the MMI and MPE criteria respectively Asthe MPE criterion
provides a closerapproximation to WERthan MMI, a growth function basedon the MPEcriterion
is introduced rst.

5.4 MPE Growth Function

The MPE growth function consideredin this thesisis

h i
G() = p(O] ) Fpd ) Fmpd™) + CFsnl; 7) (5.6)
where the smoothing term is given by
X h i
Forl; 7) = P(WjO; ) A(W;W) Fmpd") :
/-\(W;W;Az':mpef)
_ mpe
= W (5.7)

. mpe
W; W <0

where the MPEword sequenceoccupancyis in the sameform asin equation 4.22,

h i

W = P(WjO;T) A(W;W)  Fmpd") (5.8)

and A(W;W), asdiscussedin section4.2.3, is the the phone level accuracyof a word sequence,
W, againstthe referencetranscription, W. This smoothing criterion hasthe attributes discussed
in section 5.3, asthe effect of word sequenceswhose accuracy are below the averagelevel is
reduced. However, it should be noted that using this form of smoothing criterion, no data will be
removed. Instead, only the accuracycontribution from highly erroneousrecognition hypotheses
will be reduced. In addition the term outside the bracket in the MPEgrowth function, p(Oj ), is
associatedwith the likelihood of a sentenceand will further reduce the sensitivity to outliers.

Direct marginalization of the growth function in equation 5.6 may be dif cult for HMM
basedspeechrecognition systems,due to the dependencyupon latent variables making it highly
inef cient for complexity control. An approach similar to that discussedin section 3.3.4 is
therefore used. The following lower bound for the MPE growth function may be derived using
an EM-like approach. A detailed proof can be found in appendix A.

Lmpd ; 7) = logG(™) + Qumpdp, ;) jm?e(mp)e(T 7) (5.9)

where the MPE “auxiliary function” is given by *

X
Qmpd ; 7) = ™Y )logp(o j =S ) (5.10)
is

1Only the optimization of Gaussianmeansand variancesare considered.
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and "7 ) is the MPEhidden state occupancy

The calculation of the growth function lower bound requires the MPE occupancy statistics
f "1 )g. For the MPEgrowth function, the hidden state occupancy ["°{ ) in equation 5.10 is
given by [75]

jmpe( ) - jnun( g( jden( )

C P( = Sjo;w;") \’,“Vpe (5.11)

. mpe
W; w <0

The numerator and denominator occupanciesare given by
X

Py = PO ESIowWT) @ (T 0
W
X

ONS P( = §j0iw;7) [P < 0): (5.12)
w

A detailed derivation of the above statistics may be found in appendix A. It is interesting to
comparethe MPE occupancyderived from the growth function, given in equation 5.11, with the
standard form usedin LVCSRMPEtraining [93] given in equation 4.20 and the smoothing term
in equation 4.24. Combining thesetwo gives

jmpe( ) = jnurrt g< jden( )
E P( = SjO;W;") \';Pe (5.13)

. mpe
W; w <0

where a constantE > 0 is empirically tuned. Thesetwo forms of MPE occupancyare equivalent
to one another when E = C. However, the two smoothing terms servevery different purposes.
The smoothing term in the standard MPE occupancy in equation 5.13, ensuresa stable con-
vergenceduring training, whereasthe smoothing term derived from the growth function helps
reduce the sensitivity to outliers sentenceswith high error rates.

The following lower bound marginalization is then usedfor complexity control.
z
M = argmax  exp Lmpd ; ) p( jM)d (5.14)

Although the dependencyupon latent variables hasbeenremoved for the growth function lower
bound, the marginalization in equation 5.14 is still non-trivial. To solve this problem, the inte-
gral in equation 5.14 may be computed using approximation schemesfor Bayesianevidence as
discussedin chapter 3. Asthe BIC based rst order approximation can not count for different
forms of model parameters, the second order Laplace'sapproximation is used to compute the
growth function marginalization.

The growth function lower bound in equation 5.9 has a similar form to the log-likelihood
bound in equation 3.7. Both may be expressedas the value of the underlying objective func-
tion at the current parameter estimate, ~, plus a secondterm that is related to the difference in
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auxiliary functions. In the samefashion asthe log-likelihood bound, for ef ciency multiple com-
plexity con gurations may make use of a single set of statistics. In this case,the only term that
will determine the rank-ordering of the systemswill be the MPE auxiliary function, Qmpd ; 7).
When determining the number of components, for example, suf cient statistics for systemswith
fewer components per state may be obtained by merging appropriate statistics together from
a more complex system. The form of statistic merging used in this work is discussedin more
detail in the later sections. One important aspectfor both this discriminative bound and the
log-likelihood bound is the accuracy of the derived statistics. As the differences between the
model used to derive the statistics and the model being considered increases,the bound may
becomeincreasingly loose and the performance ranking increasingly poor. To reduce this effect
an upper limit on the level of structural mutation, or change of model complexity, allowed from
the systemusedto derive the statistics may be enforced. This is discussedin more detail in the
following sections.

Another issuewith using growth functions for complexity control is the setting of the regular-
ization constant C. The setting of this constant hastwo effects. First, it controls the contribution
from the smoothing term of the MPE occupancy given in equation 5.11, to reduce the sensitivity
to outliers. Second,the setting of C may affect the selection of the optimal con guration, and
the speed of structural mutation from the current model. In a similar fashion asin standard
MPE training, in order to ensure the stability during model complexity optimization, this con-
stant needsto be appropriately set. For all the experimentsin this paper the value of C was set
to 2.0 and not altered. This is also a standard value usedfor MPEtraining [93].

55 MMI Growth Function

Although the MMI criterion is an approximation to the classi cation error on a sentencelevel,
it is still interesting to nd an appropriate form of MMI growth function for complexity control.

The MMI growth function consideredhere is given by
h i
G() = pOj ) Fam( ) Fmm(7) + CFsnl; 7) (5.15)

where the smoothing criterion Fgo{ ; 7) is given by
Fsn(; 7) = P(WJO;7) (5.16)

This smoothing function is equivalent to the MMI criterion evaluated at the current parameter
estimates™. Similar to the smoothing criterion for the MPEgrowth function in equation 5.7, this
form of Fso{ ; 7) also hasthe attributes discussedin section 5.3. Asdiscussedin section4.2.1,
the MMI criterion, or the posterior probability of the referencetranscription, is an approximation
to the sentenceerror rate. Hence utteranceswith higher error rates on a sentencelevel may be
penalized using this form of smoothing criterion. Furthermore, the term outside the bracket
in the MMI growth function, p(Oj ), is associatedwith the likelihood of a sentenceand may
further reduce such sensitivity.
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Like the MPEgrowth function in section 5.4, a direct marginalization of the growth function
in equation 5.15 may be dif cult for HMMs, due to the dependencyupon latent variables. Again
for ef ciency a lower bound basedapproach similar to that discussedin section 3.3.4 is used.
Using an EM-like approach, a lower bound for the MMI growth function may be given by

Lo D) = logg(") + 2omlp ) _m(rgi“”;“ ) (5.17)
ol

where the MMI “auxiliary” function is given by 2

X .
Qmm(; 7) = "™ )logp(o j =§j; ) (5.18)
is

and jmm( ) is the MMI hidden state occupancy A detailed proof may be found in appendix B.

It is interesting that the MMI growth function bound has some similar featuresto those of
the MPE growth function bound discussedin section 5.4. First, the MMI statistics, f jmmt )g,
required to compute the growth function lower bound in equation 5.17, are closely related to
the standard form of statisticsusedfor MMI training. For the MMI growth function, the statistics

™M) in equation 5.10 is given by [ 75]
mmey = ) )+ CP( = §j0;0) (5.19)

where the numerator and denominator occupanciesare in the sameform asin equation 4.19.

SjO;W; ")
Sjj0; ") (5.20)

Py =P
ey = Py

A detailed derivation of the above statistics may be found in appendix B. The standard form of
MMI statistics [124, 93] for discriminative training is given in equation 4.20 and the smoothing
term in equation 4.24. This may be written as

M) = M) () + EP( = §jj057) (5.21)

where the smoothing constantE > 0is empirically tuned. Thesetwo forms of MMI occupancies
are equivalent to one another when E = C. The secondsimilarity between the MMI and MPE
growth function lower bounds is that multiple con gurations may make use of a single set of
statistics for greater ef ciency. In this case,the only term that affects model selection will be
the MMI auxiliary function, Qmm(; 7). In order to obtain a good performance ranking, it is
important to tighten the bound by using reliable statistics. Third, the setting of the smoothing
constant C is also an issue for the MMI growth function. The setting of C has the sametwo
effects as discussedin section 5.4 for the MPE growth function. Again in common with the
standard C setting usedfor MMI training, the value of C was always setto 2.0 for MMI growth
functions in the experiments.

2Here only Gaussianmeansand variancesare considered.
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The following lower bound marginalization is then usedfor complexity control.
z

M = argmax  exp Lam(; 7) p( JM )d (5.22)

The marginalization in equation 5.22 may be dif cult for HMMs in many practical situations,
though the dependencyupon latent variables has beenremoved. In order to compute the inte-
gral more ef ciently , Laplace'sapproximation may be used, as with the marginalization of the
ML bound in equation 3.11, and the MPE growth function bound in equation 5.14.

5.6 Implementation Issues

In this section several implementation issueswhen using marginalized discriminative growth
functions for model complexity control are discussed.Theseissuesare important and may affect
the performancesof complexity controlled systems.

5.6.1 Sharing Statistics among Model Structures

For LVCSR systemsexhaustively accumulating the suf cient statistics for each possible system
is highly inef cient. When determining the number of Gaussiancomponentsin a state, it is
impractical to obtain new statistics for eachnumber of components, evenif the state alignments
are xed. To handle this problem, as discussedin sections3.3.4, 5.4 and 5.5, the same set of
statistics may be used for a range of model structures. Asit is only possibleto merge statistics,
the number of components, or other complexity control attributes, can only be reduced. For
this merging process,the statistics from a pair of Gaussiansmust be combined to form a single
Gaussian.This is a standard problem and is solved by simply combining the appropriate rst, or
second, order statistics and the occupancycounts. For example, when joining componentj and
k to yield |, the MPE statistics are merged as

O = MO+ PO (529
This sameholds for the rst and secondorder statistics.
X
P )o ™ )o + {0 )o

X
P )o 07 jmpe( Yo 07 + P )o 07 (5.24)

Similar merging will also be performed for the ML statistics of the log-likelihood lower-bound
discussedin section 3.3.4, and the MMI statistics for the MMI growth function in section 5.5.
In the majority of the casesconsideredin this work, the mean and covariance of merged com-
ponent | are estimated in an ML fashion using the merged ML statistics. However, if the mean
and covariance of component| are discriminatively updated, the merged suf cient MPE or MMI
statistics may be required. This is an interesting scenario where a consistently discriminative
optimization of both model complexity and parametersis performed. This casewill be further
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discussedand investigated in the experiments of following chapters. All possible pairs of com-
ponent merging are considered. The pair with the largest increasein the objective function is
selected.

5.6.2 Constrained Maximum Structural Mutation

[ Initial model ]

Accumulating
statistics f ™ ); j( )g
-
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Figure 5.1 Selectinghe numberof Gaussiancomponentger state usingmarginalized MPEgrowth functions
via componentmerging

For ef ciency, the lower bound of a discriminative growth function, or log-likelihood, is de-
rived from the statistics of a single system as discussedin sections 3.3.4, 5.4 and 5.5. As
discussedin section 5.4, when the magnitude of the structural mutation from the current model
increases,the reliability of the xed statistics decreases,and looser the bound. This may lead
to a poor selection of model complexity. To overcome this problem, the whole structural opti-
mization processcan be performed in an iterative mode. An overview of the algorithm, when
using marginalized MPE growth functions to selectthe number of Gaussiansper state, is shown
in gure 5.1. A maximum mutation limit in the model complexity is imposed. For instance,
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the maximum number of Gaussiansthat may be removed from any state per iteration is con-
strained. In this work the maximum mutation was set to be 2 for all experiments. Between
iterations of structural optimization, model parameterswere re-estimated using ML training to
obtain improved statistics. Slightly modifying the procedureillustrated in gure 5.1, it may also
be applied to BIC. This requires that the growth function integral in the third box to be replaced
with the BIC metric in equation 3.3, and the lower bound in equation 3.7 is used to approxi-
mate the log-likelihood. In all experiments a total of four iterations of complexity control were
performed for both BIC and marginalized growth function systems.For multiple HLDA systems,
varying the number of useful dimensions per Gaussianwill have a far lessimpact on component
alignments, comparedwith varying the number Gaussiangper state. Thusthe suf cient statistics
may be assumedto be the samefor all possiblenumber of retained dimensionsand no constraint
on the complexity variation is required.

5.6.3 Hessian Approximation for HLDA Systems

The lower bound marginalization for discriminative growth functions in equation 5.9 and 5.17,
and the log-likelihood in equation 3.11 may be approximated via Laplace'sapproximation. This
approximation requires the storageof a Hessianmatrix with respectto all the model parameters.
However, becausethe number of model parametersin an LVCSR systemcan be in the millions,
the storage and calculation of the Hessianas a full matrix is impractical. To solve this problem,
assumptions can be made about the structure of the Hessian. In particular, by assuming that
the Hessianhas a block diagonal structure [71, 70, 75] the problem becomestractable. This
form of Hessianapproximation can be usedfor both the discriminative and log-likelihood lower
bounds. The exactform of the approximated Hessiandependson that of the lower bound being
considered. Let

o = Alig (5.25)

denote the projected feature after the HLDA transform, A (i), to which component] is assigned.
Let (), 0) denote the component meansand covariancesin the transformed space. Take the
MPE lower bound in equation 5.9 asan example. The MPE auxiliary function in equation 5.10
may be expressedas
1X 2 -
Qmpd: D) = = ™() log A" 1og @

2.
Iy

o T WL @ (5.26)
Each Gaussiancomponent is assumedto be independent of all others. Furthermore, within

each Gaussiancomponent, the mean, variance and each row of the HLDA transforms are also
assumedindependent of eachother. For the integral over the growth function's lower bound in
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equation 5.14, the log-determinant of the Hessianmatrix may be approximated as

X @Qmpe(; ) + X @Qmpe(; )

log 1 ?Qmpd ; 7) log log -
» @ai(r) J_ @ O
X .o~
+  log @QLGEJ)) : (5.27)
j @
The secondorder differentials are derived from equation 5.26 and yield [ 75].
@Qmpéi D) _ 1— _mpe( ) (G) 1
@ O 2 !
.~ X . .
@Qmpe(_’ ) _ 1 m Y odiag o) () o) @) 0 G) 3 (i) 2
@ () 2 ]
.~ (1) a(r)>
@Qmpe((r; ) - Ci G 5 X jmpe() G (i) (5.28)
@ai A(r) j2r;

wheye ci(r) denotesthe cofactor vector associatedwith row ai(r) and the transform speci ¢ statis-
tics G are accumulated on a row by row basis. Take the useful dimensions for example,

this gives
N (DS Q) (5.29)

where again the transformed component covariance, (j), is constrained to be diagonal asin
section2.4.3, and i(j )2 isthe ith dimensional variance elementin the transformed spacegiven by
A AsG() is accumulated using statistics from the original feature-space,there is no need
to perform statistic merging as described in section 5.6.1 for multiple Gaussiancomponents.
The same statistics can be used to generate a range of sizesof useful dimension. Note that
this assumesthat the assignment of component to transform is xed, which is the situation

consideredin this work.

5.7 Summary

The majority of current complexity control schemescan be describedwithin the maximum like-
lihood paradigm. Unfortunately, the model correctnessassumption made in these standard
techniques may be too strong for current speechrecognition systemsusing HMMs. Henceit is
preferable to employ discriminative criteria for complexity control. Thesecriteria are more di-
rectly related to the recognition error, rather than to the likelihood. In this chapteranovel model
complexity control technique has been proposed, using the marginalization of a discriminative
growth function. The discriminative growth functions investigated were closely related to the
MPE and MMI criteria, but have a reduced sensitivity to outliers utterances. For ef ciency an
EM-like approach was usedto derive tractable lower bounds of the growth functions, with the
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dependencyon latent variables removed. This lower bound was then marginalized ef ciently
using Laplace'sapproximation for complexity control.
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Discriminative Training of Linear Projections

In chapter 5, a discriminative model selection technique based on the marginalization of a
growth function was presented. Using this method the complexity control problem for systems
using linear projections such as HLDA was discussed.In this chapter, the discriminative training

of linear projection schemesis presented. First, the motivation for developing discriminative

training algorithms for linear projections is discussed. Second, previous researchon discrimi-

native training of linear transformation schemesfor speechrecognition is briey reviewed. As
the EBW algorithm may be only usedto optimize standard forms of HMM parameters, a more
general form of discriminative criteria optimization is preferred. The proposed method is based
on the optimization of a weak-senseauxiliary function. Using this method the discriminative

training of linear projection schemesis investigated. Finally someimplementations issueswhen
estimating linear projections discriminatively are also discussed.

6.1 Introduction and Motivation

For any pattern recognition task an important aspectof the problem is the derivation of a good
and compact feature representation. This representation should contain suf cient discriminant
information to minimize the classi cation error. One family of techniquesthat may be used for
this purpose is the linear projection schemesdiscussedin section 2.4. However, one limitation
with thesetechniquesis that that projections are normally trained using the ML criterion. Asdis-
cussedin chapter 4, an inherent model correctnessassumptionis madein ML training of current
ASRsystemsbasedon HMMs. HMMs are assumedto be the “correct” models for speechsignals.
This is untrue for current speechrecognition systemsusing HMMs, as explained in section 4.1.
When the correlation betweenthe WERand likelihood is weak, merely increasing the likelihood
on the observed, or unseen data, does not necessarilyimprove the recognition performance.
Henceit is preferable to employ discriminative criteria, which are more explicitly related to the
recognition error, to estimate linear projections. The ultimate aim of linear projection schemes
for speechrecognition is to obtain a good feature representation that minimizes the WER.
Most state-of-the-art LVCSR systemsare built using discriminative training techniques| 124,
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51, 23, 64]. Asdiscussedin section 4.3.4, gradient descentbasenumerical techniques are ex-
pensivefor LVCSRtraining and have dif culty guaranteeing convergence. The commonly used
EBW algorithm provides an iterative, ef cient, EM-like optimization for discriminative training
criteria. However, using the EBW algorithm only standard forms of HMM parametersmay be op-
timized [84, 112, 124, 93]. Theseinclude state transitions, Gaussiancomponent priors, means
and covariances. Since the EBW algorithm may not be directly usedto estimate linear projec-
tions, it is useful to have a more generalapproach, to discriminatively optimize avariety of forms
of model parametersincluding linear projections. The weak-senseauxiliary function described
in section 4.3.2 is one such approach. It provides a exible and heuristic derivation of the EBV
algorithm, and may be generalizedto a variety of forms of parameters[ 115, 108]. Hence,rather
than using gradient descenttechniquesas proposedin [ 134], weak-senseauxiliary functions are
usedin this chapter for the discriminative estimation of linear projections.

6.2 Previous Work for Speech Recognition

In recentyearsthere hasbeenactive researchon discriminative training of linear transformation
schemesfor speechrecognition. In particular the discriminative training of linear transforma-
tions have been studied for a feature projection and diagonalizing purpose. Using a discrimi-
native criterion, multiple feature spacetransformations were investigated in [ 94]. However the
training of these linear transformations and other HMM parameters was not integrated into a
consistentdiscriminative framework. After the estimation of the transforms, the other HMM pa-
rameters were still trained using the ML criterion. More importantly the likelihood computation
acrossdifferent subspacesassociatedwith eachlinear transformation was not directly compara-
ble in [94]. This was becausethe Jacobiannormalization term was ignored for eachtransform.
Recently a novel linear feature projection, called fMPE was proposedin [92]. The fMPE trans-
form operates by projecting from a very high dimensional, sparsefeature spacederived from
Gaussianposteriors to the normal feature spaceand adding the projected posteriors to the stan-
dard features. A global non-square matrix is trained to maximize the MPE criterion via gradient
descentbasednumerical methods. Signi cant WERimprovement have beenreported on LVCSR
tasks.

Another related area has been focused on the discriminative training of linear transforma-
tions for speakernormalization and adaptation [48, 80, 115, 116, 20]. Although these tech-
niques are used for a very different purpose from the projection schemesconsideredhere, some
of them may be expressedas feature spacelinear transformations. The optimization of them
may be closely related to those of linear projections [ 30, 31, 34]. This area of researchconsid-
ers the estimation of MLLR transforms using a discriminative criterion, instead of ML training
as describedin section 2.5. Thesetransforms may then be used for speakeradaptive training
(SAT). During the discriminative training of a SAT system,the common adopted approachis a
“hybrid” procedure. This idea is to use the EBW algorithm to discriminatively update standard
HMM parameters, whilst the previously ML estimated MLLR transforms are xed [51, 23]. In



contrast, when using discriminative criteria to estimate MLLR transforms, the entire training is
in a consistentdiscriminative framework. In [20, 115] using a consistent optimization of both
the MLLR transforms and HMM parameters of SAT systems,WER improvements were obtained
over the “hybrid” approach on LVCSRtasks.

6.3 Discriminative Training of Projection Schemes

In this section the estimation of linear projections are presented using weak-senseauxiliary
functions presentedin section 4.3.2. As most state-of-the-art LVCSR systemsare trained using
the MPEcriterion [51, 23, 64], the MPEtraining of linear projection schemesis the focus of this
section.

6.3.1 MPE Training of multiple HLDA

The relationship between HLDA and multiple HLDA was discussedin section 2.4.3. HLDA is
subsumedby multiple HLDA as a special casewhen a global subspaceis used. Hence the MPE
training of multiple HLDA projections are be considered here. The approach adopted here is to
examine the weak-senseauxiliary function's gradient against parameters of HLDA projections.

Using the general form of smoothing term in equation 4.28, the weak-senseauxiliary func-
tion in equation 4.25 may be expressedas

Q(; ") = X M) () logp(o ] = S )
i;x 7
+ Dj p(oj o= §j;7)logp(oj o= Sj; )do: (6.1)
i
Let A (") denote the rth HLDA transform. the gradient of the weak-senseauxiliary function in
equation 6.1 around the current parameter estimate, ~, with respectto ai(r), the ith row of A ("),
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Note that the model structure, M, of the weak-senseauxiliary function in equation 4.25 is
omitted for clarity, asonly the optimization of model parametersis considered.

In order to further simplify the above, the gradient of the frame Gaussianlog likelihood,
logp(o j = §j; ), againstrows of HLDA transforms is required. Let ci(r) denote the cofactor
vector of ai(r) L, and i(j) the variance elements of component j in the projected space. For

! Assumethe HLDA transform rows have been re-ordered so that the nuisance dimensions always correspond to
the lastn  prows.



multiple HLDA systems,the log likelihood of an observation, o , given a Gaussiancomponent |
that is assignedto projection r, j 2 r, may be written as[31, 34]
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where (9") denotesthe global covariance for transforms classr. Differentiating equation 6.3

with respectto a'” yields
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Substituting the gradient in equation 6.4 into equation 6.2 gives
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where the suf cient discriminative statistics, G ("), are accumulated for eachtransform classon
arow by row basis
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and ) is the discriminatively updated full covariance using the EBW algorithm in equa-
tion 4.16, and (9") the transform specic global covariance updated using the statistics of
all componentswithin classr. A detailed derivation of the above may be found in appendix C.

The aim is to zero the weak sensefunction's gradient in equation 6.5 to nd the optimal
estimate for a"”). This yields

3
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To solve the above equation, the iterative optimization scheme proposed in [31] for the ML
optimization of semi-tied covariance (STC) transforms may be used. For the STC system, an
equation of the sameform is solved, exceptthat the ML statistics are used. This givesan iterative

MPE update of HLDA transform on a row by row basis.
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Like standard forms of HMM parameters, an important issuein discriminative training of
HLDA projections is the setting of the smoothing constantD;. This constant is used both in the
iterative update formula in equation 6.8, and the secondorder statistics, G in equation 6.6.
During training this constant ensuresa stable convergenceand should be appropriately set. For
all the experiments the standard form of D; discussedin section4.3.1.4, D; = E jde”( ),
wasusedand E was always setas2.0. Thisis also a setting usedfor MPEtraining of other HMM
parameters[93]. If this form of D; is not still big enoughto ensurethe updated full covariances
are positive de nite, then the minimum E which satis es this condition will be used instead.
Sucha E may be ef ciently selectedby examining if the updated covarianceis positive de nite
via Choleskydecompaosition.

6.3.2 MPE Training of multiple LDA

As discussedin section 2.4.3 the only difference between multiple HLDA and multiple LDA is
whether the nuisance subspaceparametersare tied on alocal, or a global level. Basedon this, a
slightly modi ed form of the gradient in equation 6.5, may be applicable to multiple LDA. This

is given by
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@D((rf) ) -4 ( jnurT‘( ) jden( )) + DJ 5 (r|) 5 &i(r)G(r,l)
@i, _- jor j2r & '€
2 3
- 7 X X e._(r)> .
@( ) ) -4 ( jnurr( ) jdel‘l( )) + DJ 5 i a‘i(l‘)K (1) (69)
@) - . alNel
i;i>p -~ is j i Vi
where G(") is the same as equation 6.6 for all useful dimensions. K () is accumulated for
nuisance dimensions over all Gaussians,
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i
where the global covariance (9 is xed given the training data and does not require an dis-
criminative update.

Unfortunately individual projections can not be independently optimized for multiple LDA,
becausethe transform parametersin the nuisance subspaceis globally tied. Hencethe ef cient
row by row optimization, given in equation 6.8, may not be used for multiple LDA. To handle
this problem, the approach proposedhere is to use a gradient descentbasedoptimization given
in equation 4.34. This approach requires the following secondorder information
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Using the transform rows of useful dimensionsfor an example, the update formula is given by
2 33
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where the learning rate requires empirical tuning to ensure a stable convergence.

Although an MPE update of multiple LDA has been given, HLDA and multiple HLDA sys-
tems are the focus of the experiments for two main reasons: First, numerical methods can be
expensiveand dif cult to guarantee convergencein practice, asdiscussedin section 4.3.4,. Sec-
ond, multiple HLDA can also provide a more exible model structural con guration, by locally
varying the retained subspacedimensionality, as explained in section 2.4.3. In [70, 72] WER
improvements were reported by locally optimizing the number of useful dimensions on LVCSR
tasks. Furthermore, in general multiple HLDA was found to outperform multiple LDA in ML
training stagefor LVCSRin earlier research[ 34]. Therefore the discriminative training of HLDA
and multiple HLDA systemsis the focus of this work.

6.4 Implementation Issues

In this sectionimplementation issuesfor discriminative training of linear projection schemesare
discussed.Theseissuesmay affect the performance of systemsusing linear projections, and are
therefore important.

6.4.1 Variance Flooring

For speechrecognition systemsusing HMMs, the re-estimated Gaussiancovariancesare often
oored to ensurethey are positive and de nite. For systemsusing diagonal covarianceswith a
standard feature front-end or a global feature projection, the variance ooring problem may be
straightforward. The simple approach describedin [131] may be used, by setting the variance
oor to be a small portion of the global covariance, or average state covariance [51]. In this
casethe ooring is only consideredin one global feature space. However the variance ooring
for systemsusing multiple projections, suchas multiple HLDA, is more complicated. This is due
to the presenceof multiple feature subspaces.To handle this problem, the solution adopted in
this work is to use a global minimum variance oor, f , for all subspaces.The ith dimension of
f is given by

n 0
fi = argmin a” al” (6.13)

where isthe averagestate covariancein the original feature spaceand the variance oor scale
is commonly setto 0.01.



6.4.2 Setting of I-smoothing

In order to obtain a more robust parameter estimatesduring MPE training, I-smoothing of the
MPE numerator statistics may be used, as discussedin section 4.3.3. The ML or MMI statistics
may be used as priors for Gaussianparameters. A key issuewith this approach is the setting of
the constant '. From a MAP perspective, this constant controls how much the parameter esti-
mate will back-off to the ML or MMI statistics basedprior. In [93] a commonly used setting for
HMM systemswith diagonal covariancesis ' = 50. This setting is also usedin all experiments
for estimating linear projections. Unlessotherwise stated the I-smoothing statistics will be ML
basedin all experiments.

6.4.3 Use of Lattices

In discriminative training, lattices are commonly usedto representthe model's confusion over
the data. Ideally individual models should be usedto generatethe matched lattices for training.

However for LVCSR systemsthis is infeasible. The commonly used approach is to use one set
of HMMs to generate word lattices by recognizing the training data. Then they will be further

marked with phone alignment and kept xed for training. This is the “exact match” approach
describedin [124]. One issuewith this approach is whether it is appropriate to use the same
set of lattices for training systems,which are very different from the one usedto generatethese
lattices. In [ 124] WERimprovements were reported by re-generating triphone model alignment
in the intermediate stageof MMI training for an LVCSRtask. This issuealso existswith systems
using multiple projections, becausethe training lattices are normally generatedby a systemusing
the standard front-end, or a global ML trained projection. Optimizing the projections using a
discriminative criterion may further enlarge the mismatch between the model set and lattices.
In this work, one single set of training lattices are used initially for estimating the projections.
Then this issueis investigated by using the matched lattices for the subsequentMPE training of
individual systems.

6.4.4 Integrated Structural and Parametric Optimization

In general a machine learning problem may be partitioned into two distinct stages. In the rst

stagethe optimal model structural con guration is selectedusing a complexity control criterion.

In the secondstage parametersare estimated using sometraining criterion after the appropriate
complexity is determined. The underlying criteria used for these two different stagesmay not
necessarilybe the sameone. In chapter 5 model complexity was determined in a discriminative
fashion. However in many practical situations, model parameters are consideredto be trained
using the ML criterion. Hence there may be a mis-match between the criteria used for model
selection and parameter estimation. To handle this problem, the model selection and parameter
estimation may be integrated into a consistentdiscriminative learning process. When selecting
the number of Gaussiancomponents per state, for instance, component means and variances



are considered to be discriminatively estimated for each candidate model structure. Similarly
for multiple HLDA systems,when selecting the number of useful dimensionsfor eachprojection,
the HLDA projections and other model parameters are also considered to be discriminatively
updated.

6.5 Summary

In this chapter the discriminative training of linear projection schemesis investigated using a
weak-senseauxiliary function. This weak-senseauxiliary function has a general form and may
be applied to the discriminative optimization of a variety of forms of model parameters. Using
this approach, the discriminative training algorithms for HLDA, multiple HLDA and multiple LDA
systemswere presented. A number of implementation issueswhen estimating linear projections
using discriminative criteria were alsodiscussed.Experimental results for discriminative training
of linear projections are presentedlater in chapter 8.
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Experimentson Model ComplexityControl

In this chapter experimental results are presentedfor model complexity control using marginal-
ized discriminative growth functions and standard model selection techniques. In the rst part
of this chapter, a seriesof complexity control experiments are conducted on an LVCSR task for
conversational telephone speech(CTS) data. Initially complexity control schemesare used to
optimize multiple model complexity attributes on a “global” level. This restricts the complexity
of different part of the model to be the same, and allows all possible systemsto be explicitly
trained and evaluated. The correlation with WER and the performance ranking error are then
examined for a variety of complexity control techniques. Theseare followed by optimizing mul-
tiple model complexity attributes on a local level. Then the interaction with other techniquesis
investigated. The generalization to two other LVCSRtasksis also investigated. Finally, the per-
formancesof complexity controlled systemsare evaluated in a state-of-the-art 10 time real-time
LVCSRsystemfor a CTStranscription task.

7.1 Experiments on CTSEnglish

This section presentscomplexity control experiments for CTSEnglish data. First, the experimen-
tal setupsand conditions of the experimentsis brie y described. Second,experimental results of
model complexity control on a “global” level is presentedon an LVCSRtask. Issueswith existing
likelihood basedcomplexity control schemesare also discussed.Finally, complexity control on a
local level are performed on four different LVCSR setups, where multiple complexity attributes
are allowed to vary locally acrossdifferent parts of the system.

7.1.1 Summary of Experimental Setups

In order to fully investigate the performances of complexity control techniques, ve CTSEn-
glish training con gurations were used. The rst is a full systemusing a 297 hour training set
h5etrain03 consisting of 4800 Switchboard I, 228 Call Home English (CHE) and 418 Linguistic
Data Consortium (LDC) Cellular conversation sides[23]. Three subsetsof this were also used:
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46 hour minitrain04 68 hour h5etrain00sub 76 hour h5etrain03sub 148 hour meditrain04 All
subsetswere selectedto have the samegender and channel condition distribution of the full set.
Thetotal number of training speakersin the full setis approximately 8 times asthe 46 hour mini-
train04, 4 times the 76 hour h5etrain03suband twice the 148 hour subsetmeditrain04 Note that
eachsubsetis hierarchically subsumedby the other larger sets. The baselinefeature vector used
for all projections was a 52-dimensional PLPfeature extracted by appending derivatives up to
the third order and then normalized using VTLN, mean and variance normalization on a conver-
sation side basis. For the baselinecon guration this 52-dimensional feature vector was projected
down to 39 dimensions using one or more HLDA projections. For multiple HLDA systemsthe
silence Gaussianswere assignedto one transform class, while the speechGaussianswere split
into 64 distinct classes.The component assignmentused a top-down splitting procedure, based
on distance measureof Gaussiancomponentsin the acoustic space. Continuous density, mixture
of Gaussianscross-wordtriphone, genderindependent HMM systemswere used. After phonetic
decision tree basedtying, there are approximately 3k speechstatesfor the 46 hour subset,and
6k statesfor the other four training sets. Basic features of these ve setupsare presented in
table 7.1.

Corpus Size | #States
minitrain04 46 hr 3k
h5etrainO0sub|| 68 hr 6k
h5etrain03sub|| 76 hr 6k
meditrain04 | 148 hr 6k
h5etrain03 | 297 hr 6k

Table 7.1 Training setupsusedfor experimentson CTSEnglishdata

Asdiscussedin chapters4 and 5, to obtain suf cient statistics for discriminative training, or
complexity control, lattices are normally used for LVCSR tasks. The training data lattices used
to obtain the statistics for complexity control experiments were generated using the baseline
39-dimensional global HLDA systems.Theselattices were further marked with model alignment
and kept xed for complexity control using marginalized discriminative growth functions. This
was the “exact match” approach describedin [124]. For evaluation a 3 hour devO1suhbwas used.
The test set contains 20 Switchboard | and 20 Switchboard Il phase Il conversation sides of
the NIST LVCSR evaluation data in 2000 and 1998 respectively and another 19 Linguistic Data
Consortium (LDC) Cellular sides. The audio data was manually segmented. The test setwas also
usedasthe held-out data in the experiments. The samefront-end processingand normalization
schemeswere also used. Unless otherwise stated ML training was used for all systems. All
recognition experiments useda 58k word trigram language model.



7.1.2 Experiments on Global Complexity Control

As discussedin section 3.1, word error rate is the most commonly used performance measure-
ment for speechrecognition systems.An ideal complexity control schemeshould yield the same
ranking as the WER for all systemsbeing considered. Hence, one natural way of evaluating a
complexity control criterion is to examine its correlation with the WER. This requires a variety
of systemsto be explicitly built and evaluated, which is infeasible for highly complex LVCSR
systems. However, if the complexity attributes considered are optimized on a global level, the
permutation of all possible structural con gurations can be far more tractable. This is the case
consideredin the experiments of this section. Existing complexity control schemesare evaluated
on an LVCSRtask for CTSEnglish data. Since complexity attributes are optimized on a global
level, all possible systemsmay be explicitly trained and evaluated. This can give an intuitive

feel of how strongly the underlying complexity control schemeis correlated with the error rate.
The 68 hour CTS English corpus, h5etrainO0Osubas describedin section 7.1.1, was used as the
training set. Two complexity attributes of an HLDA systemwith a single projection were opti-
mized globally: the number of Gaussiancomponents per state from the setf 12; 16; 24g; and the
number of useful dimensionsin the range f 28;:::; 52g. The permutation of thesetwo attributes
led to atotal of 75 different con gurations.

7.1.2.1 Correlation Between Criteria and WER

After these 75 systemswere explicitly trained and evaluated, the correlation with WERwas ex-
amined for likelihood on held-out data rst. Asdiscussedin section 3.2, the majority of existing
complexity control techniquesinherently assumea strong correlation between the likelihood on
unseendata and WER. This correlation between likelihood and WER for all the 75 systemsis
shownin gure 7.1.
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Figure 7.1 Held out data likelihood vs. WERfor devOlsulon CTSENglish68 hour h5etrainO0sub

Although the gure illustrates a very general trend that error rate decreasesasthe held-out
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data likelihood increases,the preciseordering of systemsis poor. Noticeably, this schemefavored
the most complex system. The best model structure predicted had 24 Gaussiansper state and
52 useful dimensions. However, the performance of this systemis signi cantly worse than the
actual best systemby 0.6% absolute. For these 75 HLDA systems,the correlation between the
likelihood on held-out data and WER shown in 7.1 is quite weak. This weaknessindicates that
the model correctnessassumption of standard complexity control schemeswithin the likelihood
basedframework may be too strong for current speechrecognition systemsusing HMMs.
Despitethis limitation, it is still useful to examine the performancesof approximation schemes

for the Bayesianevidenceintegral. Theseshould be closely related to the held-out data likeli-
hood. As discussedin section 3.3.1, using BIC the approximated Bayesianevidenceis only a
function of the log likelihood and number of model parameters. The training data log-likelihood
is expectedto monotonically increaseasthe number of model parametersincreases,irrespective
of the form of the parametersbeing considered.
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Figure 7.2 Training data log likelihood vs. the number of parameterson CTSEnglish68 hour h5etrainO0sub

Unfortunately, in this setup such a relationship doesnot exist, asis shown in gure 7.2. In
the gure there are three distinct lines associatedwith the 12, 16 and 24 component systems.
On each of the three lines the training data log-likelihood increasesas the number of useful
dimensions is increased. However, acrossthese three lines the log likelihood is not increasing
monotonically asthe systembecomesmore complex. In the gure eachlog likelihood value in
the gure may correspond up to three model structures, each with different complexity. The
sameissuestill existsevenif the penalization coef cient, , of the BIC criterion in equation 3.3,
is nely tuned. This indicates that the log-likelihood contribution from different forms of model
parameters, in this casethe number of components and dimensions, is not the same. Hence,
BIC may have lead to a poor Evidenceapproximation when multiple complexity attributes were
optimized simultaneously.

Comparedwith the likelihood, discriminative criteria are more closely related to the recog-
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Figure 7.3 MMI criterion on Held out data vs. WERfor devOlsulon CTSEnglish68 hour h5etrainO0sub

nition error. Therefore the correlation betweenthese criteria and WERshould be stronger. How-
ever discriminative criteria may not be directly used for complexity control. As discussedin
section 5.2, this is due to the sensitivity to outliers utterances. Here the MMI criterion was taken
as an example. Figure 7.3 showsthe MMI criterion values on held-out data against WER. The
correlation between the MMI criterion and WER was quite poor. This may have been caused
two issues. First, the average segmentlength may have an impact on the held-out data MMI
scores. Asthe MMI criterion is related to the sentenceerror rate, short sentencesmay tend to
be penalized more if they contain any wrong words. Second, more importantly, as discussedin
section 5.2, the existenceof outliers can heavily in uence the value of the MMI criterion. These
outliers are sentenceswith very low posteriors. This is the motivation of using discriminative
growth functions for complexity control. As discussedin section 5.3, a discriminative growth
function should have reduced sensitivities to outliers whilst still retaining someattributes of the
original criterion.

Figure 7.4 shows the correlation between the marginalized MMI growth function in equa-
tion 5.22 and the WER.Asdiscussedin section 5.6, for ef ciency three setsof MMI statisticswere
generated by standard 39 dimensional systemswith 12, 16 or 24 components per state respec-
tively. Thesewere shared among systemsthat had the same number of Gaussians. The block
diagonal Hessian approximation described in section 5.6.3 was used to compute the growth
function's lower bound marginalization in equation 5.22. In the experiments the smoothing
constant, C = 2:0, was xed. Evenunder these approximations, in gure 7.4 a strong correla-
tion with the WERs still observedwith the WER. The best systemselectedwas only 0.1%-0.2%
absolute worse than the actual bestone.
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7.1.2.2 Recognition Performance Ranking Error
A good complexity control schemeshould rank all the systemsin a way that matchesthe ranking
of their recognition performances. A measureof the distance between the predicted and correct
ranking is required to evaluate various complexity control schemes.In this work, an empirical
ranking error metric is proposedas

" (weiwe) jwe wej i ]

RankEr% = - - —
N maxgfiwe wejg maxfii jjg

(7.1)

where fwes;::;;we; i, wey g denotes a WER ranking prediction, for all N possible systems
being considered, according to a particular complexity control scheme.Let we; denote the WER
of the systemranked asthe ith, jwe; wegj the WER difference between systemi and j, and
ji ]jthe position shift between them. The binary function (wej;we ) will betrue, only if the
ranking betweenwe; and wej is incorrect and the difference in WERis signi cant (above a given
WERthreshold. This hasa good intuitive feel, as penalizing systemsthat differ only slightly in
error rate seemsinappropriate. The WER difference between a pair of systemsthat falls below
the WERthreshold may be ignored. Hencethe ranking error may be related to the total number
of position shifts, weighted by WER differences between all mis-ranked pairs of systemsif the
differencesare signi cant. The normalization term in equation 7.1 guaranteesthe ranking error
will be positive and lessthan one.

Table 7.2 showsthe error of the predicted recognition performance ranking using the metric
given in equation 7.1. Three different WERthresholds were also usedto determine whether the
mistaking between two systemsis considered. The rst line in the table servesas a baseline.
It ranks the systemsaccording to the training data likelihood, which simply yields an ordering
on systemcomplexity with no penalization. Using the likelihood on held-out data, the ranking
error is still fairly high although much improvements were obtained over using the training data



likelihood.

Complexity WERthreshold
Control 00 | 01 | 02
Training Likelihood | 22.08 | 22.08 | 21.59
Held-out Likelihood | 8.94 | 8.89 | 8.19
BIC( = 1.0) 48.43 | 48.36 | 47.35

BIC( = 2.0) 55.68 | 55.68 | 55.42
Held-out MMI 37.40 | 37.40 | 35.91
MMI GFunc 474 | 464 | 3.10

Table 7.2 Performanceranking prediction error (%) for devOlsulon CTSEnglish68 hour h5etrain00sub

The table also showsthe ranking errors for approximated Bayesianevidenceusing BIC, which
should be closely related to the held-out data likelihood. As previously described there are
issueswith BIC when controlling multiple complexity attributes. Hence, using both standard
BIC and penalized BIC( = 2:0), the ranking scoreswere poor. The nal line of the table shows
the ranking performance using the held-out MMI criterion. The poor performance of the MMI
criterion is clearly shown. The best performance was obtained using the marginalized MMI
growth function and the scoreis related to gure 7.4. Asexpected,if the WERthreshold in the
table is increasedthen the ranking error decreasesthough the general ranking of all complexity
control schemesremains about the same.

7.1.2.3 Discussion

In this section a few complexity control schemeswere evaluated by examining the correlation
with WER and the performance ranking error. Two model complexity attributes of an HLDA
system, the number of Gaussiancomponents per state, and the number of useful dimensions,
were optimized on a global level. This allowed systemswith all possiblecon gurations to be ex-

plicitly built and evaluated. A few issuesassociatedwith existing complexity control techniques
are presentedbelow:

First, in these experiments the correction between the likelihood on held-out data and
WERwas found to be fairly weak. This is becausethe model correctnessassumption made
in standard complexity control techniquesmay betoo strong for current ASRsystemsusing
HMMs. Asdiscussedin section 3.6, HMMs are not the correct models for speechsignals.

Hence, merely increasing the likelihood for the unseendata doesnot necessarilydecrease
the error rate.

Second, a limitation of BIC was found when optimizing multiple complexity attributes
simultaneously. Asdiscussedin section 3.3.1, the BIC approximation may becomeincreas-
ingly poorer as the amount of observed data decreases. In addition, the differences in



the form of model parametersis not considered by BIC. This probably leads to the non-
monotonic increase of log-likelihood against model complexity, asis shown in gure 7.2.
In contrast the Laplace'sapproximation discussedin section 3.3.3 accountsfor suchdiffer-
ences. The secondorder information, or Hessianmatrix, explicitly describesthe likelihood
contribution from different forms of model parameters. Hence, it is preferable to use
Laplace'sapproximation to compute the evidenceintegral.

Finally, for current speechrecognition systems,it is preferable to marginalize discrimina-
tive criteria for complexity control. Thesecriteria are more directly related to the recog-
nition error than likelihood. However, discriminative criteria, such as MMI, are prone to
be sensitive to outliers asfound in the experiments. Hence they may not be directly used
for complexity control. This was the motivation for using a marginalized growth function
for model selection. As discussedin section 5.3, a discriminative growth function should
have reduced sensitivities to outliers whilst still retaining certain attributes of the original
criterion. This is further investigated in detail in the following sections.

7.1.3 Experiments on Local Complexity Control

In the previous sectiontwo complexity attributes of an HLDA system,the number of Gaussians
per state and useful dimensions per Gaussian,were optimized on a global level. Limiting the
complexity control on a global level is an unnecessaryrestriction. When varying the systemcom-
plexity locally, more exibility in the model structure may be introduced. Henceit is preferable
to optimize complexity attributes on a local level. In this section the performancesof complex-
ity control techniques are further investigated by locally optimizing the sametwo complexity
attributes on a standard LVCSRtask for CTSEnglish data.

7.1.3.1 Experimental Conditions

Four CTSEnglish training con gurations as describedin section 7.1.1 were used: the 46 hour
minitrain04; 76 hour h5etrain03sub 148 hour meditrain04 the 297 hour full seth5etrain03 The
total number of training speakersis approximately log-linearly increasing acrossthesefour sets.
Each subsetis also hierarchically subsumedby the other larger sets. For each training set, the
following forms of complexity control were compared:

Fixed the baseline approach of using an even number of components per state, or dimen-
sions per Gaussian. This effectively performs no control of the model complexity and the
number of parametersis manually tuned.

VarMix, a simple “more data more parameters” approach. The number of componentsin
a state is setto be proportional to the number of frames assignedto that state raised to a
power. In all theseexperimentsthat power wassetas0.2. The total number of components
in the systemis xed sothat the averagenumber of Gaussiansper state remains the same
asthe standard, Fixed, systemfrom which it wasderived. This is a standard technique used



in the CU-HTKLVCSR evaluation systems[23]. However, this is not strictly a complexity
control approach sincethe total number of componentsis not automatically determined.

BIC, an example of a Bayesiancomplexity control that was discussedin section 3.3.1, was
implemented.

MPEGFung the discriminative evidenceframework using marginalized MPE growth func-
tions presentedin chapter 5 was evaluated. Asthe MPEcriterion is a closerapproximation
to WERthan MMI, the marginalization of MPE growth functions is a focus of the following
experiments.

For both BIC and MPE GFuncsystems,the ef cient implementation discussedin section 5.6
was used. The penalization coef cient of BIC, , in equation 3.3, was manually tuned with three
values, 0.5, 1.0 and 2.0, to obtain the bestperformances. In contrast, for all MPEGFuncsystems,
the smoothing constant C in equation 5.6 was setto 2.0 and never altered.

The same set of experiments are conducted for each training setto fully investigate model
selection using marginalized discriminative growth functions. First, only the number of com-
ponents associatedwith each state is determined. Second, a more complex model selection
problem is examined. Both the number of Gaussiansper state and useful dimensions per projec-
tion in amultiple HLDA systemare to be optimized. Aswith the experimentsin section7.1.2, the
number of useful dimensionsto be consideredis in the range from 28 to 52 for each projection.

7.1.3.2 Optimizing the Number of Components

Table 7.3 showsthe performancesof various global HLDA systemsafter complexity control. The
front-end for these experiments use the standard global HLDA projection to 39 dimensions. In
the rst section of the table, the performances of the baseline systemsare shown with a range
of xed number of components per state from 12 to 20. Two general trends are observed for
these Fixed systems. First, increasing the amount of training data while xing the number of
components consistently reduced the WERfor all con gurations. Note that the WERdifferences
betweenthe 46 hour and 76 hour setupsfor all Fixed systemswere at least2.0% absolute. These
are bigger than the WERdifferences between other larger sets,for example 0.4%-0.7% between
the 76 and 148 hour setups. This is expected as the number of tied states on the 46 hour
setup is only 3k, while for the other larger sets 6k stateswere used, as describedin table 7.1.
Second,within eachtraining set, increasing the number of components per state gradually lead
to saturated WER performances after the number of components reached more than 16. For
example, on both the 76 and 148 hour setups,the 18 and 20 component Fixed systemgave the
sameerror rates. The best Fixed systems,also with fewest parameters possible, had 20, 16, 18
and 20 componentsfor the four training setsrespectively

The secondsection of table 7.3 showsthe performancesof various VarMix systemswith the
averagenumber of componentsper state ranging from 12 to 20. Using VarMix to re-arrange the
number of componentsaccording to state occupancies,a WERreduction of 0.1%-0.4% absolute



Complexity WER%
Control 46 hr \ 76 hr \ 148 hr \ 297 hr

12 38.3 36.1 35.7 35.1
14 38.0 36.0 35.4 34.8
Fixed 16 37.8 3587 35.2 34.9
18 37.9 35.8 3517 34.3
20 37.87 35.8 35.1 34:17

12 37.9 36.1 35.2 34.9
14 37.7 35.8 35.0 34.7
VarMix 16 37.6 35.7 35.0 34.3
18 37.6 35.7 34.8 34.0
20 37.5 35.6 34.8 33.9

BIC( = 0.5) 37.4 35.7 34.5 34.1
(#Gauss) (19.38) | (15.57) | (17.13) | (19.21)
BIC( = 1.0) 374 35.8 34.6 34.2
(#Gauss) (18.45) | (14.68) | (16.34) | (18.68)
BIC( = 2.0) 37.5 36.1 34.7 34.2
(#Gauss) (18.04) | (12.73) | (14.78) | (17.71)

MPEGFunc | 37.2 35.7 34.4 33.8
(#Gauss) | (18.34) | (14.52) | (15.43) | (17.54)

Table 7.3 Optimizing #Gaussfor global HLDA systemsor devOlsubon CTSEnglish46 hour minitrain04,
76 hour h5etrain03sub 148 hour meditrain04and 297 hour h5etrain03 ? marks the starting model for
componentmerging of BIC and MPEGFuncsystemsn eachtraining set.



was obtained over the baseline Fixed systemsfor most con gurations in the table. This improve-
ment is not surprising as the amount of data associatedwith each state can vary dramatically.
For the 46, 76 and 297 hour sets, the best VarMix result was associatedwith the most complex
con guration using 20 Gaussiancomponents per state. On the 148 hour setup, the 18 and 20
component VarMix systemsyielded the sameWER performance. Similar to the Fixed systemsin
the rst section of the table, for eachtraining set the gain from having more components was
gradually reduced when the number of Gaussiansper state is more than 16.

The results using BIC and marginalized MPE growth functions, along with the averagenum-
ber of components per state, are shown in the third and fourth sections of table 7.3. One
interesting issuewith the iterative complexity control used here for both the BIC and the GFunc
systemsis the selection of the initial model. Asdiscussedin section5.6.1, for ef ciency a starting
model is usedto obtained a single set of statistics that may be shared by a range of con gura-
tions. This starting model may affect both the complexity and WER of the nal system. Its
selection may be determined by the following factors:

First, the starting model should give the lowest WER. This ensuresa good initialization for
the whole complexity optimization process.

Second,the starting model should not be too simple. This is becausethat it is not possible
to havea nal systemthat is more complex than the starting model using the component
merging approach in section 5.6.1. As expected, if the starting model is under- tting to
the training data, sowill the nal system.

Third, the starting model should not be too complex. To ensurethe stability of complexity
control, the constrained maximum mutation from the current model structure is imposed,
asdiscussedin section5.6.2. Hence,for a highly complex starting model, alarge number of
iterations of complexity control may be required to obtain an optimal, compact, structural
con guration for the nal system.

Starting | #Gauss 12 14 16 18 20 24 32 48
Model | WER% || 36.1 | 36.0 | 358 | 358 | 35.8 | 35.7 | 35.7 | 36.1
Final | #Gauss || 11.28 | 12.95 | 14.52 | 16.56 | 18.71 | 22.62 | 30.63 | 46.82
Model | WER% | 36.3 | 36.0 | 35.7 | 35.7 | 356 | 356 | 35.7 | 36.0

Table 7.4 Varying #Gaussof the starting modelwhen using marginalized MPEgrowth functionsto optimize
#Gaussof global HLDA systemdor devOlsulbn CTSEnNglish76 hour h5etrain03sub

To further illustrate this, here the 76 hour setis taken as an example and a variety of MPE
GFunc systemswere built with varying number of components per state in a Fixed system as
the starting model. The error rates of the nal systems,along with the number of components
per state in both the starting and nal models, are shown in table 7.4. In the table, when the



number of components per state of the starting model reaches16, the nal MPE GFuncsystems
performancesare saturated. In particular using the 32 component Fixed systemas the starting
model a 30.63 component per state system was selected. This is much more complex than
14.52 component system (derived from the 16 component Fixed system) by having more than
twice parameters. Similarly, if using the most complex 48 component system as the starting
model, both the starting and nal model is clearly over- tting to the data. In both cases,it
is conceivable that many more additional iterations of complexity control may be required to
obtain the best performances. Hence, in order to obtain the best WER performance with the
fewest model parameters, it is preferable to use a starting systemthat hasthe lowest error rate
and a relatively compact model structure.

For the reasons explained above, the 20, 16, 18 and 20 component Fixed systemswere
selected as the starting models for both BIC and MPE GFunc approacheson the four training
setsrespectively In table 7.3 thesefour starting models usedto obtain the initial statistics and
determine the maximum complexity of the systemsare marked with a “?”. They are equivalent
to the comparable BIC systemswhen setting = 0. Asdescribedin section 5.6.2, a total of four
iterations of complexity control were performed for both BIC and marginalized growth function
systems.Betweeniterations ML training was performed to re ne the parameter estimates.

In table 7.3 setting the BIC penalization coef cient, = 0:5, gavethe bestWERperformances
consistently for all training sets. Note that on the 46 hour subset, the standard BIC system
( = 1.0) gavethe sameerror rate as = 0:5 but had fewer parameters. As expected, for each
training setthe complexity of BIC systemsis increasing asthe value of decreases.Compared
with the bestbaseline Fixed systems,the gains from the best BIC systems( = 0:5) were 0.4%,
0.1% and 0.6% for the 46, 76 and 148 hour subsetsrespectively On the 297 hour full set,
the best BIC systemoutperformed the 20 component Fixed systemby having fewer parameters.
Slight WER reductions of 0.1%-0.3% were also obtained from the BIC systemsagainst the best
VarMix systemsfor most training setups. For example, on the 148 hour setthe best BIC system
( = 0:5), which had 17.13 components per state on average,outperformed the more complex
20 component VarMix systemby a marginal 0.3%. On the 76 hour training set, there was a
slight WER degradation of 0.1% using the bestBIC system( = 0:5). The general trend is that
the BIC systemswere comparable to the best VarMix systems,but with fewer components per
state.

The performancesusing the marginalized MPEgrowth functions are also shown in table 7.3.
In contrast to the VarMix and BIC approaches, there was no tuning of any free parameters.
The MPE GFunc systemsoutperforms all Fixed systemsin the table. Compared with the best
VarMix systems,there were also WER gains of 0.1%-0.4% on the 46, 148 and 297 hour sets.
On the 76 hour subset,the more compact 14.52 MPE GFunc system outperformed the 16 and
18 component VarMix systems. For eachtraining set, the MPE GFunc system outperformed all
three BIC systemsby having a lower WER and fewer parameters. For example, on the 46 hour
set, the GFunc system had 18.34 Gaussiansper state on average and gave a WER of 37.2%.
It outperformed both the bestBIC ( = 1.0, 18.45 components per state and = 0.5, 19.38



componentsper state) by 0.2%. Similarly on the 297 hour full set,the MPEGFuncsystem(17.54
component per state) outperformed all three BIC systemsby 0.3%-0.4%. On this setupit is also
interesting to nd that this GFuncsystemis also more compact than the smallest penalized BIC
con guration ( = 2:0, 17.71 componentsper state). Theseresults indicate that the MPEGFunc
systemis able to selectcon gurations that make more ef cient use of the number of Gaussian
components. Overall, the MPE GFunc approach outperformed, or approximately matched, the
best manually tuned systemin table 7.3 with a more compact model structure.

7.1.3.3 Optimizing the Number of Components and Dimensions

Complexity Control WER%

#Gauss #Dim a6hr | 76hr | 148hr | 297 hr

12 39 - 35.8 - -

12 52 - 35.3 - -
16 39 38.0 35.9 34.9 34.2
. 16 . 52 37.6 35.6Y 34.6 33.7

VarMix Fixed

18 39 - - 34.5 -

18 52 - - 343 -
20 39 37.5 - - 34.0
20 52 373 - - 33.6Y
BIC( = 0:5) 36.6 34.9 33.9 334
(#Gauss) (19.38) | (15.57) | (17.13) | (19.21)
(#Dim) (49.89) | (49.36) | (50.17) | (50.91)
BIC( = 1.0 36.9 35.2 33.9 334
(#Gauss) (18.45) | (14.68) | (16.34) | (18.68)
(#Dim) (44.59) | (42.89) | (47.62) | (49.33)
BIC( = 2:0) 37.2 35.2 34.3 33.6
(#Gauss) (18.04) | (12.73) | (14.78) | (17.71)
(#Dim) (35.77) | (33.39) | (39.43) | (43.75)
MPE GFunc 36.7 34.6 33.9 33.0
(#Gauss) (18.34) | (14.52) | (15.43) | (17.54)
(#Dim) (41.78) | (36.67) | (47.23) | (44.77)

Table 7.5 Optimizing #Gaussand #Dim of 65 transform HLDA systemsfor devOlsubon CTSEnglish 46
hour minitrain04, 76 hour h5etrain03sub148 hour meditrain04and 297 hour h5etrain03 y marks the most
complexsystemfor eachtraining set.

To further investigate marginalized growth functions for model selection, a more complex
problem was examined. Both the number of Gaussiansper state and useful dimensions per
projection in a multiple HLDA system were optimized. Table 7.5 shows the performances of
various multiple HLDA systemsafter complexity control. This table contains three sections. The



rst section are the baseline systemsthat used VarMix to tune the number of components per
state, and the number of dimensions xed globally aseither 39 or 52 acrossall projections. In the
secondsection the experimental results of using BIC to control both complexity attributes, along
together with the relative complexity (number of components per state and useful dimensions
per Gaussian) are shown. As with table 7.3, the values of the penalization coef cient, , was
manually tuned to achieve the best performances. The nal section of the table shows the
comparable results of using marginalized MPE growth functions.

For eachtraining set, four VarMix systemswere built. Although not all the possiblecon gu-
rations in the rst sectionwere evaluated, a fair comparisonmay still be made againstall the BIC
and MPE GFuncsystemsin the table. On eachtraining setup, a most complex systemwas built
which provided an upper bound of model complexity for all the BIC and MPE GFunc systems.
Theseare marked with a“y” in the table. For example, on the 46 hour subset,the most complex
VarMix systemhad 20 components per state on averageand 52 dimensions per Gaussian. This
systemwas larger than any of the comparable BIC or MPE GFunc systemson the same setup.
The general trend of these VarMix systemsare three-fold. First, comparedwith the global HLDA
VarMix systemsin table 7.3, increasing the number of HLDA transforms to 65 while xing the
number of componentsand dimensionality led to mixed results. Marginal WERreductions were
obtained for some systems.For example, on the 148 hour set, the gains from using more HLDA
transforms were 0.1% and 0.3% for the 16 and 18 component con gurations respectively In
contrast, on the 76 hour setup, increasing the number of transforms to 65 actually degradedthe
performance of the 16 component VarMix systemby 0.2%. This showsthat in order to make a
better use of multiple HLDA, it is preferable to locally optimize the number of useful dimensions
for each projection. Second,for all four subsetsincreasing the number of components per state
while xing the dimensionality only gave small improvement. For example, on the 297 hour full
set, increasing the number of components per state from 16 to 20 reduced the WER marginally
by 0.1%-0.2% for both the 39 and 52 dimensional con gurations. For the 76 hour setincreasing
the number of componentsfrom 12 to 16 actually degraded the performance of the 52 dimen-
sional con guration by 0.3%. Third, xing the number of Gaussiansper state and increasingthe
dimensionality from 39 to 52 further reduced the WERfor all four training setsby 0.2%-0.5%.

In order to automatically control both the number of components and dimensions, the per-
formances of BIC and MPE GFunc systemswere examined. As discussedin section 7.1.2, there
are issuesfor using BIC to optimize multiple complexity attributes simultaneously. Furthermore,
when both complexity attributes are controlled locally, the number of possible permutations is
intractable. To handle these issues,the two complexity attributes considered were optimized
sequentially: the number of Gaussiancomponents rst, then the number of useful dimensions
after the number of Gaussiangs determined. This approachwasusedfor all BICand MPEGFunc
systemsin the table. The samestarting modelsin table 7.3, marked with a “?”, were also used
for all BIC and MPE GFuncsystemsin table 7.5. Aswith the resultsin table 7.3 for global HLDA
systems,setting the BIC penalization coef cient, = 0:5, gavethe lowest error rates consistently
for eachtraining set. Compared with the best VarMix baselineswith a xed number of useful



dimensionsin the table, the gains from the best BIC systemswere 0.2%-0.7%. In particular, on
the 46 hour seta 0.7% WER reduction was obtained over the comparable best VarMix system.
This is expectedasit is increasingly important to appropriately control the number of HLDA di-
mensionswhen the amount of training data decreases.It should also be pointed out that using
the bestcon guration ( = 0:5), the complexity of the BIC systemswere fairly closeto that of
the most complex VarMix systems.For instance, on the 46 hour setup a systemwith 49.89 useful
dimensions per Gaussianand 19.38 components per state on averagewas selected. This is only
about 7% smaller than the 20 component 52 dimensional VarMix con guration.

Marginalized MPE growth function was then used to determine both the number of com-
ponents and dimensions. The bottom section of table 7.5 showsthe MPE GFunc systems'WER
along with the their sizes. Acrossall four training sets,signi cant WERreductions of 0.4%-1.0%
absolute were obtained over the VarMix baselines. For example, on the 76 hour setup, a highly
compactsystemwith 14.52 componentsper state and 36.67 dimensions per Gaussianon average
was selected. This MPE GFuncsystemoutperformed the most complex 16 component 52 dimen-
sional VarMix baselineby 1.0%. The gain over the bestVarMix con guration (12 componentper
state and 52 dimensions per Gaussian)was 0.7%. Similarly on the 297 hour set, the MPEGFunc
system(17.54 componentsper state and 44.77 dimensions per Gaussian)outperformed the best,
and also most complex, VarMix systemon the samesetup by 0.6% absolute.

Compared with all the BIC systemsin the table, the MPE GFunc approach outperformed
the best BIC con guration ( = 0:5) on the 76 hour training set by 0.3%, and a statistical
signi cant 0.4% on the 297 hour corpus. On the 148 hour set, the MPE GFunc system (15.43
components per state and 47.23 dimensions per Gaussian) outperformed the best BIC system
( = 05, 17.13 components per state and 50.17 dimensions per Gaussian) by having fewer
parameters. On the 46 hour setup, although the MPE GFunc system (18.34 components per
state and 41.78 dimensions per Gaussian)was outperformed by the best BIC system( = 0:5,
19.38 components per state and 49.89 dimensions per Gaussian) by a marginal 0.1%, it has
approximately 20% fewer parameters. For all training sets, the MPE GFunc systemwas more
compactthan the comparable best BIC system. For example, on the 76 hour setthe MPE GFunc
system(14.52 components per state and 36.67 dimensions per Gaussian)is about 25% smaller
than the best BIC con guration ( = 0:5, 15.57 components per state and 49.36 dimensions
per Gaussian). Like the results in table 7.3, it is interesting to nd that the MPE GFuncsystem
requires no tuning in terms of the nature of the complexity attributes being optimized. One
again the scheme outperformed, or approximately matched, the best manually tuned system
with a more compact model structure for eachtraining set. This is a desirable feature of a good
complexity control technigue.

7.1.3.4 Correlation Between Criteria and WER

In section 7.1.2 the correlation between standard complexity control techniques and WERwas
investigated when optimizing complexity attributes on a global level. In this section this corre-
lation is further examined. The aim here is to intuitively show that a strong correlation between
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marginalized discriminative growth functions and WER exists for complexity control on a lo-
cal level. Asthe complexity is varied locally, the permutation of all possible con gurations is
intractable. Hence, the correlation was only investigated for selected systems. Initially sev-
eral global HLDA systemstrained on the 46 hour set minitrainO4 in table 7.3 were selectedfor
this purpose: the 12 component Fixed and VarMix systems,all three BIC systemsand the MPE
GFunc system. For each of these systems,the value of the marginalized MPE growth function
was computed on a log scaleto compare with the variation of WER. This correlation is shown
in gure 7.5. A generaltrend is observedthat increasing the marginalized MPE growth function
never increasedthe WER.
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The correlation between marginalized MPE growth functions and WER was further investi-
gated on the other three larger training setsusing selected systems. For the 76, 148 and 297
hour sets, the 12 component VarMix baselinesand the MPE GFunc systemsin table 7.3 were
selected rst. Asdiscussedin section 5.6.2, the optimal model complexity was determined in an
iterative mode for the MPE GFunc systemin order to obtain reliable statistics. Four iterations
of structural optimization were performed for the MPE GFunc systems. Similarly, the VarMix
systemswere also trained in an iterative fashion. The number of components per state was ad-
justed three times according to the state occupancies.Hence, it is also interesting to investigate
the correlation between WER and marginalized MPE growth functions for systemsdeveloped
at eachiteration of complexity control. This gives a total of 8 systemsfor eachtraining setup,
including the 12 component Fixed systemsfrom which the VarMix systemswere derived. The
values of marginalized MPE growth functions were computed for each systemto compare with
the WER. Figures 7.6, 7.7 and 7.8 show the variation of marginalized MPE growth functions
and WER performancesat different stagesof structural optimization for VarMix and MPE GFunc
systemson eachtraining setup. In these gure again a general trend was observedthat increas-
ing the marginalized MPE growth function's value will decreasethe WER. There is also a steady
increase of the marginalized MPE growth function between iterations for the MPE GFunc sys-
tem. In contrast the variation for the VarMix systemswas fairly noisy in somecasesfor example,
in gure 7.6 for the 76 hour set. This difference may be expected as the two schemesare very
different model selection criteria.

It is interesting to further examine the differences between the VarMix and MPE GFuncsys-
tems in terms of the model complexity determined. The 76 hour set h5etrainO3subwas taken
as an example. The structural difference between the 16 component VarMix, and the GFunc
systemin table 7.3 was investigated for this training set. Figure 7.9 illustrates the log scale
histogram distribution of the number of components assignedto each state. In the gure the
differences these two systemsare clearly shown. As expected for the MPE systemthe number
of componentsin a state is always no larger than 16, becausethe 16 component Fixed system
was used as the starting model for component merging. In contrast, the maximum number of
componentsper state in the VarMix systemcan be aslarge as22. Furthermore, the modesof the
two distributions are also fairly apart from one another.

7.1.3.5 MMI Growth Functions vs. MPE Growth Functions

Although the MPE criterion should be more directly related to WER than MMI, it is still inter-
esting to compare the performances of marginalizing the MPE and MMI growth functions for
complexity control. This was investigated on the 46 hour set minitrain04. Table 7.6 shows the
performances of various complexity controlled systemsbuilt using marginalized MPE or MMI
growth functions. Comparing the two global HLDA systems,using the MMI growth function,
a slightly more complex systemwith 18.85 Gaussiansper state was selected. This systemwas
also outperformed by the MPE GFunc systemby 0.2% absolute. However, after optimizing the
number of useful dimensionsthe two systemsgaveroughly the sameerror rates. This is because
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Complexity Control .

- Crit || #Trans || WER%
#Gauss #Dim

Fixed 39 1 37.2

GFunc 18.34 MPE
GFunc 41.78 65 36.7
Fixed 39 1 37.4

GFunc 18.85 MMI
GFunc 47.91 65 36.6

Table 7.6 Marginalized MMI or MPEgrowth functionsfor devO1sutobn CTSEnglish46 hour minitrain0O4



more gains were obtained when using marginalized MMI growth functions to optimize the di-
mensionality for multiple HLDA. The MMI GFuncsystemgavea WERof 36.6% and also matched
the performance of the best manually tuned BIC ( = 0:5) systemin table 7.5. However this
MMI GFuncsystem(18.85 componentsper state and 47.91 dimensions per Gaussian)was more
complex than the MPE GFuncsystemin the table. Overall, with this setup the two approaches
yielded similar performances and the MPE growth function tended to selecta more compact
system. Experimentsin the following sectionswill still focus on using marginalized MPE growth
functions for complexity control.

7.1.3.6 Discussion

In this section a series of complexity control experiments were conducted on an LVCSR task.
Four training setsof CTSEnglish data were used. Their sizeswere increasedapproximately log-
linearly so asto fully investigate marginalized discriminative growth functions for complexity
control. Two attributes of an HLDA system, the number of Gaussiancomponents per state
and the number of useful dimensions per Gaussianwere optimized on a local level. Important
conclusionsfrom these experiments may be summarized as:

First, acrossdifferent training setsand multiple forms of complexity attributes, the marginal-
ized MPE growth function will at least selecta compact systemwith approximately the

lowest WER, if not giving further gains over the best manually tuned VarMix or BIC sys-
tems. Asdiscussedin section 3.1, explicitly building and evaluating all possible systemsis

intractable for LVCSRtasks. The ability of automatically selectingthe correct complexity

without excessivetunning of free parametersis an important feature of a good complexity

control scheme.

Second, the correlation between marginalized discriminative growth functions and WER
was examined for all four CTStraining setswhen the model complexity is locally opti-
mized. In gures 7.5, 7.6, 7.7 and 7.8, a fairly strong correlation between marginalized
MPE growth functions and WER was observed. Theseillustrate that marginalized MPE
growth functions are closely related to the the WER. Hence, this technique may be an al-
ternative to standard complexity control technigues under the likelihood framework for
current speechrecognition systems.

Third, for multiple HLDA systems, it is bene cial to optimize the number of useful di-
mensionsfor each projection locally using an appropriate model selection technique. The
complexity control gains from the MPE GFunc systemsin table 7.5 show that is it prefer-
able to do sowhen building multiple HLDA systems.

7.2 Interaction with Other Techniques

State-ofthe-art LVCSR systemsare highly complex. Many techniques may be used to improve
the recognition performance. In all the previous complexity control experimentsonly the perfor-



mancesof ML trained systemswere considered. In this sectionthe interaction between complex-
ity control and two important acousticmodeling techniques, discriminative training and speaker
adaptation, is investigated.

7.2.1 Interaction with Discriminative Training

Asdiscussedin chapter 4, the model correctnessassumptionin the ML training may be too strong
for HMM basedcurrent speechrecognition systems. The majority of state-of-the-art LVCSR sys-
tems are built using discriminative training techniques. All the MPE GFuncsystemsso far were
ML trained, although discriminative statistics were usedto selectthe optimal structural con g-
uration. In this section, after determining the optimal model structure, model parameters are
further updated discriminatively using the standard MPE training [90, 93]. The aim was to
investigate the interaction between discriminative training and complexity control. This inter-
action will be investigated on both the 76 hour CTS English corpus h5etrainO3suband the 297
hour full seth5etrain03 aswere describedin section 7.1.1. For evaluation the sametest set used

previously, dev0] was used. Other experimental conditions remain the sameasin section 7.1.1.

Complexity Control WER%
- #Trans
#Gauss #Dim MLE | MPE
. . 1 35.7 | 33.0
VarMix 16 Fixed 39

65 35.9 | 32.8
BIC BIC

B 15.57 _ 49.36 65 349 | 324
MPE MPE

14.52 36.67 65 346 | 31.9
GFunc GFunc

Table 7.7 MPEtraining of complexitycontrolled systemdor devOlsutbn CTSEnglish76 hour h5etrain03sub

For the 76 hour set, three baselinesystemswere used. The 16 component VarMix systemwith
a global HLDA transform in table 7.3 and the comparable multiple HLDA systemin table 7.5
were selected as two standard con gurations.
transform BIC ( = 0:5) systemin table 7.3 was also selected. The MPE GFunc system in
table 7.3 was MPEtrained to compare with thesethree baseline systems.Four iterations of MPE
training were performed for each systemwith the HLDA transforms kept xed. Table 7.7 shows
that MPE training reduced the WER for all systemsby more than 2.5% absolute. Most of the

Basedon the WER performances, the best 65

gain from the GFunc system was maintained after MPE training. There were still signi cant

WER gains of 1.1% and 0.9% absolute from the GFunc system over the two VarMix baselines
respectively It is alsointeresting to nd that somegain from the most complex BIC systemwas
lost. This may be becausecompact systemsare often preferred for MPE training to ensure good
generalization [93].
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Complexity Control WER%
- #Trans
#Gauss #Dim MLE | MPE
) ] 1 33.9 | 30.3
VarMix 20 Fixed 39

65 34.2 | 30.3
BIC BIC

B 19.21 B 50.91 65 33.4 | 29.9
MPE MPE

17.54 44,77 65 33.0 | 294
GFunc GFunc

Table 7.8 MPEtraining of complexitycontrolled systemdor devOlsubon CTSEnglish297 hour h5etrain03

Similarly for the 297 hour full set, the 20 component VarMix global and multiple HLDA
systemwith 39 useful dimensions in table 7.3 and 7.5 were selected as the baseline standard
con gurations. Basedon the WER performances, the best 65 transform BIC system( = 0:5) in
table 7.5 was also selected. Theseare to be compared with the GFuncsystemin table 7.5 after
four iterations of MPE training. Asis shown in table 7.8, MPE training led to large reduction
of the error rates for all systemsby more than 3.5% absolute. The MPE GFunc system still
signi cantly outperformed both VarMix baselinesby 0.9%, and the BIC system by 0.5% after
MPE training. In contrast, some gain from BIC was lost after MPE, like the results shown in
table 7.7 for the 76 hour subset. Again this is expected as compact systemsare often preferred
for discriminative training.

7.2.2 Interaction with Speaker Adaptation

As discussedin section 2.5, characteristics of speechsignals vary substantially acrossdifferent
speakersand acoustic environments. The majority of the state-of-the-art LVCSR systemsemploy
standard adaptation techniques like MLLR to remove such variability [126, 51, 23, 64]. Sofar
all the complexity controlled systemsconsideredin this thesis are speakerindependent models.
Hence, it is interesting to further investigate the interaction between complexity control and
adaptation techniques.

Following the MPE training experiments in section 7.2.1, MLLR based speaker adaptation
was performed for systemstrained on the 76 hour set h5etrainO3sulin table 7.7, and the 297
hour full seth5etrain03in table 7.8. Eachsystem'srecognition output from up-adapted decoding
was usedasits own supervision. Two MLLR mean transforms, one for speechand one for silence
Gaussiancomponents were estimated for each system. During the estimation of the MLLR ma-
trices, the diagonal variance approximation describedin section 2.6 was used. Table 7.9 shows
the adapted performancesof four complexity controlled systemson the 76 hour set. Using MLLR
the error rates were reduced by 1.9% 2.0% for all systems. The gains from the GFuncsystem
was largely maintained after the adaptation over the VarMix and BIC baselines.

For the 297 hour full set, the four MPEtrained systemsin table 7.8 were adapted in the same
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Complexity Control WER%
- #Trans
#Gauss #Dim MLE\ MPE] MLLR
] ] 1 35.7 | 33.0 | 31.0
VarMix 16 Fixed 39
65 35.9 | 32.8 | 30.8
BIC
_ 15.57 B 49.36 65 349|324 | 305
MPE MPE
14.52 36.67 65 346 | 319 | 30.0
GFunc GFunc

Table 7.9 Adapted performancesof complexity controlled systemsfor devOlsubon CTS English 76 hour

h5etrain03sub

Table 7.10 Adaptedperformancesof complexity controlled systemsfor devO1subon CTSEnglish297 hour

h5etrain03

Complexity Control WER%
- #Trans
#Gauss #Dim MLE\ MPEI MLLR
) ) 1 339 | 30.3 | 28.6
VarMix 20 Fixed 39
65 34.2 | 30.3 | 28.6
BIC BIC
_ 19.21 B 50.91 65 3341299 | 281
MPE MPE
17.54 4477 65 33.0 (294 | 27.7
GFunc GFunc




fashion asthe 76 hour systems. Table 7.10 shows the adapted performances of these systems.
Again all the adapted systemsoutperformed the unadapted by more than 1.5% absolute. Sig-
ni cant WERgains from the GFuncsystem,0.9% over both VarMix baselinesand 0.4% over the
BIC system,were maintained after adaptation.

7.2.3 Discussion

In this section the interaction between model complexity control and standard acoustic model-
ing techniques was investigated on an LVCSRtask for CTS English data. As shown in previous
experiments of section 7.1, using marginalized MPE growth functions more compact models
tend to be selected. This is particularly useful for discriminative training techniques, as good
generalization to unseen data is desired. Hence, the gains from marginalized discriminative
growth functions over standard complexity control schemeswere found to be mostly additive
to discriminative training and speakeradaptation. This indicates that marginalized discrimina-
tive functions based complexity control may be useful for state-ofthe-art LVCSR systemsthat
use large scalediscriminative training and sophisticated adaptation procedures. This is further
investigated in the following sections.

7.3 Generalization to Other Tasks

All the previous experimentsin sections7.1.2 and 7.1.3 were conducted on CTSEnglish data. As
a general form of complexity control technique, marginalized discriminative growth functions is
expectedto be applicable to other speechrecognition tasks. In this section the generalization of
this technique is examined on two very different LVCSRtasks, broadcastnews (BN) English and
CTSMandarin Chinesedata.

7.3.1 Experimental Conditions

A 72 hour CTS Mandarin Chinesetraining set, swmtrain04 was used. It consistsof 200 Call
Home Mandarin (CHM) and 84 Call Friend Mandarin (CFM) conversation sides collected by
LDC, and another 500 sidesby Hong Kong University of Scienceand Technology (HKUST). For
performance evaluation two data setswere used: The two hour set dev04 also collected by
HKUST contains 48 conversation sides; The one hour long 2003 DARMA Mandarin evaluation
set, eval03 consists of a total of 24 CFM conversation sides. The audio data was manually
segmented for dev04and automatically segmented for eval03 Like the CTS English systems
describedin section 7.1, 52-dimensional PLPfeatures were extracted by appending derivatives
up to the third order, and then normalized using VTLN, mean and variance normalization on a
conversation side basis. This feature vector was projected down to 39 dimensions using one or
more HLDA projections. Then pitch parameters,their rst and secondderivatives were further
appended, yielding construct a 42-dimensional feature vector. For multiple HLDA systemsthe
same component assignmentschemedescribedin section 7.1.1 was used. Continuous density,



mixture of Gaussianscross-wordtonal triphone, genderindependent HMM systemswere used.
After phonetic decision tree basedtying, there were approximately 4000 speechstates. Note
that the decision tree was built only using the training data collected by HKUST For the baseline
systemthe global HLDA transform was also estimated only using the data from HKUST There are
16 Gaussiancomponents per state on average. More detailed description of the baseline system
may be found in [35]. Unlessotherwise stated ML training were used for training all systems.
All recognition experiments used a 16k word basedtri-gram language model for full decoding.
As there is no deterministic word segmentation for the Chineselanguage, the character error
rate (CER) is used as a performance measurement,rather than WER.

Experiments on a BN English task were also conducted to investigate the performance of
complexity control schemes. A 144 hour training set bnetrainO2was used. It consistsof the
BN English data released by the LDC in 1997 and 1998. The 1997 data was annotated by
the LDC to ensure that each segment was acoustically homogeneous, but the 1998 data was
transcribed only at the speakerturn level without distinguishing background conditions [ 64].
In total, these amounted to approximately 144 hours of usable data. For evaluation, a set of
approximately 2.7 hour of 2003 DARFA RT03 evaluation data, eval03 was used. The audio data
was automatically segmented. A 52 dimensional cepstral acoustic feature was then generated
by appending derivatives up to the third order. Like the previous CTS English experiments in
section 7.1, this was projected down to a 39 dimensional feature vector using one or 65 HLDA
projections. The samecomponent to transform assignmentschemewas also used. Continuous
density, mixture of Gaussians,cross-word triphone, gender independent HMM systemswere
used. There are approximately 7k speechstates after decision tree based state tying, and the
basic system has 16 Gaussiancomponents per state. All recognition experiments used a 59k
word tri-gram language model.

For both taskstraining lattices were generated using an ML trained VarMix systemwith 16
Gaussiansper state. A pruned bi-gram language model was also used in generating these lat-
tices. They were further marked with model alignment and kept xed when using marginalized
discriminative growth functions for complexity control. The sameset of experiments conducted
for the CTSEnglish data in section 7.1.3 are investigated. Two complexity attributes of an HLDA
systemwere optimized: the number of Gaussiancomponentsper state, and the number of useful
dimensions per Gaussian. The same con gurations for BIC and marginalized MPE GFunc sys-
tems describedin section5.6 and 7.1.1 were alsousedin the experiments. Again the smoothing
constant C of the MPE growth function was always setto 2.0 and not altered.

7.3.2 Experiments on 72 Hour swmtrain04

Table 7.11 shows the performances of various global HLDA systemsafter complexity control
for the 72 hour Mandarin training set swmtrain0O4 Basedon the WERthe 20 component Fixed
systemwas used as the starting model for both BIC and GFunc systems. This is marked with a
“?” in the table. For the BIC approach, setting the penalization coef cient = 1:0 gave both the



lowest WER and a more compact system,compared with the setting of = 0:5. Using this BIC
systema WER reduction of 0.4% was obtained over the 20 componet VarMix baseline on both
test sets. It is also interesting to nd that for both the standard ( = 1.0), and penalized BIC
( = 0:5) systems,the number of parameters were very similar to that of the starting model,
although the WERimprovements were 0.3% and 0.5% for the two test setsrespectively over the
20 component Fixed system.

Complexity CER%
Control dev04 | eval03
16 40.4 52.8
Fixed 18 40.2 52.0

20 3997 | 5157
16 39.8 52.5
VarMix 18 40.1 52.0
20 40.0 514

BIC( = 0.5) 19.99 | 39.6 | 51.0
BIC( = 1.0) 19.75 || 39.6 | 51.0
BIC( = 2.0) 17.22 || 39.8 | 514

| MPEGFunc 1853 | 39.7 | 513 |

Table 7.11 Optimizing #Gaussfor global HLDA systemgor mandarin dev04and eval03on CTSMandarin
72 hour swmtrain04

Using marginalized MPE growth functions, a systemwith 18.53 Gaussiansper state on aver-
age was selected. This systemgave a WER of 39.7% on devO4and approximately matched the
performance of the best BIC con gurations. On eval03the performance difference between the
best BIC systemsand the MPE GFunc systemwas as big as 0.3%. However, this difference is
expected. As describedin section 7.3.1, both the decision tree and HLDA projection were gen-
erated only using the data collected by HKUST Furthermore, the eval03set contains purely LDC
CFM data that was not present during decision tree clustering and HLDA estimation. Because
of the big mismatch between the LDC and HKUST data [ 35], for the eval03set more complex
systemare favored in order to compensateit. This is clearly shown in table 7.11. For example,
increasing the number of componentsfrom 18 to 20 for the VarMix systemreduced the WERby
0.6% on eval03 In contrast, only a marginal 0.1% improvement was obtained on dev04

To further explore complexity control schemeson this Mandarin task, the dual complexity
control problem in previous CTS English experiments was investigated. Table 7.12 shows the
CERperformancesof various multiple HLDA systemsafter complexity control on both devO4and
eval03 Like the results shown in table 7.11, increasing the number of componentsof the VarMix
baselineswhile xing the dimensionality signi cantly reducedthe CERby 0.4%-1.0% on eval03
Smaller CERgains of 0.3%-0.5% on dev0O4were also obtained. The bestVarMix systemwas the



Complexity Control CER%
#Gauss #Dim dev04 | eval03
16 39 399 52.3
) 16 ) 52 40.0 51.7
VarMix Fixed
20 39 39.6 51.3
20 52 395 513
BIC BIC
19.99 47.03 | 39.0 51.1
=05 =05
BIC BIC
19.75 3898 || 395 51.6
=10 =10
BIC BIC
17.22 30.23 || 39.7 52.4
=20 =20
MPE MPE
18.53 4520 | 39.0 50.9
GFunc GFunc

Table 7.12 Optimizing #Gauss and #Dim of 65 transform HLDA systemsmandarin dev04and evalO3on
CTSMandarin 72 hour swmtrain04

most complex con guration that has 20 component per state and 52 dimensions per Gaussian.
This systemis marked with a “y” in the table. Using the same starting model asin table 7.11,
three BIC systemswith varying valuesof and an MPE GFuncsystemwere built. The bestBIC
con guration ( = 0:5, 19.99 com and 47.03 dim) outperformed the best VarMix baseline by
0.5% on devO4and 0.2% on eval03 Note the standard BIC system( = 1:0) selecteda system
that led to a performance degradation of 0.3% on eval0O3compared with the 20 component
VarMix baseline. Again performancesof all the VarMix and BIC systemsin the table show that
more complex systemsare favored for the eval03data to compensatefor the bias toward the
HKUST data. Using marginalized MPE growth functions, a systemwith 18.53 components per
state and 45.20 dimensions per Gaussianwas selected. The GFuncsystemoutperformed all the
manually tuned VarMix and BIC systemsin table on both test sets. For example, the gains over
the standard BIC systemwere 0.5% and 0.7% on devO4and evalO3respectively

7.3.3 Experiments on 144 Hour bnetrain02

Table 7.14 showsthe performancesof global HLDA systemsafter complexity control on the 144
hour BN English training corpus bnetrain02 In the table marginal gains were obtained from
VarMix over the standard Fixed systems. Increasing the number of components from 16 to 20
for the VarMix systemsled to saturated WER performances. Basedon the WER performances
the 20 component Fixed system(marked with a“?” in the table) was usedasthe starting model
for both BIC and MPE GFuncsystems.All three BIC systemsin the table gave very similar WER.
In common with the previous CTSEnglish experimentsin table 7.3, setting the BIC penalization



coef cient = 0:5 gave the best BIC performance of 15.6% on eval03 However, the selected
systemwas still quite complex had 19.56 Gaussiancomponents per state on average. The MPE
GFuncsystemhad a more compact model structure with 18.22 Gaussiansper state on average.
It gavea WERof 15.7% that approximately matched the performance of the bestmanually tuned
BIC system( = 0:5) in table 7.13.

Complexity

WER%
Control

16 15.9
Fixed 18 15.9
20 15.7°
16 15.8
VarMix 18 15.8
20 15.7
BIC( = 0.5) 19.56 15.6
BIC( = 1.0) 18.61 15.7
BIC( = 20) 16.88 | 15.7

| MPEGFunc 18.22 | 157 |

Table 7.13 Optimizing #Gaussof global HLDA systemdor evalO3on BN English144 hour bnetrain02

Table 7.14 also allows examination of the problem of dual complexity control for multiple
HLDA systems.The table showsthat increasing the number of componentsor useful dimensions
only gave marginal WER gains. BIC and MPE GFuncsystemswere built using the samestarting
model asin table 7.13. The bestBIC con guration ( = 2:0) gavea WERo0f 15.4%. This matched
the performance of the most complex VarMix system (marked with a “y” in the table) but with
much fewer model parameters. It is interesting that different from previous CTS experiments
in section 7.1.1, with this setup increasing the value of the penalization coef cient, , gavethe
bestBIC performance. This may suggestthe BIC criterion requiresthe penalization coef cient to
be excessivelytuned for different forms of parameters and also different tasks. Again the MPE
GFuncapproach did not suffer from this limitation on this setup. Using the samecon guration
asdescribedin section7.1.1, the MPE GFuncsystemhad 15.14 componentsper state and 45.92
dimensions per Gaussianand outperformed all tuned systemsin the table. In particular, WER
gains of 0.1%-0.3% were obtained over the three BIC systems.

7.3.4 Discussion

In this section marginalized discriminative growth functions were used for complexity control
on two different LVCSRtasks. The sameset of experiments consideredin section 7.1.3 for CTS
English data were conducted. For both the BN English and CTS Mandarin tasks, marginalized
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Complexity Control
- WER%
#Gauss #Dim
16 39 15.5
. 16 i 52 15.4
VarMix Fixed
20 39 15.3
20 32 154Y
BIC BIC
19.55 50.70 15.6
=05 =
BIC BIC
18.61 46.38 15.4
=1.0 =1.0
BIC BIC
16.88 35.66 15.4
=20 =20
MPE MPE
18.22 45,92 15.3
GFunc GFunc

Table 7.14 Optimizing #Gaussand #Dim of 65 transform HLDA systemdor evalO3on BN English144 hour
bnetrain02

MPEgrowth functions outperformed, or at least approximately matched, the performance of the
bestmanually tuned systemwith a minimum complexity. More importantly the samecon gura-

tions for the MPE GFunc systemsin the previous CTS English experiments were also used. No
tuning of any free parameterswas required for any of the different tasksconsidered. This shows
that marginalized discriminative growth functions is a general approach for model selectionand
may be useful for a variety of speechrecognition tasks.

7.4 Evaluation in 10 Real-time LVCSR System

In most previous experiments complexity controlled systemswere evaluated using a standard
single pass Viterbi decoding without speakeradaptation and relatively simple word based tri-
gram language models. In contrast, state-of-the-art LVCSR systemsoften use multiple passde-
coding, sophisticated adaptation and large scalelanguage models [23, 64]. To further employ
the complimentary effects between different systems,multiple systems'recognition outputs may
be combined, using confusion networks (CN) combination [22], or recognizer output voting
error reduction (ROVER)[25]. In this section complexity control using marginalized discrim-
inative growth functions will be investigated in the framework of a state-ofthe-art multi-pass
LVCSRsystemusing sophisticated adaptation, large scalelanguage models and CN basedsystem
combination. Under this complex framework, it is possible to obtain a realistic comparison of
how complexity control schemesperform in a state-of-the-art LVCSR system.



7.4.1 Experimental Conditions

The CTSEnglish data setusedfor training, fsh2004subconsistsof 400 hours of Fisher conversa-
tions releasedby the LDC, with a balancedgender and line condition [24]. Quick transcriptions
are provided by BBN, LDCand another commercial transcription service. A 6 hour DARFA RT-03
evaluation set, eval03 was used for performance evaluation. It contains 144 conversation sides
from the LDCFisher collection, fsh, and Switchboard Il phase5, s25 The baselinemodel sethad
approximately 6k physical states after decision tree basedtying. Unlessotherwise states, the
number of components per state was tuned as 28 on averagelevel using VarMix for all systems.
All systemswere MPE trained.
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Initial transcription
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Figure 7.10 CU-HTK10xRT Systemfor CTSEnglish

The CU-HTK 10 real-time multi-pass systemwas usedto evaluate the performance of com-
plexity controlled systems. It usessophisticated adaptation and CN basedsystem combination.
The overall systemstructure consistsof two main stages:the initial lattice generation stageand
the rescoring stage using multiple model sets. The confusion network outputs from different
rescoring passeswere nally combined. This is shownin gure 7.10. More details of the overall
systemarchitecture canbe found in [21]. The audio data is parameterized using 13 PLPfeatures
augmentedwith their rst, secondand third order derivatives. A 52 dimensional acousticfeature



was projected down to 39 dimension using a global HLDA transform. All acoustic models were
built using MPE training. VTLN was used in training and testing. Cepstral mean and variance
normalization were also applied. Continuous density, mixture of Gaussianscross-wordtriphone
gender independent HMM systemswere used. The two baseline model setsused in the lattice
rescoring stage were a speaker adaptively trained (SAT) model employing constrained MLLR
and an HMM set trained using a Single Pronunciation (SPron) dictionary [53]. These model
setswere adapted using lattice based MLLR in addition to standard adaptation basedonly on
the 1-best hypothesis. A word-based 4-gram language model was trained on the acoustic tran-
scriptions and additional broadcastnews data. The word-based 4-gram was then interpolated
with a class-basedri-gram trained only on the associatedacoustic transcriptions. The recogni-
tion dictionaries contain approximately 58k words. Eachword had about 1.1 pronunciations on
averagelevel.

7.4.2 10 Real-time System Performances

Table 7.15 shows the baseline performance of the 10 time real-time CTS system. The 2-way
combination between the SAT and SPron systemswas the standard con guration used in the
CUEDCTSENgIlish evaluation system. Signi cant error rate reduction over individual branches
was achievedafter confusionsnetworks combination. The nal error rateswere 20.5% on eval03

WER%
s25 ‘ fsh H Avg

| P2cn HLDA || 26.6 | 18.4 | 226 |

P3a-cn SAT 245 | 17.1 || 20.9
P3c-cn SPron| 24.7 | 17.6 || 21.3

| P3a+P3c | 239 16.8 | 205 |

System

Table 7.15 10xRT systembaselineperformancedor eval03on CTSEnglish400 hour fsh2004sub

Table 7.16 showsthe CN decoding and systemcombination performancesof three additional
branches. The global HLDA systemusedfor lattice generation in table 7.15 was also re-adapted
as a rescoring branch. This is denoted by P3b in the table. In the previous experiments of
section 7.1.3 marginalized MPE growth functions were found to always outperform, or at least
match, the performance of BIC. Hence, in the experiments of this section only a 32 components
per state 65 HLDA transform VarMix system was built as a baseline. The number of useful
dimensions was set as 39 for all projections. The same component to transform assignment
schemeas in section 7.1.1 was used. This is denoted by “P3d” in the table. Examining the
single branch CN decoding performances, marginal improvement was obtained from the mul-
tiple HLDA systemover the single transform P3b branch. No WER improvement was obtained
if this systemis combined with either the standard P3a or P3c branch over the standard two



WER%
s25 ‘ fsh H Avg
P3b-cn HLDA 248 | 17.7 || 21.4
P3d-cn MHLDA || 245 | 17.8 | 21.3
P3e-cn GFunc || 245|175 | 21.1

System

P3a+P3d 23.8 | 17.0 | 20.5
P3c+P3d 23.9 | 16.8 | 20.5
P3a+P3e 23.7 1169 | 204
P3c+P3e 238 |16.9 | 204

P3a+P3c+P3b 23.9 | 16.6 | 204
P3a+P3c+P3d 23,5 | 16.7 | 20.2
P3a+P3c+P3e 23.6 | 16,5 || 20.1

Table 7.16 ExtendedlOXRT systemperformancedor eval03on CTSEnglish400 hour fsh2004sub

way combination in table 7.15. However, a WERreduction of 0.3% was obtained if a three way
combination was performed between the two standard, and the P3d branches. This is expected
asthe multiple HLDA systemsis structurally very different from the other two standard systems
due to the use of multiple feature spaces. A complexity controlled multiple HLDA systemwas
also built using marginalized MPE growth functions. The same con gurations as described in
section 7.1.1, were used when determining the optimal complexity. The starting model was a
32 components per state standard system. The GFuncsystemhad 29.9 Gaussiansper state and
42.6 useful dimensions per Gaussian.In the CN basedword posterior decoding stage,the GFunc
systemoutperformed both VarMix baselinesby 0.2%-0.3%. Replacing either of the two standard
branchesin CNC combination with the P3e systemgave marginal WER reduction. Adding the
GFuncbranch yielded the best systemcombination performance, which is 0.4% better than the
baselinetwo way combination in table 7.15.

7.4.3 Discussion

In this section complexity control using marginalized discriminative functions was evaluated
under a state-of-the-art 10 real-time LVCSRframework. Discriminative training, large scalelan-
guage models, sophisticated adaptation and system combination were used to obtain the best
WER performance. The gains from complexity controlled systemsin terms of single branch per-
formanceswere relatively smaller compared with previous experiments. Neverthelessmarginal-
ized discriminative growth functions was still found useful in combination with systemsusing
standard complexity control schemes.This complimentary effect may be partly due to the funda-
mental difference between marginalized growth functions and standard techniques, asdiscussed
in chapter 5. In previous experiments, for instancein gure 7.9 of section 7.1.3.4, such a differ-
encewas clearly re ected in the selectedmodel structure during complexity control.



7.5 Summary

Experimental results using discriminative growth functions for model complexity control were
presentedin this chapter for LVCSRtasks. Two complexity control attributes of an HLDA system,
the number of componentsper state and the number of useful dimensions per Gaussianwere op-
timized. The global level complexity control consideredin section 7.1.2 for a CTStask, allowed
explicit construction and evaluation of all possiblestructural con gurations. The correlation be-
tween WER and held-out data likelihood was found to be fairly weak for current ASR systems.
This indicates that standard complexity control techniquesunder the likelihood framework may
not be appropriate for thesetasks. In particular, a limitation of BIC was found when usedto si-
multaneously optimize multiple complexity attributes simultaneously. A strong correlation was
observedbetween the WER and the marginalization of discriminative growth functions. They
are more closely related to the recognition error, rather than likelihood.

In the main part of this chapter the same complexity control problem was consideredon a
local level. A seriesof experiments were conducted on four CTS English training sets of log-
linearly increasing sizesin section 7.1.3. Using the same con gurations, marginalized discrim-
inative growth functions will at least select a compact system with approximately the lowest
WER among all tuned systems,and in some casesmay yield further gains. More importantly
the same con gurations were used throughout these experiments and no tunning of any free
parameterswas required. This is a desirable feature of a good complexity control technique. In
addition, a strong correlation between marginalized discriminative growth functions and WER
was observed. This technique was also found to generalize well to other LVCSRtasks. Further-
more, the gains from these growth function systemswere found to be largely additive to other
important acousticmodeling techniquesincluding discriminative training and speakeradaption.
In the nal part of this chapter, marginalized discriminative growth functions was found to
yield complimentary gains in a state-ofthe-art 10 real-time LVCSR system. Therefore, it may
be concluded that marginalized discriminative growth functions is a useful complexity control
technique for current speechrecognition systems.



—8—

Experimentson Discriminative Training of Linear Projections

In this chapter the performance of discriminatively trained linear projection schemesare eval-
uated on three LVCSRtasks. First, experimental results on a CTStranscription task for English
data are presented. Then experimental results are presentedfor BN English and CTS Mandarin
transcription tasks. Theseare followed by an investigation of the use of matched lattices for
the discriminative training of multiple projection systems. Finally, both complexity control and
parameter estimation are integrated into a consistentdiscriminative framework. The complexity
of discriminatively trained model structures is optimized.

8.1 Experiments on CTSEnglish

Discriminative training of linear projection schemeswere initially evaluated for CTS English
data. Two training sets,the 76 hour h5etrainO3suband the 297 hour full set h5etrain03 as de-
scribed in section 7.1.1, were used. The 3 hour subsetof 2001 development data, devOlsub
as described in section 7.1.1, was used for performance evaluation. The same component to
transform assignmentschemedescribedin section 7.1.1 was also used for multiple projections.
Note that in all experiments, unless stated otherwise, neither the number of components per
state nor the number of useful dimensions was optimized using any complexity control scheme.
The number of useful HLDA dimensions was set as 39 for all projections. Like the complexity
control experimentsin section 7.1, the lattices used for MPE training on both training setswere
generated using the standard 39 dimensional global HLDA systems. They were trained using
the ML criterion and had 12 and 16 Gaussiansper state respectively A pruned bi-gram lan-
guage model was used during decoding. Theseword lattices were further marked with model
alignment and kept xed for the MPE training of various systems. This was the “exact match”
approach describedin [124]. Four iterations of MPEtraining were performed after one re more
HLDA transforms were estimated. During the MPE training for all experiments the smoothing
constantis setE = 2:0, and the I-smoothing constant ' = 50. The variance ooring described
in section 6.4.1 was used. HLDA transforms may be updated in multiple iterations of MPE train-
ing. However, due to the intensive memory storage requirement for full covariance statistics
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during the transform estimation, the projections are updated only once and then xed during
subsequentMPE training of standard HMM parameters. Other details of the baseline systems
were the sameasin section 7.1.1.

8.1.1 Experiments on 76 Hour h5etrain03sub

Projection ] WER%
#Trans | #Dim

Schemes MLE | MPE
1 36.1 | 33.1

HLDA 39
65 355 | 32.7
1 - 33.0

MPE-HLDA 39
65 - 32.4

Table 8.1 Performancesof HLDA systemdor devOlsubon CTSENglish76 hour h5etrain03sub

Table 8.1 shows the performances of standard HLDA systems. The WER performances of
linear projections that were optimized using the MPE criterion are also shown in the table.
Theseare denoted by “MPE-HLDA'’ in the table. Asdiscussedin section 6.3.1, the discriminative
update of HLDA transforms requires the re-estimation of the Gaussianmeansand covariances
using the EBW algorithm. Henceit is only fair to compare the performancesof discriminatively
trained projections with the ML baselines after MPE training of other HMM parameters. In
the table the MPE-HLDA systemoutperformed the baseline HLDA systemwith a marginal WER
improvement when using a global HLDA projection. Similarly, when using 65 HLDA transforms
a marginal WER reduction of 0.3% was obtained from the MPE-HLDA systemover the baseline
multiple HLDA system. Comparedto the baseline global HLDA system, the multiple transform
MPE-HLDA systemgave a total WERreduction of 0.7% absolute.

8.1.2 Experiments on 297 Hour h5etrain03

Projection ] WER%
#Trans | #Dim

Schemes MLE | MPE
1 349 | 30.9

HLDA 39
65 34.2 | 30.3
1 - 30.5

MPE-HLDA 39
65 - 30.3

Table 8.2 Performancesf HLDA systemdor devO1suton CTSEnglish297 hour h5etrain03

To further evaluate the performancesof discriminatively trained linear projection schemes,
a set of experiments similar to table 8.1 were conducted on the 297 hour full set h5etrain03
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In table 8.2 the global MPE-HLDA system outperforms the comparable HLDA baseline system
by 0.4% absolute. Using 65 transforms, an absolute WER reduction of 0.6% was obtained over
the global HLDA baseline. Unfortunately there is no performance difference between the two
multiple transform systems. One possible reason may be that using the same set of lattices for
the MPE training of all systemsis inappropriate asthe differences among systemsare big. The
mismatch between lattices and systemswill increaseasthe model structural con gurations, for
instance the number of projections, and the underlying training criterion vary. This mismatch is
further investigated in later sections.

8.2 Experiments on BN English

Experiments on a BN task were also conducted to investigate the performance of discriminative
projections. The 144 hour training setbnetrain02 and the 2.7 hour of 2003 DARFA RT03 evalu-
ation data, eval03 asdescribedin section 7.3.1, were usedin training and testing. All the other
experimental conditions remained the same.

Projection ] WER%
#Trans | #Dim

Schemes MLE | MPE
1 159 | 14.1

HLDA 39
65 15,5 | 14.0
1 - 13.9

MPE-HLDA 39
65 - 13.8

Table 8.3 Performancesof HLDA systemdor evalO3on BN Englishon 144 hour bnetrain02

Table 8.3 shows the performances of various HLDA systemson the 144 hour BN set bne-
train02. For both global and multiple HLDA systems,optimizing the transform parametersusing
the MPE criterion yield marginal 0.2% WER improvement. A total WER reduction of 0.3% is
obtained over the global HLDA baseline systemafter four iterations of MPEtraining. Note that
the gain from the multiple HLDA baseline systemis greatly reduced from 0.5% to 0.1% after
MPE training. Similar to the CTS English experiments in table 8.2, there may be a mismatch
between the multiple HLDA systemsand the the lattices generated by a system using a global
projection.

8.3 Experiments on CTSMandarin

To further investigate the performancesof MPE-HLDA systems,experiments on a CTSMandarin
task were conducted. The 72 hour training set swmtrain94 as describedin section 7.3.1, was
used in training. The the two test data sets, devO4and eval03 were also used. Note that the
16 components per state VarMix system was used as the baseline system for this setup. As
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discussedin section 7.3.1, the parametersof the HLDA projections were only estimated using 52
dimensional PLPfeatures. Pitch parameterswere then appendedto the projected feature vector.
Theseparameters present one issue for the MPE-HLDA systems. The pitch parametersneed to
be appropriately initialized after the projections are estimated and before the subsequentMPE
update of Gaussianparameters. The approach used here is to take the pitch parameters from
the global HLDA ML baselinesystemand to then appendthem to the MPE-HLDA systems.Other
experimental conditions remain the sameasin section 7.3.1. Table 8.4 showsthe performances
of various HLDA systems. For the ML baselinesincreasing the number of transforms actually
led to marginal performance degradation. For the two systemsusing a global projection, the
MPE-HLDA system outperformed the ML baseline by 0.3% on evalO3although the same WER
was obtained on dev04 Comparing the two multiple HLDA systems,signi cant WER gains from
the MPE-HLDA systemwere obtained, 0.7% on dev04and 1.0% on eval03 Similarly, signi cant
gainsover the baselineglobal HLDA systemwere 0.5% on dev04and 0.8% on evalO3respectively

Projection ] dev04 eval03
#Trans | #Dim

Schemes MLE | MPE || MLE | MPE
1 39.8 | 36.2 | 52.5 | 47.9

HLDA 39
65 39.9 | 364 | 52.3 | 48.1
1 - 36.2 - 47.6

MPE-HLDA 39
65 - 35.7 - 47.1

Table 8.4 Performancesof HLDA systemdor devO4and evalO3of Mandarin Chineseon 76 hour swmtrain04

8.4 Experiments on Using Matched Lattices

In all previous experiments word lattices were generated only once using a global HLDA base-
line system. Theselattices were further marked with model alignment and kept xed for MPE
training of various systems.One important issuewith this “exact match” approach is whether it
is appropriate to usethe sameset of lattices for training systemsthat are very different from the
one used to generate them. As discussedin section 6.4.3, ideally individual models should be
usedto generatethe matched lattices for MPE training. Using multiple projections a signi cant

structural difference to a standard global HLDA systemis introduced. Furthermore, optimizing

the HLDA transform parametersin a discriminative fashion, instead of using the ML criterion,

also has a similar impact. Hence, the word level confusion and model alignment given by a
ML trained global HLDA systemmay no longer be appropriate for MPE-HLDA systems. In this
section this issueis investigated by using the matched lattices for MPEtraining of various HLDA
systems. The lattices were either completely re-generatedvia full decoding of the training data,
or only re-marked with model alignment using matched systems.
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8.4.1 Experiments on 76 Hour h5etrainO3sub

On the 76 hour CTS English training set h5etrain03sub matched lattices were generated by
completely re-decoding the training data using the matched acoustic models for the multiple
HLDA baseline and the two MPE-HLDA systemsin table 8.1 respectively Matched lattices were
then used for the subsequentMPE training of each systemwhile xing the HLDA projections.
Note a different decoder, rather than the one usedfor training lattices generation in all previous
experiments, was usedto re-decodethe training data.

Projection ] WER%
#Trans | #Dim

Schemes MLE | MPE
1 36.1 | 33.3

HLDA 39
65 355 | 32.7
1 - 32.8

MPE-HLDA 39
65 - 32.3

Table 8.5 Performancesof HLDA systemdor devOlsulon CTSEnNglish76 hour h5etrain03sulusing matched
word lattices

The lattices are found on average smaller than those used for experiments in table 8.1, by
approximately 20% in terms of the number of lattice nodes. This may have led to the marginal
performance degradation of the global HLDA baseline systemin table 8.5. However, this still
allows the effect of using matched lattices to be investigated. In the table it is shown that us-
ing completely matched training lattices, the WER gain from using MPE-HLDA projections was
increased, compared to table 8.1. After four iterations of MPE training, 0.5% absolute WER
reduction was obtained from the global transform MPE-HLDA systemover the ML single trans-
form baseline. The 65 transform MPE-HLDA systemalso outperformed the multiple transform
ML baseline by 0.4% absolute, and the global HLDA baseline by 1.0% absolute in total.

8.4.2 Experiments on 144 Hour bnetrain02

Re-decodingthe training data to obtain matched lattices is highly expensivefor LVCSR systems.
In order to reduce the computational cost, in this section only the model alignment was re-
generated using matched acoustic models. It is therefore assumedthat the word level confusion
is usedfor multiple model sets. In this sectionon the 144 hour BN Englishtraining setbnetrain02
matched lattices were generated by re-model marking the same set of word lattices using the
multiple HLDA baseline, and the two MPE-HLDA systemsin table 8.3 respectively Asin the
previous experiments, the sameHLDA transforms in table 8.3 were used and kept xed during
the MPE update of standard HMM parameters. Table 8.6 shows the performances of various
HLDA systemson eval03 after four iterations of MPEtraining using lattices with matched model
alignment. Comparedwith previous resultsin table 8.3, where a single set of lattices was used
for all systems,there was marginal improvement from both the multiple HLDA baseline and



the global transform MPE-HLDA systems. Unfortunately, no performance improvement was
obtained from the multiple transform MPE-HLDA system over the comparable multiple HLDA

baseline.

Projection ] WER%

#Trans | #Dim
Schemes MLE | MPE
1 159 | 14.1

HLDA 39
65 15.5 | 13.9
1 - 13.8

MPE-HLDA 39
65 - 13.8

Table 8.6 Performanceof HLDA systemdor eval03on BN English144 hour bnetrain02using matchedphone
lattices

8.4.3 Discussion

In this section matched lattices were used for the subsequentMPE training of standard HMM
parameters after linear projections were estimated. Marginal performance improvements were
obtained on a CTS English transcription task by completely re-decoding the training data. To
reduce the computational cost, for the BN English data the same set of word lattices were re-
marked with model alignment using the matched acoustic models. Unfortunately, no signi cant
WER reduction was obtained by only re-generating the model alignment. Re-generating the
training data lattices can be very expensivefor LVCSRsystems.Given the small performance im-
provementsobserved,the mismatch between systemsand the lattices may be ignored in practice
for discriminative training of linear projections.

8.5 Integrated Model Complexity and Parameter Optimization

The complexity control systemsconsidered in chapter 7 were trained using the ML criterion
whilst discriminative statistics were usedto selectthe optimal structural con guration. In con-
trast all the experiments in this chapter so far only considered discriminative training of HLDA
systemswhile the model complexity was not controlled. As discussedin section 6.4.4, it is
interesting to integrate both model selection and parameter estimation into a consistent dis-
criminative learning process.When selectingthe number of Gaussiancomponents per state, for
instance, Gaussianparameterswill be consideredto be discriminatively estimated for eachcan-
didate model structure. Similarly, when selecting the number of useful dimensions for multiple
HLDA systems,the HLDA transforms and other model parameterswill also be consideredto be
discriminatively updated. In this sectiontwo setsof experiments are conducted on the 46 hour
CTSEnglish corpus minitrain04 and the 76 hour set h5etrainO3subas describedin section 7.1.1.
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8.5.1 Optimizing the Number of Gaussians

Table 8.7 showsthe performancesof two global HLDA systemsafter complexity control and MPE
training on the 46 hour CTStraining setminitrain04 The rst systemis the 20 component Fixed
baselinein table 7.3 on this setup. The number of components per state was not optimized for
this systemand there was no merging of Gaussiancomponents. After four iterations of MPE
training, the WER was reduced to 34.6%. The secondwas the GFuncsystemin table 7.3. Its
complexity was determined by considering the parametersto be ML trained during and after
complexity control. As discussedin section 5.6.1, the parameters of the merged components
are estimated in a standard ML fashion. The combined suf cient ML statistics derived from the
merging operation were usedto estimate the meansand covariancesof the merged components.
Four iterations of MPEtraining were performed on top of the nal MLE model and the WERwas
reduced to 34.3%. In contrast, for the second GFunc systemthe selection of complexity and

Complexity Parameter Estimation HGaUSS WER%
Control for Merged Components MLE | MPE
Fixed - 20 375 | 346
MPE GFunc MLE 1834 || 37.2 | 34.3
MPE GFunc MPE 18.23 - 34.3

Table 8.7 Integrated complexitycontrol and parameterestimation for global HLDA systemdor devOlsulon
CTSEnglish46 hour minitrain04

the parameters update were both discriminative during model selection. Parameters of merged
Gaussiancomponents were considered to be MPE updated when determining the number of
components for each state. The combined suf cient MPE statistics derived from the merging
operation were used for this purpose. Like the baseline GFunc systemin the table, a total of
four iterations of complexity control were performed using marginalized MPE growth functions.
Between iterations model parameterswere updated using one iteration of standard MPE train-
ing. Other con gurations were the sameasthe MPE GFuncsystemin table 7.3. Unfortunately,
there was no performance improvement by consistently optimizing both the complexity and pa-
rameters using a discriminative measure,though the samecomplexity control gain of 0.3% was
obtained over the Fixed baselineafter MPEtraining. In addition, the two GFuncsystemsselected
approximately the samenumber of components per state.

8.5.2 Optimizing the Number of Dimensions

To further investigate the integration of complexity control and parameter estimation, exper-
iments were also conducted on the 76 hour set CTS English h5etrainO3sulbfor multiple HLDA
systems. Table 8.8 shows the WER performances of four multiple HLDA systemson devOlsub
using the 76 hour h5etrain03sub The rst two Fixed systemsare the multiple transform HLDA
and MPE-HLDA systemsin table 8.1. For neither systemwas the number of useful dimensions
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Complexity || HLDA Estimation during | HLDA Estimation after 4DiIm WER%
Control Complexity Control Complexity Control MLE | MPE
Fixed - MLE 39 355 | 32.7
Fixed - MPE 39 - 32.4
MPE GFunc MLE MLE 35.16 || 35.0 | 32.3
MPE GFunc MPE MPE 38.29 - 32.4

Table 8.8 Integrated complexity control and parameter estimation for 65 transform HLDA systemsfor
devOlsulon CTSENglish76 hour h5etrain03sub

controlled. The third baseline systemis a comparable MPE GFunc systemon the 76 hour cor-
pus. During and after complexity control, its model parameters, including projections, were
consideredto be ML trained. After MLE training, four additional iterations of MPEtraining were
performed while the ML trained HLDA projections were xed. In contrast the second GFunc
systemtable had an integrated complexity and parameter optimization. During and after com-
plexity control, all model parameters, including the HLDA projections, were discriminatively
estimated. Other experimental conditions remained the sameasthe baseline GFuncsystem. Un-
fortunately, this systemgave slight performance degradation compared with the baseline GFunc
systemafter MPEtraining. Furthermore, the two systemshad rather similar complexity.

8.5.3 Discussion

In this section a consistent discriminative optimization of model complexity and model param-
eters was investigated on CTStasks. Initial experimental results show that there is no clear
advantagein constraining the parameter estimation to be discriminative during model selection
using marginalized discriminative growth functions. This may indicate that the two distinct
stagesof model building, complexity control and parameter estimation, are independent of one
another for current speechrecognition systems.

8.6 Summary

In this chapter experimental results of discriminative training of linear projection schemeswere
presented on three LVCSRtasks. Performance improvements were obtained over standard sys-
tems that use ML trained projections. The use of matched lattices for the subsequentdiscrim-
inative training, after linear projections were estimated, was also investigated. Marginal WER
gains were obtained by completely re-decoding the training data using matched acoustic mod-
els. Finally, a consistent discriminative optimization of model complexity and parameters was
evaluated. It was found that model selection and parameter estimation may be independent
of one another for current speechrecognition systems. Initial experimental results showed no
advantagein constraining the criteria for model selection and parameter estimation to be of the



s gAYy v i il vl T Ayl e RV e TRl NIt M il VNl Al VARV RERA T I N =

samediscriminative nature during complexity control.
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Conclusionand Future Work

In this thesis the automatic complexity control and feature selection problems for HMM based
recognition systemsare investigated. First, a novel discriminative complexity control framework
was proposed. Under this general framework, model selection is basedon the marginalization
of a discriminative measure. This should be more explicitly related to the recognition error
rate than standard likelihood based criteria. Ef cient approximation schemeswere proposed
to make the marginalization more tractable for HMMs. Second, the discriminative training of
linear projections was investigated. Theseprojections should yield a compact feature represen-
tation with improved discriminative power compared with the standard maximum likelihood
approach. Finally, the performancesof discriminative complexity control and linear projections
were evaluated on a wide range of LVCSRtasks. In this chapter, a more detailed summary of the
thesisis presented. Some possibledirections for future researchare also discussed.

9.1 Review of Work

The theory of model complexity control using the marginalization of a discriminative measure
was presentedin chapter 5. Most of the standard standard model selectiontechniquesdiscussed
in chapter 3 reply on an inherent assumption that the classi cation error is strongly correlated
with the likelihood on unseendata. Hence increasing the likelihood on the unseen date, or
equivalently the marginal likelihood on the observeddata, should decreasethe error rate. How-
ever, this strong assumption is not true for current speechrecognition systemsusing HMMs,
as discussedin section 3.6. This is due to the incorrect modeling assumptions about speech
signals in these systems. As this correlation is weakened, the predicted performance ranking
basedon the likelihood will beincreasingly poor. This is the rationale behind the discriminative
complexity control framework proposed in this thesis. Since the ultimate aim of model com-
plexity control for speechrecognition is to minimize the recognition error rate on unseendata,
it is more appropriate to marginalize a criterion that is more explicitly related to the error rate.
Discriminative criteria are natural choicesfor this purpose. They are more directly related to
recognition error rate than likelihood.

121
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However, due to the sensitivity to outliers, a direct marginalization of these discriminative
criteria may be inappropriate for complexity control. For instance, sentenceswith very low pos-
teriors are heavily weighted for the MMI criterion. The performance ranking prediction may be
distorted due to the presenceof these outliers. To handle this problem, the proposed method
is basedon the marginalization of a discriminative growth function. It maintains some of the
attributes of the original discriminative criterion and is lesssensitive to outliers. The marginal-
ization of this growth function is used to determine the appropriate model complexity. This
discriminative framework for complexity control is a very different approach to the standard
likelihood basedschemesdiscussedin chapter 3. Bayesianmodel selectiontechniquesare based
on the marginalization of the training data likelihood, or the evidence. In contrast the discrim-
inative model selection method proposed in this thesis is basedon a “discriminative evidence”
that directly measuresthe discriminative power of model structures. In section 5.3 a general
form of growth function was introduced. Then two forms of discriminative growth functions
were proposed for the MPE and MMI criteria in sections5.4 and 5.5 respectively To make the
marginalization of the two growth functions more tractable, an EM-like approachwas usedto to
yield a lower bound approximation. This lower bound was then marginalized ef ciently using
Laplace'sapproximation for complexity control. Finally, in section 5.6 some important imple-
mentation issueswere discussedto make the marginalization of discriminative growth functions
more ef ciently for complexity control. In particular, detailed implementation issuesfor systems
using HLDA style linear projections were discussed.

The discriminative training algorithms for linear projections were presented in chapter 6.
An important aspectof a speechrecognition problem is to derive a good, and compact, feature
representation. This should contain suf cient discriminant information to minimize the classi -
cation error. One commonly used type of techniquesis the linear projection schemesdiscussed
in section 2.4. When using these schemes,the projections are normally trained using the ML
criterion. Asdiscussedin sections4.1 and 6.1, there are incorrect modeling assumptionsabout
speechsignalsin current HMM basedASRsystems.For these systemsmerely increasingthe like-
lihood on unseenor observeddata does not necessarilyimprove the recognition performance.
Hence, in addition to the discriminative control of subspacedimensions, it is also preferable
to employ discriminative criteria to estimate linear projections. Thesecriteria are more closely
related to the recognition error rate than likelihood. This is the motivation of developing dis-
criminative training schemesfor linear projection schemes.

Unfortunately, the existing discriminative training algorithms may not be appropriate to
use for linear projections: the EBW algorithm can only be usedto optimize standard forms of
HMM parameters; gradient descentbase numerical techniques are inef cient for LVCSR train-
ing and have dif culty guaranteeing convergencein practice. The recently introduced weak-
senseauxiliary function approach provides a exible and intuitive derivation of the EBW algo-
rithm [91, 89, 93]. This method may also be usedto ef ciently optimize a variety of forms of
model parametersincluding linear projections. In sections6.3.1 and 6.3.2 aweak-senseauxiliary
function was further usedfor the discriminative estimation of linear projections, as examplesof
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non-standard form of model parameters. Finally, in section 6.4 some implementation issuesfor
the the discriminative estimation of linear projections were discussed.In particular, a consistent
discriminative optimization of both model complexity and parameterswas discussedby bridging
the researchin chapter 5 and chapter 6.

Experimental results on complexity control using marginalized discriminative growth func-
tions were presentedin chapter 7. Asdiscussed,the key motivation of using the marginalization
of a discriminative measureis that this method is more strongly correlated with the recogni-
tion error rate than likelihood. This correlation was initially investigated for the optimization
of two complexity attributes of an HLDA systemtrained using the ML criterion. The number of
componentsand number of useful dimensionswere controlled globally on an LVCSRtask in sec-
tion 7.1.2. This allowed all possible systemsto be explicitly built and evaluated to examine the
correlation between WERand complexity control criteria. The correlation betweenthe WERand
the likelihood on unseendata was found to be fairly week for current HMM basedASRsystems.
A limitation of BIC was also found when optimizing multiple complexity attributes simultane-
ously. This is becausethe BIC approximation may becomeincreasingly poor as the amount of
observeddata decreases.Furthermore, the differencesin the form of model parametersis not
considered by BIC. In the experiments the issueswith a direct use of discriminative criteria was
also clearly shown. The MMI criterion, for instance,was heavily in uenced by outliers sentences
with very low posteriors and led to a poor selection of model complexity.

To further investigate model selection using marginalized discriminative growth functions,
the sametwo complexity attributes of HLDA systemswere optimized on a local level for a wide
range of LVCSRtasks. Experimental results on four CTSEnglish training setupswere presented
in section 7.1.3. Acrossdifferent training data sets,if not giving further gains over the bestman-
ually tuned system,the marginalized MPE growth function will at least selecta compact system
with approximately the lowest WER among all tuned systems. Furthermore, the same con gu-
rations describedin section 5.6 were usedthroughout these experiments and no tunning of any
free parameterswas required. A strong correlation between marginalized discriminative growth
functions and WERwas observedin the experiments. Theseare desirable features of a good com-
plexity control technique. Using marginalized MPEgrowth functions compact modelstend to be
selected. Thisis particularly useful for discriminative training techniques,asgood generalization
to unseendata is preferred. Hence, in section 7.2 the gains from these growth function systems
were also found most additive to discriminative training, and furthermore, MLLR basedspeaker
adaption. In section 7.3, complexity control using marginalized discriminative growth functions
was also found to generalize well to other LVCSRtasks. Finally, in section 7.4 complexity con-
trol using marginalized discriminative growth functions was evaluated in a state-ofthe-art 10
real-time LVCSR system. WER gains were obtained in both adaptation and systemcombination
stages. Therefore, it may be concluded that marginalized discriminative growth functions is a
general form of complexity control technique and may be useful for current speechrecognition
systems.

Experimental results for the discriminative training of linear projection schemeswere pre-
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sented in chapter 8. HLDA projections estimated using the MPE criterion were evaluated on
three LVCSR tasks. Acrossdifferent training setsand tasks, performance improvements were
obtained over the baseline systemsusing the ML trained projections. Then the use of matched
lattices for the subsequentdiscriminative training of standard HMM parametersafter estimating
linear projections was investigated. Unfortunately, only small WER gains were obtained by us-
ing matched lattices. Considering the trade-off between the computational costand the relative
performance improvement, the mismatch between systemsand lattices may be ignored for lin-
ear projection schemesin practice. Finally, a consistently discriminative optimization of model
complexity and parameters discussedin section 6.4.4 was evaluated. Initial experimental re-
sults showed no clear advantagein constraining the criteria for model selection and parameter
estimation to be of the same discriminative nature during complexity control. This may indi-
cate that model selection and parameter estimation may be fairly independent of one another
for current speechrecognition systems. In summary, it may be concluded that discriminatively
estimated linear projection schemesare useful to improve the performances of current speech
recognition systems.

9.2 Future Work

There are severalaspectsof the work presentedin this thesis may require further investigation,
either in terms of different application domains, or modi cations to the existing approaches.
Theseare summarized as below:

Marginalized discriminative growth functions is a general form of model complexity con-
trol technique. In this thesis complexity attributes of HLDA systemswere optimized. It
would be interesting to further apply this technique to control the complexity of other
forms of acoustic models, such as the dimensionality of the state space of factor ana-
lyzed HMMs [98], or the number of inverse covariance expertsin precision matrix model-
ing [108].

The discriminative growth functions investigated in this thesis are related to the MPE and
MMI criteria. For other pattern classi cation tasks,alternative forms of error rate measure-
ment, rather than word or sentencelevel error rate, may be required. In these cases,the
marginalized discriminative growth functions basedapproach may also be used, as long
as an appropriate form of growth function is selectedfor the underlying criterion. Again
the growth function selected should still have reduced sensitivity to outliers and be in a
relatively tractable form. This provides a exible framework for model complexity control
whichever cost function is used.

Laplace'sapproximation wasusedto compute the marginalization of discriminative growth
functions in this thesis. However, this only givesa secondorder expansion of the growth
function integral. Hence, it would be preferable to explore other approximation schemes
to incorporate more information from ignored higher order terms.
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Integrating model selection and parameter estimation under a discriminative framework
was initially investigated for HLDA systemsin this thesis. As this consistentdiscriminative
learning processis a very different approach from ML, or Bayesian, learning, it may be
interesting to further explore the advantage of this integration for other forms of statistical
models and applications.
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Derivationsof MPE Growth Functions

This appendix details the derivation of the MPE growth function lower bound. The derivation
starts from the MPE growth function given in equation 5.6. Finally, the lower bound in equa-
tion 5.9, the MPE auxiliary function in equation 5.10 and the statistics in equation 5.11 are
derived. Following the de nition of the MPE criterion in equation 4.6, the growth function in
equation 5.6 may be re-written as

X

G() = p(O; Wj JAW; W) Fmpd)p(Oj )
Wy h i
+C P(O;Wj ) Fmpd™) A(W;W) (A1)

w
A (W W )< Fmpd~)

An important aspectof the growth function is its expansion, G( ; ), over hidden variable se-
qguences,f g. Following equation A.1 above, this is given by

X
G ;) = p(O; Wj )AW;W) Fmpd)p(O; | )
Wy h i
+C p(O; ;Wj ) Fmpd?) A(W;W) (A.2)

w
A (W W )< Fmpd~)

All the following derivations are basedon various forms of the expansionin equation A.2. To
make the growth function marginalization more ef cient, alower bound on G( ) may be derived
using an EM-like approach via Jensen'sinequality. In a similar fashion to the log-likelihood
bound in equation 2.5, a distribution over the hidden state sequencesP( ;7), is required. The
lower bound is given by

X
0g&( ) = log  P( r)s(( ’_])
X G
P( ;:7)I
(il =3
= Lpd; ) (A3)
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In order to make the above bound valid, the hidden variable sequence“posterior” distribution
P( ;) must satisfy the non-negative and sum-to-one constraint. The form of posterior consid-
ered here is

P(;7) = P2 (A.4)

Note that P( ;™) is not the true hidden state sequenceposterior as used in the standard EM
algorithm for ML training. Neverthelessit may still be related to aterm, ™P{0O), which may be
viewed asthe MPE hidden state sequence*occupancy”. Following equation A.2, this is given by,

G ;7)) = p(Oj7) "™0) (A.5)
and

X

"P0) = P( ;WjO; )A(W;W) Fmpd)P( jO;7)
Wy h i
+C P( ;WjO;™) Fmpd™) A(W;W) (A.6)

w
A (W ;W)< Fmpd™)

When C is suf ciently large the non-negative and sum-to-one constraint will hold for P( ; 7).
In order to derive the growth function lower bound in equation 5.9 by further re-arranging
equation A.3, another form of G( ; ), givenin equation A.2, is required. This is given by

8
<X
G ;) = p©O; j). P(Wj JA(W;W) Fmpd?)
. 9
X h E
+C P(Wj ) Fmpd?) A(W;W) 3 (A.7)

W ’
A (W ;W )< Fmpd ™)

becausefor HMMs given the state sequence,the likelihood of observationsare independent of
the words.

p(O; ;Wj ) = p(O; j)IPW] ) (A.8)

Now following equations A.4, A.5, and A.7, the lower bound in A.3 may be re-arranged as

x  ™0) ,
Lmpd; 7) = logG(7) + lW'ng(oi i)
x  ™{0) _
PW logp(O; |7) (A.9)

and the only term associatedwith model parameters, , is given by

X X
"PY0)logp(0; j ) = "PY0) logp(Oj ; )+ "PY0) logP( j )



For the complexity control problem consideredin this work, the state transition probabilities and
Gaussiancomponent priors are kept xed. Hencethe term related to the hidden state sequence
priors in equation A.9, MPLO) logP( j ) may be canceledout b P MPLO) logP (7).
Now the only term related to model parameters, , in equation A.9is PT0) logp(Oj ; ).
For HMMs, rather than using the state sequenceposteriors, the hidden state occupanciesare
normally used. The aim is to to re-expressthe hidden state sequenceposteriors, ""{0), given
in equation A.6, asthe state occupanciesgiven in equation 5.11. Todo so "{O) needsto be
re-written using the MPEword sequenceoccupancyde ned in equation 4.22. This is given by *

X X
"0 = P(JO:W:7) o+ P(JO:W:7T)
C P( jO;W;") \‘/“Vp‘% (A.10)
w; ™%

When considering HMMs by summing over all the sequencespassingthrough the samestate for
eachtime instance, the MPE statistics, ["{ ), in equation 5.11 may be derived. Now the only
term related to model parametersin equation A.9, MPT0O) logp(Oj : ), may be re-written
as

X
™90 logp(0j ; ) = ™) logploj  =5S; ):
is

This gives the MPE auxiliary function, Qmpd ; 7), in equation 5.10. Finally, given this form of
Qmpd ; 7) the growth function lower bound in equation A.9 may be re-written asin equation 5.9.

INote the binary partition of all possible word sequenceswith respectto the sign of W was also used in the

standard form of MPE statistics of equation 5.13 as proposedin [93] for discriminative training.
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Derivationsof MMI Growth Functions

This appendix details the derivation of the MMI growth function lower bound. The derivation
starts from the MMI growth function given in equation 5.15. The lower bound in equation 5.17,
the MMI auxiliary function in equation 5.18 and the statistics in equation 5.19 are nally de-
rived. Following the de nition of the MMI criterion in equation 4.1, the growth function in
equation 5.15 may be re-written as
h i
G() = p(Gj) PWJO; ) P(WjO;7)+ CP(WjO;") (B.1)

An important aspectof the growth function is its expansion, & ; ), over hidden variable se-
guences,f g. Following equation B.1 above, this is given by

G ;) = pO; ;Wj) PWJO;7)p(O; j )+ CP(WJO;)p(O; j)  (B.2)

All the following derivations are basedon various forms of the expansionin equation B.2. To
make the growth function marginalization more ef cient, alower bound of G( ) may be derived
using an EM like approachvia Jensen'sinequality. In a similar fashion to the log-likelihood lower
bound in equation 2.5, a distribution over the hidden state sequencesP ( ; 7), is required. The
lower bound is given by

X .
0gG&( ) = log  P( ;~)§(( ’_])
X G
P( ;:7)I
(il —5
= Lpd; ) (B.3)

In order to make the above bound valid, the hidden variable sequence“posterior” distribution
P( ;™) must satisfy the non-negative and sum-to-one constraint. The form of posterior consid-
ered hereis

P( ;™) = PM (B.4)
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Note that P( ;™) is not the true hidden state sequenceposterior as used in the standard EM
algorithm for ML training. Neverthelessit may still be related to aterm, ™™(O), which may be
viewed asthe MMI hidden state sequence*occupancy”. Following equation B.2, this is given by

G ;7) = p(O;Wj~) ™MO) (B.5)
and
") = P( jO;W;7) P( jO;7)+ CP( jO;7): (B.6)

When C is large enough the non-negative and sum-to-one constraint will hold for P( ;7). To
further re-arrange the lower bound in equation B.3, another form of G( ; ), given in equa-
tion B.2, is required. This is given by

[

G ;) = pO; j) P(Wj ) P(WjO;7)+ CP(WJO;7) (B.7)
becausefor HMMs given the state sequence,the likelihood of observationsare independent of
the words sequencesas given in equation A.8. Now, following equations B.4, B.5, and B.7, the
lower bound in B.3 may be re-arranged as

X mm'(o) -
Lem(: 7) = logQ(7) + Pwlogp(o; i)
X mm'(o) .
PW logp(O; j7) (B.8)

and the only term associatedwith model parameters, , is given by

. X . X
MM(O)logp(O; j ) = ™M) logp(Oj ; )+ MM(O)logP( | )

For the complexity control problem consideredin this work, the state transition probabilities and

Gaussiancomponent priors are kept xed. Hencethe term related to thg hidden state sequence
priors in equation B.8, mMO) logP( j ) may be canceledout b mMO) logP( 7).

Now the only term related to model parameters, , in equation B.8is mM(Q) logp(Oj ; ).

For HMMs, rather than using the state sequenceposteriors, the hidden state occupanciesare
normally used. The aim is to to re-expressthe hidden state sequenceposteriors, ™™(O), given
in equation B.6, asthe state occupancies, ™™( ), given in equation 5.19. For HMMs, by sum-
ming over all the sequencespassing through the same state for each time instance, the MMI

statistics, ™{ ), in equation 5.19 may be derived. The only term related to model parameters
in equation B.8, mm(O) logp(Oj ; ), may also be re-written as

. X _
m™MO)logp(Oj ; ) = "™ )logp(o j =S;; ):
i
This is the MMI auxiliary function, Qmm(; 7), in equation 5.18. Finally, given this form of

Qmm(; 7) the growth function lower bound in equation B.8 may be re-written as in equa-
tion 5.17.



C

Derivationsof MPETraining of HLDA

This appendix details the derivation of the gradient of the weak-senseauxiliary function against
parameters of HLDA transforms on a row by row basis,asgiven in equation 6.5. The derivation
starts from the gradient of the weak-senseauxiliary function in equations 6.2, and 6.4. Finally
the gradient againstrows of HLDA transforms in equation 6.5 is derived.

Substituting the gradient information in equation 6.4 into equation 6.2 givesthe weak-sense
auxiliary function's gradients againsthe rows of HLDA projections that associatedwith the useful
and nuisance dimensions repectively. Theseare given by

2 3
;T X X e__(l')>
% = 4 ( jnun*( ) jden( ) + Dj5 W
@i’ p - j2r; ( [2r &
% &'(r) X ; >
L den (i) )
o (IJ )2 J n’( ) i ( ) (o} 0
r
J 7 i >
+D; poj 0=5;) 0 O o O do
2 3
y X X e,_(r)>
% = 4 ( jnUfT'( ) jden( )) + DJ 5 W
@ijop - j2r; ( i2r &
X g "X §
i den (gr) (gr)
(9 (IJ )2 J "‘( ) i ( ) (0] 0
r
J 7 i >
+D; p(oj o=S5j;7) o (CHOR @) " do - (C.1)

To simply the above equations, rst let us the caseof useful dimensions,i p, for example,
and examine the following expression.
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It is known that p(oj o = Sj; ™) = N(o; ~0); ~0)y is a GaussianPDF hence one may have
Z
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Z
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and then equation C.2 may be written as

>
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Using the EBW update for Gaussianmeans and covariancesin equation 4.16, and the nu-
merator and denominator statistics de ned in equations 4.17, 4.18, the above may be further
simplied as

>

) jden( ) o (DR ()
z
. . >
+D; poj 0=S:;) o O o O do
" #

X .
— J_nurr( ) J_den( ) + Dj (i) (C.4)

and ) is the discriminatively updated full covariance using the EBW algorithm in equa-
tion 4.16.



In a similar fashion, examining the following expression for nuisance dimensions, i > p,
gives

(
X nurr( den (g;r) (gir) >
i ) () o 0
JZFZ . |
+ poj 0=S:;) o @) o @) gy )2
X "X #
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Finally, substituting equations C.4 and C.5 into equation C.1, the gradient against rows of

HLDA transforms given in equation 6.5 may be derived, where the suf cient discriminative
statistics, G ("), are accumulated asin equation 6.6.
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