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Summary

Selecting the optimal model structure with the “appropriate” complexity is a standard prob-

lem for training large vocabulary continuous speechrecognition (LVCSR) systems,and machine

learning in general. State-of-the-art LVCSRsystemsare highly complex. A wide variety of tech-

niques may be used which alter the system complexity and word error rate (WER). Explicitly

evaluating systemsfor all possible con�gurations is infeasible. Automatic model complexity

control criteria are needed. Most existing complexity control schemescan be classi�ed into two

types, Bayesianlearning techniquesand information theory approaches.An implicit assumption

is made in both that increasing the likelihood on held-out data decreasesthe WER. However,

this correlation is found to be quite weak for current speechrecognition systems. Hence it is

preferable to employ discriminative methods for complexity control. In this thesis a novel dis-

criminative model selection technique, the marginalization of a discriminative growth function,

is presented. This is a closer approximation to the true WER than standard likelihood based

approaches. The number of Gaussiancomponents and feature dimensions of an HMM based

LVCSR system is controlled. Experimental results on a wide rage of LVCSR tasks showed that

marginalized discriminative growth functions outperformed the best manually tuned systems

using conventional complexity control techniques,such asBIC, in terms of WER.

Another important aspect of a speech recognition problem is to derive a good and com-

pact feature representation for the data. This should contain suf�cient discriminant information

to distinguish between linguistic units. Features consisting of non-discriminating information

should be removed. One category of such techniques are linear projection schemes. For these

schemethe linear projections are normally estimated using the maximum likelihood (ML) cri-

terion. It is well known that certain incorrect modeling assumptionsare made in current HMM

basedspeechrecognition systems. Hence, in addition to a discriminative selection of number

of subspacedimensions, it is also preferable to usediscriminative criteria to estimate thesepro-

jections. The commonly used extended Baum-Welch (EBW) algorithm provides an ef�cient,

iterative, EM-like optimization schemefor discriminative criteria. However, using this algorithm

the forms of model parameters that can be optimized are fairly restricted. Hence, it is useful to

have a more general approach to discriminatively train a variety of forms of model parameters.

In this thesis the recently proposed weak-senseauxilary function approach is used for discrimi-

native estimation of linear projection schemes.Experimental results on a range of LVCSRtasks

show that discriminative training of linear projections may be useful for improving the perfor-

mancesof current LVCSRsystems.

Keywords
SpeechRecognition, acousticmodeling, complexity control, discriminative growth functions,

linear projection schemes,discriminative training, hidden Markov models.
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Mathematical Notations:

p(�) probability density function

P(�) probability massor prior distribution

P(�j� ) conditional probability distribution

f�g > transposeof a matrix

j � j determinant of a squarematrix

f�g � 1 inverse of a squarematrix

diag (�) diagonal elementsof a squarematrix

rf�g gradient of a function

@f�g partial derivative of a function

N (�; � ; � ) multivariate Gaussiandistribution with mean � and covariance�

HMM Notations:

aij discrete state transition probability

bj (o� ) observation density given hidden state j

� j (� ) forward probability associatedwith hidden state j and time instance �

� j (� ) backward probability associatedwith hidden state j and time instance �


 j (� ) posterior distribution of hidden state j given the observation sequenceO

� (j ) mean vector of hidden state j

� (j ) covariancematrix of hidden state j

General Model and Complexity Control Notations:

M model structural con�guration

O sequenceof observationswith �nite length

o� n dimensional acousticobservation at a time instance �

T total number of frame samplesin the training data

� set of arbitrary model parameters
~� set of current parameter estimates

�̂ set of optimal parameter estimates

W referenceword sequence
~W arbitrary sequenceof words

F arbitrary training criterion

G discriminative growth function

S discrete hidden state

 sequenceof hidden states

Q auxiliary function

L lower bound



vi

P( ; � ) a hidden state sequenceposterior or variational distribution

Linear Projection Notations:

A n � n squarelinear transform

A [p] p � n non-squarelinear projection with p rows where p < n

B between classcovariance

� within classcovariance

r index of transformation classesfor multiple projections

� (g;r ) global mean vector for classr

� (g;r ) global covariancematrix for classr

�� (j ) transformed Gaussianmean
��

(j )
transformed Gaussiancovariance

a i i th row of a linear transform

ci cofactor vector of the i th row of a squarelinear transform
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List of Acronyms:

AIC Akaike information criterion

ASR Automatic speechrecognition

BIC Bayesianinformation criterion

BN Broadcastnews

CER Charactererror rate

CML Conditional maximum likelihood

CN Confusion network

CTS Conversational telephone speech

EBW Extended Baum-Welch

EM Expectation maximization

GFunc Growth function

GMM Gaussianmixture model

HLDA Heteroscedasticlinear discriminant analysis

HMM Hidden Markov model

LDA Linear discriminant analysis

LDC Linguistic data consortium

LVCSR Large vocabulary continuous speechrecognition

MCE Minimum classi�cation error

MCMC Markov chain Monte Carlo

MDL Minimum description length

MAP Maximum a posteriori

ML Maximum likelihood

MLLR Maximum likelihood linear regression

MMI Maximum mutual information

MML Minimum messagelength

MWE Minimum word error

MPE Minimum phone error

PLP Perceptual linear prediction

ROVER Recognizeroutput voting error reduction

STC Semi-tied covariances

VTLN Vocal tract length normalization

WER Word error rate
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Introduction

Automatic speechrecognition (ASR) has been the subject of active researchfor the past three

decades.As the commercial and military interest hasgrown, investigation of ASRtaskshaspro-

gressedto increasing dif�culty and large scales.There have beensigni�cant advancesin speech

recognition technology in these years. Many techniques have been developed to improve the

performance of speechrecognition systems. The most signi�cant technical breakthrough was

made in the 1970s when hidden Markov models (HMMs) were introduced for speechrecog-

nition [ 5, 58]. In the following years hidden Markov models gradually becamethe dominant

technique for acoustic modeling. Theseapproacheshave been applied to adapt them to a wide

range of speechrecognition tasks. ASRresearchhas been applied to tasks ranging from clean

and well controlled environments, suchasWall Street Journal (WSJ), to spontaneous,noisy and

limited bandwidth domains, such asbroadcastnews (BN) and conversational telephone speech

(CTS). As the complexity of the task has increased,the amount of date required for “good” per-

formancesis also increasing. Thousandsof hours of audio data are being usedfor the training of

state-of-the-art large vocabulary continuous speechrecognition (LVCSR) systems.On the other

hand, the rapid development of computing power in terms of speedand storage capability has

further boosted the use of large amounts of training data. For these reasonsstate-of-the-art

LVCSRsystemsare becoming more and more complex.

Many challenging problems still remain unsolved in speechrecognition research. The per-

formance of current speechrecognition systemsis still worse than human recognition. The per-

formance of current ASRsystemsdegradesrapidly as the level of background noise increases.

In addition, the optimal complexity, or number of parameters, in a speechrecognition system

also affects the performance. This is the main area investigated in this thesis. Like many other

pattern classi�cation tasks, the correct model complexity, or structural con�guration, needs to

be determined to yield a good generalization to unseen data. For current speechrecognition

systems,especiallyon large vocabulary tasks,explicitly building and evaluating all possiblesys-

tems is infeasible. Hence, automatic model complexity control criteria are needed. Another

challenging problem in speechrecognition researchis how to extract a compact set of features

that contain the most discriminant information. They should contain no redundant information,

1



CHAPTER1. INTRODUCTION 2

and more importantly should improve the classi�cation accuracy. In this thesis the automatic

complexity control and feature selection problems for HMM basedspeechrecognition systems

are investigated.

1.1 Speech Recognition Systems

A speechrecognition systemis normally decomposedinto individual parts. The basic structure

of a typical ASRsystemis shown in �gure 1.1. The �rst stageinvolves the front-end processing

of the speechwaveforms. The speechsignals are compressedinto streams of acoustic feature

vectors. Theseextracted feature vectors are assumedto contain suf�cient information for the

classi�cation of speechpatterns. An acousticmodel, languagemodel and lexicon are used to

infer the most likely hypothesis for the spokenutterance given this set of acoustic features. The

language model representsthe syntactic and semantic information of the spokensentence.The

acousticmodel mapseachstreamsof acousticfeature vectorsinto individual words, or sub-word

units. For LVCSRtasks the lexicon, or commonly referred to as dictionary, provides a mapping

between words and sub-word units, re�ecting the pronunciation variation of each word in the

vocabulary. A wide range of techniques, such as parameter tying and discriminative training

schemes,may be employed to improve the performance of speechrecognition systems. These

techniquesmay interact with eachother. Hence, the development of an ASRsystemis complex

and requires careful analysis,design and implementation of its individual parts.

Lexicon
Language

Search and
Decoding

Front End
Processing

Models

Acoustic
Models

Hypothesis
Recognized

Figure 1.1 An overviewof a speechrecognitionsystem

A statistical framework is usually usedfor speechrecognition. The problem may beexpressed

as �nding the most likely word sequenceW, given a sequenceof acoustic observation vectors,

O = f o1; :::; o� ; :::; oT g, where o� denote the acousticobservation at sometime instance � . This

may be written as

W = argmax
~W

n
P( ~WjO)

o
: (1.1)
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Applying Bayesrule yields

W = argmax
~W

(
p(Oj ~W)P( ~W)

p(O)

)

= argmax
~W

n
p(Oj ~W)P( ~W)

o
(1.2)

since the most likely word sequenceis not dependent on the probability of the acoustic obser-

vations p(O). The calculation of the optimal word sequenceconsistsof two probability distri-

butions: the probability of the acoustic vectors given a word sequence,p(Oj ~W), given by the

acoustic model; and the prior probability of a given word sequence,P( ~W), given by the lan-

guage model. This thesis is only concentrated on the complexity control problem for acoustic

models and the selection of front-end features.

1.2 Model Complexity Control

Selecting the model structure with the “appropriate” complexity is a standard problem when

training LVCSR systemsand for machine learning in general. Systemswith the optimal com-

plexity have a good generalization to unseendata. For speechrecognition systems,this general-

ization is usually measuredby the word error rate (WER). Unfortunately, state-of-the-art LVCSR

systemsare highly complex. A wide range of techniques may be used which alter the system

complexity and affect the WERperformance. Examplesof these techniques are using mixtures

of Gaussiansas state distributions, dimensionality reduction schemes,decision tree basedstate

tying and linear transforms basedspeakeradaptation. Explicitly evaluating the WERfor all pos-

sible model structural con�gurations is infeasible. It is therefore necessaryto �nd a criterion

that accurately predicts the WERranking order, without explicitly requiring all the systemsto be

built and evaluated.

Most existing complexity control schemescan be classi�ed into two types. In Bayesiantech-

niques the model parametersare treated as random variables. The likelihood is integrated over

the model parameters as random variables. This yields the Bayesian evidence [ 2, 122, 41].

In the information theory approaches the complexity control problem is viewed as �nding a

minimum code length for an underlying data generation process[ 16, 6, 96, 54]. These two

approachesare closely related to each other. They asymptotically tend to the Bayesianinfor-

mation criterion (BIC) [ 104] �rst order expansion,or Laplace'sapproximation for secondorder

expansion [ 122] with increasing amounts of data. These approximation schemeshave been

previously studied for various complexity control problems for speechrecognition systems.For

instance, they have been applied to determine the number of states in a decision tree based

clustering [ 12, 13, 15, 59, 105, 107, 117, 130], or the number of linear transforms for speaker

and environment adaptation [ 106]. An implicit assumption is made in both sets of schemes

that increasing the likelihood on held-out data will decreasethe WER.However, this correlation

has been found to be weak for current speechrecognition systems[ 71, 70]. This is due to two

well known incorrect modeling assumptionswith the HMM basedframework: the observation
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independenceassumption and the quasi-stationary assumption. Thus it would be preferable to

use a complexity control schemethat is more closely related to WER. Discriminative measure

has previously been used for building speechrecognition systems. In [ 4, 88, 85], it was used

as a method of incrementally splitting Gaussianmixture components. However, no stopping

criterion was provided to penalize over-complex model structures.

This thesis presents a novel complexity control technique that usesthe marginalization of

a discriminative measure,rather than using the likelihood as in standard Bayesianapproaches.

Due to sensitivity to outliers, the direct marginalization of discriminative criteria, such asmaxi-

mum mutual information (MMI) [ 3], is inappropriate for complexity control. Instead a related

discriminative growth function is marginalized. This growth function retains certain attributes of

the original discriminative criterion but hasreducedsensitivity to outliers. The calculation of the

“discriminative evidence” is still impractical for LVCSRsystems. Hence, for ef�ciency Laplace's

approximation is used for the integration of discriminative growth functions. The growth func-

tions proposed in this thesis are basedon the MMI and minimum phone error (MPE) [ 93, 62]

criteria.

This work usesASRsystemsbuilt from HMM basedacoustic models that have mixtures of

Gaussiansas the state output distributions and multiple linear feature projections. Two forms

of systemcomplexity attributes are to be investigated, the number of componentsper state and

the number of dimensions for each projection. In addition to a discriminative selection of the

dimensionality, a secondarea investigatesin this thesis is the discriminative estimation of linear

projection schemes.

1.3 Discriminative Linear Projection Schemes

In common with other pattern classi�cation tasks,an important aspectof the speechrecognition

problem is to derive a good, compact, feature representation for the data. This should contain

suf�cient discriminant information to distinguish between classes. Features consisting of non-

discriminating information should be removed. One family of such techniques used in speech

recognition systemsare linear projection schemes. Standard linear projection schemes,such

as linear discriminant analysis (LDA) [ 26, 121] and its heteroscedasticextensions [ 66, 102,

34], attempt to generate one or more uncorrelated subspaceswithin the maximum likelihood

(ML) framework. When using multiple projections, a consistent likelihood comparison may be

ensured acrossdifferent subspacesassociatedwith each projection. However, it is well known

that certain incorrect modeling assumptionsare made in current HMM basedspeechrecognition

systems. Hence, in addition to a discriminative control of the number of subspacedimensions,

it is also preferable to usediscriminative criteria to estimate linear projections.

Most state-of-the-art LVCSRsystemsare built using discriminative training techniques [ 124,

51, 23, 64]. Usually the extendedBaum-Welch (EBW) algorithm is usedasit providesan ef�cient

iterative EM-like optimization schemefor discriminative training criteria. However, using the

EBW algorithm the forms of model parametersthat may be optimized are restricted to standard
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HMM parameters, such as Gaussianmeans, covariances. Gradient descent based numerical

techniques are expensive for LVCSR training and have dif�culty guaranteeing convergencein

practice. Recently the weak-senseauxiliary function approach was introduced. This method

provides a �exible and intuitive derivation of the EBW algorithm [ 91, 89, 93]. In this thesis

weak-senseauxiliary functions are used to discriminatively optimize linear projections.

1.4 Thesis Structure

This thesis is structured as follows: In the following chapter the basic theory of using hidden

Markov models for speechrecognition, and the maximum likelihood training schemeare pre-

sented. Other details of the development of a large vocabulary recognizer, including the param-

eterization of human speech,selection of recognition units and parameter tying, language and

pronunciation modeling are also brie�y reviewed. Then the basic search and decoding algo-

rithms are brie�y described. Finally, two categoriesof acousticmodeling techniqueswidely used

in state-of-the-art speechrecognition systems, linear feature projection schemesand speaker

adaptation techniques,are presented.

Chapter 3 presents standard complexity control techniques. First, the word error rate is

the most widely used performance evaluation metric for current ASR tasks, hence minizing

the WER on test data may be viewed as the ultimate aim, or a zero risk complexity control

criterion, for speechrecognition. In standard complexity control techniquesa model correctness

assumption is made that the likelihood on unseen speechdata is strongly correlated with the

systems'WER. Under this general likelihood basedframework, two major categoriesof model

selection schemes,Bayesianlearning techniquesand information theory methods, are outlined.

This is followed by a brief review on existing complexity control researchfor speechrecognition.

Finally, the limitations of likelihood basedcomplexity control schemesare discussed.

Chapter 4 presents standard discriminative training techniques for speechrecognition. In

this chapter several commonly used discriminative criteria are presented �rst, followed by a

discussionon the optimization schemesfor discriminative training. In particular, the extended

Baum-Welch (EBW) algorithm, and a recently introduced weak-senseauxiliary function based

approach are presented.

In chapter 5 a novel discriminative model complexity control technique is presented. First,

some previous work on discriminative complexity control is reviewed. Then issueswith a di-

rect marginalization of discriminative criteria for complexity control are discussed. Due to the

sensitivity to outliers, direct marginalization of discriminative training criteria is inappropriate

for complexity control. Instead the criteria are transformed into a closely related discrimina-

tive growth function to be marginalized over. A discriminative growth function retains certain

attributes of the original criterion and has reduced sensitivity to outliers. In this chapter two

forms of growth functions basedon the MPE and MMI criteria are presented. This is followed

by a discussionon implementation issueswhen using growth functions for complexity control.

Detailed derivations for discriminative growth functions can be found in appendix A and B.
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In chapter 6 the discriminative training algorithms for linear projections schemesare pre-

sented. First, an introduction and motivation of the work is presented. Then previous research

on the discriminative training of linear transformations for speechrecognition is reviewed. This

is followed by an investigation of using weak-senseauxiliary functions for discriminative train-

ing of linear projection schemes.Some implementations issuesare also discussedin this chap-

ter. Some detailed derivations of using weak-senseauxiliary functions to derive the update

algorithms can be found in appendix C.

In chapter 7 experimental results are presentedfor model complexity control using marginal-

ized discriminative growth functions. Initially , complexity control schemesare used to optimize

multiple model complexity attributes on a global level. This allows all systemsto be trained and

evaluated explicitly. The correlation with WERand the performance ranking error is examined

for a variety of complexity control schemes. This is followed by the optimization of multiple

complexity attributes on a local level for an LVCSRtask on CTSEnglish data. The generalization

to two other LVCSR tasks is also investigated using marginalized discriminative growth func-

tions. The interaction with discriminative training and speaker adaptation techniques is also

investigated. Finally, the performancesof complexity controlled systemsare evaluated within a

state-of-the-art 10 time real-time LVCSRsystem.

Chapter 8 presentsthe performancesof discriminatively trained linear projections on LVCSR

tasks. Initially , experimental results for CTSEnglish data are presented. Then the generalization

to two other LVCSRtasksare investigated. This is followed by an investigation of using matched

lattices for the discriminative training of standard HMM parametersafter linear projections are

estimated. Finally, the optimization of both model complexity and parameter are integrated

into a consistent, discriminative, framework. The complexity of discriminatively trained model

structures is optimized for CTStasks.

In chapter 9 a summary of the work in this thesis is presented. Potential future directions of

researchare also discussed.



2

Fundamentalsof SpeechRecognition

In this chapter the basic theory of using Hidden Markov models for speechrecognition is out-

lined. The standard maximum likelihood training of thesemodels is presented. In addition, the

parameterization of speech, the selection of recognition units and parameter tying, language

and pronunciation modeling, and the decoding algorithm are brie�y described. Finally two

categoriesof techniques that are widely used in state-of-the-art speechrecognition systemsare

presented. The two categories are linear feature projection schemesand speaker adaptation

techniques.

2.1 HMMs as Acoustic Models

Currently the most popular and successfulapproachfor modeling the variations of speechsignals

is to usehidden Markov models (HMM). Sincetheir introduction in the 1970's HMMs havebeen

applied to a wide range of speechrecognition tasks[ 5, 58]. In this section the basicconceptsof

HMMs are presented. The structural assumptionsthat underly HMMs are also discussed.

2.1.1 Model Topology

Speechproduction is a non-stationary process.Preciselymodeling all the complexities of the sig-

nals is impossible. When using HMMs to model speechsignals, certain simplifying assumptions

are made about the nature of speech. Although HMMs have been the most successfulform of

acoustic models for ASRsystems,they are not the correctmodels for modeling speechpatterns.

When using HMMs the following assumptionsare made about the nature of the speechsignals:

� Speechsignals may be split into discrete states in which the waveform is stationary and

transitions betweenstatesare instantaneous. This is often referred to asthe quasi-stationary

assumption.

� The probability of an acoustic observation is only conditionally dependent on the vector

and the current hidden state. Eachobservation vector is conditionally independent of the

7
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sequenceof vectors preceding and following it, given the current state. This is commonly

referred to as the observationindependenceassumption.

Neither of thesetwo assumptionsare true for speechsignals. The �rst assumptionis not valid

becausespeechproduction is a non-stationary process. The secondassumption is not true for

multiple reasons. For instance, the dynamics of speecharticulator constrain its trajectory to be

continuous, rather than discrete. Furthermore, techniques like the useof overlapping frames in

speechparameterization may also introduce correlation between acoustic observations. These

assumptionsare further discussedin later sections.

�����

�����

�����

�����

�����

�����

�����

�����

State 1 2 3 4 5

Transition

Emitting
state

Non-emitting
state

PSfragreplacements a12 a23 a34 a45

a22 a33 a44

b3(o� )

Figure 2.1 An HMM with a left-to-right topologyand threeemitting states

Under these assumptionsspeechsignals that are expressedas a sequenceof n dimensional

acousticobservationsof �nite length, O = f o1; :::; oT g, are assumedto begeneratedby a Markov

model as is shown in �gure 2.1.1. Here self-loop transitions are allowed. In the �gure a simple

left-to-right model topology is used. There are a total of �ve states, including three emitting

statesand non-emitting entrance and exit states. Let � denote the model parametersand  an

arbitrary hidden statesequence.The model parametersdescribethe probability density function

(PDF) associatedwith eachemitting state and transition probabilities associatedwith eachpair

of states. In the �gure an observation PDF, bj (o� ) = p(o� j � = Sj ; � ), is associatedwith each

emitting state. Here  � = Sj indicates that at time instance � , an acoustic observation o� was

generated by a hidden state j . In addition, a transition probability, aij = P( � = Sj j � � 1 =

Si ; � ), is associatedwith each pair of states. For any state, the transition probabilities satis�es

a sum-to-one constraint,
P

j aij = 1. Note that self-looping transitions are not allowed for non-

emitting states. These non-emitting states allows multiple HMMs to be simply concatenated

together to form a composite model.
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2.1.2 State Output Distributions

The state emission PDF may have a variety of forms of distribution. Its form depends on the

front-end feature extraction for speechsignals. A more detailed discussionof frond-end process-

ing techniques for speechrecognition may be found in section 2.3.1. If the input speechdata

is discrete, or the data has been vector quantized, then discrete state PDFsmay be used. How-

ever the majority of the current speechrecognition systemsusecontinuous acoustic features. A

commonly used form is a multivariate Gaussiandistribution given by

bj (o� ) = N
�

o� ; � (j ) ; � (j )
�

(2� ) � n
2

�
�
� � (j )

�
�
�
� 1

2 exp
�

�
1
2

�
o� � � (j )

� >
� (j )� 1

�
o� � � (j )

� �
(2.1)

where � (j ) and � (j ) are the Gaussianmean and covariancerespectively.

Using full covariancesfor large HMM systemsis computationally expensive. Let n denotes

the dimensionality of the acoustic space. The number of covarianceparameters is increasedby

O(n2) as n increases.The number of HMM statesin an LVCSRsystemcan be in the thousands.

In order to obtain robust parameter estimates, the training of full covariance Gaussiansmay

also require a large amount of data. To overcomethis problem, diagonal matrices may be used.

However for complex patterns like speechsuch an approximation may be poor. Alternatively,

more complicated methods may be used. These techniques include linear projection schemes

that attempt to remove the spatial correlation, and advanced forms of covariance parameter

tying. Thesetechniquesare discussedin more detail in later sections.

By using a Gaussiandistribution it is assumedthat the stateemissiondistribution hasa single

mode at the mean. However, the characteristicsof speechmay vary substantially depending on

the speakerand acousticenvironment. This may result in a mismatch between models and data.

Hence, instead of using diagonal covariance Gaussiandistributions, Gaussianmixture models

(GMM) are widely used as the state emission PDFs[ 69]. A GMM basedstate emission PDFis

given by,

bj (o� ) =
M jX

m=1

cj m N
�

o� ; � (j m) ; � (j m)
�

(2.2)

where M j the number of mixture componentsfor state j , and N (�) denotesa multivariate Gaus-

sian distribution of the form given in equation 2.1. The component prior cj m satis�es a sum-to-

one constraint,
P M j

m=1 cj m = 1, to ensure that bj (o� ) is a valid PDF. Usually diagonal covariance

matrices are usedfor eachcomponent. Using GMMs the spatial correlation in the acousticspace

may be implicitly accountedfor. Alternatively, other more complicated forms of covariancesmay

be used [ 31, 45, 99, 98, 108].

There are two issueswhen using GMMs as state distributions for an HMM based speech

recognition system. First, the number of Gaussiancomponents in eachGMM affects the overall

complexity of the systemand needsto be determined. This may be manually tuned by explicitly

building and evaluating all possible systems. However, this is only applicable when the same
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number of components is assigned to all states in the system. A more complicated scenario

is that the complexity is locally varied acrossdifferent states. In these casesautomatic model

complexity control techniques are required. Second, the number of Gaussiancomponents in

LVCSR systemscan be in the millions. A signi�cant portion of the run time is consumed by

likelihood calculation on mixture component level. To achieve ef�ciency, appropriate caching

and pruning of Gaussianprobabilities may be used [ 32].

2.2 Maximum Likelihood Training of HMMs

Maximum likelihood (ML) training is a standard machine learning scheme. The underlying

model is assumedto be closeto the “correct” one so that increasing the likelihood of the training

data will decreasethe classi�cation error on the unseendata. For an HMM basedspeechrecog-

nition system,the aim is to �nd the optimal parameter estimates, �̂ , such that the log likelihood

of the given observation sequenceis maximized. This may be expressedas

�̂ = argmax
�

f logp(OjW ; � )g (2.3)

where W is the referencetranscription. Directly maximizing equation 2.3, for exampleby setting

the gradient with respect to � to zero, is non-trivial. This is becausethe likelihood may be

expressedas a marginalization over a set of unknown hidden state sequencesf  g, allowed by

the referencetranscription,

�̂ = argmax
�

8
<

:
log

X

 
p(O;  jW ; � )

9
=

;

= argmax
�

8
<

:
log

X

 

Y

�

P( � j � � 1; � )p(o� j � ; � )

9
=

;
(2.4)

where  � denotes the hidden state an acoustic observation at time instance � was generated

from. For HMMs the expectationmaximization algorithm [ 19] is normally used to maximize the

log-likelihood of the training data.

2.2.1 EM Algorithm

The EM algorithm is a standard optimization schemefor statistical models which may contain

latent variables. An HMM is an example of these models. Its hidden states may be viewed

as latent variables. Rather than directly maximizing the log likelihood in equation 2.4, the

following strict lower bound of the training data log likelihood, derived using Jensen'sinequality,

will be optimized,

log
X

 
p(O;  jW ; � ) = log

X

 
P( jO; W; ~� )

p(O;  jW ; � )

P( jO; W; ~� )

�
X

 
P( jO; W; ~� ) log

p(O;  jW ; � )

P( jO; W; ~� )
(2.5)
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where ~� is the current estimate of model parameters. Applying Jensen'sinequality requires

that the hidden state sequenceposteriors P( jO; W; ~� ) satis�es a non-negative and sum-to-one

constraint. As P( jO; W; ~� ) is a probability, this constraint holds. This lower bound may be

re-arranged as

logp(Oj�; W) � logp(Oj~�; W) + Qml(�; ~� ) � Qml(~� ; ~� ) (2.6)

where the auxiliary function Qml(�; ~� ) is given by

Qml(�; ~� ) =
X

 
P( jO; W; ~� ) logp(O;  j� ) (2.7)

The EM algorithm is performed in an iterative fashion. In the E-step,the hidden state sequence

posteriors, P( jO; W; ~� ), are computed given the current parameters estimates, ~� , obtained

from the previous iteration. In the M-step, the lower bound in equation 2.6 is optimized given

the �xed statistics computed in the E-step. Note that equation 2.6 becomesan equality when

� = ~� . Maximizing the lower bound given in equation 2.6 is guaranteed not to decreasethe log

likelihood of the training data. During the M-step, this is equivalent to maximizing the auxiliary

function, Q(�; ~� ), given the �xed statistics. One limitation with the EM algorithm is that it can

only �nd a local optimum for the model parameterswhen the log likelihood converges.

2.2.2 Forward-backward Algorithm and Parameter Re-estimation

Using the observation independence assumption discussedin section 2.1.1, the EM auxiliary

function in equation 2.7 may be written as the following for HMMs,

Qml(�; ~� ) =
X

j ;�


 j (� ) logbj (o� ) +
X

j ;i;�

� ij (� ) logaij (2.8)

where the hidden state posterior probability,


 j (� ) = P( � = Sj jO; W; ~� ) (2.9)

and the pairwise hidden state transition posterior.

� ij (� ) = P( � � 1 = Si ;  � = Sj jO; W; ~� ) (2.10)

Here  � = Sj denotes that an acoustic observation vector was generated at time instance � by

hidden state j .

Thesetwo hidden state posterior probabilities are usually computed using the forward and

backward probabilities. The forward probability is de�ned as the joint likelihood of the partial

observation sequenceup to time instance � and frame o� is emitted from state Sj . This is

expressedas

� j (� ) = p(o1; :::; o� ;  � = Sj jW ; ~� ) (2.11)
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Using the observation independenceassumption the forward probability may be computed by

� j (� ) =

8
>>>><

>>>>:

1 j = 1; � = 1

a1j bj (o� ) 1 < j < Ns; � = 1
P N s � 1

i =2 � i (� � 1)aij bj (o� ) 1 < j < Ns; 1 < � � T
P N s � 1

i =2 � i (� )aij j = Ns; � = T

(2.12)

where Ns is the number of statesin eachHMM, including the non-emitting entry and exit states.

The backward probability, de�ned as

� j (� ) = p(o� +1 ; ::::::; oT j � = Sj ; W; ~� ); (2.13)

is also recursively calculated for the partial observation sequencefrom time instance � + 1 up to

T .

� j (� ) =

8
>><

>>:

P N s � 1
i =2 a1i bi (o1)� i (1) j = 1; � = 1

P N s � 1
i =2 aj i bi (o� +1 )� i (� + 1) 1 < j < Ns; 1 � � < T

aj N s j = Ns; � = T

(2.14)

Using the forward and backward probabilities, the hidden state posterior probability, 
 j (� ), and

the transition posterior, � ij (� ), may be ef�ciently computed using


 j (� ) =
� j (� )� j (� )

p(OjW ; ~� )

� ij (� ) =
� i (� � 1)aij bj (o� )� j (� )

p(OjW ; ~� )
(2.15)

The total likelihood of the complete observation sequencemay be calculated as

p(OjW ; ~� ) = � N s (T ); (2.16)

or

p(OjW ; ~� ) = � 1(1): (2.17)

For HMMs using GMMsasstate emissionPDFs,Gaussianmixture component may be treated

as hidden variables. The component posteriors, 
 j m (� ), are required as suf�cient statistics for

re-estimating the parameters. This is given by


 j m (� ) =
P N s � 1

i =2 � i (� � 1)aij cj m bj m (o� )� j (� )

p(OjW ; ~� )
(2.18)

Given these suf�cient statistics the parameter re-estimation formula for HMM may be de-

rived. For the state transition probabilities, the update formula is given by

aij =

8
>>><

>>>:


 j (1) i = 1; 1 < j < Ns
P T

� =2 � ij (� )
P T

� =2 
 i (� � 1)
1 < i < Ns; 1 < j < Ns


 i (T )
P T

� =2 
 i (� � 1)
1 < i < Ns; j = Ns

(2.19)
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The re-estimation formula for the weights, meansand covariancesof the component m of emit-

ting state j are given by

cj m =
P

� 
 j m (� )
P

m;� 
 j m (� )

� (j m) =
P

� 
 j m (� )o�P
� 
 j m (� )

� (j m) =

P
� 
 j m (� )

�
o� � � (j m)

� �
o� � � (j m)

� >

P
� 
 j m (� )

(2.20)

In the above update the re-estimation of full covariance Gaussiansrequires the second order

moments to bestored asfull matrices for eachcomponent. Again the computational requirement

during training is dramatically increased as the feature dimensionality increases. Hence, it is

preferable to usemore complicated forms of covariancemodeling techniques.

One limitation with ML training is that no prior knowledge about the model parameters is

considered. This leadsto unreliable estimateswhen the training data is limited. Prior knowledge

about model parametersmay be incorporated, for example, in maximum a-posteriori(MAP) [ 36]

training and Bayesianlearning [ 2]. Thus uncertainty about model parameters may be more

robustly handled. Furthermore, in ML training the underlying statistical model is assumedto

be the “correct” one. For current ASRsystemsusing HMMs, this model correctnessassumption

may be too strong due to the two structural assumptionsexplained in section 2.1.1. Hence it is

preferable to employ training schemesthat explicitly aim to reduce the classi�cation error rate,

such asdiscriminative training criteria.

2.3 Recognition of Speech Using HMMs

In this section the application of HMMs for recognizing speechis outlined. First, the parameter-

ization of speechsignals as the input for HMMs is presented. Then the selection of recognition

units and parameter tying is discussed.This is followed by an outline of the usageof language

models and the modeling of pronunciation variants. Finally, the searchand decoding algorithms

are brie�y described.

2.3.1 Parameterization of Speech

When using HMMs for speechrecognition several assumptions are made about the nature of

the speechsignals,asdescribedin section 2.1.1. One assumption is that speechwaveforms may

be partitioned into seriesof quasi-stationary discrete segments,or frames. The standard front-

end processingschemesare basedon this assumption. The spectral envelope of the signals is

extracted for each frame, which contains most of the useful information of speech[ 18]. Two

types of speechparameterization are widely used in current speechrecognition systems,Mel-

frequencycepstralcoef�cients (MFCC) [ 17] and perceptuallinear prediction (PLP) [ 55]. In both

casesthe frame length is �xed by a prede�ned widowing function, for example, at 10 ms. For
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each frame an acoustic observation vector is produced using cepstral analysis for a segmentof

speech. The span of the widowing function is often set as 25ms. The widowing functions may

be over-lapping over adjacent frames.

speech signal waveform

Overlapping
Window
Functions

Feature
Vectors

extraction
Feature

Window Duration

PSfragreplacements

�

o�

o� � 1

n

s(n)

Figure 2.2 Extraction of acousticfeaturesusingover-lapping widowing functions

Figure 2.3.1 illustrates the extraction of acoustic featuresusing over-lapping widowing func-

tions. The �rst stage is to apply a windowing function, such as Hamming or Hanning win-

dow [ 18]. Both aim at smooth the over-lapping regionsof speechsignalsthat belong to different

frames, so that the boundary effects may be reduced. For each frame a short term analysis of

the speechsignalsis performed using a Fourier transform to obtain the frequency domain power

spectrum. The linear frequency scale is then warped. For MFCC front-ends a Mel-frequency

scaleis used. This is given by

f mel = 1125log
�

1 +
f Hz

625

�
(2.21)

where f mel denotes the warped frequency on the Mel scale. The power spectrum is down-

sampled using a bank of triangular �lters, for instance 24. The log amplitudes of the down-

sampled spectrum are then transformed using a discretecosinetransform (DCT) to reduce the

spatial correlation between �lter bank amplitudes. The DCT transform is given by

o� ;i =

r
2
B

BX

b=1

log (x � ;b) cos
�

i (b� 0:5)�
B

�
(2.22)
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where x � ;b is the amplitude of �lter bank b at time instance � , and B is the total number of Mel

scale �lters. The cepstral coef�cients used are often the lower 12. A 13 dimensional acoustic

feature vector is constructed by further including either the zeroth order cepstra or the nor-

malized log energy. Higher order cepstrasrepresent the high frequency range variation in the

spectrum and little information about speech,and hence may be removed. For PLPfront-ends,

the following Bark-frequencyscaleis used to warp the spectrum.

f bark = log

8
<

:

" �
f Hz

600

� 2

+ 1

# 1
2

+
f Hz

600

9
=

;
(2.23)

where f bark denotes the warped frequency on the Bark scale. Critical band �lters are then used

for spectrum down-sampling. Equal-loudness,pre-emphasisand intensity-loudness power law

are then applied. Finally linear prediction (LP) analysis is performed and the LP coef�cients are

transformed to the cepstral domain. In common with MFCCfeatures, the order of LPanalysis is

often set as12.

The observation independence assumption of HMMs ignores the temporal correlation of

speechsignals. Acoustic feature vectors are assumedindependently against one another. Hence

it is desirable to incorporate more information of the correlation between frames. One widely

adopted approach is to include dynamic coef�cients into the feature vector [ 27]. The �rst order

dynamic coef�cients, � o� , or the delta coef�cients are calculated by

� o� =
P D r

d=1 d(o� + d � o� � d)

2
P D r

d=1 d2
(2.24)

where 2D r + 1 is the sizeof the regressionwidow. The secondorder dynamic coef�cients, � 2o� ,

or the delta-delta features, are calculated in the samefashion asequation 2.24, by replacing the

static parameterswith the deltas features. Appending both the delta and delta-delta coef�cients

to the standard feature constructs a 39 dimensional acoustic vector. If D r is set to 2, then the

regression widow size for the delta-delta coef�cients will span acrossa total of 9 consecutive

frames.

Using dynamic coef�cients, the observation independence assumption of HMMs may be

compensatedfor to some degree without changing the model structure. However, the use of

over-lapping widowing functions may introduce correlation between frames of speechsamples.

Hence some correlation may be introduced to the feature spacewhen using dynamic features

computed in equation 2.24. In this case,using diagonal Gaussiancovariancesmay be a poor

choice.

2.3.2 Recognition Units and Tying

For speechrecognition tasksusing a very small vocabulary, it is possibleto use HMMs to model

individual words. However, when the vocabulary size is increased, it is dif�cult to obtain suf�-

cient data to robustly estimate HMM parameters for each word in the dictionary. In addition,
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the appropriate HMM topology needsto be determined for each word. The standard approach

to solve this problem is to split words into smaller sub-word units, phones[ 57]. A phone may be

a linguistic unit, such as a phonemeor syllable. Phonemesare the smallest atomic sub-units of

speech.They are elementary sound units and represent the smallestdistinct elementsof speech.

Syllablesare the intermediate units between phonemesand words. Models basedon phonemes

are more commonly used than syllable models and often referred to as phone models. The

selection of the phone set may depend on the amount of training data available. A phone set

may not contain every single phoneme in the language being considered, and in practice often

includes silence and short pause. A dictionary, or lexicon, contains the mapping from words to

sub-word units. It is usedto obtain the corresponding sequencesof sub-word units given a word

sequence.For continuous speechrecognition all sub-word level HMMs are concatenatedto form

a composite model to representwords and sentences.

t-ih+ng f-ih+l d-ih+lt-ih+n

d-ih+lf-ih+lt-ih+ngt-ih+n

State clustered single Gaussian triphones

Conventional triphones

Figure 2.3 Stateleveltying for singleGaussiantriphone HMMs

When HMMs are used to model the basic phone set, without taking phonetic contexts into

account, they are normally referred to as context independentor monophonemodels. Due to

the co-articulatory effect, the acoustic realization of the samephone can vary substantially de-

pending on the surrounding phonetic contexts. To model these variations, context dependent

phonesare often used. One commonly usedtype of context dependent phone is triphone, which

considers both the preceding and following phones. It is possible to build up larger contexts

using more phoneson either side of the current phone, for instance, quinphone units [ 51], but

only triphones are considered in this work. Triphones may be further split into two categories

depending on the spanning of the phonetic contexts. Crossword triphones span acrossword

boundaries, while word internal triphones do not. For word internal triphone systems,biphones

are used to model the start and end phonesat the word boundaries. For systemsusing context

dependent phone models, given limited training data, parameter tying may be used to robustly
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estimate the model parameters [ 132, 133]. The tying of parameters can be �exible. It may be

performed on different levels, such as phones, statesor Gaussiancomponents [ 53]. One com-

monly used approach for LVCSR systemsis to perform state level parameter tying, such that

certain stateswill sharethe sameoutput distribution [ 125, 51]. Figure 2.3 showsan example of

state level tying for four triphone HMMs with the samecenter phone /ih/ . A triphone with the

central phone /ih/ , the left context /t/ , and right context /n/ is written as /t-ih+n/ . After the

tying there are a total of 6 distinct state distributions sharedamong 12 states.

s-aw+n

t-aw+n

s-aw+t

..etc

Example
Cluster centre
states of 
phone /aw/

yn

yn yn

yn

R=Central-Consonant?

L=Nasal? R=Nasal?

States in each leaf node are tied

L=Central-Stop?

Figure 2.4 Clusteringof central statesfor triphoneswith centerphone/aw/

In order to perform state tying appropriate clustering schemesare required. One standard

approach is to usea phonetic decision tree [ 132, 133]. A phonetic decision tree is a binary tree

with a setof ”yes” or ”no” questionsat eachnode related to the context surrounding eachmodel.

Figure 2.4 shows an example section of a phonetic decision tree for triphone models with the

center phone /aw/ . The clustering proceeds in a top-down fashion, with all states clustered

together at the root node of the tree. The state clusters are then split basedon the questions in

the tree. The questions used are chosento locally maximize the likelihood of the training data

whilst ensuring that each clustered state also has a minimum amount of data observed. This

ensuresthat rarely seen or unseen contexts may be robustly handled. In the �nal stage, tree

nodesare merged if the likelihood loss is beneath a given threshold, until no such nodescan be

found.

One disadvantage of decision tree based clustering is that the cluster splits are only local
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maximization, and not all questions that could split the state clusters are considered. Another

issuewith this method is that the complexity of the �nal tied HMM systemis only manually con-

trolled. Two thresholds require manual tuning: the minimum amount of training data associated

with each tree node during splitting clusters, and the minimum likelihood loss when merging

tree nodes. The setting of these two thresholds is often heuristic and largely on an empirical

basis.Hencethe optimal cut for the decision tree can not be automatically determined.

2.3.3 Pronunciation Modeling

In HMM basedspeechrecognition systemsthe mapping between words and phones is provided

by the lexicon, or dictionary. Characteristicsof speechmay vary substantially depending on the

linguistic “environments”. For example,differencesin accentsmay lead to different phonemere-

alizations of the sameword. Spontaneousspeechmay also introduce variability in the speaking

style. Hence appropriate modeling of pronunciation variability is an important part of current

speechrecognition systems. The commonly used approach to model such variability is to in-

clude multiple pronunciation variants for eachword in the dictionary. For instance, the English

word “the” may have two pronunciation variants to choose, depending on the �rst phone of

the following word. Thesevariants are often generatedautomatically using a rule basedsystem

and then corrected manually [ 37]. The useof multiple pronunciation variants may increasethe

confusion between words, becausethe distance in pronunciation between words may become

smaller. Thus the bene�t from adding new variants has to be balancedwith added confusability.

One approach to solve this problem is to assigna probability to eachvariant. For most state-of-

the-art LVCSRsystemsprobabilities for pronunciation variants are estimated from the alignment

of the training data [ 51, 126].

As discussedin section 2.3.2, state-of-the-art speechrecognition systemsmake use of con-

text dependent phones and parameter tying techniques. Note that a variety of tying schemes

for HMM parametersmay also be viewed as implicit ways to model the pronunciation variabil-

ity [ 52]. Thesetechniques include the phonetic decision tree basedstate clustering discussed

in section 2.3.2, the useof tied-mixture models [ 8] and soft tying of statesby sharing Gaussian

components [ 103]. A more general form of stochastic tying of HMM parameters, the hidden

model sequenceHMMs proposed in [ 53], may also be viewed as an implicit modeling of pro-

nunciation variation. For this reasonthere is no exact boundary between acousticmodeling and

pronunciation modeling. However implicit pronunciation modeling using parameter tying are

not considered in this thesis. Standard multiple pronunciation dictionaries with variant proba-

bilities are used in the experiments.

2.3.4 Language Modeling

As discussedin section 1.1, the prior probability of a word sequencein a speechrecognizer,

P(W), is given by a language model. Using the chain rule, the probability of a sequenceof L

words, W = f w1; w2; ::::::; wL g, may be decomposedinto a product of conditional probability of



CHAPTER2. FUNDAMENTALSOF SPEECHRECOGNITION 19

individual words given its history.

P(W) =
LY

l=1

P(wl jwl � 1; wl � 2; ::::::; w1) (2.25)

For LVCSRsystemsthe vocabulary size is too big to allow a robust estimate of P(W) for every

possibleword sequence.Thus it is necessaryto reduce the parameter spaceto obtain a reason-

able coverageand reliable probability estimation. This can be achieved by clustering the set of

possible word histories into equivalent classesh(wl � 1; wl � 2; ::::::; w1). Once an appropriate set

of equivalenceclasseshasbeende�ned, the probability of a word sequenceW in equation 2.25,

may be written as

P(W) =
LY

l=1

P(wl jh(wl � 1; wl � 2; ::::::; w1)) (2.26)

N-gram language models are one standard approach to cluster histories into equivalence

classes.For N-gram language models, word histories may be de�ned by how many words they

are truncated before the current word. For example in caseof a tri-gram languagemodel equiv-

alenceclassesare constrained as the set of all possibleword pairs.

h(wl � 1; wl � 2; ::::::; w1) � (wl � 1; wl � 2) (2.27)

Using this approximation, it is straightforward to obtain ML estimates for tri-gram language

models. Theseare are given by

P(wl jwl � 1; wl � 2) =
N (wl ; wl � 1; wl � 2)

P
w N (w; wl � 1; wl � 2)

(2.28)

where N (wl ; wl � 1; wl � 2) denotes the frequency counts of the word triplet observedin the train-

ing data. In order to robustly estimate these probabilities, suf�cient coverageof possibleword

triplets in the training data is required. For a vocabulary of V words the number of possible

tri-grams is V 3. Complete coveragefor all tri-grams in the observeddata is infeasible.

To obtain robust estimates of N-gram probabilities, smoothing approachesare commonly

used. One category of techniques smooth the N-gram probability estimatesby allocating a cer-

tain amount of the overall probability massto those unseenevents. Thesemethods are referred

to as discounting schemes. The portion of probability mass re-distributed is controlled by a

discounting factor. Popular discounting techniques include Good-Turing discounting [ 46, 63],

Witten-Bell discounting [ 123] and absolutediscounting [ 83]. Another type of techniquesis back-

off. Instead of allocating a certain amount of probability massto all possiblehistories, including

those that are highly unlikely, back-off makes use of distributions with shorter histories and

thus can be estimated more robustly. Thesedistributions are called back-off distributions. The

probabilities for unseen and rare events are taken from the back-off distributions after proper

normalization. In practice a hierarchical back-off may be used. For example, a hierarchy might

back-off 4-gram distributions to tri-gram, bi-gram and ultimately uni-gram distributions. A third
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category of smoothing techniques is deleted interpolation. For instance, uni-gram, bi-gram and

tri-gram distributions are interpolated using weights. Theseweights may be tuned on held-out

data.

2.3.5 Decoding Algorithms

In a speech recognition system, decodingor searchrefers to the processof �nding the most

probable word sequence,W, given an observation sequence,O. This can be expressedas

W = argmax
~W

n
P( ~WjO; � )

o

= argmax
~W

n
p(Oj ~W; � )P( ~W)

o
: (2.29)

The word sequencewith the highest posterior probability given the observation sequenceand

model parameters is selected. As discussedin section 1.1, a speechrecognition system may

be split into three components: the acoustic model basedon HMMs, the pronunciation model

and the language model. A word sequencemay have more than one phone representations

associatedwith it, due to the presenceof multiple pronunciation variants. Meanwhile a sequence

of HMM phone modelsmay correspondto more than one possiblehidden statesequences.Hence

equation 2.29 may be expandedasa hierarchical marginalization over all possiblesequencesof

HMM models f � g given a sequenceof words, and then all possiblesequencesof hidden states

f  g given a sequenceof HMMs.

W = argmax
~W

8
<

:
P( ~W)

X

�
P(� j ~W)

X

 
p(O;  j� ; ~W; � )

9
=

;
(2.30)

Here the prior probability of a word sequence,P( ~W), is given by the language model. The

conditional probability of a HMM model sequencegiven a string of words, P(� j ~W), is provided

by the pronunciation model, and the joint conditional probability of an observation sequence

and a state sequence,p(O;  j� ; ~W; � ), is determined by the acousticmodel.

Direct evaluation of equation 2.30 is very expensiveand rapidly becomesimpractical as the

sentencelength increases. To overcome this problem, the summation over all HMMs and state

sequencesmay be approximated by a maximum.

W = argmax
~W

(

P( ~W) max
�

P(� j ~W) max
 

p(O;  j� ; ~W; � )

)

(2.31)

The selection of the most likely word sequenceis basedon the ML state sequence.

Finding the ML state sequencefor an HMM using equation 2.31 is realized via the Viterbi

algorithm [ 57]. Let � j (� ) denote the maximum likelihood of the partial observation sequence,

f o1; ::::::; o� g, staying in state j at time instance � . � j (� ) may be computed using the following

recursion

� j (� ) = max
i

f � i (� � 1)aij gbj (o� )

� N s (T ) = max
i

f � i (� � 1)aiN s g (2.32)
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where Ns denotesthe number of statesin an HMM and

� 1(1) = 1

� j (1) = a1j bj (o1) (2.33)

for any state 1 < j < Ns.

An implementation of the Viterbi algorithm for continuous speechrecognition is the token

passingalgorithm [ 131]. Eachstate hasone or more tokens associatedwith eachtime instance.

The token contains a word-end link and the value of the partial likelihood � j (� ). Thesetokens

are updated for each time instance and the most likely token at the end of eachHMM model is

propagated onto all connecting models. At the end of the utterance, the token with the highest

log probability can be traced back to give the most likely sequenceof words. The number of

connecting modelswill be considerably increasedif phone modelswith long crossword contexts

are used. Using a language model can also expand the size of the decoding network. This is

becausetokens can only be merged if the word histories are identical. If an N-gram language

model is used, the word probabilities may depend on previous word histories and there must

be a separatepath through the network for each distinct word history. The searchcost may be

reduced by pruning, or removing the tokens which fall below a given threshold. The threshold,

or beam-width, is set as a certain likelihood loss below the current most likely path. All active

tokens with a likelihood below that level will be deleted. Pruning may also be performed at

the end of words when the language model is applied with a more punitive threshold. If the

pruning beam-width is too tight, the most likely path could be pruned before the token reaches

the end of the utterance. This will result in a searcherror. The choice of pruning beam-width

is a trade off between avoiding searcherrors and reducing the computational cost. The ef�cient

implementation of large vocabulary decodersis in active research.

One problem with the useof language and pronunciation models is that there is a consider-

able mismatch between the dynamic rangesof those two models and the acoustic model. This

is partly becausethe probabilities from the acoustic model can often be very small due to the

assumptionsof HMMs as described in section 2.1.1. To handle this problem, the language and

pronunciation model probabilities are scaled. The scaling factor may be empirically set and

�xed for a particular task. Another related issue is the use of word insertion penalties. They

penalize a higher number of words in a sentence. This is desirable as a signi�cant proportion

of recognition errors stem from the insertion of short words. Theseshort words tend to have

higher acoustic likelihood and frequencies of occurrence in the text copora used for language

model training. Similar to the language model and pronunciation probability scaling, insertion

penalties can be manually tuned to improve the balance of word insertions versusdeletions on

speci�c tasks. Now equation 2.31 may be modi�ed as

W = argmax
~W

�
� logP( ~W) + � max

�
logp(� j ~W) + max

 
logp(O;  j� ; ~W; � ) + 
 L

)

(2.34)

where � and � are the languagemodel and pronunciation probability scaling factors, 
 the word

insertion penalty, and L is the length of word sequence ~W.
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2.4 Linear Projection Schemes

For any pattern recognition task it is important to derive a good, compact, feature representa-

tion. The feature set should contain suf�cient discriminant information to distinguish between

classes.Featuresconsisting of non-discriminating information should be removed. As discussed

in section 2.3.1, current speech recognition systemsoften use 39 dimensional MFCC or PLP

cepstral features including dynamic parameters. Although they have been widely adopted in

current speechrecognition systems,it is still unclear whether such a feature representation is

the best choice. First, the use of dynamic features, computed using equation 2.24, further in-

troduces correlation between static and dynamic coef�cients in the acoustic space.Second,the

correlation between low, and high order cepstral coef�cients is not completely removed after the

DCT transform is applied [ 77]. Hence it is preferable to appropriately model this correlation.

Various techniquesfor this purposehave beenproposedover the years. They can be roughly

classi�ed into two main categories: covariance modeling and linear projection schemes.In co-

variancemodeling, or precisionmatrix modeling, various tying of covarianceparametersare used

to allow Gaussiancomponents to effectively have full covariancematrices without dramatically

increasethe model complexity [ 31, 45, 99, 98, 108]. In linear projection schemes,the original

acoustic spaceis projected into one or more un-correlated subspaces. Within each subspace,

diagonal Gaussiancovariancesmay still be used. In this section several forms of linear sub-

spaceprojection schemesare brie�y reviewed. They are discussedwithin the linear discriminant

analysis(LDA) framework.

2.4.1 Linear Discriminant Analysis

Linear discriminant analysis (LDA) is a standard dimensionality reduction scheme[ 26, 121]. A

p � n linear transform A [p] projects the original n dimensional feature spaceto a lower dimen-

sional, uncorrelated subspace.The projected feature vector, �o� [p], is given by

�o� [p] = A [p]o� (2.35)

The matrix transform A [p] is estimated by maximizing the ratios of the projected between class

covariance,B , and the averagewithin classcovariance� .

Â [p]lda = argmax
A [p]

8
<

:

�
�
�diag

�
A [p]B A >

[p]

� �
�
�

�
�
�diag

�
A [p]� A >

[p]

� �
�
�

9
=

;
(2.36)

Both the between class,B , and within classcovariance,� , are constrained to be diagonal in

the projected subspace.For HMM basedspeechrecognition systems,the de�nition of a “class”

may correspond either to individual states or Gaussiancomponents. In this work, Gaussian

components are considered as classes. The between class covariance, B , is then computed

as the average distance between the global and component speci�c means. The within class

covariance,� , is computed as the averageof component speci�c full covariances.
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It can be shown that a closed form solution for the LDA transform is the Eigen vectors asso-

ciated with top p Eigen values of � � 1B [ 26, 121]. A maximum likelihood basedestimation of

LDA was proposed in [ 10]. The ML estimation of LDA requires optimizing a n � n squarelinear

transform A . Using this transform, the complete acoustic spaceis partitioned into two parts:

a useful subspaceassociatedwith A [p] and a nuisance subspaceassociatedwith A [n� p], where

Gaussianmeansand diagonal covariancesare globally tied. This is given by

A =

"
A [p]

A [n� p]

#

(2.37)

and the transformed acoustic vector in the complete feature space,�o� , may be expressedas the

following

�o� =

"
A [p]o�

A [n� p]o�

#

: (2.38)

The ML estimation of the LDA transform, A , requires maximizing

Â lda = argmax
A

8
<

:

X

j ;m;�


 j m (� )
�

log jA j2 � log
�
� ��

�
�
�

9
=

;
(2.39)

where 
 j m (� ) is the Gaussianposterior occupancygiven in equation 2.18, and �� is the trans-

formed average within class covariance in the complete feature space of A . For LDA, �� is

constrained to be diagonal.

Gaussianlikelihood calculation is ef�cient for LDA in the projected subspaceof A [p], as the

Jacobianof the global transform may be ignored. However LDA suffers from a strong assump-

tion that the within class covariancesfor all components are restricted to be the same. This

assumption may be too strong for LVCSRsystemswhich contain thousandsof Gaussiancompo-

nents.

2.4.2 Heteroscedastic LDA

The uniform within classcovariance assumption of standard LDA is strong. It may be a poor

assumption for speechrecognition systemscontaining a large number of Gaussianmixture com-

ponents. To overcome this problem, two forms of heteroscedasticextensions to standard LDA

have been proposed in recent years.

The �rst is an intuitive extension of the LDA objective function given in equation 2.36, al-

lowing the within class covariances to vary acrossGaussiancomponents. This is referred to

as the heteroscedasticdiscriminant analysis (HDA) [ 102]. The HDA projection is estimated by

optimizing the following objective function

Â [p]hda = argmax
A [p]

8
<

:

X

j ;m;�


 j m (� ) log

0

@

�
�
�diag

�
A [p]B A >

[p]

� �
�
�

�
�
�diag

�
A [p]�

(j m)A >
[p]

� �
�
�

1

A

9
=

;
: (2.40)
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Compared with the LDA objective function in equation 2.36, the average within classcovari-

ance, � , is replaced by Gaussiancomponent speci�c covariances, � (j m) . Hence the uniform

within classcovarianceassumption is removed. Unfortunately, HDA doesnot have a maximum

likelihood interpretation like LDA. This is becausethe Jacobiannormalization term for the HDA

projection,
�
�A [p]

�
� , can not be computed for likelihood calculation. Hence there is no simple EM

based optimization schemefor HDA. Numerical methods must be used to estimate the trans-

form parameters. This can be very expensivedue to the iterative computation of the objective

function and its gradient [ 73].
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Nuisance Dimension

Class A
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LDA Projection
HLDA Projection

Misclassification

Figure 2.5 HLDA and LDA projection

Another form of heteroscedasticextension to standard LDA is the heteroscedasticlinear dis-

criminant analysis (HLDA) [ 66]. This method is widely used in LVCSR systemstraining [ 51,

64, 23, 127]. In contrast to HDA, HLDA has an ML interpretation and an ef�cient EM based

optimization schemeis available [ 31]. As with the ML interpretation of LDA in section 2.4.1,

HLDA may be viewed as a square,n � n, linear transform. The complete acoustic spaceis also

partitioned into two parts. The difference from LDA is that in the useful subspacemeansand di-

agonal covariancesare Gaussiancomponent speci�c. In �gure 2.5 an exampleof HLDA is shown.

Under the uniform within classvariance assumption, the standard LDA choosesa projection in

which the between classconfusion is considerably stronger than HLDA.

The HLDA transform parametersare estimated by maximizing the following objective func-

tion

Â hlda = argmax
A

8
<

:

X

j ;m;�


 j m (� )
�

log jA j2 � log
�
�
� ��

(j m)
�
�
�
�

9
=

;
(2.41)

where ��
(j m)

is the transformed component covariancesin the complete feature spaceof A . For

HLDA, again ��
(j m)

is constrained to be diagonal. HLDA is closely related to semi-tied covari-

ances(STC) [ 31]. The two are equivalent to one another when the STCtransform is globally

shared and all feature dimensions are retained by HLDA. An ef�cient iterative optimization
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schemeproposed for STCmay also be usedmaximize the objective function for HLDA [ 31, 34].

For both LDA and HLDA, the number of useful dimensionsretained signi�cantly affects the over-

all complexity of the underlying HMM system. This is an important issuethat must be resolved

using appropriate complexity control techniques.

2.4.3 Multiple Subspace Projection Schemes

For complex patterns, such ashuman speech,multiple setsof feature representation may be re-

quired to incorporate more classspeci�c information. The acoustic realization of speechsignals

may be better modeled in different subspaces,depending on whether, for instance, a vowel or

constant is generated. This is particularly important for state-of-the-art LVCSR systems. Con-

text dependent phone models and a large number of Gaussiancomponents are typically used

in these systems,as discussedin section 2.3.2. Therefore a local projection of the speechsig-

nals may yield performance gains over a global one. For multiple linear projection schemes,it

is important that the likelihood calculation in different subspacesbe directly comparable. The

Jacobian terms associatedwith each projection must be computed for this purpose. Unfortu-

nately, HDA doesnot have an ML interpretation becausea non-squarelinear projection is used,

as discussedin section 2.4.2. Hence HDA can not be extended to have multiple projections.

In contrast, an ML interpretation is available for both LDA and HLDA. Since a square linear

transform is used, the likelihood calculation may be performed in the complete feature space.

Both standard LDA and HLDA may be extended to have multiple projections that are shared

locally [ 34] and are referred to asmultiple HLDA and multiple LDA.

Nuisance Dimension 1

HLDA projection 2

Nuisance Dimension 2

HLDA projection 1

Class A

Class B

Class C

Class D

Figure 2.6 multiple HLDA projections



CHAPTER2. FUNDAMENTALSOF SPEECHRECOGNITION 26

Multiple HLDA is a simple extension to standard HLDA. It allows multiple useful and nui-

sancesubspacesto be locally shared in the system. Let A (r ) denote the r th HLDA projection,

and the transformed feature vector, �o(r )
� , is given by

�o(r )
� =

"
A (r )

[p] o�

A (r )
[n� p]o�

#

: (2.42)

An example of multiple HLDA is shown in �gure 2.6. In the �gure there are two HLDA

projections. Model parameters in both the useful and nuisance subspacesare locally shared.

The presenceof multiple nuisancesubspacesmeansthat likelihood calculation for the nuisance

dimensions can not be discarded as in standard LDA or HLDA.

The estimation of multiple HLDA transforms requires maximizing the following objective

function

Â
(r )
mhlda = argmax

A ( r )

8
<

:

X

j ;m2 r ;�


 j m (� )
�

log
�
�
�A (r )

�
�
�
2

� log
�
�
� ��

(j m)
�
�
�

�
9
=

;
(2.43)

where j ; m 2 r denotes that component m of state j is assignedto projection r . As the Jaco-

bian normalization terms are different acrossprojections, they can no longer be ignored during

likelihood calculation. For component m of state j , this is given by

p(o� j � = Sj ;m ; � ) =
�
�
�A (r )

�
�
� N

�
A (r )o� ; �� (j m) ; ��

(j m)
�

(2.44)

where �� (j m) is transformed Gaussianmeansin the complete feature spaceof A (r ) . The number

of Gaussianparametersin an multiple HLDA systemmay be computed as
P

r (n2 + 2N r pr + 2(n �

pr )) , where N r denotesthe number of Gaussiansassignedto projection r , and pr the number of

useful dimensions for projection r .

The sameEM basediterative optimization schemefor standard HLDA may also be used to

estimate multiple HLDA transforms on a projection by projection basis. Multiple HLDA also has

a structural �exibility as the useful subspacedimensionality may be varied locally acrossprojec-

tions. Again the number of useful dimensions for eachprojection signi�cantly affects the overall

system complexity. This important issue must be resolved by a appropriate model complexity

control scheme. In addition, it may be argued that multiple HLDA is not a “true” projection

schemeas the nuisancesubspaceparametersare still neededfor likelihood calculation.

In contrast, multiple LDA is a “true” multiple projection scheme.Its difference from multiple

HLDA is that there is only one globally tied nuisancesubspace,despite multiple projections are

used. For multiple LDA, the transformed feature vector, �o(r )
� , of the r the projection is given by

�o(r )
� =

"
A (r )

[p] o�

A [n� p]o�

#

(2.45)

where model parameters in the single nuisancesubspace,A [n� p], are globally tied.

An example of multiple LDA is shown in �gure 2.7. In the �gure there are two LDA projec-

tion. Only one global nuisancesubspaceis available and is sharedbetween the two projections.
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Class A

Class B

Class C

Class D

Nuisance Dimension

MLDA projection 1

MLDA projection 2

Figure 2.7 multiple LDA projections

For multiple LDA systems,the likelihood calculation in the nuisance subspacemay be ignored,

as it remains constant for all Gaussiancomponents.

Unfortunately, there no ef�cient optimization schemefor multiple LDA due to the fact that

model parametersare globally tied in the nuisancesubspace.Numerical methods may be used

to optimize the projections. Furthermore, multiple LDA doesnot have the �exibility of multiple

HLDA in locally varying the useful subspacedimensionality. It was reported that multiple LDA

was outperformed by both multiple HLDA and STCusing ML training on an LVCSRtask [ 34].

One important issue when using multiple projections is the appropriate tying of transform

parameters. They may be loosely tied on state level as in [ 31, 34] or on HMM model level

using phonetic expert knowledge. Alternatively, data driven methods may be used to cluster

Gaussiansinto groups for each projection, based on distance measuring of Gaussiancompo-

nents in the acoustic space. By using this assignment schemesigni�cant WER reduction over

a single projection was reported on an LVCSR task in [ 70]. This distance measuring basedas-

signment schemewas originally proposed for linear transformation based speaker adaptation

techniques[ 68, 30] and is further discussedin the next section.

2.5 Speaker Adaptation

Characteristicsof speechsignalsvary substantially depending on the speakerand acousticenvi-

ronment. Models trained on speakerspeci�c data outperform those trained on speakerindepen-

dent data. Speakerindependent (SI) systemsmay be adapted to the characteristicsof a target
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speakeror environment. This approach is referred to as speakeradaptation and is widely used

in state-of-the-art LVCSRsystems[ 125, 51].

Oneapproachfor building speakerdependent(SD) models is maximum a posteriori (MAP) [ 36].

This technique allows prior knowledge about HMM parametersto be incorporated into parame-

ter estimation. SI model parameters, for example, may be used as the parameter priors. Model

parametersare gradually updated using speakerdependentdata toward the target speaker. MAP

training may be viewed as a parameter smoothing schemewhere the parameter posterior is a

combination of the prior and the ML estimates. In caseof insuf�cient data the posterior dis-

tribution is close to the prior. The MAP estimates tend to the ML estimates as the amount of

training data is increased. One limitation with MAP training is that a large quantity of speaker

or environment speci�c data is required to adapt all the parameters in the system.

Maximum likelihood linear regression(MLLR) is another model basedadaptation scheme[ 68,

30]. The speakerspeci�c information is representedby one or more linear transformations that

are applied to the model parameters. The advantage of this method over MAP is that rapid

adaptation may be performed using a small amount of speaker speci�c enrollment data. For

instance, the adapted Gaussianmean, �� (j m) , of component m and state j , may be expressedas

�� (j m) = W (r j m ) � (j m) (2.46)

where W (r j m ) is a n � (n + 1) linear transform assigned to component m of state j , and

� (j m) =
�
� (j m)> 1

� >
is the extended mean vector. The transform parameters are optimized

using the EM algorithm with adaptation data from the target speaker. The i th row of the ex-

tended transform matrix, w r j m
i , can be estimated as [ 68],

ŵ (r j m )
i = G (r j m ;i )� 1k (r j m ;i ) (2.47)

and the suf�cient statistics G (r j m ;i ) and k (r j m ;i ) are accumulated on a row by row basis,

G (r j m ;i ) =
X

j ;m2 r j m ;�


 j m (� )
� (j m) � (j m)>

� (j m)2
i

k (r j m ;i ) =
X

j ;m2 r j m ;�


 j m (� )
o� i � (j m)

� (j m)2
i

(2.48)

where � (j m)2
i is the i th dimensional diagonal variance element of the mth component and the

j th state. The aboveestimation formulas are only valid for systemsusing diagonal covariances.

For systemsusing full covarianceGaussians,the transform estimation requires inverting an (n2+

n) � (n2 + n) matrix and henceis computationally expensive.A detailed derivation of transform

estimation for this casewas proposed in [ 68].

A globally tied MLLR transform may be applied to all the components in the system. To

further improve the performance, the number of MLLR transforms may be increased as long

as enough adaptation data is available. To determine the number of transforms and assign

the components to these transform classes,a regressionclasstree is often used [ 28]. A binary
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regressionclasstree is constructed to cluster Gaussiancomponentsthat are closein the acoustic

space.This clustering method may also be used for the assignmentof Gaussiancomponents for

multiple projections discussedin section 2.4.3. The number of transforms, or equivalently the

tree cut, is determined by a manually tuned threshold of occupancycounts for each tree node.

The regressiontree is constructed using a top-down procedure. Creation of a children tree node

1

2 3

4 5 6 7

Figure 2.8 Exampleof a binary regressiontree for MLLRspeakeradaptation.

is considered if the occupancycount assignedto it is above a pre-de�ned threshold. The tree

construction is complete when there is no children tree node to be created. A simple example of

a regressiontree is shown in �gure 2.8. The root node correspondsto all the componentsbeing

assignedto a global MLLR transform. In the �gure, nodes 6 and 7, for instance, do not have

suf�cient data, and the transform estimation is backed-off to the statistics of parental node 3. In

contrast, there is suf�cient data available for leaf node 4, and a distinct MLLR transform will be

generated. The �nal number of transform classesin this example is three.

2.6 Adapting Multiple HLDA Systems

As discussedin section 2.5, in order to compensatefor the speakerand environment variation,

standard adaptation techniqueslike MLLRmay be used. However, for the systemsusing multiple

linear projection schemes,such as multiple HLDA discussedin section 2.4.3, there is one issue

with using MLLR. This is due to the presenceof multiple feature subspaces.In earlier research

adapting Gaussianparameters within individual subspaces,referred to as normalized domain

MLLR in [ 29], was found to yield poor recognition performance. To overcome this problem,

the approach adopted in this work is to estimate the MLLR mean transforms in the original

acoustic space. Hence the suf�cient statistics for transform estimation, given in equation 2.48,

will be accumulated in the standard feature spaceprior to linear projections. A matrix inverse

operation is required to yield the un-projected component parametersfrom individual subspaces.

For ef�ciency when estimating the MLLRtransforms, a diagonal approximation to the covariance

in the original feature spaceis also used. The Gaussianmeansand covariancesin the original
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spaceare computed asbelow.

� (j m) = A (r j m )� 1 �� (j m)

� (j m) � diag
�

A (r j m )� 1 ��
(j m)

A (r j m )� 1>
�

(2.49)

After the MLLR transforms are estimated, the adapted component means in the original space

are then projected back into individual subspacesfor eachprojection. This allows systemsusing

multiple linear projections to be ef�ciently adapted.

2.7 Summary

The statistical framework for automatic speechrecognition systemswas outlined in this chapter.

First, hidden Markov models were discussedas acoustic models. The optimization of HMM pa-

rameters was presentedusing ML training. Then the standard feature extraction schemeswere

brie�y reviewed for HMM basedspeechrecognition systems.The selection of recognition units

and parameter tying were also discussed.Languagemodeling and pronunciation modeling ap-

proacheswere outlined, along together with the basicsearchalgorithm usedin a state-of-the-art

large vocabulary decoder. This was followed by a brief review of linear projection schemesunder

the framework of linear discriminant analysis. Finally, popular speakeradaptation techniques

were brie�y described.



3

ModelComplexityControl

A standard problem in LVCSRtraining, and machine learning in general, is how to selecta model

structure that generalizeswell to unseendata. Model structures which are too simple lack the

power to fully represent the observeddata. On the other hand, structures that are too complex

do not generalize well and yield poor performance on unseendata. This chapter presentsa sur-

vey of techniques to control model complexity. First, word error rate (WER) is introduced as a

“golden” complexity control criterion for most ASRtasks. Then existing complexity control tech-

niques are presented. Theseschemesare classi�ed into two broad categories: Bayesianlearning

techniques and information theory methods. A survey of previous applications of these tech-

niques to speechrecognition is also given. Finally, the limitations of likelihood basedcomplexity

control schemesis discussed.

3.1 WER - A Zero Risk Criterion

The aim of model complexity control is to select the optimal number of parameters to train to

achieve good generalization to unseen data. For speechrecognition the generalization to the

unseentest data, D, is commonly measuredby the word error rate (WER). Hence, for the ma-

jority of speechrecognition tasks the aim of model complexity control is to achievea minimum

WERon the unseendata. A good complexity control technique should predict the correct WER

performance ranking for all systemswith a range of con�gurations. Therefore WERis a “golden”

complexity control criterion with zero ranking risk, since the ordering according to WERis the

correct ranking. For speechrecognition the task is to select of an optimal structural con�gura-

tion, M̂ , with a minimum WER on unseen data, from a set of candidate models, fMg , given

a T length training data set, O = f o1; :::; oT g, and the reference transcription W [ 122, 121].

However, WERis dif�cult to directly measurefor highly complex state-of-the-art LVCSRsystems.

A wide range of techniques are currently used which alter the system complexity and WER.

Examples of these techniques include the use of mixtures of Gaussiansas state distributions,

dimensionality reduction schemes,decision tree based state tying and linear transform based

speakeradaptation. For current LVCSRsystems,explicitly building and evaluating systemswith

31
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various structural con�gurations to accessWER is infeasible. Therefore, automatic complex-

ity control techniques are needed so that individual systemsare not required to be built and

evaluated.

3.2 Likelihood Based Model Complexity Control

Standard complexity control schemesdo not require direct measurement of the WER for each

candidate structure. Instead an inherent model correctnessassumption is made. All candidate

model structures are assumedto be “close” to the correct model for speechsignals. Thus increas-

ing the likelihood on the unseen data will decreasethe systems'WER. Under this assumption,

likelihood validation test may be used as an alternative to directly accessingWER [ 122, 121].

When performing likelihood validation test, the optimal model parameters are normally esti-

mated using either the maximum likelihood (ML) or maximum a posteriori (MAP) criterion. Dis-

criminative training criteria, suchasthe maximum mutual information (MMI) criterion [ 3], may

also be used. However, in most statistical inference literature, the “optimal” model parameters

are trained using the ML or MAP criterion. This is the caseconsideredin this chapter. Using the

likelihood held-out data set, D, the model selection is basedon the following:

M̂ = argmax
M

n
p(Dj�̂ ; W; M )p(�̂ jM )P(M )

o
(3.1)

where �̂ denotesthe optimal parameter estimates.Oneissuewith this method is that the training

of individual systemsis still required. State-of-the-art LVCSRsystemsare highly complex. Hence

explicitly building all possiblesystemsfor held-out likelihood test is infeasible. Another issueis

how to appropriately determine the the size of the held-out data set. In the statistical inference

literature, the power of a likelihood validation test is increasedas the held-out data size grows,

when measuredwith a �xed level of statistical signi�cance [ 122]. However, the computational

cost for validation test also increasesas the amount of held-out data is increased. Using a large

held-out data set will reduce the amount of training data available. Furthermore, it is a non-

trivial problem to evaluate the reliability of the selectedheld-out data.

To overcomethis problem many complexity control techniquesmake useof only the training

data. It is assumedthat there is a strong correlation between the unseen data likelihood and

the training data marginal likelihood, given a particular model structure. Theseschemesmay be

further classi�ed into two major categories. In Bayesianlearning techniques,model parameters

are treated as random variables and integrated out in the parametric space. In information

theory approaches, the complexity control problem is viewed as �nding an appropriate code

length [ 6]. These two approaches are closely related to each other. Both can be explicitly

expressedas the training data marginal likelihood given a model structure and asymptotically

tend to the BayesianInformation Criterion (BIC) approximation [ 104]. In the following sections

these two categoriesof complexity control schemesare presented. Someinherent assumptions

made by theseschemesand their limitations are also discussed.
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3.3 Bayesian Techniques

In Bayesiancomplexity control techniques, it is assumedthat the the training data marginal

likelihood over model parameters is strongly correlated with the unseen data likelihood. A

Bayesianmodel selection is basedon

M̂ = argmax
M

�
P(M )

Z
p(Oj�; W; M )p(� jM )d�

�

= argmax
M

f P(M )p(OjW ; M )g (3.2)

where � denotesa parameterization of M , and p(OjW ; M ) is referred to asthe Bayesianevidence

in the literature.
Li
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Figure 3.1 Threemodelstructureswith different complexity

In equation 3.2, p(� jM ) and P(M ) are the prior distribution of a set of model parameters,

� , and the prior distribution of a particular model structure M . For Bayesianevidence, the se-

lection of a good form of the parameter prior distribution, p(� jM ), is a subjectiveprocess.Often

simplifying assumptions are made about this distribution, which typically constrain it to be a

conjugate prior distribution for p(Oj�; W; M ). Under these assumptionsthe evidence integra-

tion may be more tractable [ 39, 59, 118]. Commonly used forms are the exponential family,

such as Gaussian,Gamma and Dirichlet distributions. However, due to the lack of knowledge

about the underlying distribution and number of parameters, the parameter prior, p(� jM ), is

assumedto be uninformative in this work.

If also assumingthere is no prior information given by P(M ), the optimal model is selected

by evaluating the evidence integral for each candidate structure. The model parameters are

treated asunknown random variables to be integrated out in the parametric space.By marginal-

izing over the parameters the model complexity may be controlled. Over-simple model struc-

tures are not powerful enough to model the observeddata. On the other hand, over-complex

model structures are penalized for allowing too much freedom in the parametric space. They
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are over-�tted to the observed data, which leads to bad generalization performance, despite

modeling the training data well. This is shown in �gure 3.1. The �ve observeddata samplesare

representedusing crossesalong the horizontal axis. A Gaussiandistribution, a two component

and a 4 component GMMs are used as examples. The GMM with four component marked as

“too complex” has been over-�tted to the data. It has more power in modeling the observed

data, but generalizespoorly. In contrast the single Gaussiandistribution marked as“ too simple”

has insuf�cient power to model the observeddata. The two component GMM marked as “just

right” has the optimal complexity among the three. It is capableof modeling a certain range of

interestingobservedor unseendata sets. It will give a high Bayesianevidence for that range of

data setsbut little for others. In a word, the simplest model structure that can suf�ciently de-

scribe the observeddata should be selected.This property of Bayesianevidenceis often referred

to asOckham'sRazor [ 122, 41].

Having simpli�ed the forms of prior distributions, the evidencemust be computed for model

selection. For HMM based speechrecognition systems,it is often computationally intractable

to directly integrate out the marginal likelihood in equation 3.2. Appropriate approximation

schemesare required to practically evaluate the Bayesianevidence. In the following sections

four approximation schemesare discussed. These are a �rst order expansion using Bayesian

information criterion (BIC), a secondorder Laplace'sapproximation, a lower bound approxima-

tion using EM or variational method and Markov chain Monte Carlo (MCMC) style sampling

schemes.

3.3.1 Bayesian Information Criterion (BIC)

The Bayesianevidence integration in equation 3.2, may be asymptotically approximated via a

Taylor seriesexpansionaround the parameter optimum �̂ . When the number of training samples

T becomesin�nitely large, this gives the BayesianInformation Criterion (BIC) [ 104]. BIC is the

most widely used approximation schemefor the evidence integral. This criterion can be simply

expressedin terms of a penalized log likelihood evaluated at the ML or MAP estimate of model

parameters �̂ . The model selection is basedon the following approximation,

logp(OjW ; M ) � logp(Oj�̂ ; W; M ) � � �
k
2

logT (3.3)

where k denotes the number of free parameters in M and � is a penalization coef�cient which

may be tuned to speci�c tasks [ 15]. Schwartz originally proved that when � = 1, BIC is a �rst

order asymptotic expansion of the log of the evidence integral in equation 3.2, under certain

regular assumptionsupon the density p(Oj�; W; M ) [ 104]. In [ 15] it was suggestedthat the

tuning of � may compensatefor the higher order terms unaccounted for in the BIC expansion,

and the temporal correlation of speechsignals ignored by HMMs.

There are two issuesto consider when BIC is used to approximate the Bayesianevidence.

First, BIC is only a �rst order approximation to the Bayesianevidence. Under the large number

assumption, higher order terms from the Taylor seriesexpansion are ignored. However, when
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the amount of training data is “small” the BIC approximation to the Bayesianevidencebecomes

increasingly poor. In this case the higher order terms that have been ignored may actually

contain important information about model complexity. Hence it would be preferable to have

an approximation schemethat can incorporate more information from the higher order terms.

The second issue with this method is that the complexity penalization term in equation 3.3,

� � k
2 logT , does not account for the difference in terms of the form of model parameters. k

representsonly the total number of free parameters, regardlessof their individual nature. In

recent research this was found to be a limitation of the BIC metric when optimizing multiple

complexity attributes of different forms [ 71]. This limitation was investigated on an LVCSR

task in [ 71], in which both the number of Gaussiancomponentsper state and number of useful

dimensions of an HLDA systemwere optimized. The BIC metric failed to select the appropriate

model complexity.

3.3.2 Akaike Information Criterion (AIC)

Another approximation scheme,which is closely related to BIC, is the Akaike Information Crite-

rion (AIC) [ 1]. AIC was originally developedfrom researchwork on hypothesisand signi�cance

test. Akaike also gave a Bayesianinterpretation to AIC using a likelihood ratio test [ 1]. The

criterion itself is a simple trade-off between the �tness to the observed data, and the number

of free parameters in the system. The �tness to the observeddata is again expressedin terms

of log-likelihood, evaluated at the optimal parameter estimates. Model selection using the AIC

criterion is basedon the following:

M̂ = argmax
M

n
logp(Oj�̂; W; M ) � k

o
: (3.4)

For AIC the complexity penalization term is only associatedwith the total number of free

parameters,k. Comparedwith BIC,AIC is a simpler complexity control criterion. No information

about the sizeof the training data, T , is accountedfor in the AIC penalization term, k. In contrast

to the complexity term of BIC in equation 3.3, k
2 logT , AIC lacks of power in penalizing over-

complex systemswhen the amount of training data is increased. Thus, for larger data setsAIC

may favor more complex systemsthan BIC.

3.3.3 Laplace Approximation

To incorporate more information from the higher terms ignored in BIC , a secondorder Taylor

series expansion for the Bayesianevidence may be used. This leads to the Laplace'sapproxi-

mation [ 122, 78]. The basic idea is to make a local Gaussianapproximation of the likelihood

curvature in the parametric space. The Gaussianmean is set to the optimum of the model

parameters. Theseparameters are normally estimated using either ML or MAP criterion. The

covariancematrix is set to the Hessianevaluated at the optimum of model parameters. The Hes-

sian is also referred to asthe Fisherinformation matrix in the statistical inference literature. The
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volume under that Gaussianis computed as an approximation to the evidence. The Bayesian

evidencein equation 3.2 is then approximated as the following:

logp(OjW ; M ) � logp(Oj�̂; W; M ) �
1
2

log
�
�
� �r 2

� = �̂
logp(Oj�; W; M )

�
�
� +

k
2

log2� :(3.5)

Using this approximation, difference among forms of model parameters can be accounted for

in the Hessian, r 2
� = �̂

logp(Oj�; W; M ), of equation 3.5. A general example of the Laplace's

approximation is shown in �gure 3.2. A simple caseis illustrated in the �gure where the variable

x only has one single dimension. A Gaussiandistribution is �tted to an arbitary function curve,

f (x). The Gaussianmean is at the optimal estimate, x̂, estimated using either ML or MAP

criterion. Its variance is the secondorder derivative with respectto x, �r 2
x= x̂ log f (x), which is

also computed at the parameter optimum x̂.
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Figure 3.2 LaplaceApproximation

For many practical situations it is infeasible to compute and store the Hessianasa full matrix

when the number of parameters in the system,k, is far too large. In current LVCSRsystemsthe

number of model parameterscan be in the millions. As the Hessiancontain O(k2) parameters,

storing it as a complete matrix rapidly becomesinfeasible as k increases. Therefore, for these

systemsa memory ef�cient approximation is required. One practical solution is to use a block

diagonal approximation. It is assumedthat model parametersbelonging to different parts of the

system, such as individual Gaussiancomponents, are independent of one other. This may be

expressedin equation 3.6,

r 2
� = �̂

logp(Oj�; W; M ) =

2

6
6
6
4

. . . 0

r 2
� ( j ) = �̂ ( j ) logp(Oj�; W; M )

0
. . .

3

7
7
7
5

(3.6)

where � (j ) denotes the parameters of some Gaussian component j 1. This is the approach

adopted in this work and is addressedwith more detail in later chapters. It should also be noted
1Gaussiancomponents are treated as “hidden states” of HMMs in this work. For clarity in the rest of the thesis,
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that under a large number assumption,when the number of training data samplesT is in�nitely

large, Laplace'sapproximation tends to the sameasymptotic expansionasBIC.

3.3.4 EM Method

One issue with both of the previous two approximation schemesis that the log-likelihood and

optimal parametersfor eachmodel structure are required. For LVCSRtasksexplicitly building all

possiblesystemsto obtain the log-likelihood is infeasible. One method to addressthis problem

is to derive an appropriate lower bound for the ML criterion. Such a lower bound should be

in a tractable form and marginalized over for complexity control, assuming it yields the same

ranking as using the log-likelihood. Let ~� denote the current parameterization for M and f  g

the setof hidden statesequencesallowed by the referencetranscription W. Usingan expectation

maximization (EM) approach [ 19], as described in section 2.2.1, a lower bound to the training

data log-likelihood may be expressedas

logp(Oj�; W; M ) � logp(Oj~�; W; M ) + Qml(�; ~� ) � Qml(~� ; ~� )

= L ml(�; ~� ) (3.7)

where the standard EM auxiliary function for HMMs is given by

Qml(�; ~� ) =
X

j ;�


 j (� ) logp(o� j � = Sj ; �; M ): (3.8)

 � = Sj indicates that an acoustic feature vector o� was generatedby state j at time instance � ,

and the hidden state posterior


 j (� ) = P( � = Sj jO; W; ~� ; M ): (3.9)

To compute the aboveauxiliary function, the �rst and secondorder moments,

X

�


 j (� )o� =
X

�

P( � = Sj jO; W; ~� ; M )o�

X

�


 j (� )o� o>
� =

X

�

P( � = Sj jO; W; ~� ; M )o� o>
� ; (3.10)

are also required. Comparedwith the training data log-likelihood, the dependencyupon latent

variable sequenceshas been removed in L ml(�; ~� ). Thus the above lower bound has a more

tractable form.

For LVCSRtraining the majority of the time is spent accumulating suf�cient statistics to es-

timate the model parameters. Thus, accumulating these statistics for all possible systemsis

infeasible. To handle this problem, a range of model structures may be required to use infor-

mation derived from the same set of statistics generated using a single system. For example

when determining the number of components,statistics for systemswith fewer componentsper

the notation j is usedto denote a component. However, this should not be confusedwith thosenotations usedearlier

in chapter 2.
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state may be derived by merging statistics de�ned in equations 3.9 and 3.10 together from a

more complex system.For example, when merging Gaussiancomponentsl and k to form a new

component j , the statistics given in equation 3.9 may be merged as 
 j (� ) = 
 l (� ) + 
 k (� ). This

allows the lower bound in equation 3.7 to be ef�ciently computed. In fact this approach is also

used in decision tree basedstate clustering, as discussedin section 2.3.2. When tree nodes are

merged, the samestatistics merging is performed among stateswith a single Gaussian.This ef-

�cient component merging processwill be discussedin more details in chapter 5. The following

lower bound for the evidencemay then be used for model selection:

logp(OjW ; M ) � log
Z

exp
�

L ml(�; ~� )
�

p(� jM )d�: (3.11)

Though the right hand side of inequality 3.11 may have a closed form solution, in many sit-

uations it is still impossible to compute. To further reduce the computational cost, the right

hand side of the inequality in equation 3.11 may be ef�ciently approximated using numerical

approximation schemes,such asLaplace'sapproximation.

One important feature of the lower bound marginalization in equation 3.11 is that it may

be related to the integration of the ML auxiliary function in equation 3.8. The only term in

the lower bound which is dependent on the model parameters, � , is the auxiliary function

Qml(�; ~� ). When multiple model structures use the same set of statistics, f 
 j (� )g, the rank

ordering derived from the marginalization of L ml(�; ~� ) is equivalent to the ranking of the inte-

gral over Qml(�; ~� ). However, when multiple setsof statistics are used, the other terms in the

lower bound, logp(Oj~� ; W; M ) and Qml(~� ; ~� ), may vary. In this casethey can longer be ignored

and must be computed. Directly comparing of the marginalization of Qml(�; ~� ) between model

structures is not meaningful, unlessthey share the sameset of statistics.

One basicassumption is made in the lower bound basedapproximation in equation 3.11. It

is assumedthat the ordering of the Bayesianevidenceis the sameasthat of its lower bound. The

looser the bound is, the poorer the approximation may become. For the EM lower bound given

in equation 3.7, this meansthat aggressivelysharing statisticsamong very different model struc-

tures may lead to a poor evidenceapproximation. Hence,when sharing statistics the complexity

variation among model structures must be constrained to ensure the reliability of statistics, and

the bound. This issuewill be further discussedin detail in chapter 5.

3.3.5 Variational Method

The ML bound in equation 3.7 requires the the hidden state posterior, P( � = Sj jO; W; ~� ; M ).

However, in many practical situations when more complicated forms of acousticmodelsare used

this distribution is intractable. To handle this problem, another related approximation scheme,

variational approximation [ 2, 38, 39], may be used. In a similar formula to the EM algorithm,

Jensen'sinequality is applied to derive an evidence lower bound. If the joint posterior distri-

bution over both model parameters and hidden states, P( � = Sj ; � jO; W; M ), is intractable,

a variational approximation may be made. A computationally tractable variational distribution
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P( ; � ) will be used in the modi�ed E step instead of the original joint posterior. The evidence

lower bound derived using a variational approximation may be written as

logp(OjW ; M ) �
Z X

 
P( ; � ) log

p(O;  ; � jM )
P( ; � )

d�: (3.12)

Maximizing the lower bound in the above equation is equivalent to minimizing the Kullback-

Leibler (KL) divergence between the variational distribution, P( ; � ), and the true joint pos-

terior, P( � = Sj ; � jO; W; M ). Variational methods provide an alternative form of evidence

lower bound. It is sometimesreferred to as Variational Bayesianlearning in the literature. The

key issue with this approach is how to select an appropriate form of variational distribution.

Sucha selection is always subjective. One commonly usedform assumesthe statistical indepen-

dence between model parameters, � , and hidden states,Sj , so the variational distribution is in

a simpli�ed factorial form, P( ; � ) = P( )P(� ), for example, in [ 118, 117].

The sameassumption of the EM lower bound in equation 3.11 is made in variational meth-

ods. It is assumedthat the ordering of the Bayesianevidenceis the sameasthat of the variational

lower bound. Similar to the log-likelihood lower bound derived using EM, the looser the varia-

tional lower bound is, the poorer the evidence approximation may be. Hence, the selection of

the variational distribution P( ; � ) should tighten the bound asmuch aspossible.

3.3.6 Markov Chain Monte Carlo (MCMC) Sampling

Another family of approximation methods for the Bayesianevidence are Markov chain Monte

Carlo (MCMC) sampling schemes[ 79, 97, 82]. The simplest MCMC sampling basedapproxima-

tion is to averageout a �nite number of random samplesdrawn in the parametric space.This is

given in the following equation and is often referred to as the simple Monte Carlo:

p(OjW ; M ) =
Z

p(Oj�; W; M )p(� jM )d�

�
1

Nmc

X

i

p(Oj� i ; W; M ) (3.13)

where � i is the i th sample of the model parameters and Nmc is the total number of samples

drawn. It is assumedthat the drawn samplesare statistically independent against one another.

However, in many practical situations it may dif�cult to obtain such samplesfrom p(� jM ).

To overcome this problem other forms of sampling schemesmay be used. In rejectionsam-

pling, a proposaldistribution, q(� ), and a constant, c < 1 , are introduced suchthat 8�; p(� jM ) �

cq(� ). Samplesthat are drawn from the proposaldistribution q(� ) with a probability p(� jM )=cq(� )

are acceptedand used for the simple Monte Carlo in equation 3.13 [ 82, 79]. One issuewith re-

jection sampling is that the schemeonly works well if the proposal distribution q(� ) is a good

approximation to the parameter prior p(� jM ). It may be dif�cult to �nd cq(� ) with a small c

which is easyto sample from.
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Another closely related sampling scheme is importance sampling. Using this method the

Bayesianevidenceis approximated as the following [ 82, 79]:

p(OjW ; M ) �
1

Nmc

X

i

p(Oj� i ; W; M )
p(� jM )

q(� )
(3.14)

where the proposal distribution q(� ) is required to be non-zero when p(� jM ) is. Similar to

rejection sampling, the issue with this approach is also how to select a suitable form of the

proposal distribution q(� ) asa good approximation to p(� jM ). Another issuewith both rejection

sampling and importance sampling is that an improper weighting or rejection of samplescan

cause the Monte Carlo average to be dominated by a few samples. This may lead to a poor

approximation of the Bayesianevidence.

In many situations when p(� jM ) is a high dimensional distribution, it may be dif�cult to �nd

a good form of proposal distribution q(� ) as an approximation. In this casemore complicated

sampling schemes,such as Gibbssampling may be used [ 97]. In Gibbs sampling, it is assumed

that p(� jM ) is too complex to draw samplesfrom directly. Instead, its conditional distribution,

p
�

� (n)
i j� (n)

1 ; :::; � (n)
i � 1; � (n� 1)

i +1 ; :::; � (n� 1)
Nmc

�
, may be used as the proposal distribution. The super-

script refers to the nth sampling iteration. The algorithm iteratively picks up a model parameter

sample, either in turn or randomly, which is then replaced by a sample selectedusing the pro-

posal distribution. This form of proposal distribution accounts for the statistical dependence

between samples.

Unfortunately, MCMCsampling schemesare impractical to useon current LVCSRsystemsfor

Bayesianevidenceapproximation. A state-of-the-art recognition systemmay contain millions of

free parameters. This leads to a very high-dimensional parameter spacefrom which to draw

samples. For this reasonMCMC basedsampling schemesare computationally lessfeasible than

other approximation schemes. They are not considered in this thesis for the approximation of

Bayesianevidence.

3.4 Information Theory Methods

The secondcategory of complexity control techniques are basedon information theory. These

approachestreat the complexity control problem as�nding an appropriate code length [ 6] for a

data transmissionprocess.Probabilistic distributions may be viewed ascodegenerators. Assume

that both the sender and the receiver know from which distribution, p(OjW ; M ), a code O is

generated from. Then according to Shannon'sSourceCoding Theorem, the �tness to the data,

� logp(Oj�̂; W; M ), penalized by a channel cost, C(O; M ), forms a two-part code description

length [ 16, 6, 96, 54],

M̂ = argmin
M

n
� logp(Oj�̂; W; M ) + C(O; M )

o
: (3.15)

The channel cost may be interpreted as the part of description length which correspondsto

the complexity of the code generator. In this section two complexity control criteria within the

information theory framework are presented.
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3.4.1 Minimum Description Length (MDL)

One commonly used information theory approach is the minimum description length (MDL)

criterion. The MDL principle selectsthe optimal model structure with the shortest two-part code

length. For the two-part code given in equation 3.15, the complexity term, C(O; M ), needsto

be explicitly given. Hence the two-part code basedMDL criterion in equation 3.15 may not be

directly used for complexity control unlessthe penalization term, C(O; M ), is explicitly known.

The MDL code length may be expressedin multiple forms [ 95, 47]. A two-part code is only

one of these forms. There are other forms of description length that do not require knowing

the exact form of the complexity penalization term. One example is the normalized maximum

likelihood (NML) proposed in [ 95]. The standard form is the mixture code length [ 16, 6, 54].

M̂ = argmax
M

�
P(M )

Z
p(Oj�; W; M )p(� jM )d�

�
(3.16)

It is in the same form as the Bayesian evidence integral in equation 3.2. However, it is

derived asa form of codedescription from an information theoretic perspective. In common with

Bayesianevidence, this form of code length may be approximated via a �rst order asymptotic

expansionequivalent to BIC, or a secondorder Laplace'sapproximation.

3.4.2 Minimum Message Length (MML)

Another information theory approach is the Minimum MessageLength (MML) principle [ 47].

The basic idea of MML is to �nd a two-part code generator to minimize the expected message

length (number of bits needed to encodethe data) of the observeddata. The MML principle is

closelyrelated to MDL. The MML codelength hasthe sameform of de�nition asthe mixture MDL

given in equation 3.16. However there are some differences between the two schemes. First,

the MML code length can only be expressedas a mixture distribution, while MDL may have

multiple forms of code length. A mixture distribution is only one of them. Second, the MML

principle is more closely related to Bayesianapproachesthan MDL. A prior distribution over

model parameters is always required as in equation 3.16. In contrast, such a prior distribution

is not required by the MDL principle when a two-part code length is used. Like the mixture code

length of MDL in equation 3.16, the MML code length may be approximated via a BIC style �rst

order, or Laplace'ssecondorder approximation.

3.5 Previous Application to Speech Recognition

As discussedin section 3.1, state-of-the-art LVCSRsystemsare highly complex and many tech-

niques are used to enhancethe recognition performance and also alter the systems'complexity.

When these techniquesare used it is desirable to optimize the model complexity to achievethe

optimal WER.However the application of complexity control techniques for speechrecognition

has been limited, especially for LVCSRtasks. In this section a survey of previous applications of

model selection techniques is presented.
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BIC is a most commonly used complexity control technique for speechrecognition [ 12, 13,

15, 130]. For example, this method was used in [ 12, 15] for HMM state tying on LVCSRtasks.

As describedin section 2.3.2, in decision tree basedstate clustering the threshold for likelihood

gain must be manually tuned. Such a threshold acts to control the depth of the tree, or equiv-

alently the total number of distinct statesafter tying [ 132, 133, 131]. This meansthe system's

complexity can not be automatically determined. In contrast, the optimal tree cut was automati-

cally determined using BIC and “penalized” BIC (� = 2:0 in equation 3.3) in [ 15]. The EM lower

bound of log-likelihood discussedin section 3.3.4 was used to ef�ciently compute the BIC crite-

rion during clustering. It was reported that comparedwith a standard likelihood basedapproach

a more compact HMM systemwith the sameWER was obtained. It was also reported that the

standard BIC criterion lacked penalization power to prune over-grown trees. In [ 118, 117] on

a JapaneseLVCSRtask it was also found that BIC yielded a poor approximation to the evidence

integral when the training data is limited. The problem may be causedthe large number as-

sumption made in BIC, as discussedin section 3.3.1, which may be too strong for small data

sets.So as the amount of training data is reduced, the BIC approximation is increasingly poor.

As an alternative to BIC, the variational method has also been used to approximate the evi-

denceintegral for complexity control. The large number assumptionof BICis no longer required.

The scheme is often referred to as the variational Bayesian method [ 2, 119, 120, 117, 59].

In [ 117] this approach was used for decision tree based state clustering. The approximated

Bayesianevidence was used instead of likelihood as in a standard approach. Performance im-

provementswere reported with a small vocabulary English name entity recognition task. In [ 59]

on experiments of a small vocabulary Japaneserecognition task, the variational Bayesianap-

proach was also found to select a more compact decision tree cut than the standard maximum

likelihood method. Performance gains were also obtained over an MDL (equivalent to BIC)

based clustering proposed in [ 105, 107]. As described in section 3.4, when using the MDL

principle a certain form of code length is required. In [ 105, 107], the mixture code length in

equation 3.16 was used. A �rst order approximation to it is equivalent to the BIC metric.

In addition to HMM state tying, another areawhich complexity control techniqueshavebeen

applied to is speakeradaption. For thesetasksthe amount of enrollment data is often sparse.It

is therefore important to determine the optimal number of parameters to be robustly estimated

when building speakerspeci�c models. For linear transformation schemes,such as MLLR, this

correspondsto the number of transforms. As previously discussedin section 2.5, a standard ap-

proach usesthe training data associatedwith eachregressiontree node [ 128, 28]. If the amount

of data assignedto a tree node exceedsa given threshold, an MLLRtransform will be generated.

Otherwise, the transform estimation will back-off to the parental node'sstatistics. The occupancy

threshold requires empirical tuning. Essentially, this is a simply “more data more parameters”

approach. In [ 106] the MDL principle was used to determine the optimal cut of a regression

classtree. The form of code length usedwas the mixture distribution given in equation 3.16, ap-

proximated via a �rst order expansion(equivalent to BIC). EachMLLR transform was restricted

to be a simple bias vector. Experimental results on a medium vocabulary Japaneserecognition
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task showed that marginal WERimprovement was obtained over the standard approach.

3.6 Limitations of the Likelihood Paradigm

There is an inherent assumption made in standard evidence based complexity control tech-

niques: there is a strong correlation between WER and likelihood on unseen data. Thus in-

creasing the likelihood on the unseen data should decreasethe WER. However, for a speech

recognition system using HMMs, such an assumption is not true. As previously discussedin

section 2.1.1, when using HMMs two assumptionsare made about the nature of the speechsig-

nals: the quasi-stationary assumption and the observation independenceassumption. Neither

assumption is actually true for speechsignals. Speechproduction is a non-stationary process

even within minute time intervals. Furthermore, the dynamics of articulators and the use of

overlapping frames in speechparameterization, as discussedin section 2.3.1, result in correla-

tion between frames. HenceHMMs are not the correct models for speechsignals. Consequently,

in recent researchthe correlation between WER and likelihood has been found fairly weak for

current speechrecognition systems.In this case,using held-out data likelihood, or equivalently

marginalizing the ML criterion as in Bayesianlearning and Information theory, may be inappro-

priate for complexity control. It leadsto an incorrect WERranking and a poor selectionof model

complexity. For this reasonit would be preferable to marginalize a criterion that is more closely

related to the recognition error, rather than likelihood.

3.7 Summary

In this chapter standard complexity control techniqueswere presented. Theseschemeswere de-

velopedwithin a maximum likelihood paradigm and may be classi�ed into two major categories.

In Bayesianlearning techniquesmodel selection is basedon the evidence,or the marginal likeli-

hood of training data. In information theory approaches,a complexity control problem is viewed

as �nding the optimal code length for a data transmission process.The code length is often ex-

pressedas the penalized log likelihood. For both types of techniques numerical approximation

is often required to practically compute the Bayesianevidenceor the mixture code length.

For these techniques to work well, a strong correlation between the WER and likelihood

on unseen data must exist. However, for current speechrecognition systemsusing HMMs this

correlation may be fairly weak, asthe modelsusedare far from the “ideal” ones. Thus thesestan-

dard likelihood basedapproachesmay be inappropriate for model complexity control on current

ASRtasks. It would be preferable to employ a complexity control criterion that is more directly

related to WER.In chapter 5 a novel discriminative method for model selection is presented.
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Discriminative Training

This chapter presentsdiscriminative training techniquesfor speechrecognition. First the limita-

tions of maximum likelihood training is discussed.Then severalcommonly used discriminative

criteria are presented. This is followed by a survey of the optimization schemesfor discrimina-

tive training criteria. In particular, the extended Baum-Welch (EBW) algorithm, and a recently

introduced weak-senseauxiliary function basedapproach are discussed.

4.1 Limitations of ML Training

In maximum likelihood training it is assumedthat HMMs are the “correct” models for speech

signals. It is further assumedthat given in�nite amount of training data, the global ML estimates

tend to the optimum of model parameters. However, for current speechrecognition systems

neither assumption is true.

First, HMMs are not the “correct” models for speechsignals. As discussedin section 2.1.1,

two assumptionswere made about the nature of speechsignals when using HMMs: the quasi-

stationary assumption and the observation independence assumption. As discussed in sec-

tion 3.6, neither is true. Since current HMM based ASR systemsare not the correct models

for speechsignals, the correlation between the WER and likelihood may be weak. Merely in-

creasing the likelihood on the observed or unseen data as in ML training may not necessarily

improve the recognition performance.

Second, the training data quantity is limited in practical situations. A large collection of

audio data with detailed transcription is highly expensive.The majority of state-of-the-art LVCSR

systemsare trained using no more than �ve thousand hours of audio data [ 11, 24, 65]. To

produce accurate manual transcriptions for these large collections of acoustic training data is

very expensive.

Third, the EM algorithm used in ML training is only guaranteed to �nd a local optimum for

the model parameters. Even if the above two conditions are met, an EM based optimization

still cannot guarantee to yield a global optimal estimate for the model parameters during ML

training.

44
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For these reasons,ML training does not guarantee the optimal recognition performance for

current speechrecognition systems. Hence it is preferable to employ training schemesthat ex-

plicitly aim at improving the recognition accuracy. One obvious form is to use the recognition

error rate. However, the recognition error rate is not in a continuous form and may not be

directly used for training based on standard optimization schemes,such as gradient descent.

In contrast, discriminative training criteria, such as maximum mutual information (MMI), are

continuous approximations to the error rate. Thesecriteria do not make the model correctness

assumption as in ML training. They are explicitly aimed at reducing the approximated recogni-

tion error rate on either a sentenceor word level.

4.2 Discriminative Training Criteria

Discriminative criteria have been successfullyapplied to LVCSR training [ 124, 93, 90]. In this

section three commonly used discriminative training criteria, maximum mutual information

(MMI), minimum phone error (MPE) and minimum classi�cation error (MCE), are presented

in detail.

4.2.1 Maximum Mutual Information (MMI)

One of the most widely used discriminative criteria is the maximum mutual information (MMI)

criterion [ 3]. This is equivalent to maximizing the a posteriori probability of the correct tran-

scription, W, for the given training data and model. The MMI criterion may be expressedas

Fmmi(�; M ) =
p(O; Wj�; M )

p(Oj�; M )
= P(WjO; �; M ) (4.1)

When the language model parameters, P(W), are �xed during training, the MMI criterion is

equivalent to conditional maximum likelihood (CML) criterion [ 81]. In addition to optimizing

the ML criterion, p(O; Wj�; M ), the likelihood of a “composite” model p(Oj�; M ) is decreased.

The composite model, p(Oj�; M ), is obtained by summing over all possiblehypotheses,f ~Wg.

p(Oj�; M ) =
X

~W

p(Oj�; ~W; M )P( ~W) (4.2)

In the literature thesetwo parts of the MMI criterion are usually referred to asthe numerator and

denominator terms respectively [ 84, 124]. For LVCSRsystemsit is infeasible to store all possible

hypothesesto obtain the compositemodel, p(Oj�; M ). In practice a �nite number of confusable

word sequencesare stored either in an N-best list or lattice. Theseare usedasa compact format

to representthe model confusionsover the training data [ 112]. Asdiscussedin section2.3.5, the

dynamic range of likelihood may be very different between the acousticmodel and the language

model. To overcomethis problem, the languagemodel probability is scaledby a constant � > 0

to compensatefor the difference in dynamic range [ 124]. The acoustic likelihood is also de-

weighted using the inverse of the languagemodel probability scale.This broadensthe posterior
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distribution of different word paths in a lattice. Suchan increasein confusabledata can improve

generalization performance [ 124]. By doing so the likelihood given the composite model may

be expressedas

p(Oj�; M ) =
X

~W

p(Oj�; ~W; M )
1
� P( ~W) � :

MMI baseddiscriminative training has been extensively used in state-of-the-art LVCSR sys-

tems. Signi�cant improvements over ML trained models have been reported [ 124, 129, 126].

However, it has been found that the MMI criterion can give undue weights to outliers that have

very low posterior probability over the correct transcription [ 113]. Consider the casewhen the

observeddata O is segmentedinto individual segmentsfor training, fO 1; :::; Or ; :::; ORg, where

Or denotesthe r th utterance. The following MMI criterion calculation will be heavily dominated

by utteranceswith very low posteriors.

Fmmi(�; M ) =
X

r

log
p(Or ; W j�; M )

p(Or j�; M )
(4.3)

4.2.2 Minimum Classi�cation Error (MCE)

Another discriminative criterion closelyrelated to MMI is the minimum classi�cation error (MCE)

criterion [ 14, 60]. The MCEcriterion wasoriginally proposedfor isolated word recognition [ 14].

In [ 110, 109] a form of MCE criterion was modi�ed for continuous speechrecognition tasks.

As with the MMI criterion, word lattices or N-best lists may be used to represent the model's

confusion over the training data. The MCEcriterion is given by

Fmce(�; M ) = f

 

log
p(O; Wj�; M )

P
~W 6= W p(Oj�; ~W; M )P( ~W)

!

(4.4)

where f (�) is the smoothing function. Commonly used forms of f (�) are either an identity,

f (x) = x, or a Sigmoid function given by

f (x) =
1

1 + e� ax (4.5)

where a is a tunable parameter. Note that the denominator term in equation 4.4 only contains

incorrect word sequencesfor the MCE criterion, rather than all the possibleword sequencesas

in the MMI criterion. This is a difference between the MCE and MMI criteria. A uni�ed view

of both the MMI and MCE criteria was given in [ 110, 109]. It was shown that both MMI and

MCE criteria provide an upper bound to the sentenceerror rate from a Bayesianperspective.

However, compared with MMI training MCE training is lesscommonly used in state-of-the-art

LVCSRsystems.

4.2.3 Minimum Phone Error (MPE)

Both the MMI and MCE criteria provide an approximation to the recognition error rate on a

sentencelevel. However, in speechrecognition the most commonly usedperformance measure-

ment is the WER. Therefore, it would be preferable to have a training criterion that is directly
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related to the WER rather than the sentenceerror rate. The Overall Risk Criterion (ORC), or

equivalently the minimum word error (MWE), is one suchcriterion. It hasa continuous form of

WERapproximation and may be used for training speechrecognition systems[ 62, 42].

A closelyrelated criterion is the minimum phone error (MPE) criterion. Instead of evaluating

recognition accuracyon a word level, a phone level accuracyis computed under the constraint

of the referenceword transcription [ 90, 93]. The MPEcriterion is expressedasthe averageaccu-

racy of all possibleword sequencesf ~Wg, measuredagainst the referencetranscription in terms

of WER. The accuracy contribution from each hypothesis is simply weighted by its posterior

probability. The MPEcriterion is given by

Fmpe(�; M ) =
X

~W

P( ~WjO; �; M )A( ~W; W)

=
X

~W

p(O; ~Wj�; M )A( ~W; W)
p(Oj�; M )

(4.6)

where A( ~W; W) is the phone level accuracyof a word sequence, ~W, against the referencetran-

scription, W. The computation of A ( ~W; W) normally requires a dynamic programming proce-

dure. An ef�cient approximation of phone accuracyin a lattice context wasproposedin [ 90, 93].

The algorithm �rst computesthe phone level accuracyfor eacharc in the lattice against the ref-

erencetranscript. Recognition errors causedby either substitution, deletion or insertion will be

accounted for. Then the accuracymeasuring of each arc is further smoothed using a forward-

backward algorithm like procedure. This acts to de-weight the accuracyof lattice arcs that have

very low “combined” accuracy for all the hypothesesthat passthrough it, and scaleup that of

those which are more correct. A more detailed description of the algorithms was given in [ 93].

MPE training has consistently outperformed MMI training on a range of LVCSR tasks [ 93].

Many state-of-the-art LVCSR systemsare trained using the MPE criterion [ 51, 127, 64, 65, 23,

24]. No signi�cant difference was found betweenMPEand MWE training in terms of recognition

performance, although MWE training was found to be more powerful to �t the training data.

4.3 Optimization of Discriminative Criteria

The optimization of discriminative criteria is non-trivial. The EM algorithm for ML training can

not be directly used for these criteria. In this section optimization schemesfor discriminative

training criteria are presented. First, the extended Baum-Welch (EBW) algorithm and a weak-

senseauxiliary function basedapproach are discussed.Both approachesyield similar parameter

updates. Then gradient descentbasednumerical techniques are discussedfor the optimization

of discriminative criteria.

4.3.1 Extended Baum-Welch Algorithm

The extended Baum-Welch (EBW) algorithm is the most commonly used method for the opti-

mization of discriminative criteria [ 43, 44, 84, 113, 110]. The algorithm wasoriginally proposed
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for discrete density HMMs and then extended to the continuous case,but in this section the BW

algorithm for ML training is revisited �rst. Then the EBW update formula for discrete density

HMMs are presented. The relationship between the derivation of the EBW and the BW algorithm

is also discussed.Then the extension to the EBW algorithm for continuous density HMMs is pre-

sented for both the MMI and MPEcriteria. Finally, a recently introduced I-smoothing technique

for the EBW algorithm is discussed.

4.3.1.1 Baum-Welch Algorithm

The Baum-Welch (BW) algorithm provides a way to iteratively maximize polynomials which

satisfy the following two conditions [ 7]:

� All coef�cients in the polynomial are non-negative.

� All variables in the polynomial are non-negative and subject to a sum-to-oneconstraint.

This is exactly the caseencountered in the parameter optimization of discrete density HMMs

during ML training. These discrete parameters may include the transition probabilities and

hidden state densities. Let � ij denote the j th free parameter of the i th distribution of the model,

the Baum-Welch (BW) re-estimation formula is given by

� ij =
~� ij

@F (�; M )
@� ij

�
�
�
� = ~�

P
j

~� ij
@F (�; M )

@� ij

�
�
�
� = ~�

(4.7)

where again ~� is the current parameter estimate. During ML training the derivatives with respect

to model parameters in equation 4.7 are equivalent to the hidden state posterior occupancies

for an HMM system. These statistics may be ef�ciently computed using a forward-backward

approach, as described in section 2.2.2. However, the BW algorithm cannot be used for the

optimization of discriminative criteria, such as MMI in equation 4.1. This is becausethese

criteria cannot be expressedasvalid polynomials that satisfy the above two conditions required

by the BW algorithm.

4.3.1.2 EBW for Discrete Density HMMs

To overcome the limitation of the Baum-Welch algorithm, the extended Baum-Welch (EBW)

algorithm was introduced for the discriminative training of discretedensity HMMs [ 43, 44]. The

EBW algorithm can be shown to convergeto a local optimum for discriminative training criteria

that may be classi�ed as a certain family of rational objective functions. The type of rational

objective function consideredby the algorithm is expressedasa ratio of two polynomials,

F (�; M ) =
Fnum(�; M )
Fden(�; M )

(4.8)

where the numerator Fnum(�; M ) and denominator Fden(�; M ) are rational polynomials with

non-negative coef�cients, and variables that are non-negative and subject to a sum-to-one con-

straint. Hence both the numerator and denominator polynomials satisfy the two conditions
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required by the BW algorithm, as explained in section 4.3.1.1. Again let � ij denote the j th free

parameter of the i th distribution of the model, the EBW re-estimation formula is given by

� ij =
~� ij

�
@F (�; M )

@� ij

�
�
�
� = ~�

+ D
�

P
j

~� ij

�
@F (�; M )

@� ij

�
�
�
� = ~�

+ D
� (4.9)

where D is a regularization constant. The convergenceof the algorithm is only guaranteedgiven

a suf�ciently large D.

Although the BW and EBW algorithms are used to optimize training criterion in very differ-

ent forms, the derivation of the EBW update in equation 4.9 may be related to the BW algorithm.

A direct maximization of discriminative criteria, expressedin the form of equation 4.8, can be

dif�cult. The approach adopted in [ 43, 44] is to convert the original criterion to a related

polynomial, R(�; M ), which may then be optimized using the BW algorithm. First, the two

conditions required by the BW algorithm given in section 4.3.1.1 must be met by a valid poly-

nomial, R(�; M ). Second, maximizing a valid polynomial, R(�; M ), should be equivalent to

that of the original criterion, F (�; M ). This last condition is essentialas to guarantee that the

original objective function will never be decreased.Let C > 0 denote a regularization constant.

The form of the related polynomial proposed in [ 43, 44] is given by

R(�; M ) = Fden(�; M )
h
F (�; M ) � F (~� ; M )

i
+ C

Y

i

X

j

� ij (4.10)

where ~� is the current parameter estimate.

It can be shown that the polynomial in equation 4.10 satis�es the following three conditions:

� R(�; M ) is a polynomial of discrete probabilities f � ij g that are non-negative and subject

to a sum-to-oneconstraint
P

j � ij = 1.

� As long as the regularization constant C is big enough, all the coef�cients in R(�; M ) can

be non-negative.

� Around the current parameter estimates~� , maximizing R(�; M ) is equivalent to maximize

F (�; M ). This is becauseFden(�; M ) > 0 holds for any valid � , and the third regularization

term in equation 4.10, C
Q

i
P

j � ij is invariant of � , under the sum-to-one constraint
P

j � ij = 1. Henceone may write

R(�; M ) > R(~�; M ) ) F (�; M ) > F (~� ; M ):

Under thesethree conditions, a direct maximization of the rational objective function in the

form of equation 4.8 may be converted to the maximization of the polynomial, R(�; M ), using

the BW algorithm in equation 4.7. Thus one may write the update formula for � ij , the j th free

parameter of the i th distribution of the model.

� ij =
~� ij

@R (�; M )
@� ij

�
�
�
� = ~�

P
j

~� ij
@R (�; M )

@� ij

�
�
�
� = ~�

(4.11)
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In order to prove that the aboveupdate is equivalent to the EBW update in equation 4.9, the

gradients of the polynomial, R(�; M ), and the original criterion, F (�; M ), need to be exam-

ined. The gradient of the polynomial R(�; M ) in equation 4.10 around the current parameter

estimates,~� , is given by

@R(�; M )
@� ij

�
�
�
�
� = ~�

=
@Fnum(�; M )

@� ij

�
�
�
�
� = ~�

� F (~� ; M )
@Fden(�; M )

@� ij

�
�
�
�
� = ~�

+ C (4.12)

Furthermore, the gradient of the original criterion in equation 4.8 around ~� is given by,

@F (�; M )
@� ij

�
�
�
�
� = ~�

=
1

Fden(~� ; M )

�
@Fnum(�; M )

@� ij

�
�
�
�
� = ~�

� F (~� ; M )
@Fden(�; M )

@� ij

�
�
�
�
� = ~�

�
(4.13)

Combining the gradient of the criterion, F (�; M ), in equation 4.13, and the gradient of the

polynomial, R(�; M ), in equation 4.12, yields the following.

@R(�; M )
@� ij

�
�
�
�
� = ~�

= Fden(~�; M )
�

@F (�; M )
@� ij

�
�
�
�
� = ~�

+ C=Fden(~� ; M )
�

(4.14)

Substituting the polynomial's gradient above in equation 4.14 into the update formula of equa-

tion 4.11 yields

� ij =
~� ij

�
@F (�; M )

@� ij

�
�
�
� = ~�

+ C=Fden(~� ; M )
�

P
j

~� ij

�
@F (�; M )

@� ij

�
�
�
� = ~�

+ C=Fden(~�; M )
� (4.15)

which is equivalent to the EBW algorithm in equation 4.9 if we let D = C=Fden(~� ; M ).

A variety of discriminative training criteria may be optimized using this iterative EM-like

scheme. These include all three discriminative training criteria presented in section 4.2. The

EBW re-estimation formula was originally shown to be valid only for discrete density HMMs.

Hence it can not be directly used for parameters of HMMs with continuous densities, such as

Gaussianmeans and covariances 1. State-of-the-art speechrecognition systemsnormally use

continuous density HMM models. In the next section the extension of the EBW update to con-

tinuous density HMMs is presented.

4.3.1.3 EBW for Continuous Density HMMs

The extension of the EBW update formula in equation 4.9 to continuous density HMMs is a

non-trivial problem. The approach adopted in [ 84] was to use a simple discrete Gaussianap-

proximation. The number of codebookentries for eachdiscrete distribution in the HMM set was

raised to in�nity . This gives the following the re-estimation formula for Gaussianmeans and

covariances

� (j ) =
� num

j (O) � � den
j (O) + D j ~� (j )

� num
j � � den

j + D j

� (j ) =
� num

j (O2) � � den
j (O2) + D j

�
~� (j ) ~� (j )> + ~�

(j )
�

� num
j � � den

j + D j
� � (j ) � (j )> (4.16)

1In practice the update rule in equation 4.9 is not used for estimating component priors and state transitions in

LVCSRtraining, due to the algorithm's high sensitivity to small-valued parameters. Instead a more robust update is

proposed in [ 124, 93] by maximizing a different objective function.
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where the numerator statistics are given by

� num
j =

X

�


 num
j (� )

� num
j (O) =

X

�


 num
j (� )o�

� num
j (O2) =

X

�


 num
j (� )o� o>

� (4.17)

and the denominator statistics are

� den
j =

X

�


 den
j (� )

� den
j (O) =

X

�


 den
j (� )o�

� den
j (O2) =

X

�


 den
j (� )o� o>

� : (4.18)


 num
j (� ) and 
 den

j (� ) are the numerator and denominator Gaussianposterior occupanciesrespec-

tively. Rather than using a global setting for D , a Gaussianspeci�c smoothing constant, D j , is

used in equation 4.16. It was found that by using a Gaussianspeci�c smoothing constant, a

faster and more stable criterion convergencemay be achieved than a global setting [ 124, 93].

The exact form of 
 num
j (� ) and 
 den

j (� ) dependson the underlying criterion being optimized.

In the caseof MMI training, the numerator occupancy
 num
j (� ) is equivalent to the ML Gaus-

sian posterior probability given the correct transcription. The denominator 
 den
j (� ) is computed

from all possibleword sequences[ 124]. The MMI numerator and denominator Gaussianoccu-

panciesare given by


 num
j (� ) = P( � = Sj jO; W; ~� ; M )


 den
j (� ) = P( � = Sj jO; ~� ; M ) (4.19)

where again  � = Sj indicates that acoustic observation o� was generated by hidden state j at

time instance � .

For MPEand MWE training, both the numerator and denominator occupanciesmust be com-

puted from the recognition lattices. Theselattices contain both the correct and incorrect word

sequences.It has been found that applying a binary decision on lattices paths ( or equivalently

on word arcs ), basedon whether the the accuracyof the current path is below the averageof

the whole lattice, yields an ef�cient MPE criterion optimization [ 93, 90]. The numerator and

denominator occupanciesfor MPEtraining may be written asbelow,


 num
j (� ) =

X

~W

P( � = Sj jO; ~� ; ~W; M )
 mpe
~W

(
 mpe
~W

� 0)


 den
j (� ) = �

X

~W

P( � = Sj jO; ~� ; ~W; M )
 mpe
~W

(
 mpe
~W

< 0) (4.20)
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where the MPE path occupancy
 mpe
~W

is the gradient of the MPE criterion against the log likeli-

hood of a word sequence ~W,


 mpe
~W

=
@Fmpe(�; M )

@logp(O; ~Wj�; M )

�
�
�
�
� = ~�

: (4.21)

Following equation 4.6, the abovemay be re-written as [ 93],


 mpe
~W

= P( ~WjO; ~� ; M )
h
A( ~W; W) � Fmpe(~�; M )

i
(4.22)

where A( ~W; W) is the phone level accuracy of ~W against the reference transcription W, as

discussedin section 4.2.3.

4.3.1.4 Setting of Smoothing Constant for EBW

An important issue for the EBW algorithm is the value of the smoothing constant D in equa-

tion 4.9 for discrete density HMMs, or the component speci�c D j in equation 4.16 for continu-

ous cases.This constant controls the convergenceof the underlying criterion. Hence setting its

value is important for discriminative training. In the original EBW update given in equation 4.9,

a global D value is set so that all derivatives are positive. This may be achievedusing

D = max
�

max
i;j

�
@F (�; M )

@� ij

�
�
�
�
� = ~�

�
; 0

�
+ � (4.23)

where � is small positive constant [ 43, 44]. As discussedin section 4.3.1.2, D must be suf�-

ciently large to guarantee the criterion convergence.However, it appearsthat no proof hasbeen

published to show the convergenceis also guaranteed when using a �nite valued D. Hence it

was argued in [ 110] that the above form of D may no longer guarantee the convergenceof the

algorithm.

For the EBW update of continuous density HMMs, various ways of setting D j were inves-

tigated for MMI training in [ 113, 124, 93]. It was reported that the following form of D j

outperformed other alternatives,

D j = E
X

�


 den
j (� ) (4.24)

where E > 0, and is typically set to 1 or 2. However using this form of setting for D j , the

Gaussianvariancesmay not necessarilybe positive. To overcome this problem, an even bigger

D j may be used. Such D j should be twice the value that ensures the re-estimated variance

elementsare positive [ 124, 93]. Aswith the original EBW algorithm there hasbeenno published

proof showing this form of �nite valued setting of D j still guarantees the convergenceof the

algorithm.

4.3.2 Weak-sense and Strong-sense Auxiliary Functions

The EBW update formula in equation 4.16 has been successfullyapplied for LVCSR training

of continuous density HMM models. However its extension from discrete to continuous density
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HMMs wasbasedon a discreteGaussianapproximation, asdiscussedin section4.3.1.3. Recently

a weak-senseauxiliary function basedapproach was proposed as an alternative �exible and in-

tuitive derivation of the EBW update for continuous HMMs [ 91, 89]. The conceptof weak-sense

auxiliary functions is the opposite to that of strong-senseauxiliary functions. A strong-sense

auxiliary function is closely related to the original criterion becauseof two constraints. First, it

sharesthe samegradient information with the criterion, around the current parameter estimate.

Second, increasing a strong-senseauxiliary function guarantees not to decreasethe original

criterion. The auxiliary function used for ML training described in section 2.2.1, for instance,

may be referred to as a strong-senseauxiliary function. In contrast, the relationship between

a weak-senseauxiliary function and the criterion is looser. The only constraint imposed is that

the criterion and its weak-senseauxiliary function share the samegradient around the current

parameter estimates. Increasing the weak-senseauxiliary function may not guarantee not to

decreasethe original criterion. An example of a strong-senseand weak-senseauxiliary function

is shown in �gure 4.1. In the left �gure, the criterion, F (�; M ), and its strong-senseauxiliary

PSfragreplacements

�~�

F (�; M )

Q(�; ~� )

�̂ Q �̂ F

r � F (�; M )

PSfragreplacements

�~�

F (�; M )

Q(�; ~� )

�̂ Q�̂ F

r � F (�; M )

Figure 4.1 Strong-sense(left) and weak-sense(right) auxiliary functions

function, Q(�; ~� ), share the samegradient around the current parameter estimate ~� . Further-

more, the strong-senseauxiliary function, Q(�; ~� ), and the original criterion, F (�; M ), reach

their maximum at �̂ Q and �̂ F respectively. The maximization of Q(�; ~� ) guaranteesnot to de-

creaseF (�; M ). In the right �gure which showsan example of weak-senseauxiliary functions,

the criterion and the weak-senseauxiliary function share the samegradient around the current

parameter estimate. However, in the interval between �̂ F and �̂ Q , maximizing Q(�; ~� ) actually

decreasesF (�; M ).

In [ 91, 89] a weak-senseauxiliary function is formulated as:

Q(�; ~� ) = Qnum(�; ~� ) � Qden(�; ~� ) + Qsm(�; ~� ): (4.25)
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where

Qnum(�; ~� ) =
X

j ;�


 num
j (� ) logp(o� j � = Sj ; �; M )

Qden(�; ~� ) =
X

j ;�


 den
j (� ) logp(o� j � = Sj ; �; M ) (4.26)

and again 
 num
j (� ) and 
 den

j (� ) are the numerator and denominator Gaussianposterior occu-

pancies respectively. The third term in equation 4.25, Qsm(�; ~� ), is closely associatedwith the

smoothing term of the EBW update formula in equation 4.16. This term must satisfy the follow-

ing constraint.

@Qsm(�; ~� )
@�

�
�
�
�
�
� = ~�

= 0: (4.27)

The common used Qsm(�; ~� ) that satis�es this constraint may be expressedin the following

general form,

Qsm(�; ~� ) =
X

j

D j

Z
p(oj o = Sj ; ~�; M ) logp(oj o = Sj ; �; M )do (4.28)

where slightly different from previously usednotations,  o = Sj , indicates acousticobservation

o is generated by a hidden state j . Note that the integral in equation 4.28 is over the entire

observation space. Hence, the discrete time instanceshave to be omitted. The above form of

smoothing term wasoriginally proposedin [ 84], but was only employed to interpret the discrete

Gaussianapproximation used to derive the EBW algorithm in 4.16 for meansand covariances.

However, it should benoted that the smoothing term in equation 4.28 may beapplied to a variety

of forms of model parameters,as no assumption about the underlying structure of hidden state

distribution p(oj o = Sj ; �; M ) is made.

When using the aboveform of weak-senseauxiliary function to derive the EBW algorithm for

Gaussiandensities, the exact form of the smoothing term, Qsm(�; ~� ), needsto be explicitly given.

For example, in caseof using diagonal covariances,the appropriate form of the smoothing term

is given by

Qsm(�; ~� ) = �
1
2

X

j ;i

D j

h
log2� + log � (j )2

i + � (j )� 2
i

�
� (j )2

i � 2~� (j )
i � (j )

i + ~� (j )2
i + ~� (j )2

i

�i
(4.29)

where i is the index of the feature dimensions,and � (j )2
i is the i th dimensional variance element

of component j . Using the above form of smoothing term, the EBW update formula for Gaus-

sian means and diagonal covariancesin equation 4.16 may be derived. Weak-senseauxiliary

functions provide a heuristic and �exible derivation of the EBW algorithm.

4.3.3 I-Smoothing

For MPEand MWEtraining, both the lattice arc accuracy, A ( ~W; W), and the criterion, Fmpe(�; M ),

are positive numbers between 0 and 1. In this casethe MPE,or MWE lattice arc occupanciesin
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equation 4.22 may be very small. Soalsoare the numerator and denominator occupanciesgiven

in equation 5.11. This may lead to un-reliable estimation of model parameters. To overcome

this problem, it has been found important to add a portion of standard ML or MMI statistics to

the numerator. This is referred to as I-smoothing [ 90, 93, 24]. This technique is closely related

to the use of parameter priors in maximum a posteriori (MAP) estimation [ 36]. From a MAP

training perspective,I-smoothing introduces an ML or MMI statistics basedprior over Gaussian

parameters. Using a weak-senseauxiliary function, this may be expressedas

Q(�; ~� ) = Qnum(�; ~� ) � Qden(�; ~� ) + Qsm(�; ~� ) + logP(� ): (4.30)

where P(� ) is prior distribution over model parameters, � . In caseof using an ML statistics

basedP(� ), the smoothed numerator statistics are given by

� num0
j = � num

j + � I

� num0
j (O) = � num

j (O) + � I � ml
j (O)

� ml
j

� num0
j (O2) = � num

j (O2) + � I � ml
j (O2)

� ml
j

(4.31)

where the I-smoothing prior � I > 0. In practice � I may be tuned for speci�c tasks[ 93, 24]. The

ML smoothing statistics are given by

� ml
j =

X

�


 j (� )

� ml
j (O) =

X

�


 j (� )o�

� ml
j (O2) =

X

�


 j (� )o� o>
� (4.32)

where 
 j (� ) = P( � = Sj jO; W; ~� ; M ) is the frame Gaussianposterior probability used in ML

training. Recently it has been found that using MMI statistics for I-smoothing outperformed

using the ML statistics [ 24] for LVCSRtasks. This is due to the nature of the I-smoothing statis-

tics being used. The MMI smoothing statistics correspond to a parameter prior which typically

outperforms the ML prior in terms of recognition performance.

4.3.4 Gradient Descent Based Optimization

Like many other forms of objective functions, discriminative training criteria may also be op-

timized using gradient descent style numerical methods. The steepestdescent algorithm is a

simple numerical schemefor optimizing multivariate functions. At each iteration the parame-

ters to be optimized are modi�ed in the direction of the the objective function's gradient. The

gradient of the objective function is evaluated at the current parameter estimates. The mag-

nitude of change to the parameters is a constant portion of the gradient. The proportion is

commonly referred to as the learning rate, or step size. The update formula is given by

� (n+1) = � (n) � � r � = � ( n ) F (�; M ) (4.33)
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where � (n) is the current parameter estimated at iteration n, and � is the learning rate. If a more

complex Newton searchis used, the Hessian,or the secondorder derivative, is also required. At

each iteration the gradient information is required for the update.

� (n+1) = � (n) � �
�
r 2

� = � ( n ) F (�; M )
� � 1

r � = � ( n ) F (�; M ) (4.34)

It may be shown that for discriminative training criteria, suchasMMI and MPE,the gradient

with respect to model parameters is closely related to the numerator and denominator occu-

pancies used for the EBW update of equation 4.16. First, the following useful derivations are

given, before examining the gradient information for individual criteria. The gradient of the log

likelihood given the word sequence, ~W, againstGaussianmeans,� (j ) , and covariances,� (j ) , for

HMMs are given below [ 113].

@logp(Oj�; ~W; M )
@� (j )

=
X

�

P( � = Sj jO; �; ~W; M )
@logp(o� j � = Sj ; �; M )

@� (j )

@logp(Oj�; ~W; M )

@� (j )
=

X

�

P( � = Sj jO; �; ~W; M )
@logp(o� j � = Sj ; �; M )

@� (j )
(4.35)

where

@logp(o� j � = Sj ; �; M )
@� (j )

= � (j )� 1
�

o� � � (j )
�

@logp(o� j � = Sj ; �; M )

@� (j )
=

1
2

� (j )� 1
�

o� � � (j )
� �

o� � � (j )
� >

� (j )� 1 �
1
2

� (j )� 1:(4.36)

For the MMI criterion, given in equation 4.1, the gradient information may be written as the

following:

@logFmmi(�; M )
@�

=
@logp(Oj�; W; M )

@�
�

@logp(Oj�; M )
@�

: (4.37)

Now, using the gradient information in equation 4.35 and 4.36 and the numerator and de-

nominator occupanciesde�ned in equation 4.19, the MMI gradient at the current estimatesfor

Gaussianmeansand covariancesare given by

@logFmmi(�; M )
@� (j )

�
�
�
�
� = ~�

=
X

�

�

 num

j (� ) � 
 den
j (� )

� ~�
(j )� 1

�
o� � ~� (j )

�

@logFmmi(�; M )

@� (j )

�
�
�
�
� = ~�

=
X

�

�

 num

j (� ) � 
 den
j (� )

�
�

1
2

�
o� � ~� (j )

�

�
�

o� � ~� (j )
� >

~�
(j )� 2

�
1
2

~�
(j )� 1

�
: (4.38)

In the above equation the MMI criterion's gradient information at the current parameter es-

timates is closely related to the numerator and denominator statistics required by the EBW

algorithm in equation 4.16.

For MPEa closerelationship to the criterion also exists. Following the MPEcriterion in equa-

tion 4.6, applying the chain rule for derivatives, and using the statisticsde�ned in equation 4.21
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and 4.22, one may write the following.

@Fmpe(�; M )
@�

/
X

~W

@Fmpe(�; M )
@�

=
X

~W

@Fmpe(�; M )

@logp(Oj�; ~W; M )

@logp(Oj�; ~W; M )
@�

=
X

~W

P( ~WjO; �; M )
h
A( ~W; W) � Fmpe(�; M )

i @logp(Oj�; ~W; M )
@�

(4.39)

Combing the gradient information in equation 4.35, 4.36 and the MPEnumerator and denomi-

nator occupanciesin equation 4.20, the gradient direction of the MPEcriterion against Gaussian

meansand covariancesmay be expressedas

@Fmpe(�; M )
@� (j )

�
�
�
�
� = ~�

/
X

�

�

 num

j (� ) � 
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j (� )

� ~�
(j )� 1

�
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� >

~�
(j )� 2
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1
2

~�
(j )� 1

�
: (4.40)

Hencethe gradient information of the MPEcriterion, given in equation 4.40, may alsobe related

to the MPEstatistics required by the EBW update.

Though gradient descent style numerical schemesmay be used for optimizing discrimina-

tive training criteria, in practice these techniques are slow and have dif�culty guaranteeing

convergence. In early research it was reported that the EBW algorithm is a more ef�cient op-

timization scheme for discriminative objection functions than numerical methods [ 44]. The

majority of state-of-the-art LVCSR systemsemploy the EBW algorithm for discriminative train-

ing [ 124, 126, 127, 23, 64].

4.4 Summary

In this chapter several commonly used discriminative training criteria and the associatedop-

timization schemeswere presented. The model correctnessassumption made in ML training

may be too strong for current speechrecognition systemsusing HMMs. As is discussedearlier

in section 3.6, this is also an issue for standard complexity control techniques under the maxi-

mum likelihood paradigm. It would therefore be preferable to use discriminative methods that

are more explicitly related to classi�cation error for complexity control and parameter estima-

tion. The model correctnessassumption of ML learning may then be removed from both the

structural and parametric optimization. In the following chapter a novel complexity control ap-

proach is proposed using the marginalization of a discriminative measure. Then it is followed

by an investigation of discriminative training of linear projection schemesdiscussedearlier in

section 2.4.
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Discriminative ModelComplexityControl

In this chapter a novel model complexity control technique using a discriminative measure is

presented. First, some previous work related to discriminative complexity control is brie�y

reviewed. Then issueswith a direct marginalization of discriminative criteria for complexity

control will be discussed.Due to the sensitivity to outliers, discriminative training criteria, such

as MMI, cannot be directly integrated over for complexity control. This motivates the use of

a closely related discriminative growth function, rather than the original criterion itself. This

growth function maintains someof the attributes of the original discriminative criterion, but is

lesssensitive to outliers. The marginalization of the growth function is used to determine the

appropriate model complexity. Two forms of growth functions for the MMI and MPEcriteria are

presented. Finally, some important implementation issuesthat arise when using marginalized

discriminative growth functions for complexity control are discussed,in particular for the HLDA

systemsdiscussedin section 2.4.

5.1 Toward Discriminative Complexity Control

As discussedin chapter 3 the majority of complexity control research for speechrecognition

has focusedon methods within the maximum likelihood paradigm. Under this likelihood based

framework, HMMs are implicitly assumedto be the “correct” models for speechsignals. Unfor-

tunately the assumptionsabout the nature of speechsignalswhen using HMMs are not valid, as

discussedin section 3.6. Hence the model correctnessassumption of existing techniques may

be too strong for current ASRsystems,and it is preferable to employ discriminative criteria for

complexity control. They are more directly related to the recognition error, rather than likeli-

hood.

A discriminative measure has previously been used in [ 4, 88], as a method of incremen-

tally splitting Gaussianmixture components in an HMM basedspeechrecognition system. The

method proposedmay be describedin two steps. First, the state level alignment is obtained for

both the correct and incorrect word sequences. In the secondstep, these alignments are kept

�xed during the splitting of Gaussiancomponents. For eachstate a splitting operation is consid-

58
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ered if it increasesthe posterior probability of the correct state label. Using this method WER

improvements were reported on a Wall Street Journal task. The main issuewith this approach

is that the complexity of the underlying model structure is not considered during the splitting

process.No penalty is given to penalize over-complex structures. Strictly this method cannot be

regarded asa control of model complexity, becauseno stopping criterion is provided. Instead it

is more appropriate to view it asa discriminative increaseof model complexity.

A similar approachusing the MMI statisticsgiven in equation 4.19 was also proposedin [ 85]

to split Gaussiancomponents in a discriminative fashion. The numerator and denominator

statistics, given in equations 4.17 and 4.18, are accumulated on a component level, using a

standard forward-backward procedure for both the referencetranscription and confusableword

sequences.For Gaussiancomponent j , if the difference betweenthe numerator and denominator

occupancies,� num
j � � den

j had a high ranking, for instance in the top 20% among all components,

then the component is selectedfor splitting. Error rate reduction on a digit recognition task was

reported using this component splitting method. Again, the same issue discussedabove also

applies to this approach. No penalty is assignedto model structures that are over-complex, and

the splitting processcannot be terminated automatically.

Complexity control using a discriminative measure has also been investigated for speech

recognition systemsusing more complicated acoustic models rather than HMMs. In [ 9] the

MMI criterion was usedto determine the appropriate complexity for a graph model. The system

complexity consideredwas the conditional dependenciesbetween random variables, which are

denoted by nodes and edgesin a graph model. The aim was to increase the model's discrim-

inative power and reduce the recognition error rate, in common with the complexity control

problem for HMMs. Unfortunately the issuewith this method, in the samefashion as the above

two approaches,is that over-complexmodel structures are not penalized. Hencethe over-�tting

problem cannot be prevented.

5.2 Marginalizing Discriminative Training Criteria

Sofar the major issuewith the existing discriminative approachesfor model selection is the lack

of a complexity penalty term. As described in section 3.3, the marginalization of the conven-

tional ML criterion in the parametric spacemay automatically penalize over-complex models.

Henceone natural form of discriminative model complexity control is to marginalize a discrim-

inative measure instead. This ensuresthe generalization of discriminative measuresto unseen

data. Replacing the ML criterion in the evidence integral of equation 3.2 by a discriminative

criterion yields a “discriminative evidence”. This should be more closely related to recognition

error than likelihood basedschemes.If the MMI criterion is usedand the model prior, P(M ), is

assumeduninformative, this yields

M̂ = argmax
M

Z
Fmmi(�; M )p(� jM )d� (5.1)
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A similar form of integral of MPEcriterion may also be consideredfor complexity control. How-

ever, for both criteria, such a direct marginalization may be inappropriate. The primary reason

is that undue weights are given to outliers. State-of-the-art large vocabulary speechrecognition

systemsare trained with hundreds of hours of data. Outliers, which are far from the decision

boundary, are likely to exist in the training data. They are often utterances with very low like-

lihood, or explicitly associatedwith high recognition error rate. In may situations thesemay be

causedby problems associatedwith the collection of the data, for instance, the corruption of the

audio recording or human errors when producing the reference transcriptions. The sensitivity

to outliers is a well known feature of the MMI criterion [ 56, 113]. Sentenceswith very low

posteriors are heavily weighted. The performance ranking prediction will be distorted due to

the presenceof these outliers. The sameissueexists with the MPE criterion for sentenceswith

very high recognition error rate.

5.3 Discriminative Growth Functions

One approach to compensatefor the sensitivity to outliers is to explicitly de-weight the outliers

utterances. The use of a sigmoid function for the smoothing of the MMI criterion was studied

in [ 113]. Unfortunately, using this method the smoothed MMI criterion is in a complicated form

and dif�cult to integrate over. To handle this problem, the approach proposedin this thesis is to

transform the original discriminative criterion into a closely related polynomial that has a more

tractable form. This method is similar to the useof the polynomial R(�; M ) in section 4.3.1.2 to

derive the EBW algorithm for discrete HMMs. For complexity control the proposed polynomial

should maintain certain attributes of the original discriminative criterion, but must also be less

sensitiveto outliers. Note that the removal the sensitivity to outliers doesnot imply ignoring any

dif�cult data during complexity control. Onceagain it should be made clear that only those are

far from the decision boundary, typically with very low likelihood, or very high error rate, are

consideredasoutliers. The marginalization of this polynomial function is then usedto determine

the appropriate model complexity. To ef�ciently compute this “discriminative evidence”, similar

approximations to those used for the standard Bayesianevidence, as discussedin chapter 3,

may be used. In this section a general form of polynomial function for a certain family of

discriminative criteria is introduced.

The form of polynomial function considered here is applicable to any discriminative crite-

rion which may be expressedas a ratio between two polynomials with positive coef�cients and

variables. The MMI and MPE criteria are in this category. Consider a discriminative training

criterion expressedin the following form (the model structure M is omitted for clarity).

F (� ) =
Fnum(� )
Fden(� )

(5.2)

The general form of a polynomial function proposedhere may be expressedas,

G(� ) = Fden(� )
h
F (� ) � F (~� ) + CF sm(�; ~� )

i
(5.3)
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where ~� is the current parameter estimate. The �rst two terms in the bracket give information

about the curvature of the criterion surface in the parametric space. Since they describe the

variation, or growth, of the underlying criterion value between different parameter estimates,

the polynomial in equation 5.3 will be renamed asa discriminative growth function in the rest of

this thesis. The third term in the bracket is a smoothing term, scaledby a positive constant, C. To

reduce the growth function's sensitivity to outliers, the smoothing criterion should be selectedto

compensatefor the low likelihood, or high error rate, contribution from theseoutliers. Thus the

smoothing term may be associatedwith the likelihood or WER.The constant C in equation 5.3

determines the effect from this smoothing criterion. The exact form of F sm(�; ~� ) dependson the

underlying discriminative criterion being considered and is further discussedin the following

section for the MPE and MMI criteria. In addition, the denominator term, F den(� ), outside the

bracket in equation 5.3 may also help to reduce the sensitivity to outliers. This is the casefor

both the MMI and MPE criteria where the smoothing term is associatedwith the likelihood of

a sentence,Fden(� ) = p(Oj� ). Thus highly unlikely word sequenceswill have a smaller effect

on the growth function. However, it should be noted that the smoothing criterion, F sm(�; ~� ),

plays a more explicit, and �exible, role in reducing the sensitivity to outliers than F den(� ). This

especially the casewhen the original criterion, F (� ), is an approximation to recognition error

rate, rather than likelihood.

The gradient of the growth function, G(� ), may be expressedas

@G(� )
@�

=
h
F (� ) � F (~� ) + CF sm(�; ~� )

i @Fden(� )
@�

+ Fden(� )

"
@F (� )

@�
+ C

@Fsm(�; ~� )
@�

#

: (5.4)

When C approacheszero, around the current parameter estimate, ~� , a turning point of the

original criterion is also a turning point of the growth function. This may be expressedas

lim
C! 0

@G(� )
@�

�
�
�
�
� = ~�

= Fden(~� )
@F (� )

@�

�
�
�
�
� = ~�

: (5.5)

This constrains the attributes of the growth function to be related to those of the original crite-

rion.

The proposeddiscriminative growth function in equation 5.3 is in a similar form to the poly-

nomial R(�; M ) of equation 4.10. However, it is more appropriate to use the growth function

in equation 5.3 for complexity control due to two reasons.First, the use of the smoothing term

Fsm(�; ~� ) may explicitly reduce the sensitivity to outliers. In contrast, the third term of R(�; M )

in equation 4.10 doesnot have such properties. As discussedabove, the reduction of sensitivity

to outliers is very important when using discriminative criteria for complexity control. Second,

the proposed growth function in equation 5.3 has a more general form, and is not restricted

to models with discrete densities. This is also a preferable feature as models with continuous

densities are widely used in current ASRsystems.However, one disadvantageis that increasing

the growth function in equation 5.3 does not guarantee not to decreasethe original criterion,

becausethe smoothing term, F sm(�; ~� ), is also dependent on the model parameters.
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As discussedin chapter 4, the majority of state-of-the-art LVCSR systemsare trained using

either the MMI or MPEcriterion. Therefore in the following sectionstwo forms of discriminative

growth functions are proposed for the MMI and MPEcriteria respectively. As the MPEcriterion

providesa closerapproximation to WERthan MMI, a growth function basedon the MPEcriterion

is introduced �rst.

5.4 MPE Growth Function

The MPEgrowth function consideredin this thesis is

G(� ) = p(Oj� )
h
Fmpe(� ) � Fmpe(~� ) + CF sm(�; ~� )

i
(5.6)

where the smoothing term is given by

Fsm(�; ~� ) = �
X

~W
A ( ~W ;W ) < F mpe( ~� )

P( ~WjO; � )
h
A( ~W; W) � Fmpe(~� )

i
:

= �
X

~W ;
 mpe
~W

< 0


 mpe
~W

(5.7)

where the MPEword sequenceoccupancyis in the sameform as in equation 4.22,


 mpe
~W

= P( ~WjO; ~� )
h
A( ~W; W) � Fmpe(~� )

i
(5.8)

and A( ~W; W), asdiscussedin section 4.2.3, is the the phone level accuracyof a word sequence,
~W, against the referencetranscription, W. This smoothing criterion has the attributes discussed

in section 5.3, as the effect of word sequenceswhose accuracy are below the average level is

reduced. However, it should be noted that using this form of smoothing criterion, no data will be

removed. Instead, only the accuracycontribution from highly erroneousrecognition hypotheses

will be reduced. In addition the term outside the bracket in the MPEgrowth function, p(Oj� ), is

associatedwith the likelihood of a sentenceand will further reduce the sensitivity to outliers.

Direct marginalization of the growth function in equation 5.6 may be dif�cult for HMM

basedspeechrecognition systems,due to the dependencyupon latent variablesmaking it highly

inef�cient for complexity control. An approach similar to that discussedin section 3.3.4 is

therefore used. The following lower bound for the MPE growth function may be derived using

an EM-like approach. A detailed proof can be found in appendix A.

L mpe(�; ~� ) = logG(~� ) +
Qmpe(�; ~� ) � Qmpe(~�; ~� )

P
j ;� 
 mpe

j (� )
(5.9)

where the MPE“auxiliary function” is given by 1

Qmpe(�; ~� ) =
X

j ;�


 mpe
j (� ) logp(o� j � = Sj ; � ) (5.10)

1Only the optimization of Gaussianmeansand variancesare considered.
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and 
 mpe
j (� ) is the MPEhidden state occupancy.

The calculation of the growth function lower bound requires the MPE occupancystatistics

f 
 mpe
j (� )g. For the MPEgrowth function, the hidden state occupancy
 mpe

j (� ) in equation 5.10 is

given by [ 75]


 mpe
j (� ) = 
 num

j (� ) � 
 den
j (� )

� C
X

~W ;
 mpe
~W

< 0

P( � = Sj jO; ~W; ~� )
 mpe
~W

(5.11)

The numerator and denominator occupanciesare given by


 num
j (� ) =

X

~W

P( � = Sj jO; ~W; ~� )
 mpe
~W

(
 mpe
~W

� 0)


 den
j (� ) = �

X

~W

P( � = Sj jO; ~W; ~� )
 mpe
~W

(
 mpe
~W

< 0): (5.12)

A detailed derivation of the above statistics may be found in appendix A. It is interesting to

compare the MPEoccupancyderived from the growth function, given in equation 5.11, with the

standard form used in LVCSRMPEtraining [ 93] given in equation 4.20 and the smoothing term

in equation 4.24. Combining thesetwo gives


 mpe
j (� ) = 
 num

j (� ) � 
 den
j (� )

� E
X

~W ;
 mpe
~W

< 0

P( � = Sj jO; ~W; ~� )
 mpe
~W

(5.13)

where a constant E > 0 is empirically tuned. Thesetwo forms of MPEoccupancyare equivalent

to one another when E = C. However, the two smoothing terms servevery different purposes.

The smoothing term in the standard MPE occupancy, in equation 5.13, ensuresa stable con-

vergenceduring training, whereas the smoothing term derived from the growth function helps

reduce the sensitivity to outliers sentenceswith high error rates.

The following lower bound marginalization is then used for complexity control.

M̂ = argmax
M

Z
exp

�
L mpe(�; ~� )

�
p(� jM )d� (5.14)

Although the dependencyupon latent variableshasbeenremoved for the growth function lower

bound, the marginalization in equation 5.14 is still non-trivial. To solve this problem, the inte-

gral in equation 5.14 may be computed using approximation schemesfor Bayesianevidenceas

discussedin chapter 3. As the BIC based�rst order approximation can not count for different

forms of model parameters, the secondorder Laplace'sapproximation is used to compute the

growth function marginalization.

The growth function lower bound in equation 5.9 has a similar form to the log-likelihood

bound in equation 3.7. Both may be expressedas the value of the underlying objective func-

tion at the current parameter estimate, ~� , plus a secondterm that is related to the difference in
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auxiliary functions. In the samefashion asthe log-likelihood bound, for ef�ciency multiple com-

plexity con�gurations may make use of a single set of statistics. In this case,the only term that

will determine the rank-ordering of the systemswill be the MPE auxiliary function, Qmpe(�; ~� ).

When determining the number of components,for example, suf�cient statistics for systemswith

fewer components per state may be obtained by merging appropriate statistics together from

a more complex system. The form of statistic merging used in this work is discussedin more

detail in the later sections. One important aspect for both this discriminative bound and the

log-likelihood bound is the accuracy of the derived statistics. As the differences between the

model used to derive the statistics and the model being considered increases,the bound may

becomeincreasingly loose and the performance ranking increasingly poor. To reduce this effect

an upper limit on the level of structural mutation, or changeof model complexity, allowed from

the systemused to derive the statistics may be enforced. This is discussedin more detail in the

following sections.

Another issuewith using growth functions for complexity control is the setting of the regular-

ization constant C. The setting of this constant hastwo effects. First, it controls the contribution

from the smoothing term of the MPEoccupancy, given in equation 5.11, to reduce the sensitivity

to outliers. Second,the setting of C may affect the selection of the optimal con�guration, and

the speed of structural mutation from the current model. In a similar fashion as in standard

MPE training, in order to ensure the stability during model complexity optimization, this con-

stant needsto be appropriately set. For all the experiments in this paper the value of C was set

to 2.0 and not altered. This is also a standard value used for MPEtraining [ 93].

5.5 MMI Growth Function

Although the MMI criterion is an approximation to the classi�cation error on a sentencelevel,

it is still interesting to �nd an appropriate form of MMI growth function for complexity control.

The MMI growth function consideredhere is given by

G(� ) = p(Oj� )
h
Fmmi(� ) � Fmmi(~� ) + CF sm(�; ~� )

i
(5.15)

where the smoothing criterion F sm(�; ~� ) is given by

Fsm(�; ~� ) = P(WjO; ~� ) (5.16)

This smoothing function is equivalent to the MMI criterion evaluated at the current parameter

estimates~� . Similar to the smoothing criterion for the MPEgrowth function in equation 5.7, this

form of F sm(�; ~� ) also has the attributes discussedin section 5.3. As discussedin section 4.2.1,

the MMI criterion, or the posterior probability of the referencetranscription, is an approximation

to the sentenceerror rate. Henceutterances with higher error rates on a sentencelevel may be

penalized using this form of smoothing criterion. Furthermore, the term outside the bracket

in the MMI growth function, p(Oj� ), is associatedwith the likelihood of a sentenceand may

further reduce such sensitivity.
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Like the MPEgrowth function in section 5.4, a direct marginalization of the growth function

in equation 5.15 may be dif�cult for HMMs, due to the dependencyupon latent variables. Again

for ef�ciency a lower bound basedapproach similar to that discussedin section 3.3.4 is used.

Using an EM-like approach, a lower bound for the MMI growth function may be given by

L mmi(�; ~� ) = logG(~� ) +
Qmmi(�; ~� ) � Qmmi(~�; ~� )

P
j ;� 
 mmi

j (� )
(5.17)

where the MMI “auxiliary” function is given by 2

Qmmi(�; ~� ) =
X

j ;�


 mmi
j (� ) logp(o� j � = Sj ; � ) (5.18)

and 
 mmi
j (� ) is the MMI hidden state occupancy. A detailed proof may be found in appendix B.

It is interesting that the MMI growth function bound has some similar features to those of

the MPE growth function bound discussedin section 5.4. First, the MMI statistics, f 
 mmi
j (� )g,

required to compute the growth function lower bound in equation 5.17, are closely related to

the standard form of statisticsusedfor MMI training. For the MMI growth function, the statistics


 mmi
j (� ) in equation 5.10 is given by [ 75]


 mmi
j (� ) = 
 num

j (� ) � 
 den
j (� ) + CP( � = Sj jO; ~� ) (5.19)

where the numerator and denominator occupanciesare in the sameform as in equation 4.19.


 num
j (� ) = P( � = Sj jO; W; ~� )


 den
j (� ) = P( � = Sj jO; ~� ) (5.20)

A detailed derivation of the above statistics may be found in appendix B. The standard form of

MMI statistics [ 124, 93] for discriminative training is given in equation 4.20 and the smoothing

term in equation 4.24. This may be written as


 mmi
j (� ) = 
 num

j (� ) � 
 den
j (� ) + EP( � = Sj jO; ~� ) (5.21)

where the smoothing constant E > 0 is empirically tuned. Thesetwo forms of MMI occupancies

are equivalent to one another when E = C. The secondsimilarity between the MMI and MPE

growth function lower bounds is that multiple con�gurations may make use of a single set of

statistics for greater ef�ciency. In this case, the only term that affects model selection will be

the MMI auxiliary function, Qmmi(�; ~� ). In order to obtain a good performance ranking, it is

important to tighten the bound by using reliable statistics. Third, the setting of the smoothing

constant C is also an issue for the MMI growth function. The setting of C has the same two

effects as discussedin section 5.4 for the MPE growth function. Again in common with the

standard C setting used for MMI training, the value of C was always set to 2.0 for MMI growth

functions in the experiments.

2Here only Gaussianmeansand variancesare considered.
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The following lower bound marginalization is then used for complexity control.

M̂ = argmax
M

Z
exp

�
L mmi(�; ~� )

�
p(� jM )d� (5.22)

The marginalization in equation 5.22 may be dif�cult for HMMs in many practical situations,

though the dependencyupon latent variables has been removed. In order to compute the inte-

gral more ef�ciently , Laplace'sapproximation may be used, as with the marginalization of the

ML bound in equation 3.11, and the MPEgrowth function bound in equation 5.14.

5.6 Implementation Issues

In this section several implementation issueswhen using marginalized discriminative growth

functions for model complexity control are discussed.Theseissuesare important and may affect

the performancesof complexity controlled systems.

5.6.1 Sharing Statistics among Model Structures

For LVCSR systemsexhaustively accumulating the suf�cient statistics for each possible system

is highly inef�cient. When determining the number of Gaussiancomponents in a state, it is

impractical to obtain new statistics for eachnumber of components,even if the state alignments

are �xed. To handle this problem, as discussedin sections3.3.4, 5.4 and 5.5, the sameset of

statistics may be used for a range of model structures. As it is only possible to merge statistics,

the number of components, or other complexity control attributes, can only be reduced. For

this merging process,the statistics from a pair of Gaussiansmust be combined to form a single

Gaussian.This is a standard problem and is solved by simply combining the appropriate �rst, or

second,order statistics and the occupancycounts. For example, when joining component j and

k to yield l , the MPEstatistics are merged as


 mpe
l (� ) = 
 mpe

j (� ) + 
 mpe
k (� ): (5.23)

This sameholds for the �rst and secondorder statistics.

X

�


 mpe
l (� )o� =

X

�


 mpe
j (� )o� +

X

�


 mpe
k (� )o�

X

�


 mpe
l (� )o� o>

� =
X

�


 mpe
j (� )o� o>

� +
X

�


 mpe
k (� )o� o>

� : (5.24)

Similar merging will also be performed for the ML statistics of the log-likelihood lower-bound

discussedin section 3.3.4, and the MMI statistics for the MMI growth function in section 5.5.

In the majority of the casesconsidered in this work, the mean and covariance of merged com-

ponent l are estimated in an ML fashion using the merged ML statistics. However, if the mean

and covarianceof component l are discriminatively updated, the merged suf�cient MPEor MMI

statistics may be required. This is an interesting scenario where a consistently discriminative

optimization of both model complexity and parameters is performed. This casewill be further
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discussedand investigated in the experiments of following chapters. All possiblepairs of com-

ponent merging are considered. The pair with the largest increase in the objective function is

selected.

5.6.2 Constrained Maximum Structural Mutation

Initial model

Accumulating
statistics

Merge component pair
which maximizes

More components to remove
under maximum allowable

structural change?
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L mpe(�; ~� )p(� jM )d�

Figure 5.1 Selectingthe numberof GaussiancomponentsperstateusingmarginalizedMPEgrowth functions

via componentmerging

For ef�ciency, the lower bound of a discriminative growth function, or log-likelihood, is de-

rived from the statistics of a single system as discussedin sections 3.3.4, 5.4 and 5.5. As

discussedin section 5.4, when the magnitude of the structural mutation from the current model

increases,the reliability of the �xed statistics decreases,and looser the bound. This may lead

to a poor selection of model complexity. To overcome this problem, the whole structural opti-

mization processcan be performed in an iterative mode. An overview of the algorithm, when

using marginalized MPEgrowth functions to select the number of Gaussiansper state, is shown

in �gure 5.1. A maximum mutation limit in the model complexity is imposed. For instance,
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the maximum number of Gaussiansthat may be removed from any state per iteration is con-

strained. In this work the maximum mutation was set to be 2 for all experiments. Between

iterations of structural optimization, model parameterswere re-estimated using ML training to

obtain improved statistics. Slightly modifying the procedure illustrated in �gure 5.1, it may also

be applied to BIC. This requires that the growth function integral in the third box to be replaced

with the BIC metric in equation 3.3, and the lower bound in equation 3.7 is used to approxi-

mate the log-likelihood. In all experiments a total of four iterations of complexity control were

performed for both BIC and marginalized growth function systems.For multiple HLDA systems,

varying the number of useful dimensionsper Gaussianwill have a far lessimpact on component

alignments, comparedwith varying the number Gaussiansper state. Thus the suf�cient statistics

may be assumedto be the samefor all possiblenumber of retained dimensionsand no constraint

on the complexity variation is required.

5.6.3 Hessian Approximation for HLDA Systems

The lower bound marginalization for discriminative growth functions in equation 5.9 and 5.17,

and the log-likelihood in equation 3.11 may be approximated via Laplace'sapproximation. This

approximation requires the storageof a Hessianmatrix with respectto all the model parameters.

However, becausethe number of model parameters in an LVCSRsystemcan be in the millions,

the storageand calculation of the Hessianas a full matrix is impractical. To solve this problem,

assumptions can be made about the structure of the Hessian. In particular, by assuming that

the Hessian has a block diagonal structure [ 71, 70, 75] the problem becomestractable. This

form of Hessianapproximation can be used for both the discriminative and log-likelihood lower

bounds. The exact form of the approximated Hessiandependson that of the lower bound being

considered. Let

�o(r j )
� = A (r j )o� (5.25)

denote the projected feature after the HLDA transform, A (r j ) , to which component j is assigned.

Let �� (j ) , ��
(j )

denote the component meansand covariancesin the transformed space.Take the

MPE lower bound in equation 5.9 as an example. The MPEauxiliary function in equation 5.10

may be expressedas

Qmpe(�; ~� ) =
1
2

X

j ;�


 mpe
j (� )

�
log

�
�
�A (r j )

�
�
�
2

� log
�
�
� ��

(j )
�
�
�

�
�

�o(r j )
� � �� (j )

� >
��

(j )� 1
�

�o(r j )
� � �� (j )

� �
: (5.26)

Each Gaussiancomponent is assumed to be independent of all others. Furthermore, within

each Gaussiancomponent, the mean, variance and each row of the HLDA transforms are also

assumedindependent of eachother. For the integral over the growth function's lower bound in
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equation 5.14, the log-determinant of the Hessianmatrix may be approximated as

log
�
�
� �r 2

� Qmpe(�; ~� )
�
�
� �

X

r ;i

log

�
�
�
�
�
�

@2Qmpe(�; ~� )

@2a (r )
i

�
�
�
�
�
+

X

j

log

�
�
�
�
�
�

@2Qmpe(�; ~� )

@2 �� (j )

�
�
�
�
�

+
X

j

log

�
�
�
�
�
�

@2Qmpe(�; ~� )

@2 ��
(j )

�
�
�
�
�
: (5.27)

The secondorder differentials are derived from equation 5.26 and yield [ 75].

@2Qmpe(�; ~� )

@2 �� (j )
= �

1
2

X

�


 mpe
j (� ) ��

(j )� 1

@2Qmpe(�; ~� )

@2 ��
(j )

= �
1
2

X

�
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j (� )

�
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� �
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� >
�

��
(j )� 3
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 mpe
j (� ) � G (r ;i ) (5.28)

where c(r )
i denotesthe cofactor vector associatedwith row a (r )

i and the transform speci�c statis-

tics
n

G (r ;i )
o

are accumulated on a row by row basis. Take the useful dimensions for example,

this gives

G (r ;i ) =
X

j 2 r ;�


 mpe
j (� )

�� (j )2
i

�
o� � � (j )

� �
o� � � (j )

� >
(5.29)

where again the transformed component covariance, ��
(j )

, is constrained to be diagonal as in

section2.4.3, and �� (j )2
i is the i th dimensional varianceelement in the transformed spacegiven by

A (r j ) . As G (r ;i ) is accumulated using statistics from the original feature-space,there is no need

to perform statistic merging as described in section 5.6.1 for multiple Gaussiancomponents.

The same statistics can be used to generate a range of sizes of useful dimension. Note that

this assumesthat the assignment of component to transform is �xed, which is the situation

consideredin this work.

5.7 Summary

The majority of current complexity control schemescan be describedwithin the maximum like-

lihood paradigm. Unfortunately, the model correctness assumption made in these standard

techniques may be too strong for current speechrecognition systemsusing HMMs. Hence it is

preferable to employ discriminative criteria for complexity control. Thesecriteria are more di-

rectly related to the recognition error, rather than to the likelihood. In this chapter a novel model

complexity control technique has been proposed, using the marginalization of a discriminative

growth function. The discriminative growth functions investigated were closely related to the

MPE and MMI criteria, but have a reduced sensitivity to outliers utterances. For ef�ciency an

EM-like approach was used to derive tractable lower bounds of the growth functions, with the



CHAPTER5. DISCRIMINATIVE MODELCOMPLEXITYCONTROL 70

dependencyon latent variables removed. This lower bound was then marginalized ef�ciently

using Laplace'sapproximation for complexity control.



6

Discriminative Training of Linear Projections

In chapter 5, a discriminative model selection technique based on the marginalization of a

growth function was presented. Using this method the complexity control problem for systems

using linear projections suchasHLDA was discussed.In this chapter, the discriminative training

of linear projection schemesis presented. First, the motivation for developing discriminative

training algorithms for linear projections is discussed. Second, previous researchon discrimi-

native training of linear transformation schemesfor speechrecognition is brie�y reviewed. As

the EBW algorithm may be only used to optimize standard forms of HMM parameters, a more

general form of discriminative criteria optimization is preferred. The proposedmethod is based

on the optimization of a weak-senseauxiliary function. Using this method the discriminative

training of linear projection schemesis investigated. Finally someimplementations issueswhen

estimating linear projections discriminatively are also discussed.

6.1 Introduction and Motivation

For any pattern recognition task an important aspectof the problem is the derivation of a good

and compact feature representation. This representation should contain suf�cient discriminant

information to minimize the classi�cation error. One family of techniques that may be used for

this purpose is the linear projection schemesdiscussedin section 2.4. However, one limitation

with thesetechniquesis that that projections are normally trained using the ML criterion. Asdis-

cussedin chapter 4, an inherent model correctnessassumption is made in ML training of current

ASRsystemsbasedon HMMs. HMMs are assumedto be the “correct” models for speechsignals.

This is untrue for current speechrecognition systemsusing HMMs, as explained in section 4.1.

When the correlation between the WERand likelihood is weak, merely increasing the likelihood

on the observed, or unseen data, does not necessarily improve the recognition performance.

Hence it is preferable to employ discriminative criteria, which are more explicitly related to the

recognition error, to estimate linear projections. The ultimate aim of linear projection schemes

for speechrecognition is to obtain a good feature representation that minimizes the WER.

Most state-of-the-art LVCSRsystemsare built using discriminative training techniques [ 124,

71
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51, 23, 64]. As discussedin section 4.3.4, gradient descentbasenumerical techniques are ex-

pensive for LVCSRtraining and have dif�culty guaranteeing convergence. The commonly used

EBW algorithm provides an iterative, ef�cient, EM-like optimization for discriminative training

criteria. However, using the EBW algorithm only standard forms of HMM parametersmay be op-

timized [ 84, 112, 124, 93]. Theseinclude state transitions, Gaussiancomponent priors, means

and covariances. Since the EBW algorithm may not be directly used to estimate linear projec-

tions, it is useful to havea more generalapproach, to discriminatively optimize a variety of forms

of model parameters including linear projections. The weak-senseauxiliary function described

in section 4.3.2 is one such approach. It provides a �exible and heuristic derivation of the EBW

algorithm, and may be generalizedto a variety of forms of parameters[ 115, 108]. Hence,rather

than using gradient descenttechniquesasproposedin [ 134], weak-senseauxiliary functions are

used in this chapter for the discriminative estimation of linear projections.

6.2 Previous Work for Speech Recognition

In recent yearsthere hasbeenactive researchon discriminative training of linear transformation

schemesfor speechrecognition. In particular the discriminative training of linear transforma-

tions have been studied for a feature projection and diagonalizing purpose. Using a discrimi-

native criterion, multiple feature spacetransformations were investigated in [ 94]. However the

training of these linear transformations and other HMM parameters was not integrated into a

consistentdiscriminative framework. After the estimation of the transforms, the other HMM pa-

rameters were still trained using the ML criterion. More importantly the likelihood computation

acrossdifferent subspacesassociatedwith eachlinear transformation was not directly compara-

ble in [ 94]. This was becausethe Jacobiannormalization term was ignored for each transform.

Recently a novel linear feature projection, called fMPE, was proposed in [ 92]. The fMPE trans-

form operates by projecting from a very high dimensional, sparsefeature spacederived from

Gaussianposteriors to the normal feature spaceand adding the projected posteriors to the stan-

dard features. A global non-squarematrix is trained to maximize the MPEcriterion via gradient

descentbasednumerical methods. Signi�cant WERimprovement have beenreported on LVCSR

tasks.

Another related area has been focused on the discriminative training of linear transforma-

tions for speaker normalization and adaptation [ 48, 80, 115, 116, 20]. Although these tech-

niques are used for a very different purpose from the projection schemesconsideredhere, some

of them may be expressedas feature spacelinear transformations. The optimization of them

may be closely related to those of linear projections [ 30, 31, 34]. This area of researchconsid-

ers the estimation of MLLR transforms using a discriminative criterion, instead of ML training

as described in section 2.5. Thesetransforms may then be used for speakeradaptive training

(SAT). During the discriminative training of a SAT system, the common adopted approach is a

“hybrid” procedure. This idea is to use the EBW algorithm to discriminatively update standard

HMM parameters, whilst the previously ML estimated MLLR transforms are �xed [ 51, 23]. In
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contrast, when using discriminative criteria to estimate MLLR transforms, the entire training is

in a consistent discriminative framework. In [ 20, 115] using a consistent optimization of both

the MLLR transforms and HMM parametersof SAT systems,WERimprovements were obtained

over the “hybrid” approach on LVCSRtasks.

6.3 Discriminative Training of Projection Schemes

In this section the estimation of linear projections are presented using weak-senseauxiliary

functions presented in section 4.3.2. As most state-of-the-art LVCSR systemsare trained using

the MPEcriterion [ 51, 23, 64], the MPEtraining of linear projection schemesis the focus of this

section.

6.3.1 MPE Training of multiple HLDA

The relationship between HLDA and multiple HLDA was discussedin section 2.4.3. HLDA is

subsumedby multiple HLDA as a special casewhen a global subspaceis used. Hence the MPE

training of multiple HLDA projections are be consideredhere. The approach adopted here is to

examine the weak-senseauxiliary function's gradient against parametersof HLDA projections.

Using the general form of smoothing term in equation 4.28, the weak-senseauxiliary func-

tion in equation 4.25 may be expressedas
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X
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Let A (r ) denote the r th HLDA transform. the gradient of the weak-senseauxiliary function in

equation 6.1 around the current parameter estimate, ~� , with respectto a (r )
i , the i th row of A (r ) ,

is given by
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Note that the model structure, M , of the weak-senseauxiliary function in equation 4.25 is

omitted for clarity, asonly the optimization of model parameters is considered.

In order to further simplify the above, the gradient of the frame Gaussianlog likelihood,

logp(o� j � = Sj ; � ), against rows of HLDA transforms is required. Let c(r )
i denote the cofactor

vector of a (r )
i

1, and �� (j )
i the variance elements of component j in the projected space. For

1Assumethe HLDA transform rows have been re-ordered so that the nuisance dimensions always correspond to

the last n � p rows.
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multiple HLDA systems,the log likelihood of an observation, o� , given a Gaussiancomponent j

that is assignedto projection r , j 2 r , may be written as [ 31, 34]

logp(o� j � = Sj ; � ) =
1
2

�
log

�
a (r )

i c(r )
i

� 2
� n log2� � log

�
�
� ��

(j )
�
�
�

�
X

i � p

�
o� � � (j )

� >
a (r )>

i �� (j )� 2
i a (r )

i

�
o� � � (j )

�

�
X

i>p

�
o� � � (g;r )

� >
a (r )>

i �� (j )� 2
i a (r )

i

�
o� � � (g;r )

�
3

5 (6.3)

where � (g;r ) denotes the global covariance for transforms classr . Differentiating equation 6.3

with respectto a (r )
i yields
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Substituting the gradient in equation 6.4 into equation 6.2 gives
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where the suf�cient discriminative statistics, G (r ;i ) , are accumulated for eachtransform classon

a row by row basis
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and � (j ) is the discriminatively updated full covariance using the EBW algorithm in equa-

tion 4.16, and � (g;r ) the transform speci�c global covariance updated using the statistics of

all componentswithin classr . A detailed derivation of the abovemay be found in appendix C.

The aim is to zero the weak sensefunction's gradient in equation 6.5 to �nd the optimal

estimate for a (r )
i . This yields

2

4
X

j 2 r ;�

(
 num
j (� ) � 
 den

j (� )) +
X

j 2 r

D j

3

5 ~c(r )>
i

a (r )
i ~c(r )

i

� a (r )
i G (r ;i ) = 0 (6.7)

To solve the above equation, the iterative optimization scheme proposed in [ 31] for the ML

optimization of semi-tied covariance (STC) transforms may be used. For the STC system, an

equation of the sameform is solved,exceptthat the ML statisticsare used. This givesan iterative

MPEupdate of HLDA transform on a row by row basis.

a (r )
i = ~c(r )>

i G (r ;i )� 1

vu
u
t

P
j 2 r ;� (
 num

j (� ) � 
 den
j (� )) +

P
j 2 r D j

~c(r )>
i G (r ;i )� 1~c(r )

i

(6.8)



CHAPTER6. DISCRIMINATIVE TRAINING OF LINEARPROJECTIONS 75

Like standard forms of HMM parameters, an important issue in discriminative training of

HLDA projections is the setting of the smoothing constant D j . This constant is used both in the

iterative update formula in equation 6.8, and the secondorder statistics, G (r ;i ) , in equation 6.6.

During training this constant ensuresa stable convergenceand should be appropriately set. For

all the experiments the standard form of D j discussedin section 4.3.1.4, D j = E
P

� 
 den
j (� ),

was usedand E was always setas2.0. This is also a setting usedfor MPEtraining of other HMM

parameters[ 93]. If this form of D j is not still big enough to ensurethe updated full covariances

are positive de�nite, then the minimum E which satis�es this condition will be used instead.

Such a E may be ef�ciently selectedby examining if the updated covarianceis positive de�nite

via Choleskydecomposition.

6.3.2 MPE Training of multiple LDA

As discussedin section 2.4.3 the only difference between multiple HLDA and multiple LDA is

whether the nuisancesubspaceparametersare tied on a local, or a global level. Basedon this, a

slightly modi�ed form of the gradient in equation 6.5, may be applicable to multiple LDA. This

is given by
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where G (r ;i ) is the same as equation 6.6 for all useful dimensions. K (i ) is accumulated for

nuisancedimensions over all Gaussians,
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where the global covariance � (g) is �xed given the training data and does not require an dis-

criminative update.

Unfortunately individual projections can not be independently optimized for multiple LDA,

becausethe transform parameters in the nuisancesubspaceis globally tied. Hence the ef�cient

row by row optimization, given in equation 6.8, may not be used for multiple LDA. To handle

this problem, the approach proposedhere is to usea gradient descentbasedoptimization given

in equation 4.34. This approach requires the following secondorder information
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Using the transform rows of useful dimensions for an example, the update formula is given by
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where the learning rate � requires empirical tuning to ensurea stable convergence.

Although an MPE update of multiple LDA has been given, HLDA and multiple HLDA sys-

tems are the focus of the experiments for two main reasons: First, numerical methods can be

expensiveand dif�cult to guaranteeconvergencein practice, asdiscussedin section 4.3.4,. Sec-

ond, multiple HLDA can also provide a more �exible model structural con�guration, by locally

varying the retained subspacedimensionality, as explained in section 2.4.3. In [ 70, 72] WER

improvements were reported by locally optimizing the number of useful dimensions on LVCSR

tasks. Furthermore, in general multiple HLDA was found to outperform multiple LDA in ML

training stagefor LVCSRin earlier research[ 34]. Therefore the discriminative training of HLDA

and multiple HLDA systemsis the focus of this work.

6.4 Implementation Issues

In this section implementation issuesfor discriminative training of linear projection schemesare

discussed.Theseissuesmay affect the performance of systemsusing linear projections, and are

therefore important.

6.4.1 Variance Flooring

For speechrecognition systemsusing HMMs, the re-estimated Gaussiancovariancesare often

�oored to ensure they are positive and de�nite. For systemsusing diagonal covarianceswith a

standard feature front-end or a global feature projection, the variance �ooring problem may be

straightforward. The simple approach described in [ 131] may be used, by setting the variance

�oor to be a small portion of the global covariance, or average state covariance [ 51]. In this

casethe �ooring is only considered in one global feature space. However the variance �ooring

for systemsusing multiple projections, such asmultiple HLDA, is more complicated. This is due

to the presenceof multiple feature subspaces.To handle this problem, the solution adopted in

this work is to use a global minimum variance �oor , f , for all subspaces.The i th dimension of

f is given by

f i = argmin
r

n
� a (r )

i
�� a (r )>

i

o
(6.13)

where �� is the averagestate covariancein the original feature spaceand the variance �oor scale

� is commonly set to 0.01.
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6.4.2 Setting of I-smoothing

In order to obtain a more robust parameter estimatesduring MPE training, I-smoothing of the

MPE numerator statistics may be used, as discussedin section 4.3.3. The ML or MMI statistics

may be used as priors for Gaussianparameters. A key issuewith this approach is the setting of

the constant � I . From a MAP perspective, this constant controls how much the parameter esti-

mate will back-off to the ML or MMI statistics basedprior. In [ 93] a commonly used setting for

HMM systemswith diagonal covariancesis � I = 50. This setting is also used in all experiments

for estimating linear projections. Unlessotherwise stated the I-smoothing statistics will be ML

basedin all experiments.

6.4.3 Use of Lattices

In discriminative training, lattices are commonly used to represent the model's confusion over

the data. Ideally individual models should be usedto generatethe matched lattices for training.

However for LVCSR systemsthis is infeasible. The commonly used approach is to use one set

of HMMs to generate word lattices by recognizing the training data. Then they will be further

marked with phone alignment and kept �xed for training. This is the “exact match” approach

described in [ 124]. One issue with this approach is whether it is appropriate to use the same

set of lattices for training systems,which are very different from the one used to generate these

lattices. In [ 124] WERimprovements were reported by re-generating triphone model alignment

in the intermediate stageof MMI training for an LVCSRtask. This issuealso existswith systems

using multiple projections, becausethe training lattices are normally generatedby a systemusing

the standard front-end, or a global ML trained projection. Optimizing the projections using a

discriminative criterion may further enlarge the mismatch between the model set and lattices.

In this work, one single set of training lattices are used initially for estimating the projections.

Then this issueis investigated by using the matched lattices for the subsequentMPEtraining of

individual systems.

6.4.4 Integrated Structural and Parametric Optimization

In general a machine learning problem may be partitioned into two distinct stages. In the �rst

stagethe optimal model structural con�guration is selectedusing a complexity control criterion.

In the secondstageparametersare estimated using sometraining criterion after the appropriate

complexity is determined. The underlying criteria used for these two different stagesmay not

necessarilybe the sameone. In chapter 5 model complexity was determined in a discriminative

fashion. However in many practical situations, model parameters are considered to be trained

using the ML criterion. Hence there may be a mis-match between the criteria used for model

selection and parameter estimation. To handle this problem, the model selection and parameter

estimation may be integrated into a consistent discriminative learning process. When selecting

the number of Gaussiancomponents per state, for instance, component means and variances
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are considered to be discriminatively estimated for each candidate model structure. Similarly

for multiple HLDA systems,when selectingthe number of useful dimensions for eachprojection,

the HLDA projections and other model parameters are also considered to be discriminatively

updated.

6.5 Summary

In this chapter the discriminative training of linear projection schemesis investigated using a

weak-senseauxiliary function. This weak-senseauxiliary function has a general form and may

be applied to the discriminative optimization of a variety of forms of model parameters. Using

this approach, the discriminative training algorithms for HLDA, multiple HLDA and multiple LDA

systemswere presented. A number of implementation issueswhen estimating linear projections

using discriminative criteria were alsodiscussed.Experimental results for discriminative training

of linear projections are presentedlater in chapter 8.
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Experimentson ModelComplexityControl

In this chapter experimental results are presentedfor model complexity control using marginal-

ized discriminative growth functions and standard model selection techniques. In the �rst part

of this chapter, a seriesof complexity control experiments are conducted on an LVCSRtask for

conversational telephone speech(CTS) data. Initially complexity control schemesare used to

optimize multiple model complexity attributes on a “global” level. This restricts the complexity

of different part of the model to be the same, and allows all possible systemsto be explicitly

trained and evaluated. The correlation with WER and the performance ranking error are then

examined for a variety of complexity control techniques. Theseare followed by optimizing mul-

tiple model complexity attributes on a local level. Then the interaction with other techniques is

investigated. The generalization to two other LVCSRtasks is also investigated. Finally, the per-

formancesof complexity controlled systemsare evaluated in a state-of-the-art 10 time real-time

LVCSRsystemfor a CTStranscription task.

7.1 Experiments on CTSEnglish

This sectionpresentscomplexity control experiments for CTSEnglish data. First, the experimen-

tal setupsand conditions of the experiments is brie�y described. Second,experimental results of

model complexity control on a “global” level is presentedon an LVCSRtask. Issueswith existing

likelihood basedcomplexity control schemesare also discussed.Finally, complexity control on a

local level are performed on four different LVCSRsetups,where multiple complexity attributes

are allowed to vary locally acrossdifferent parts of the system.

7.1.1 Summary of Experimental Setups

In order to fully investigate the performances of complexity control techniques, �ve CTS En-

glish training con�gurations were used. The �rst is a full systemusing a 297 hour training set

h5etrain03, consisting of 4800 Switchboard I, 228 Call Home English (CHE) and 418 Linguistic

Data Consortium (LDC) Cellular conversation sides[ 23]. Three subsetsof this were also used:

79
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46 hour minitrain04; 68 hour h5etrain00sub; 76 hour h5etrain03sub; 148 hour meditrain04. All

subsetswere selectedto have the samegender and channel condition distribution of the full set.

The total number of training speakersin the full set is approximately 8 times asthe 46 hour mini-

train04, 4 times the 76 hour h5etrain03sub, and twice the 148 hour subsetmeditrain04. Note that

eachsubsetis hierarchically subsumedby the other larger sets.The baselinefeature vector used

for all projections was a 52-dimensional PLPfeature extracted by appending derivatives up to

the third order and then normalized using VTLN, mean and variance normalization on a conver-

sation sidebasis.For the baselinecon�guration this 52-dimensional feature vector wasprojected

down to 39 dimensions using one or more HLDA projections. For multiple HLDA systemsthe

silence Gaussianswere assignedto one transform class,while the speechGaussianswere split

into 64 distinct classes.The component assignmentused a top-down splitting procedure, based

on distancemeasureof Gaussiancomponentsin the acousticspace.Continuous density, mixture

of Gaussians,cross-wordtriphone, gender independent HMM systemswere used. After phonetic

decision tree basedtying, there are approximately 3k speechstatesfor the 46 hour subset,and

6k states for the other four training sets. Basic features of these �ve setups are presented in

table 7.1.

Corpus Size #States

minitrain04 46 hr 3k

h5etrain00sub 68 hr 6k

h5etrain03sub 76 hr 6k

meditrain04 148 hr 6k

h5etrain03 297 hr 6k

Table 7.1 Training setupsusedfor experimentson CTSEnglishdata

As discussedin chapters4 and 5, to obtain suf�cient statistics for discriminative training, or

complexity control, lattices are normally used for LVCSR tasks. The training data lattices used

to obtain the statistics for complexity control experiments were generated using the baseline

39-dimensional global HLDA systems.Theselattices were further marked with model alignment

and kept �xed for complexity control using marginalized discriminative growth functions. This

was the “exact match” approach describedin [ 124]. For evaluation a 3 hour dev01subwas used.

The test set contains 20 Switchboard I and 20 Switchboard II phase II conversation sides of

the NIST LVCSRevaluation data in 2000 and 1998 respectively, and another 19 Linguistic Data

Consortium (LDC) Cellular sides.The audio data wasmanually segmented.The test setwasalso

usedas the held-out data in the experiments. The samefront-end processingand normalization

schemeswere also used. Unless otherwise stated ML training was used for all systems. All

recognition experiments useda 58k word trigram languagemodel.
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7.1.2 Experiments on Global Complexity Control

As discussedin section 3.1, word error rate is the most commonly used performance measure-

ment for speechrecognition systems.An ideal complexity control schemeshould yield the same

ranking as the WER for all systemsbeing considered. Hence, one natural way of evaluating a

complexity control criterion is to examine its correlation with the WER.This requires a variety

of systemsto be explicitly built and evaluated, which is infeasible for highly complex LVCSR

systems. However, if the complexity attributes considered are optimized on a global level, the

permutation of all possiblestructural con�gurations can be far more tractable. This is the case

consideredin the experimentsof this section. Existing complexity control schemesare evaluated

on an LVCSR task for CTSEnglish data. Since complexity attributes are optimized on a global

level, all possible systemsmay be explicitly trained and evaluated. This can give an intuitive

feel of how strongly the underlying complexity control schemeis correlated with the error rate.

The 68 hour CTSEnglish corpus, h5etrain00sub, as described in section 7.1.1, was used as the

training set. Two complexity attributes of an HLDA systemwith a single projection were opti-

mized globally: the number of Gaussiancomponentsper state from the set f 12; 16; 24g; and the

number of useful dimensions in the range f 28; :::; 52g. The permutation of these two attributes

led to a total of 75 different con�gurations.

7.1.2.1 Correlation Between Criteria and WER

After these75 systemswere explicitly trained and evaluated, the correlation with WERwas ex-

amined for likelihood on held-out data �rst. As discussedin section 3.2, the majority of existing

complexity control techniquesinherently assumea strong correlation between the likelihood on

unseen data and WER. This correlation between likelihood and WER for all the 75 systemsis

shown in �gure 7.1.
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Figure 7.1 Held out data likelihood vs. WERfor dev01subon CTSEnglish68 hour h5etrain00sub

Although the �gure illustrates a very general trend that error rate decreasesas the held-out
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data likelihood increases,the preciseordering of systemsis poor. Noticeably, this schemefavored

the most complex system. The best model structure predicted had 24 Gaussiansper state and

52 useful dimensions. However, the performance of this systemis signi�cantly worse than the

actual best systemby 0.6% absolute. For these 75 HLDA systems,the correlation between the

likelihood on held-out data and WERshown in 7.1 is quite weak. This weaknessindicates that

the model correctnessassumption of standard complexity control schemeswithin the likelihood

basedframework may be too strong for current speechrecognition systemsusing HMMs.

Despitethis limitation, it is still useful to examinethe performancesof approximation schemes

for the Bayesianevidence integral. Theseshould be closely related to the held-out data likeli-

hood. As discussedin section 3.3.1, using BIC the approximated Bayesianevidence is only a

function of the log likelihood and number of model parameters. The training data log-likelihood

is expectedto monotonically increaseasthe number of model parametersincreases,irrespective

of the form of the parametersbeing considered.
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Figure 7.2 Training data log likelihood vs. the numberof parameterson CTSEnglish68 hour h5etrain00sub

Unfortunately, in this setup such a relationship does not exist, as is shown in �gure 7.2. In

the �gure there are three distinct lines associatedwith the 12, 16 and 24 component systems.

On each of the three lines the training data log-likelihood increasesas the number of useful

dimensions is increased. However, acrossthese three lines the log likelihood is not increasing

monotonically as the systembecomesmore complex. In the �gure each log likelihood value in

the �gure may correspond up to three model structures, each with different complexity. The

sameissuestill existseven if the penalization coef�cient, � , of the BIC criterion in equation 3.3,

is �nely tuned. This indicates that the log-likelihood contribution from different forms of model

parameters, in this casethe number of components and dimensions, is not the same. Hence,

BIC may have lead to a poor Evidenceapproximation when multiple complexity attributes were

optimized simultaneously.

Compared with the likelihood, discriminative criteria are more closely related to the recog-
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Figure 7.3 MMI criterion on Held out data vs. WERfor dev01subon CTSEnglish68 hour h5etrain00sub

nition error. Therefore the correlation between thesecriteria and WERshould be stronger. How-

ever discriminative criteria may not be directly used for complexity control. As discussedin

section 5.2, this is due to the sensitivity to outliers utterances. Here the MMI criterion was taken

as an example. Figure 7.3 shows the MMI criterion values on held-out data against WER. The

correlation between the MMI criterion and WER was quite poor. This may have been caused

two issues. First, the average segment length may have an impact on the held-out data MMI

scores. As the MMI criterion is related to the sentenceerror rate, short sentencesmay tend to

be penalized more if they contain any wrong words. Second,more importantly, as discussedin

section 5.2, the existenceof outliers can heavily in�uence the value of the MMI criterion. These

outliers are sentenceswith very low posteriors. This is the motivation of using discriminative

growth functions for complexity control. As discussedin section 5.3, a discriminative growth

function should have reduced sensitivities to outliers whilst still retaining someattributes of the

original criterion.

Figure 7.4 shows the correlation between the marginalized MMI growth function in equa-

tion 5.22 and the WER.Asdiscussedin section5.6, for ef�ciency three setsof MMI statisticswere

generated by standard 39 dimensional systemswith 12, 16 or 24 componentsper state respec-

tively. Thesewere shared among systemsthat had the same number of Gaussians. The block

diagonal Hessian approximation described in section 5.6.3 was used to compute the growth

function's lower bound marginalization in equation 5.22. In the experiments the smoothing

constant, C = 2:0, was �xed. Even under these approximations, in �gure 7.4 a strong correla-

tion with the WERis still observedwith the WER.The best systemselectedwas only 0.1%-0.2%

absolute worse than the actual best one.
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Figure 7.4 Marginalized MMI growth function vs. WERfor dev01subon CTSEnglish68 hour h5etrain00sub

7.1.2.2 Recognition Performance Ranking Error

A good complexity control schemeshould rank all the systemsin a way that matchesthe ranking

of their recognition performances. A measureof the distancebetween the predicted and correct

ranking is required to evaluate various complexity control schemes. In this work, an empirical

ranking error metric is proposedas

RankErr% =

P
i;j � (wei ; wej ) � jwei � wej j � ji � j j

N � maxi;j fj wei � wej jg � maxi;j fj i � j jg
(7.1)

where f we1; :::; wei ; :::; weN g denotes a WER ranking prediction, for all N possible systems

being considered,according to a particular complexity control scheme.Let wei denote the WER

of the systemranked as the i th, jwei � wej j the WER difference between system i and j , and

ji � j j the position shift between them. The binary function � (wei ; wej ) will be true, only if the

ranking betweenwei and wej is incorrect and the difference in WERis signi�cant (above a given

WERthreshold). This has a good intuitive feel, as penalizing systemsthat differ only slightly in

error rate seemsinappropriate. The WERdifference between a pair of systemsthat falls below

the WERthresholdmay be ignored. Hencethe ranking error may be related to the total number

of position shifts, weighted by WER differences between all mis-ranked pairs of systemsif the

differencesare signi�cant. The normalization term in equation 7.1 guaranteesthe ranking error

will be positive and lessthan one.

Table 7.2 showsthe error of the predicted recognition performance ranking using the metric

given in equation 7.1. Three different WERthresholds were also usedto determine whether the

mistaking between two systemsis considered. The �rst line in the table servesas a baseline.

It ranks the systemsaccording to the training data likelihood, which simply yields an ordering

on systemcomplexity with no penalization. Using the likelihood on held-out data, the ranking

error is still fairly high although much improvements were obtained over using the training data
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likelihood.

Complexity WERthreshold

Control 0.0 0.1 0.2

Training Likelihood 22.08 22.08 21.59

Held-out Likelihood 8.94 8.89 8.19

BIC (� = 1.0) 48.43 48.36 47.35

BIC (� = 2.0) 55.68 55.68 55.42

Held-out MMI 37.40 37.40 35.91

MMI GFunc 4.74 4.64 3.10

Table 7.2 Performanceranking prediction error (%) for dev01subon CTSEnglish68 hour h5etrain00sub

The table alsoshowsthe ranking errors for approximated Bayesianevidenceusing BIC,which

should be closely related to the held-out data likelihood. As previously described there are

issueswith BIC when controlling multiple complexity attributes. Hence, using both standard

BIC and penalized BIC (� = 2:0), the ranking scoreswere poor. The �nal line of the table shows

the ranking performance using the held-out MMI criterion. The poor performance of the MMI

criterion is clearly shown. The best performance was obtained using the marginalized MMI

growth function and the scoreis related to �gure 7.4. As expected, if the WERthreshold in the

table is increasedthen the ranking error decreases,though the general ranking of all complexity

control schemesremains about the same.

7.1.2.3 Discussion

In this section a few complexity control schemeswere evaluated by examining the correlation

with WER and the performance ranking error. Two model complexity attributes of an HLDA

system, the number of Gaussiancomponents per state, and the number of useful dimensions,

were optimized on a global level. This allowed systemswith all possiblecon�gurations to be ex-

plicitly built and evaluated. A few issuesassociatedwith existing complexity control techniques

are presentedbelow:

� First, in these experiments the correction between the likelihood on held-out data and

WERwas found to be fairly weak. This is becausethe model correctnessassumptionmade

in standard complexity control techniquesmay be too strong for current ASRsystemsusing

HMMs. As discussedin section 3.6, HMMs are not the correct models for speechsignals.

Hence,merely increasing the likelihood for the unseendata doesnot necessarilydecrease

the error rate.

� Second, a limitation of BIC was found when optimizing multiple complexity attributes

simultaneously. Asdiscussedin section 3.3.1, the BIC approximation may becomeincreas-

ingly poorer as the amount of observed data decreases. In addition, the differences in
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the form of model parameters is not considered by BIC. This probably leads to the non-

monotonic increaseof log-likelihood against model complexity, as is shown in �gure 7.2.

In contrast the Laplace'sapproximation discussedin section 3.3.3 accountsfor suchdiffer-

ences.The secondorder information, or Hessianmatrix, explicitly describesthe likelihood

contribution from different forms of model parameters. Hence, it is preferable to use

Laplace'sapproximation to compute the evidenceintegral.

� Finally, for current speechrecognition systems,it is preferable to marginalize discrimina-

tive criteria for complexity control. Thesecriteria are more directly related to the recog-

nition error than likelihood. However, discriminative criteria, such as MMI, are prone to

be sensitive to outliers as found in the experiments. Hence they may not be directly used

for complexity control. This was the motivation for using a marginalized growth function

for model selection. As discussedin section 5.3, a discriminative growth function should

have reduced sensitivities to outliers whilst still retaining certain attributes of the original

criterion. This is further investigated in detail in the following sections.

7.1.3 Experiments on Local Complexity Control

In the previous section two complexity attributes of an HLDA system,the number of Gaussians

per state and useful dimensions per Gaussian,were optimized on a global level. Limiting the

complexity control on a global level is an unnecessaryrestriction. When varying the systemcom-

plexity locally, more �exibility in the model structure may be introduced. Hence it is preferable

to optimize complexity attributes on a local level. In this section the performancesof complex-

ity control techniques are further investigated by locally optimizing the same two complexity

attributes on a standard LVCSRtask for CTSEnglish data.

7.1.3.1 Experimental Conditions

Four CTSEnglish training con�gurations as described in section 7.1.1 were used: the 46 hour

minitrain04; 76 hour h5etrain03sub; 148 hour meditrain04; the 297 hour full set h5etrain03. The

total number of training speakersis approximately log-linearly increasing acrossthesefour sets.

Each subset is also hierarchically subsumedby the other larger sets. For each training set, the

following forms of complexity control were compared:

� Fixed, the baselineapproach of using an even number of componentsper state, or dimen-

sions per Gaussian. This effectively performs no control of the model complexity and the

number of parameters is manually tuned.

� VarMix, a simple “more data more parameters” approach. The number of components in

a state is set to be proportional to the number of frames assignedto that state raised to a

power. In all theseexperimentsthat power wassetas0.2. The total number of components

in the systemis �xed so that the averagenumber of Gaussiansper state remains the same

asthe standard, Fixed, systemfrom which it wasderived. This is a standard technique used
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in the CU-HTKLVCSRevaluation systems[ 23]. However, this is not strictly a complexity

control approach since the total number of components is not automatically determined.

� BIC, an example of a Bayesiancomplexity control that was discussedin section 3.3.1, was

implemented.

� MPEGFunc, the discriminative evidenceframework using marginalized MPEgrowth func-

tions presentedin chapter 5 was evaluated. As the MPEcriterion is a closerapproximation

to WERthan MMI, the marginalization of MPEgrowth functions is a focusof the following

experiments.

For both BIC and MPEGFuncsystems,the ef�cient implementation discussedin section 5.6

was used. The penalization coef�cient of BIC, � , in equation 3.3, was manually tuned with three

values,0.5, 1.0 and 2.0, to obtain the bestperformances. In contrast, for all MPEGFuncsystems,

the smoothing constant C in equation 5.6 was set to 2.0 and never altered.

The sameset of experiments are conducted for each training set to fully investigate model

selection using marginalized discriminative growth functions. First, only the number of com-

ponents associatedwith each state is determined. Second, a more complex model selection

problem is examined. Both the number of Gaussiansper state and useful dimensionsper projec-

tion in a multiple HLDA systemare to be optimized. Aswith the experiments in section 7.1.2, the

number of useful dimensions to be consideredis in the range from 28 to 52 for eachprojection.

7.1.3.2 Optimizing the Number of Components

Table 7.3 showsthe performancesof various global HLDA systemsafter complexity control. The

front-end for these experiments use the standard global HLDA projection to 39 dimensions. In

the �rst section of the table, the performancesof the baseline systemsare shown with a range

of �xed number of components per state from 12 to 20. Two general trends are observed for

these Fixed systems. First, increasing the amount of training data while �xing the number of

componentsconsistently reduced the WERfor all con�gurations. Note that the WERdifferences

between the 46 hour and 76 hour setupsfor all Fixed systemswere at least2.0% absolute. These

are bigger than the WERdifferencesbetween other larger sets,for example 0.4%-0.7% between

the 76 and 148 hour setups. This is expected as the number of tied states on the 46 hour

setup is only 3k, while for the other larger sets6k stateswere used, as described in table 7.1.

Second,within eachtraining set, increasing the number of componentsper state gradually lead

to saturated WER performances after the number of components reached more than 16. For

example, on both the 76 and 148 hour setups,the 18 and 20 component Fixed systemgave the

sameerror rates. The best Fixed systems,also with fewest parameterspossible,had 20, 16, 18

and 20 componentsfor the four training setsrespectively.

The secondsection of table 7.3 shows the performancesof various VarMix systemswith the

averagenumber of componentsper state ranging from 12 to 20. Using VarMix to re-arrange the

number of componentsaccording to state occupancies,a WERreduction of 0.1%-0.4% absolute
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Complexity WER%

Control 46 hr 76 hr 148 hr 297 hr

Fixed

12 38.3 36.1 35.7 35.1

14 38.0 36.0 35.4 34.8

16 37.8 35:8? 35.2 34.9

18 37.9 35.8 35:1? 34.3

20 37:8? 35.8 35.1 34:1?

VarMix

12 37.9 36.1 35.2 34.9

14 37.7 35.8 35.0 34.7

16 37.6 35.7 35.0 34.3

18 37.6 35.7 34.8 34.0

20 37.5 35.6 34.8 33.9

BIC (� = 0.5) 37.4 35.7 34.5 34.1

(#Gauss) (19.38) (15.57) (17.13) (19.21)

BIC (� = 1.0) 37.4 35.8 34.6 34.2

(#Gauss) (18.45) (14.68) (16.34) (18.68)

BIC (� = 2.0) 37.5 36.1 34.7 34.2

(#Gauss) (18.04) (12.73) (14.78) (17.71)

MPEGFunc 37.2 35.7 34.4 33.8

(#Gauss) (18.34) (14.52) (15.43) (17.54)

Table 7.3 Optimizing #Gauss for global HLDA systemsfor dev01subon CTSEnglish 46 hour minitrain04,

76 hour h5etrain03sub, 148 hour meditrain04and 297 hour h5etrain03; ? marks the starting model for

componentmergingof BICand MPEGFuncsystemson eachtraining set.
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was obtained over the baselineFixed systemsfor most con�gurations in the table. This improve-

ment is not surprising as the amount of data associatedwith each state can vary dramatically.

For the 46, 76 and 297 hour sets, the best VarMix result was associatedwith the most complex

con�guration using 20 Gaussiancomponents per state. On the 148 hour setup, the 18 and 20

component VarMix systemsyielded the sameWERperformance. Similar to the Fixed systemsin

the �rst section of the table, for each training set the gain from having more components was

gradually reduced when the number of Gaussiansper state is more than 16.

The results using BIC and marginalized MPEgrowth functions, along with the averagenum-

ber of components per state, are shown in the third and fourth sections of table 7.3. One

interesting issuewith the iterative complexity control usedhere for both the BIC and the GFunc

systemsis the selectionof the initial model. Asdiscussedin section 5.6.1, for ef�ciency a starting

model is used to obtained a single set of statistics that may be shared by a range of con�gura-

tions. This starting model may affect both the complexity and WER of the �nal system. Its

selection may be determined by the following factors:

� First, the starting model should give the lowest WER.This ensuresa good initialization for

the whole complexity optimization process.

� Second,the starting model should not be too simple. This is becausethat it is not possible

to have a �nal systemthat is more complex than the starting model using the component

merging approach in section 5.6.1. As expected, if the starting model is under-�tting to

the training data, so will the �nal system.

� Third, the starting model should not be too complex. To ensurethe stability of complexity

control, the constrained maximum mutation from the current model structure is imposed,

asdiscussedin section5.6.2. Hence,for a highly complex starting model, a large number of

iterations of complexity control may be required to obtain an optimal, compact, structural

con�guration for the �nal system.

Starting #Gauss 12 14 16 18 20 24 32 48

Model WER% 36.1 36.0 35.8 35.8 35.8 35.7 35.7 36.1

Final #Gauss 11.28 12.95 14.52 16.56 18.71 22.62 30.63 46.82

Model WER% 36.3 36.0 35.7 35.7 35.6 35.6 35.7 36.0

Table 7.4 Varying #Gaussof the starting modelwhenusingmarginalizedMPEgrowth functionsto optimize

#Gaussof global HLDA systemsfor dev01subon CTSEnglish76 hour h5etrain03sub.

To further illustrate this, here the 76 hour set is taken as an example and a variety of MPE

GFunc systemswere built with varying number of components per state in a Fixed system as

the starting model. The error rates of the �nal systems,along with the number of components

per state in both the starting and �nal models, are shown in table 7.4. In the table, when the
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number of componentsper state of the starting model reaches16, the �nal MPEGFuncsystems

performancesare saturated. In particular using the 32 component Fixed systemas the starting

model a 30.63 component per state system was selected. This is much more complex than

14.52 component system(derived from the 16 component Fixed system) by having more than

twice parameters. Similarly, if using the most complex 48 component system as the starting

model, both the starting and �nal model is clearly over-�tting to the data. In both cases,it

is conceivable that many more additional iterations of complexity control may be required to

obtain the best performances. Hence, in order to obtain the best WER performance with the

fewest model parameters, it is preferable to use a starting systemthat has the lowest error rate

and a relatively compact model structure.

For the reasons explained above, the 20, 16, 18 and 20 component Fixed systemswere

selectedas the starting models for both BIC and MPE GFunc approacheson the four training

setsrespectively. In table 7.3 these four starting models used to obtain the initial statistics and

determine the maximum complexity of the systemsare marked with a “?”. They are equivalent

to the comparable BIC systemswhen setting � = 0. As describedin section 5.6.2, a total of four

iterations of complexity control were performed for both BIC and marginalized growth function

systems.Between iterations ML training was performed to re�ne the parameter estimates.

In table 7.3 setting the BICpenalization coef�cient, � = 0:5, gavethe bestWERperformances

consistently for all training sets. Note that on the 46 hour subset, the standard BIC system

(� = 1:0) gave the sameerror rate as � = 0:5 but had fewer parameters. As expected, for each

training set the complexity of BIC systemsis increasing as the value of � decreases.Compared

with the best baselineFixed systems,the gains from the best BIC systems(� = 0:5) were 0.4%,

0.1% and 0.6% for the 46, 76 and 148 hour subsetsrespectively. On the 297 hour full set,

the best BIC systemoutperformed the 20 component Fixed systemby having fewer parameters.

Slight WERreductions of 0.1%-0.3% were also obtained from the BIC systemsagainst the best

VarMix systemsfor most training setups. For example, on the 148 hour set the best BIC system

(� = 0:5), which had 17.13 componentsper state on average,outperformed the more complex

20 component VarMix system by a marginal 0.3%. On the 76 hour training set, there was a

slight WERdegradation of 0.1% using the best BIC system(� = 0:5). The general trend is that

the BIC systemswere comparable to the best VarMix systems,but with fewer components per

state.

The performancesusing the marginalized MPEgrowth functions are also shown in table 7.3.

In contrast to the VarMix and BIC approaches, there was no tuning of any free parameters.

The MPE GFunc systemsoutperforms all Fixed systemsin the table. Compared with the best

VarMix systems,there were also WER gains of 0.1%-0.4% on the 46, 148 and 297 hour sets.

On the 76 hour subset, the more compact 14.52 MPE GFunc systemoutperformed the 16 and

18 component VarMix systems. For each training set, the MPE GFuncsystemoutperformed all

three BIC systemsby having a lower WERand fewer parameters. For example, on the 46 hour

set, the GFunc system had 18.34 Gaussiansper state on average and gave a WER of 37.2%.

It outperformed both the best BIC (� = 1:0, 18.45 components per state and � = 0:5, 19.38
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componentsper state) by 0.2%. Similarly on the 297 hour full set, the MPEGFuncsystem(17.54

component per state) outperformed all three BIC systemsby 0.3%-0.4%. On this setup it is also

interesting to �nd that this GFuncsystemis also more compact than the smallest penalized BIC

con�guration (� = 2:0, 17.71 componentsper state). Theseresults indicate that the MPEGFunc

systemis able to select con�gurations that make more ef�cient use of the number of Gaussian

components. Overall, the MPE GFunc approach outperformed, or approximately matched, the

best manually tuned systemin table 7.3 with a more compact model structure.

7.1.3.3 Optimizing the Number of Components and Dimensions

Complexity Control WER%

#Gauss #Dim 46 hr 76 hr 148 hr 297 hr

VarMix

12

Fixed

39 - 35.8 - -

12 52 - 35.3 - -

16 39 38.0 35.9 34.9 34.2

16 52 37.6 35:6y 34.6 33.7

18 39 - - 34.5 -

18 52 - - 34:3y -

20 39 37.5 - - 34.0

20 52 37:3y - - 33:6y

BIC (� = 0:5) 36.6 34.9 33.9 33.4

(#Gauss) (19.38) (15.57) (17.13) (19.21)

(#Dim) (49.89) (49.36) (50.17) (50.91)

BIC (� = 1:0) 36.9 35.2 33.9 33.4

(#Gauss) (18.45) (14.68) (16.34) (18.68)

(#Dim) (44.59) (42.89) (47.62) (49.33)

BIC (� = 2:0) 37.2 35.2 34.3 33.6

(#Gauss) (18.04) (12.73) (14.78) (17.71)

(#Dim) (35.77) (33.39) (39.43) (43.75)

MPEGFunc 36.7 34.6 33.9 33.0

(#Gauss) (18.34) (14.52) (15.43) (17.54)

(#Dim) (41.78) (36.67) (47.23) (44.77)

Table 7.5 Optimizing #Gauss and #Dim of 65 transform HLDA systemsfor dev01subon CTSEnglish 46

hour minitrain04, 76 hour h5etrain03sub, 148 hour meditrain04and 297 hour h5etrain03; y marks the most

complexsystemfor eachtraining set.

To further investigate marginalized growth functions for model selection, a more complex

problem was examined. Both the number of Gaussiansper state and useful dimensions per

projection in a multiple HLDA system were optimized. Table 7.5 shows the performances of

various multiple HLDA systemsafter complexity control. This table contains three sections.The
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�rst section are the baseline systemsthat used VarMix to tune the number of components per

state,and the number of dimensions�xed globally aseither 39 or 52 acrossall projections. In the

secondsection the experimental results of using BIC to control both complexity attributes, along

together with the relative complexity (number of components per state and useful dimensions

per Gaussian)are shown. As with table 7.3, the values of the penalization coef�cient, � , was

manually tuned to achieve the best performances. The �nal section of the table shows the

comparable results of using marginalized MPEgrowth functions.

For each training set, four VarMix systemswere built. Although not all the possiblecon�gu-

rations in the �rst sectionwere evaluated, a fair comparisonmay still be madeagainstall the BIC

and MPEGFuncsystemsin the table. On each training setup, a most complex systemwas built

which provided an upper bound of model complexity for all the BIC and MPE GFunc systems.

Theseare marked with a “y” in the table. For example, on the 46 hour subset,the most complex

VarMix systemhad 20 componentsper state on averageand 52 dimensions per Gaussian.This

system was larger than any of the comparable BIC or MPE GFunc systemson the same setup.

The general trend of theseVarMix systemsare three-fold. First, compared with the global HLDA

VarMix systemsin table 7.3, increasing the number of HLDA transforms to 65 while �xing the

number of componentsand dimensionality led to mixed results. Marginal WERreductions were

obtained for somesystems.For example, on the 148 hour set, the gains from using more HLDA

transforms were 0.1% and 0.3% for the 16 and 18 component con�gurations respectively. In

contrast, on the 76 hour setup, increasing the number of transforms to 65 actually degradedthe

performance of the 16 component VarMix systemby 0.2%. This shows that in order to make a

better useof multiple HLDA, it is preferable to locally optimize the number of useful dimensions

for eachprojection. Second,for all four subsetsincreasing the number of componentsper state

while �xing the dimensionality only gavesmall improvement. For example, on the 297 hour full

set, increasing the number of componentsper state from 16 to 20 reduced the WERmarginally

by 0.1%-0.2% for both the 39 and 52 dimensional con�gurations. For the 76 hour set increasing

the number of components from 12 to 16 actually degraded the performance of the 52 dimen-

sional con�guration by 0.3%. Third, �xing the number of Gaussiansper state and increasing the

dimensionality from 39 to 52 further reduced the WERfor all four training setsby 0.2%-0.5%.

In order to automatically control both the number of components and dimensions, the per-

formancesof BIC and MPEGFuncsystemswere examined. As discussedin section 7.1.2, there

are issuesfor using BIC to optimize multiple complexity attributes simultaneously. Furthermore,

when both complexity attributes are controlled locally, the number of possiblepermutations is

intractable. To handle these issues, the two complexity attributes considered were optimized

sequentially: the number of Gaussiancomponents �rst, then the number of useful dimensions

after the number of Gaussiansis determined. This approachwasusedfor all BICand MPEGFunc

systemsin the table. The samestarting models in table 7.3, marked with a “?”, were also used

for all BIC and MPEGFuncsystemsin table 7.5. As with the results in table 7.3 for global HLDA

systems,setting the BICpenalization coef�cient, � = 0:5, gavethe lowest error ratesconsistently

for each training set. Compared with the best VarMix baselineswith a �xed number of useful
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dimensions in the table, the gains from the best BIC systemswere 0.2%-0.7%. In particular, on

the 46 hour set a 0.7% WERreduction was obtained over the comparable best VarMix system.

This is expectedas it is increasingly important to appropriately control the number of HLDA di-

mensionswhen the amount of training data decreases.It should also be pointed out that using

the best con�guration (� = 0:5), the complexity of the BIC systemswere fairly close to that of

the most complex VarMix systems.For instance,on the 46 hour setup a systemwith 49.89 useful

dimensions per Gaussianand 19.38 componentsper state on averagewas selected. This is only

about 7% smaller than the 20 component 52 dimensional VarMix con�guration.

Marginalized MPE growth function was then used to determine both the number of com-

ponents and dimensions. The bottom section of table 7.5 shows the MPE GFuncsystems'WER

along with the their sizes.Acrossall four training sets,signi�cant WERreductions of 0.4%-1.0%

absolute were obtained over the VarMix baselines.For example, on the 76 hour setup, a highly

compactsystemwith 14.52 componentsper stateand 36.67 dimensionsper Gaussianon average

was selected.This MPEGFuncsystemoutperformed the most complex 16 component 52 dimen-

sional VarMix baselineby 1.0%. The gain over the bestVarMix con�guration (12 component per

state and 52 dimensionsper Gaussian)was 0.7%. Similarly on the 297 hour set, the MPEGFunc

system(17.54 componentsper stateand 44.77 dimensionsper Gaussian)outperformed the best,

and also most complex, VarMix systemon the samesetup by 0.6% absolute.

Compared with all the BIC systemsin the table, the MPE GFunc approach outperformed

the best BIC con�guration (� = 0:5) on the 76 hour training set by 0.3%, and a statistical

signi�cant 0.4% on the 297 hour corpus. On the 148 hour set, the MPE GFunc system(15.43

components per state and 47.23 dimensions per Gaussian) outperformed the best BIC system

(� = 0:5, 17.13 components per state and 50.17 dimensions per Gaussian) by having fewer

parameters. On the 46 hour setup, although the MPE GFunc system (18.34 components per

state and 41.78 dimensions per Gaussian)was outperformed by the best BIC system(� = 0:5,

19.38 components per state and 49.89 dimensions per Gaussian) by a marginal 0.1%, it has

approximately 20% fewer parameters. For all training sets, the MPE GFunc system was more

compact than the comparablebest BIC system. For example, on the 76 hour set the MPEGFunc

system(14.52 componentsper state and 36.67 dimensions per Gaussian)is about 25% smaller

than the best BIC con�guration (� = 0:5, 15.57 components per state and 49.36 dimensions

per Gaussian). Like the results in table 7.3, it is interesting to �nd that the MPE GFuncsystem

requires no tuning in terms of the nature of the complexity attributes being optimized. One

again the schemeoutperformed, or approximately matched, the best manually tuned system

with a more compact model structure for eachtraining set. This is a desirable feature of a good

complexity control technique.

7.1.3.4 Correlation Between Criteria and WER

In section 7.1.2 the correlation between standard complexity control techniques and WERwas

investigated when optimizing complexity attributes on a global level. In this section this corre-

lation is further examined. The aim here is to intuitively show that a strong correlation between
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marginalized discriminative growth functions and WER exists for complexity control on a lo-

cal level. As the complexity is varied locally, the permutation of all possible con�gurations is

intractable. Hence, the correlation was only investigated for selected systems. Initially sev-

eral global HLDA systemstrained on the 46 hour set minitrain04 in table 7.3 were selectedfor

this purpose: the 12 component Fixed and VarMix systems,all three BIC systemsand the MPE

GFunc system. For each of these systems,the value of the marginalized MPE growth function

was computed on a log scale to compare with the variation of WER. This correlation is shown

in �gure 7.5. A general trend is observedthat increasing the marginalized MPEgrowth function

never increasedthe WER.
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The correlation between marginalized MPE growth functions and WERwas further investi-

gated on the other three larger training sets using selectedsystems. For the 76, 148 and 297

hour sets, the 12 component VarMix baselinesand the MPE GFunc systemsin table 7.3 were

selected�rst. Asdiscussedin section 5.6.2, the optimal model complexity was determined in an

iterative mode for the MPE GFunc system in order to obtain reliable statistics. Four iterations

of structural optimization were performed for the MPE GFunc systems. Similarly, the VarMix

systemswere also trained in an iterative fashion. The number of componentsper state was ad-

justed three times according to the state occupancies.Hence, it is also interesting to investigate

the correlation between WER and marginalized MPE growth functions for systemsdeveloped

at each iteration of complexity control. This gives a total of 8 systemsfor each training setup,

including the 12 component Fixed systemsfrom which the VarMix systemswere derived. The

values of marginalized MPEgrowth functions were computed for each systemto compare with

the WER. Figures 7.6, 7.7 and 7.8 show the variation of marginalized MPE growth functions

and WERperformancesat different stagesof structural optimization for VarMix and MPEGFunc

systemson eachtraining setup. In these�gure again a general trend was observedthat increas-

ing the marginalized MPEgrowth function's value will decreasethe WER.There is also a steady

increaseof the marginalized MPE growth function between iterations for the MPE GFunc sys-

tem. In contrast the variation for the VarMix systemswas fairly noisy in somecases,for example,

in �gure 7.6 for the 76 hour set. This difference may be expectedas the two schemesare very

different model selection criteria.

It is interesting to further examine the differences between the VarMix and MPEGFuncsys-

tems in terms of the model complexity determined. The 76 hour set h5etrain03subwas taken

as an example. The structural difference between the 16 component VarMix, and the GFunc

system in table 7.3 was investigated for this training set. Figure 7.9 illustrates the log scale

histogram distribution of the number of components assignedto each state. In the �gure the

differences these two systemsare clearly shown. As expected for the MPE systemthe number

of components in a state is always no larger than 16, becausethe 16 component Fixed system

was used as the starting model for component merging. In contrast, the maximum number of

componentsper state in the VarMix systemcan be aslarge as22. Furthermore, the modesof the

two distributions are also fairly apart from one another.

7.1.3.5 MMI Growth Functions vs. MPE Growth Functions

Although the MPE criterion should be more directly related to WER than MMI, it is still inter-

esting to compare the performances of marginalizing the MPE and MMI growth functions for

complexity control. This was investigated on the 46 hour set minitrain04. Table 7.6 shows the

performances of various complexity controlled systemsbuilt using marginalized MPE or MMI

growth functions. Comparing the two global HLDA systems,using the MMI growth function,

a slightly more complex systemwith 18.85 Gaussiansper state was selected. This systemwas

also outperformed by the MPE GFuncsystemby 0.2% absolute. However, after optimizing the

number of useful dimensions the two systemsgaveroughly the sameerror rates. This is because
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Complexity Control
Crit #Trans WER%

#Gauss #Dim

GFunc 18.34
Fixed 39

MPE
1 37.2

GFunc 41.78 65 36.7

GFunc 18.85
Fixed 39

MMI
1 37.4

GFunc 47.91 65 36.6

Table 7.6 Marginalized MMI or MPEgrowth functionsfor dev01subon CTSEnglish46 hour minitrain04
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more gains were obtained when using marginalized MMI growth functions to optimize the di-

mensionality for multiple HLDA. The MMI GFuncsystemgavea WERof 36.6% and alsomatched

the performance of the best manually tuned BIC (� = 0:5) system in table 7.5. However this

MMI GFuncsystem(18.85 componentsper state and 47.91 dimensionsper Gaussian)was more

complex than the MPE GFuncsystemin the table. Overall, with this setup the two approaches

yielded similar performances and the MPE growth function tended to select a more compact

system.Experiments in the following sectionswill still focus on using marginalized MPEgrowth

functions for complexity control.

7.1.3.6 Discussion

In this section a series of complexity control experiments were conducted on an LVCSR task.

Four training setsof CTSEnglish data were used. Their sizeswere increasedapproximately log-

linearly so as to fully investigate marginalized discriminative growth functions for complexity

control. Two attributes of an HLDA system, the number of Gaussian components per state

and the number of useful dimensions per Gaussianwere optimized on a local level. Important

conclusionsfrom theseexperiments may be summarized as:

� First, acrossdifferent training setsand multiple forms of complexity attributes, the marginal-

ized MPE growth function will at least select a compact system with approximately the

lowest WER, if not giving further gains over the best manually tuned VarMix or BIC sys-

tems. As discussedin section 3.1, explicitly building and evaluating all possiblesystemsis

intractable for LVCSR tasks. The ability of automatically selecting the correct complexity

without excessivetunning of free parametersis an important feature of a good complexity

control scheme.

� Second, the correlation between marginalized discriminative growth functions and WER

was examined for all four CTS training sets when the model complexity is locally opti-

mized. In �gures 7.5, 7.6, 7.7 and 7.8, a fairly strong correlation between marginalized

MPE growth functions and WER was observed. These illustrate that marginalized MPE

growth functions are closely related to the the WER.Hence, this technique may be an al-

ternative to standard complexity control techniques under the likelihood framework for

current speechrecognition systems.

� Third, for multiple HLDA systems, it is bene�cial to optimize the number of useful di-

mensionsfor eachprojection locally using an appropriate model selection technique. The

complexity control gains from the MPE GFuncsystemsin table 7.5 show that is it prefer-

able to do so when building multiple HLDA systems.

7.2 Interaction with Other Techniques

State-of-the-art LVCSR systemsare highly complex. Many techniques may be used to improve

the recognition performance. In all the previous complexity control experimentsonly the perfor-



CHAPTER7. EXPERIMENTSON MODELCOMPLEXITYCONTROL 99

mancesof ML trained systemswere considered. In this section the interaction between complex-

ity control and two important acousticmodeling techniques,discriminative training and speaker

adaptation, is investigated.

7.2.1 Interaction with Discriminative Training

Asdiscussedin chapter 4, the model correctnessassumptionin the ML training may be too strong

for HMM basedcurrent speechrecognition systems.The majority of state-of-the-art LVCSRsys-

tems are built using discriminative training techniques. All the MPEGFuncsystemsso far were

ML trained, although discriminative statistics were used to select the optimal structural con�g-

uration. In this section, after determining the optimal model structure, model parameters are

further updated discriminatively using the standard MPE training [ 90, 93]. The aim was to

investigate the interaction between discriminative training and complexity control. This inter-

action will be investigated on both the 76 hour CTSEnglish corpus h5etrain03suband the 297

hour full set h5etrain03, aswere describedin section 7.1.1. For evaluation the sametest set used

previously, dev01, was used. Other experimental conditions remain the sameas in section 7.1.1.

Complexity Control
#Trans

WER%

#Gauss #Dim MLE MPE

VarMix 16 Fixed 39
1 35.7 33.0

65 35.9 32.8

BIC
15.57

BIC
49.36 65 34.9 32.4

� = 0:5 � = 0:5

MPE
14.52

MPE
36.67 65 34.6 31.9

GFunc GFunc

Table 7.7 MPEtraining of complexitycontrolledsystemsfor dev01subon CTSEnglish76 hour h5etrain03sub

For the 76 hour set, three baselinesystemswere used. The 16 component VarMix systemwith

a global HLDA transform in table 7.3 and the comparable multiple HLDA system in table 7.5

were selected as two standard con�gurations. Basedon the WER performances, the best 65

transform BIC (� = 0:5) system in table 7.3 was also selected. The MPE GFunc system in

table 7.3 was MPEtrained to comparewith thesethree baselinesystems.Four iterations of MPE

training were performed for eachsystemwith the HLDA transforms kept �xed. Table 7.7 shows

that MPE training reduced the WER for all systemsby more than 2.5% absolute. Most of the

gain from the GFunc system was maintained after MPE training. There were still signi�cant

WER gains of 1.1% and 0.9% absolute from the GFunc system over the two VarMix baselines

respectively. It is also interesting to �nd that somegain from the most complex BIC systemwas

lost. This may be becausecompact systemsare often preferred for MPEtraining to ensuregood

generalization [ 93].
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Complexity Control
#Trans

WER%

#Gauss #Dim MLE MPE

VarMix 20 Fixed 39
1 33.9 30.3

65 34.2 30.3

BIC
19.21

BIC
50.91 65 33.4 29.9

� = 0:5 � = 0:5

MPE
17.54

MPE
44.77 65 33.0 29.4

GFunc GFunc

Table 7.8 MPEtraining of complexitycontrolledsystemsfor dev01subon CTSEnglish297 hour h5etrain03

Similarly for the 297 hour full set, the 20 component VarMix global and multiple HLDA

system with 39 useful dimensions in table 7.3 and 7.5 were selectedas the baseline standard

con�gurations. Basedon the WERperformances,the best 65 transform BIC system(� = 0:5) in

table 7.5 was also selected. Theseare to be compared with the GFuncsystemin table 7.5 after

four iterations of MPE training. As is shown in table 7.8, MPE training led to large reduction

of the error rates for all systemsby more than 3.5% absolute. The MPE GFunc system still

signi�cantly outperformed both VarMix baselinesby 0.9%, and the BIC system by 0.5% after

MPE training. In contrast, some gain from BIC was lost after MPE, like the results shown in

table 7.7 for the 76 hour subset. Again this is expectedas compact systemsare often preferred

for discriminative training.

7.2.2 Interaction with Speaker Adaptation

As discussedin section 2.5, characteristics of speechsignals vary substantially acrossdifferent

speakersand acousticenvironments. The majority of the state-of-the-art LVCSRsystemsemploy

standard adaptation techniques like MLLR to remove such variability [ 126, 51, 23, 64]. So far

all the complexity controlled systemsconsidered in this thesis are speakerindependent models.

Hence, it is interesting to further investigate the interaction between complexity control and

adaptation techniques.

Following the MPE training experiments in section 7.2.1, MLLR based speaker adaptation

was performed for systemstrained on the 76 hour set h5etrain03subin table 7.7, and the 297

hour full seth5etrain03in table 7.8. Eachsystem'srecognition output from up-adapted decoding

was usedasits own supervision. Two MLLRmean transforms, one for speechand one for silence

Gaussiancomponentswere estimated for each system. During the estimation of the MLLR ma-

trices, the diagonal variance approximation described in section 2.6 was used. Table 7.9 shows

the adapted performancesof four complexity controlled systemson the 76 hour set. Using MLLR

the error rates were reduced by 1.9%� 2.0% for all systems. The gains from the GFuncsystem

was largely maintained after the adaptation over the VarMix and BIC baselines.

For the 297 hour full set, the four MPEtrained systemsin table 7.8 were adapted in the same
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Complexity Control
#Trans

WER%

#Gauss #Dim MLE MPE MLLR

VarMix 16 Fixed 39
1 35.7 33.0 31.0

65 35.9 32.8 30.8

BIC
15.57

BIC
49.36 65 34.9 32.4 30.5

� = 0:5 � = 0:5

MPE
14.52

MPE
36.67 65 34.6 31.9 30.0

GFunc GFunc

Table 7.9 Adapted performancesof complexity controlled systemsfor dev01subon CTS English 76 hour

h5etrain03sub

Complexity Control
#Trans

WER%

#Gauss #Dim MLE MPE MLLR

VarMix 20 Fixed 39
1 33.9 30.3 28.6

65 34.2 30.3 28.6

BIC
19.21

BIC
50.91 65 33.4 29.9 28.1

� = 0:5 � = 0:5

MPE
17.54

MPE
44.77 65 33.0 29.4 27.7

GFunc GFunc

Table 7.10 Adaptedperformancesof complexitycontrolled systemsfor dev01subon CTSEnglish297 hour

h5etrain03
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fashion as the 76 hour systems. Table 7.10 shows the adapted performancesof these systems.

Again all the adapted systemsoutperformed the unadapted by more than 1.5% absolute. Sig-

ni�cant WERgains from the GFuncsystem,0.9% over both VarMix baselinesand 0.4% over the

BIC system,were maintained after adaptation.

7.2.3 Discussion

In this section the interaction between model complexity control and standard acoustic model-

ing techniques was investigated on an LVCSRtask for CTSEnglish data. As shown in previous

experiments of section 7.1, using marginalized MPE growth functions more compact models

tend to be selected. This is particularly useful for discriminative training techniques, as good

generalization to unseen data is desired. Hence, the gains from marginalized discriminative

growth functions over standard complexity control schemeswere found to be mostly additive

to discriminative training and speakeradaptation. This indicates that marginalized discrimina-

tive functions based complexity control may be useful for state-of-the-art LVCSR systemsthat

use large scalediscriminative training and sophisticated adaptation procedures. This is further

investigated in the following sections.

7.3 Generalization to Other Tasks

All the previous experiments in sections7.1.2 and 7.1.3 were conducted on CTSEnglish data. As

a general form of complexity control technique, marginalized discriminative growth functions is

expectedto be applicable to other speechrecognition tasks. In this section the generalization of

this technique is examined on two very different LVCSRtasks,broadcastnews (BN) English and

CTSMandarin Chinesedata.

7.3.1 Experimental Conditions

A 72 hour CTS Mandarin Chinese training set, swmtrain04, was used. It consistsof 200 Call

Home Mandarin (CHM) and 84 Call Friend Mandarin (CFM) conversation sides collected by

LDC, and another 500 sidesby Hong Kong University of Scienceand Technology (HKUST). For

performance evaluation two data sets were used: The two hour set dev04, also collected by

HKUST contains 48 conversation sides; The one hour long 2003 DARPA Mandarin evaluation

set, eval03, consists of a total of 24 CFM conversation sides. The audio data was manually

segmented for dev04and automatically segmented for eval03. Like the CTS English systems

described in section 7.1, 52-dimensional PLPfeatures were extracted by appending derivatives

up to the third order, and then normalized using VTLN, mean and variance normalization on a

conversation side basis. This feature vector was projected down to 39 dimensions using one or

more HLDA projections. Then pitch parameters, their �rst and secondderivatives were further

appended, yielding construct a 42-dimensional feature vector. For multiple HLDA systemsthe

samecomponent assignmentschemedescribed in section 7.1.1 was used. Continuous density,
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mixture of Gaussians,cross-word tonal triphone, gender independent HMM systemswere used.

After phonetic decision tree based tying, there were approximately 4000 speechstates. Note

that the decision tree was built only using the training data collected by HKUST. For the baseline

systemthe global HLDA transform wasalsoestimatedonly using the data from HKUST. Thereare

16 Gaussiancomponentsper state on average.More detailed description of the baselinesystem

may be found in [ 35]. Unlessotherwise stated ML training were used for training all systems.

All recognition experiments used a 16k word basedtri-gram language model for full decoding.

As there is no deterministic word segmentation for the Chinese language, the character error

rate (CER) is usedasa performance measurement,rather than WER.

Experiments on a BN English task were also conducted to investigate the performance of

complexity control schemes. A 144 hour training set bnetrain02was used. It consists of the

BN English data released by the LDC in 1997 and 1998. The 1997 data was annotated by

the LDC to ensure that each segment was acoustically homogeneous, but the 1998 data was

transcribed only at the speaker turn level without distinguishing background conditions [ 64].

In total, these amounted to approximately 144 hours of usable data. For evaluation, a set of

approximately 2.7 hour of 2003 DARPA RT03 evaluation data, eval03, was used. The audio data

was automatically segmented. A 52 dimensional cepstral acoustic feature was then generated

by appending derivatives up to the third order. Like the previous CTSEnglish experiments in

section 7.1, this was projected down to a 39 dimensional feature vector using one or 65 HLDA

projections. The samecomponent to transform assignmentschemewas also used. Continuous

density, mixture of Gaussians,cross-word triphone, gender independent HMM systemswere

used. There are approximately 7k speechstates after decision tree basedstate tying, and the

basic system has 16 Gaussiancomponents per state. All recognition experiments used a 59k

word tri-gram languagemodel.

For both tasks training lattices were generated using an ML trained VarMix systemwith 16

Gaussiansper state. A pruned bi-gram language model was also used in generating these lat-

tices. They were further marked with model alignment and kept �xed when using marginalized

discriminative growth functions for complexity control. The sameset of experiments conducted

for the CTSEnglish data in section 7.1.3 are investigated. Two complexity attributes of an HLDA

systemwere optimized: the number of Gaussiancomponentsper state,and the number of useful

dimensions per Gaussian. The same con�gurations for BIC and marginalized MPE GFunc sys-

tems describedin section 5.6 and 7.1.1 were alsousedin the experiments. Again the smoothing

constant C of the MPEgrowth function was always set to 2.0 and not altered.

7.3.2 Experiments on 72 Hour swmtrain04

Table 7.11 shows the performances of various global HLDA systemsafter complexity control

for the 72 hour Mandarin training set swmtrain04. Basedon the WERthe 20 component Fixed

systemwas used as the starting model for both BIC and GFuncsystems. This is marked with a

“?” in the table. For the BIC approach, setting the penalization coef�cient � = 1:0 gaveboth the
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lowest WERand a more compact system,compared with the setting of � = 0:5. Using this BIC

systema WERreduction of 0.4% was obtained over the 20 componet VarMix baseline on both

test sets. It is also interesting to �nd that for both the standard (� = 1:0), and penalized BIC

(� = 0:5) systems,the number of parameters were very similar to that of the starting model,

although the WERimprovements were 0.3% and 0.5% for the two test setsrespectivelyover the

20 component Fixed system.

Complexity CER%

Control dev04 eval03

Fixed

16 40.4 52.8

18 40.2 52.0

20 39:9? 51:5?

VarMix

16 39.8 52.5

18 40.1 52.0

20 40.0 51.4

BIC (� = 0.5) 19.99 39.6 51.0

BIC (� = 1.0) 19.75 39.6 51.0

BIC (� = 2.0) 17.22 39.8 51.4

MPEGFunc 18.53 39.7 51.3

Table 7.11 Optimizing #Gaussfor global HLDA systemsfor mandarin dev04and eval03on CTSMandarin

72 hour swmtrain04

Using marginalized MPEgrowth functions, a systemwith 18.53 Gaussiansper state on aver-

age was selected. This systemgave a WERof 39.7% on dev04and approximately matched the

performance of the best BIC con�gurations. On eval03the performance difference between the

best BIC systemsand the MPE GFunc system was as big as 0.3%. However, this difference is

expected. As described in section 7.3.1, both the decision tree and HLDA projection were gen-

erated only using the data collected by HKUST. Furthermore, the eval03set contains purely LDC

CFM data that was not present during decision tree clustering and HLDA estimation. Because

of the big mismatch between the LDC and HKUST data [ 35], for the eval03set more complex

systemare favored in order to compensateit. This is clearly shown in table 7.11. For example,

increasing the number of componentsfrom 18 to 20 for the VarMix systemreduced the WERby

0.6% on eval03. In contrast, only a marginal 0.1% improvement was obtained on dev04.

To further explore complexity control schemeson this Mandarin task, the dual complexity

control problem in previous CTS English experiments was investigated. Table 7.12 shows the

CERperformancesof various multiple HLDA systemsafter complexity control on both dev04and

eval03. Like the results shown in table 7.11, increasing the number of componentsof the VarMix

baselineswhile �xing the dimensionality signi�cantly reduced the CERby 0.4%-1.0% on eval03.

Smaller CERgains of 0.3%-0.5% on dev04were also obtained. The best VarMix systemwas the
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Complexity Control CER%

#Gauss #Dim dev04 eval03

VarMix

16

Fixed

39 39.9 52.3

16 52 40.0 51.7

20 39 39.6 51.3

20 52 39:5y 51:3y

BIC
19.99

BIC
47.03 39.0 51.1

� = 0.5 � = 0.5

BIC
19.75

BIC
38.98 39.5 51.6

� = 1.0 � = 1.0

BIC
17.22

BIC
30.23 39.7 52.4

� = 2.0 � = 2.0

MPE
18.53

MPE
45.20 39.0 50.9

GFunc GFunc

Table 7.12 Optimizing #Gauss and #Dim of 65 transform HLDA systemsmandarin dev04and eval03on

CTSMandarin 72 hour swmtrain04

most complex con�guration that has 20 component per state and 52 dimensions per Gaussian.

This systemis marked with a “y” in the table. Using the samestarting model as in table 7.11,

three BIC systemswith varying values of � and an MPEGFuncsystemwere built. The best BIC

con�guration (� = 0:5, 19.99 com and 47.03 dim) outperformed the best VarMix baseline by

0.5% on dev04and 0.2% on eval03. Note the standard BIC system(� = 1:0) selecteda system

that led to a performance degradation of 0.3% on eval03compared with the 20 component

VarMix baseline. Again performancesof all the VarMix and BIC systemsin the table show that

more complex systemsare favored for the eval03data to compensatefor the bias toward the

HKUST data. Using marginalized MPE growth functions, a systemwith 18.53 components per

state and 45.20 dimensions per Gaussianwas selected. The GFuncsystemoutperformed all the

manually tuned VarMix and BIC systemsin table on both test sets. For example, the gains over

the standard BIC systemwere 0.5% and 0.7% on dev04and eval03respectively.

7.3.3 Experiments on 144 Hour bnetrain02

Table 7.14 showsthe performancesof global HLDA systemsafter complexity control on the 144

hour BN English training corpus bnetrain02. In the table marginal gains were obtained from

VarMix over the standard Fixed systems. Increasing the number of components from 16 to 20

for the VarMix systemsled to saturated WER performances. Basedon the WER performances

the 20 component Fixed system(marked with a “?” in the table) was usedas the starting model

for both BIC and MPEGFuncsystems.All three BIC systemsin the table gavevery similar WER.

In common with the previous CTSEnglish experiments in table 7.3, setting the BIC penalization
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coef�cient � = 0:5 gave the best BIC performance of 15.6% on eval03. However, the selected

systemwas still quite complex had 19.56 Gaussiancomponentsper state on average. The MPE

GFuncsystemhad a more compact model structure with 18.22 Gaussiansper state on average.

It gavea WERof 15.7% that approximately matched the performanceof the bestmanually tuned

BIC system(� = 0:5) in table 7.13.

Complexity
WER%

Control

Fixed

16 15.9

18 15.9

20 15:7?

VarMix

16 15.8

18 15.8

20 15.7

BIC (� = 0.5) 19.56 15.6

BIC (� = 1.0) 18.61 15.7

BIC (� = 2.0) 16.88 15.7

MPEGFunc 18.22 15.7

Table 7.13 Optimizing #Gaussof global HLDA systemsfor eval03on BN English144 hour bnetrain02

Table 7.14 also allows examination of the problem of dual complexity control for multiple

HLDA systems.The table showsthat increasing the number of componentsor useful dimensions

only gavemarginal WERgains. BIC and MPEGFuncsystemswere built using the samestarting

model asin table 7.13. The bestBICcon�guration (� = 2:0) gavea WERof 15.4%. This matched

the performance of the most complex VarMix system(marked with a “y” in the table) but with

much fewer model parameters. It is interesting that different from previous CTS experiments

in section 7.1.1, with this setup increasing the value of the penalization coef�cient, � , gave the

bestBICperformance. This may suggestthe BICcriterion requires the penalization coef�cient to

be excessivelytuned for different forms of parameters and also different tasks. Again the MPE

GFuncapproach did not suffer from this limitation on this setup. Using the samecon�guration

asdescribedin section 7.1.1, the MPEGFuncsystemhad 15.14 componentsper state and 45.92

dimensions per Gaussianand outperformed all tuned systemsin the table. In particular, WER

gains of 0.1%-0.3% were obtained over the three BIC systems.

7.3.4 Discussion

In this section marginalized discriminative growth functions were used for complexity control

on two different LVCSRtasks. The sameset of experiments considered in section 7.1.3 for CTS

English data were conducted. For both the BN English and CTSMandarin tasks, marginalized
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Complexity Control
WER%

#Gauss #Dim

VarMix

16

Fixed

39 15.5

16 52 15.4

20 39 15.3

20 32 15:4y

BIC
19.55

BIC
50.70 15.6

� = 0.5 � = 0.5

BIC
18.61

BIC
46.38 15.4

� = 1.0 � = 1.0

BIC
16.88

BIC
35.66 15.4

� = 2.0 � = 2.0

MPE
18.22

MPE
45.92 15.3

GFunc GFunc

Table 7.14 Optimizing #Gaussand #Dim of 65 transform HLDA systemsfor eval03on BN English144 hour

bnetrain02

MPEgrowth functions outperformed, or at least approximately matched, the performance of the

best manually tuned systemwith a minimum complexity. More importantly the samecon�gura-

tions for the MPE GFuncsystemsin the previous CTSEnglish experiments were also used. No

tuning of any free parameterswas required for any of the different tasksconsidered. This shows

that marginalized discriminative growth functions is a general approach for model selectionand

may be useful for a variety of speechrecognition tasks.

7.4 Evaluation in 10 Real-time LVCSR System

In most previous experiments complexity controlled systemswere evaluated using a standard

single passViterbi decoding without speaker adaptation and relatively simple word based tri-

gram language models. In contrast, state-of-the-art LVCSRsystemsoften use multiple passde-

coding, sophisticated adaptation and large scale language models [ 23, 64]. To further employ

the complimentary effectsbetween different systems,multiple systems'recognition outputs may

be combined, using confusion networks (CN) combination [ 22], or recognizer output voting

error reduction (ROVER) [ 25]. In this section complexity control using marginalized discrim-

inative growth functions will be investigated in the framework of a state-of-the-art multi-pass

LVCSRsystemusing sophisticatedadaptation, large scalelanguagemodels and CN basedsystem

combination. Under this complex framework, it is possible to obtain a realistic comparison of

how complexity control schemesperform in a state-of-the-art LVCSRsystem.
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7.4.1 Experimental Conditions

The CTSEnglish data set usedfor training, fsh2004sub, consistsof 400 hours of Fisherconversa-

tions releasedby the LDC,with a balancedgender and line condition [ 24]. Quick transcriptions

are provided by BBN,LDCand another commercial transcription service. A 6 hour DARPA RT-03

evaluation set, eval03, was used for performance evaluation. It contains 144 conversation sides

from the LDCFishercollection, fsh, and Switchboard II phase5, s25. The baselinemodel set had

approximately 6k physical states after decision tree based tying. Unless otherwise states, the

number of componentsper state was tuned as28 on averagelevel using VarMix for all systems.

All systemswere MPEtrained.

Segmentation

Normalisation
Adaptation

Adapt

Lattices

Lattice generation

Adapt

Initial transcription

P3a P3x

1-best

CN

Lattice

CNC

Figure 7.10 CU-HTK10xRT Systemfor CTSEnglish

The CU-HTK10 real-time multi-pass systemwas used to evaluate the performance of com-

plexity controlled systems. It usessophisticated adaptation and CN basedsystemcombination.

The overall systemstructure consistsof two main stages:the initial lattice generation stageand

the rescoring stage using multiple model sets. The confusion network outputs from different

rescoring passeswere �nally combined. This is shown in �gure 7.10. More details of the overall

systemarchitecture can be found in [ 21]. The audio data is parameterizedusing 13 PLPfeatures

augmentedwith their �rst, secondand third order derivatives. A 52 dimensional acousticfeature
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was projected down to 39 dimension using a global HLDA transform. All acoustic models were

built using MPE training. VTLN was used in training and testing. Cepstral mean and variance

normalization were also applied. Continuous density, mixture of Gaussians,cross-wordtriphone

gender independent HMM systemswere used. The two baseline model setsused in the lattice

rescoring stage were a speaker adaptively trained (SAT) model employing constrained MLLR

and an HMM set trained using a Single Pronunciation (SPron) dictionary [ 53]. Thesemodel

sets were adapted using lattice basedMLLR in addition to standard adaptation basedonly on

the 1-best hypothesis. A word-based 4-gram language model was trained on the acoustic tran-

scriptions and additional broadcast news data. The word-based 4-gram was then interpolated

with a class-basedtri-gram trained only on the associatedacoustic transcriptions. The recogni-

tion dictionaries contain approximately 58k words. Eachword had about 1.1 pronunciations on

averagelevel.

7.4.2 10 Real-time System Performances

Table 7.15 shows the baseline performance of the 10 time real-time CTS system. The 2-way

combination between the SAT and SPron systemswas the standard con�guration used in the

CUEDCTSEnglish evaluation system. Signi�cant error rate reduction over individual branches

wasachievedafter confusionsnetworks combination. The �nal error rateswere 20.5% on eval03.

System
WER%

s25 fsh Avg

P2-cn HLDA 26.6 18.4 22.6

P3a-cn SAT 24.5 17.1 20.9

P3c-cn SPron 24.7 17.6 21.3

P3a+P3c 23.9 16.8 20.5

Table 7.15 10xRT systembaselineperformancesfor eval03on CTSEnglish400 hour fsh2004sub

Table 7.16 showsthe CN decoding and systemcombination performancesof three additional

branches.The global HLDA systemused for lattice generation in table 7.15 was also re-adapted

as a rescoring branch. This is denoted by P3b in the table. In the previous experiments of

section 7.1.3 marginalized MPEgrowth functions were found to always outperform, or at least

match, the performance of BIC. Hence, in the experiments of this section only a 32 components

per state 65 HLDA transform VarMix system was built as a baseline. The number of useful

dimensions was set as 39 for all projections. The same component to transform assignment

schemeas in section 7.1.1 was used. This is denoted by “P3d” in the table. Examining the

single branch CN decoding performances, marginal improvement was obtained from the mul-

tiple HLDA systemover the single transform P3b branch. No WER improvement was obtained

if this system is combined with either the standard P3a or P3c branch over the standard two
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System
WER%

s25 fsh Avg

P3b-cn HLDA 24.8 17.7 21.4

P3d-cn MHLDA 24.5 17.8 21.3

P3e-cn GFunc 24.5 17.5 21.1

P3a+P3d 23.8 17.0 20.5

P3c+P3d 23.9 16.8 20.5

P3a+P3e 23.7 16.9 20.4

P3c+P3e 23.8 16.9 20.4

P3a+P3c+P3b 23.9 16.6 20.4

P3a+P3c+P3d 23.5 16.7 20.2

P3a+P3c+P3e 23.6 16.5 20.1

Table 7.16 Extended10xRT systemperformancesfor eval03on CTSEnglish400 hour fsh2004sub

way combination in table 7.15. However, a WERreduction of 0.3% was obtained if a three way

combination was performed between the two standard, and the P3d branches. This is expected

as the multiple HLDA systemsis structurally very different from the other two standard systems

due to the use of multiple feature spaces. A complexity controlled multiple HLDA systemwas

also built using marginalized MPE growth functions. The same con�gurations as described in

section 7.1.1, were used when determining the optimal complexity. The starting model was a

32 componentsper state standard system. The GFuncsystemhad 29.9 Gaussiansper state and

42.6 useful dimensionsper Gaussian.In the CN basedword posterior decoding stage,the GFunc

systemoutperformed both VarMix baselinesby 0.2%-0.3%. Replacing either of the two standard

branches in CNC combination with the P3e systemgave marginal WER reduction. Adding the

GFuncbranch yielded the best systemcombination performance, which is 0.4% better than the

baselinetwo way combination in table 7.15.

7.4.3 Discussion

In this section complexity control using marginalized discriminative functions was evaluated

under a state-of-the-art 10 real-time LVCSRframework. Discriminative training, large scalelan-

guage models, sophisticated adaptation and system combination were used to obtain the best

WERperformance. The gains from complexity controlled systemsin terms of single branch per-

formanceswere relatively smaller comparedwith previous experiments. Neverthelessmarginal-

ized discriminative growth functions was still found useful in combination with systemsusing

standard complexity control schemes.This complimentary effect may be partly due to the funda-

mental difference betweenmarginalized growth functions and standard techniques,asdiscussed

in chapter 5. In previous experiments, for instance in �gure 7.9 of section 7.1.3.4, such a differ-

encewas clearly re�ected in the selectedmodel structure during complexity control.
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7.5 Summary

Experimental results using discriminative growth functions for model complexity control were

presentedin this chapter for LVCSRtasks. Two complexity control attributes of an HLDA system,

the number of componentsper stateand the number of useful dimensionsper Gaussianwere op-

timized. The global level complexity control considered in section 7.1.2 for a CTStask, allowed

explicit construction and evaluation of all possiblestructural con�gurations. The correlation be-

tween WERand held-out data likelihood was found to be fairly weak for current ASRsystems.

This indicates that standard complexity control techniquesunder the likelihood framework may

not be appropriate for these tasks. In particular, a limitation of BIC was found when used to si-

multaneously optimize multiple complexity attributes simultaneously. A strong correlation was

observedbetween the WER and the marginalization of discriminative growth functions. They

are more closely related to the recognition error, rather than likelihood.

In the main part of this chapter the samecomplexity control problem was considered on a

local level. A series of experiments were conducted on four CTS English training sets of log-

linearly increasing sizesin section 7.1.3. Using the samecon�gurations, marginalized discrim-

inative growth functions will at least select a compact system with approximately the lowest

WER among all tuned systems,and in some casesmay yield further gains. More importantly

the same con�gurations were used throughout these experiments and no tunning of any free

parameterswas required. This is a desirable feature of a good complexity control technique. In

addition, a strong correlation between marginalized discriminative growth functions and WER

was observed. This technique was also found to generalize well to other LVCSRtasks. Further-

more, the gains from these growth function systemswere found to be largely additive to other

important acousticmodeling techniquesincluding discriminative training and speakeradaption.

In the �nal part of this chapter, marginalized discriminative growth functions was found to

yield complimentary gains in a state-of-the-art 10 real-time LVCSR system. Therefore, it may

be concluded that marginalized discriminative growth functions is a useful complexity control

technique for current speechrecognition systems.
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Experimentson Discriminative Training of Linear Projections

In this chapter the performance of discriminatively trained linear projection schemesare eval-

uated on three LVCSRtasks. First, experimental results on a CTStranscription task for English

data are presented. Then experimental results are presentedfor BN English and CTSMandarin

transcription tasks. These are followed by an investigation of the use of matched lattices for

the discriminative training of multiple projection systems.Finally, both complexity control and

parameter estimation are integrated into a consistentdiscriminative framework. The complexity

of discriminatively trained model structures is optimized.

8.1 Experiments on CTSEnglish

Discriminative training of linear projection schemeswere initially evaluated for CTS English

data. Two training sets, the 76 hour h5etrain03suband the 297 hour full set h5etrain03, as de-

scribed in section 7.1.1, were used. The 3 hour subset of 2001 development data, dev01sub,

as described in section 7.1.1, was used for performance evaluation. The same component to

transform assignmentschemedescribed in section 7.1.1 was also used for multiple projections.

Note that in all experiments, unless stated otherwise, neither the number of components per

state nor the number of useful dimensions was optimized using any complexity control scheme.

The number of useful HLDA dimensions was set as 39 for all projections. Like the complexity

control experiments in section 7.1, the lattices used for MPEtraining on both training setswere

generated using the standard 39 dimensional global HLDA systems. They were trained using

the ML criterion and had 12 and 16 Gaussiansper state respectively. A pruned bi-gram lan-

guage model was used during decoding. Theseword lattices were further marked with model

alignment and kept �xed for the MPE training of various systems. This was the “exact match”

approach describedin [ 124]. Four iterations of MPEtraining were performed after one re more

HLDA transforms were estimated. During the MPE training for all experiments the smoothing

constant is set E = 2:0, and the I-smoothing constant � I = 50. The variance �ooring described

in section 6.4.1 was used. HLDA transforms may be updated in multiple iterations of MPEtrain-

ing. However, due to the intensive memory storage requirement for full covariance statistics

112
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during the transform estimation, the projections are updated only once and then �xed during

subsequentMPE training of standard HMM parameters. Other details of the baseline systems

were the sameas in section 7.1.1.

8.1.1 Experiments on 76 Hour h5etrain03sub

Projection
#Trans #Dim

WER%

Schemes MLE MPE

HLDA
1

39
36.1 33.1

65 35.5 32.7

MPE-HLDA
1

39
- 33.0

65 - 32.4

Table 8.1 Performancesof HLDA systemsfor dev01subon CTSEnglish76 hour h5etrain03sub

Table 8.1 shows the performances of standard HLDA systems. The WER performances of

linear projections that were optimized using the MPE criterion are also shown in the table.

Theseare denoted by “MPE-HLDA” in the table. Asdiscussedin section 6.3.1, the discriminative

update of HLDA transforms requires the re-estimation of the Gaussianmeans and covariances

using the EBW algorithm. Hence it is only fair to compare the performancesof discriminatively

trained projections with the ML baselines after MPE training of other HMM parameters. In

the table the MPE-HLDA systemoutperformed the baselineHLDA systemwith a marginal WER

improvement when using a global HLDA projection. Similarly, when using 65 HLDA transforms

a marginal WERreduction of 0.3% was obtained from the MPE-HLDA systemover the baseline

multiple HLDA system. Compared to the baseline global HLDA system, the multiple transform

MPE-HLDA systemgavea total WERreduction of 0.7% absolute.

8.1.2 Experiments on 297 Hour h5etrain03

Projection
#Trans #Dim

WER%

Schemes MLE MPE

HLDA
1

39
34.9 30.9

65 34.2 30.3

MPE-HLDA
1

39
- 30.5

65 - 30.3

Table 8.2 Performancesof HLDA systemsfor dev01subon CTSEnglish297 hour h5etrain03

To further evaluate the performancesof discriminatively trained linear projection schemes,

a set of experiments similar to table 8.1 were conducted on the 297 hour full set h5etrain03.
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In table 8.2 the global MPE-HLDA system outperforms the comparable HLDA baseline system

by 0.4% absolute. Using 65 transforms, an absolute WERreduction of 0.6% was obtained over

the global HLDA baseline. Unfortunately there is no performance difference between the two

multiple transform systems. One possible reason may be that using the sameset of lattices for

the MPE training of all systemsis inappropriate as the differences among systemsare big. The

mismatch between lattices and systemswill increaseas the model structural con�gurations, for

instance the number of projections, and the underlying training criterion vary. This mismatch is

further investigated in later sections.

8.2 Experiments on BN English

Experimentson a BN task were also conducted to investigate the performance of discriminative

projections. The 144 hour training set bnetrain02, and the 2.7 hour of 2003 DARPA RT03 evalu-

ation data, eval03, asdescribedin section 7.3.1, were used in training and testing. All the other

experimental conditions remained the same.

Projection
#Trans #Dim

WER%

Schemes MLE MPE

HLDA
1

39
15.9 14.1

65 15.5 14.0

MPE-HLDA
1

39
- 13.9

65 - 13.8

Table 8.3 Performancesof HLDA systemsfor eval03on BN Englishon 144 hour bnetrain02

Table 8.3 shows the performances of various HLDA systemson the 144 hour BN set bne-

train02. For both global and multiple HLDA systems,optimizing the transform parametersusing

the MPE criterion yield marginal 0.2% WER improvement. A total WER reduction of 0.3% is

obtained over the global HLDA baselinesystemafter four iterations of MPEtraining. Note that

the gain from the multiple HLDA baseline system is greatly reduced from 0.5% to 0.1% after

MPE training. Similar to the CTS English experiments in table 8.2, there may be a mismatch

between the multiple HLDA systemsand the the lattices generated by a systemusing a global

projection.

8.3 Experiments on CTSMandarin

To further investigate the performancesof MPE-HLDA systems,experiments on a CTSMandarin

task were conducted. The 72 hour training set swmtrain94, as described in section 7.3.1, was

used in training. The the two test data sets, dev04and eval03, were also used. Note that the

16 components per state VarMix system was used as the baseline system for this setup. As
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discussedin section 7.3.1, the parametersof the HLDA projections were only estimated using 52

dimensional PLPfeatures. Pitch parameterswere then appendedto the projected feature vector.

Theseparameters present one issue for the MPE-HLDA systems. The pitch parameters need to

be appropriately initialized after the projections are estimated and before the subsequentMPE

update of Gaussianparameters. The approach used here is to take the pitch parameters from

the global HLDA ML baselinesystemand to then append them to the MPE-HLDA systems.Other

experimental conditions remain the sameas in section 7.3.1. Table 8.4 showsthe performances

of various HLDA systems. For the ML baselinesincreasing the number of transforms actually

led to marginal performance degradation. For the two systemsusing a global projection, the

MPE-HLDA system outperformed the ML baseline by 0.3% on eval03although the same WER

was obtained on dev04. Comparing the two multiple HLDA systems,signi�cant WERgains from

the MPE-HLDA systemwere obtained, 0.7% on dev04and 1.0% on eval03. Similarly, signi�cant

gainsover the baselineglobal HLDA systemwere 0.5% on dev04and 0.8% on eval03respectively.

Projection
#Trans #Dim

dev04 eval03

Schemes MLE MPE MLE MPE

HLDA
1

39
39.8 36.2 52.5 47.9

65 39.9 36.4 52.3 48.1

MPE-HLDA
1

39
- 36.2 - 47.6

65 - 35.7 - 47.1

Table 8.4 Performancesof HLDA systemsfor dev04and eval03of Mandarin Chineseon 76 hour swmtrain04

8.4 Experiments on Using Matched Lattices

In all previous experiments word lattices were generated only once using a global HLDA base-

line system. Theselattices were further marked with model alignment and kept �xed for MPE

training of various systems.One important issuewith this “exact match” approach is whether it

is appropriate to usethe sameset of lattices for training systemsthat are very different from the

one used to generate them. As discussedin section 6.4.3, ideally individual models should be

used to generate the matched lattices for MPEtraining. Using multiple projections a signi�cant

structural difference to a standard global HLDA systemis introduced. Furthermore, optimizing

the HLDA transform parameters in a discriminative fashion, instead of using the ML criterion,

also has a similar impact. Hence, the word level confusion and model alignment given by a

ML trained global HLDA systemmay no longer be appropriate for MPE-HLDA systems. In this

section this issueis investigated by using the matched lattices for MPEtraining of various HLDA

systems.The lattices were either completely re-generatedvia full decoding of the training data,

or only re-marked with model alignment using matched systems.
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8.4.1 Experiments on 76 Hour h5etrain03sub

On the 76 hour CTS English training set h5etrain03sub, matched lattices were generated by

completely re-decoding the training data using the matched acoustic models for the multiple

HLDA baselineand the two MPE-HLDA systemsin table 8.1 respectively. Matched lattices were

then used for the subsequentMPE training of each system while �xing the HLDA projections.

Note a different decoder, rather than the one usedfor training lattices generation in all previous

experiments, was used to re-decodethe training data.

Projection
#Trans #Dim

WER%

Schemes MLE MPE

HLDA
1

39
36.1 33.3

65 35.5 32.7

MPE-HLDA
1

39
- 32.8

65 - 32.3

Table 8.5 Performancesof HLDA systemsfor dev01subon CTSEnglish76 hour h5etrain03subusingmatched

word lattices

The lattices are found on averagesmaller than those used for experiments in table 8.1, by

approximately 20% in terms of the number of lattice nodes. This may have led to the marginal

performance degradation of the global HLDA baseline system in table 8.5. However, this still

allows the effect of using matched lattices to be investigated. In the table it is shown that us-

ing completely matched training lattices, the WERgain from using MPE-HLDA projections was

increased, compared to table 8.1. After four iterations of MPE training, 0.5% absolute WER

reduction was obtained from the global transform MPE-HLDA systemover the ML single trans-

form baseline. The 65 transform MPE-HLDA systemalso outperformed the multiple transform

ML baselineby 0.4% absolute, and the global HLDA baselineby 1.0% absolute in total.

8.4.2 Experiments on 144 Hour bnetrain02

Re-decodingthe training data to obtain matched lattices is highly expensivefor LVCSRsystems.

In order to reduce the computational cost, in this section only the model alignment was re-

generatedusing matched acousticmodels. It is therefore assumedthat the word level confusion

is usedfor multiple model sets. In this sectionon the 144 hour BN English training setbnetrain02,

matched lattices were generated by re-model marking the same set of word lattices using the

multiple HLDA baseline, and the two MPE-HLDA systemsin table 8.3 respectively. As in the

previous experiments, the sameHLDA transforms in table 8.3 were used and kept �xed during

the MPE update of standard HMM parameters. Table 8.6 shows the performances of various

HLDA systemson eval03, after four iterations of MPEtraining using lattices with matched model

alignment. Compared with previous results in table 8.3, where a single set of lattices was used

for all systems, there was marginal improvement from both the multiple HLDA baseline and
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the global transform MPE-HLDA systems. Unfortunately, no performance improvement was

obtained from the multiple transform MPE-HLDA system over the comparable multiple HLDA

baseline.

Projection
#Trans #Dim

WER%

Schemes MLE MPE

HLDA
1

39
15.9 14.1

65 15.5 13.9

MPE-HLDA
1

39
- 13.8

65 - 13.8

Table 8.6 Performancesof HLDA systemsfor eval03on BNEnglish144 hour bnetrain02usingmatchedphone

lattices

8.4.3 Discussion

In this section matched lattices were used for the subsequentMPE training of standard HMM

parameters after linear projections were estimated. Marginal performance improvements were

obtained on a CTS English transcription task by completely re-decoding the training data. To

reduce the computational cost, for the BN English data the same set of word lattices were re-

marked with model alignment using the matched acousticmodels. Unfortunately, no signi�cant

WER reduction was obtained by only re-generating the model alignment. Re-generating the

training data lattices can be very expensivefor LVCSRsystems.Given the small performance im-

provementsobserved,the mismatch between systemsand the lattices may be ignored in practice

for discriminative training of linear projections.

8.5 Integrated Model Complexity and Parameter Optimization

The complexity control systemsconsidered in chapter 7 were trained using the ML criterion

whilst discriminative statistics were used to select the optimal structural con�guration. In con-

trast all the experiments in this chapter so far only considered discriminative training of HLDA

systemswhile the model complexity was not controlled. As discussedin section 6.4.4, it is

interesting to integrate both model selection and parameter estimation into a consistent dis-

criminative learning process.When selecting the number of Gaussiancomponentsper state, for

instance, Gaussianparameterswill be consideredto be discriminatively estimated for eachcan-

didate model structure. Similarly, when selecting the number of useful dimensions for multiple

HLDA systems,the HLDA transforms and other model parameterswill also be considered to be

discriminatively updated. In this section two setsof experiments are conducted on the 46 hour

CTSEnglish corpus minitrain04and the 76 hour set h5etrain03sub, asdescribedin section 7.1.1.
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8.5.1 Optimizing the Number of Gaussians

Table 8.7 showsthe performancesof two global HLDA systemsafter complexity control and MPE

training on the 46 hour CTStraining set minitrain04. The �rst systemis the 20 component Fixed

baseline in table 7.3 on this setup. The number of componentsper state was not optimized for

this system and there was no merging of Gaussiancomponents. After four iterations of MPE

training, the WER was reduced to 34.6%. The secondwas the GFunc system in table 7.3. Its

complexity was determined by considering the parameters to be ML trained during and after

complexity control. As discussedin section 5.6.1, the parameters of the merged components

are estimated in a standard ML fashion. The combined suf�cient ML statistics derived from the

merging operation were usedto estimate the meansand covariancesof the merged components.

Four iterations of MPEtraining were performed on top of the �nal MLE model and the WERwas

reduced to 34.3%. In contrast, for the second GFunc system the selection of complexity and

Complexity Parameter Estimation
#Gauss

WER%

Control for Merged Components MLE MPE

Fixed - 20 37.5 34.6

MPEGFunc MLE 18.34 37.2 34.3

MPEGFunc MPE 18.23 - 34.3

Table 8.7 Integratedcomplexitycontrol and parameterestimation for global HLDA systemsfor dev01subon

CTSEnglish46 hour minitrain04

the parametersupdate were both discriminative during model selection. Parametersof merged

Gaussiancomponents were considered to be MPE updated when determining the number of

components for each state. The combined suf�cient MPE statistics derived from the merging

operation were used for this purpose. Like the baseline GFunc system in the table, a total of

four iterations of complexity control were performed using marginalized MPEgrowth functions.

Between iterations model parameterswere updated using one iteration of standard MPE train-

ing. Other con�gurations were the sameas the MPEGFuncsystemin table 7.3. Unfortunately,

there was no performance improvement by consistently optimizing both the complexity and pa-

rameters using a discriminative measure,though the samecomplexity control gain of 0.3% was

obtained over the Fixed baselineafter MPEtraining. In addition, the two GFuncsystemsselected

approximately the samenumber of componentsper state.

8.5.2 Optimizing the Number of Dimensions

To further investigate the integration of complexity control and parameter estimation, exper-

iments were also conducted on the 76 hour set CTS English h5etrain03subfor multiple HLDA

systems. Table 8.8 shows the WER performances of four multiple HLDA systemson dev01sub

using the 76 hour h5etrain03sub. The �rst two Fixed systemsare the multiple transform HLDA

and MPE-HLDA systemsin table 8.1. For neither systemwas the number of useful dimensions
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Complexity HLDA Estimation during HLDA Estimation after
#Dim

WER%

Control Complexity Control Complexity Control MLE MPE

Fixed - MLE 39 35.5 32.7

Fixed - MPE 39 - 32.4

MPEGFunc MLE MLE 35.16 35.0 32.3

MPEGFunc MPE MPE 38.29 - 32.4

Table 8.8 Integrated complexity control and parameter estimation for 65 transform HLDA systemsfor

dev01subon CTSEnglish76 hour h5etrain03sub

controlled. The third baseline system is a comparable MPE GFunc systemon the 76 hour cor-

pus. During and after complexity control, its model parameters, including projections, were

consideredto be ML trained. After MLE training, four additional iterations of MPEtraining were

performed while the ML trained HLDA projections were �xed. In contrast the second GFunc

systemtable had an integrated complexity and parameter optimization. During and after com-

plexity control, all model parameters, including the HLDA projections, were discriminatively

estimated. Other experimental conditions remained the sameasthe baselineGFuncsystem.Un-

fortunately, this systemgaveslight performance degradation compared with the baselineGFunc

systemafter MPEtraining. Furthermore, the two systemshad rather similar complexity.

8.5.3 Discussion

In this section a consistent discriminative optimization of model complexity and model param-

eters was investigated on CTS tasks. Initial experimental results show that there is no clear

advantagein constraining the parameter estimation to be discriminative during model selection

using marginalized discriminative growth functions. This may indicate that the two distinct

stagesof model building, complexity control and parameter estimation, are independent of one

another for current speechrecognition systems.

8.6 Summary

In this chapter experimental results of discriminative training of linear projection schemeswere

presented on three LVCSRtasks. Performance improvements were obtained over standard sys-

tems that use ML trained projections. The use of matched lattices for the subsequentdiscrim-

inative training, after linear projections were estimated, was also investigated. Marginal WER

gains were obtained by completely re-decoding the training data using matched acoustic mod-

els. Finally, a consistent discriminative optimization of model complexity and parameters was

evaluated. It was found that model selection and parameter estimation may be independent

of one another for current speechrecognition systems. Initial experimental results showed no

advantagein constraining the criteria for model selection and parameter estimation to be of the
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samediscriminative nature during complexity control.



9

Conclusionand Future Work

In this thesis the automatic complexity control and feature selection problems for HMM based

recognition systemsare investigated. First, a novel discriminative complexity control framework

was proposed. Under this general framework, model selection is basedon the marginalization

of a discriminative measure. This should be more explicitly related to the recognition error

rate than standard likelihood based criteria. Ef�cient approximation schemeswere proposed

to make the marginalization more tractable for HMMs. Second, the discriminative training of

linear projections was investigated. Theseprojections should yield a compact feature represen-

tation with improved discriminative power compared with the standard maximum likelihood

approach. Finally, the performancesof discriminative complexity control and linear projections

were evaluated on a wide range of LVCSRtasks. In this chapter, a more detailed summary of the

thesis is presented. Somepossibledirections for future researchare also discussed.

9.1 Review of Work

The theory of model complexity control using the marginalization of a discriminative measure

was presentedin chapter 5. Most of the standard standard model selection techniquesdiscussed

in chapter 3 reply on an inherent assumption that the classi�cation error is strongly correlated

with the likelihood on unseen data. Hence increasing the likelihood on the unseen date, or

equivalently the marginal likelihood on the observeddata, should decreasethe error rate. How-

ever, this strong assumption is not true for current speechrecognition systemsusing HMMs,

as discussedin section 3.6. This is due to the incorrect modeling assumptions about speech

signals in these systems. As this correlation is weakened, the predicted performance ranking

basedon the likelihood will be increasingly poor. This is the rationale behind the discriminative

complexity control framework proposed in this thesis. Since the ultimate aim of model com-

plexity control for speechrecognition is to minimize the recognition error rate on unseendata,

it is more appropriate to marginalize a criterion that is more explicitly related to the error rate.

Discriminative criteria are natural choices for this purpose. They are more directly related to

recognition error rate than likelihood.

121
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However, due to the sensitivity to outliers, a direct marginalization of these discriminative

criteria may be inappropriate for complexity control. For instance, sentenceswith very low pos-

teriors are heavily weighted for the MMI criterion. The performance ranking prediction may be

distorted due to the presenceof these outliers. To handle this problem, the proposed method

is basedon the marginalization of a discriminative growth function. It maintains some of the

attributes of the original discriminative criterion and is lesssensitive to outliers. The marginal-

ization of this growth function is used to determine the appropriate model complexity. This

discriminative framework for complexity control is a very different approach to the standard

likelihood basedschemesdiscussedin chapter 3. Bayesianmodel selection techniquesare based

on the marginalization of the training data likelihood, or the evidence. In contrast the discrim-

inative model selection method proposed in this thesis is basedon a “discriminative evidence”

that directly measuresthe discriminative power of model structures. In section 5.3 a general

form of growth function was introduced. Then two forms of discriminative growth functions

were proposed for the MPE and MMI criteria in sections5.4 and 5.5 respectively. To make the

marginalization of the two growth functions more tractable, an EM-like approachwas usedto to

yield a lower bound approximation. This lower bound was then marginalized ef�ciently using

Laplace'sapproximation for complexity control. Finally, in section 5.6 some important imple-

mentation issueswere discussedto make the marginalization of discriminative growth functions

more ef�ciently for complexity control. In particular, detailed implementation issuesfor systems

using HLDA style linear projections were discussed.

The discriminative training algorithms for linear projections were presented in chapter 6.

An important aspectof a speechrecognition problem is to derive a good, and compact, feature

representation. This should contain suf�cient discriminant information to minimize the classi�-

cation error. One commonly used type of techniques is the linear projection schemesdiscussed

in section 2.4. When using these schemes,the projections are normally trained using the ML

criterion. As discussedin sections4.1 and 6.1, there are incorrect modeling assumptionsabout

speechsignalsin current HMM basedASRsystems.For thesesystemsmerely increasing the like-

lihood on unseen or observeddata does not necessarilyimprove the recognition performance.

Hence, in addition to the discriminative control of subspacedimensions, it is also preferable

to employ discriminative criteria to estimate linear projections. Thesecriteria are more closely

related to the recognition error rate than likelihood. This is the motivation of developing dis-

criminative training schemesfor linear projection schemes.

Unfortunately, the existing discriminative training algorithms may not be appropriate to

use for linear projections: the EBW algorithm can only be used to optimize standard forms of

HMM parameters; gradient descentbasenumerical techniques are inef�cient for LVCSR train-

ing and have dif�culty guaranteeing convergencein practice. The recently introduced weak-

senseauxiliary function approach provides a �exible and intuitive derivation of the EBW algo-

rithm [ 91, 89, 93]. This method may also be used to ef�ciently optimize a variety of forms of

model parametersincluding linear projections. In sections6.3.1 and 6.3.2 a weak-senseauxiliary

function was further used for the discriminative estimation of linear projections, asexamplesof
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non-standard form of model parameters. Finally, in section 6.4 someimplementation issuesfor

the the discriminative estimation of linear projections were discussed.In particular, a consistent

discriminative optimization of both model complexity and parameterswasdiscussedby bridging

the researchin chapter 5 and chapter 6.

Experimental results on complexity control using marginalized discriminative growth func-

tions were presentedin chapter 7. Asdiscussed,the key motivation of using the marginalization

of a discriminative measure is that this method is more strongly correlated with the recogni-

tion error rate than likelihood. This correlation was initially investigated for the optimization

of two complexity attributes of an HLDA systemtrained using the ML criterion. The number of

componentsand number of useful dimensionswere controlled globally on an LVCSRtask in sec-

tion 7.1.2. This allowed all possiblesystemsto be explicitly built and evaluated to examine the

correlation betweenWERand complexity control criteria. The correlation between the WERand

the likelihood on unseendata was found to be fairly week for current HMM basedASRsystems.

A limitation of BIC was also found when optimizing multiple complexity attributes simultane-

ously. This is becausethe BIC approximation may become increasingly poor as the amount of

observeddata decreases.Furthermore, the differences in the form of model parameters is not

consideredby BIC. In the experiments the issueswith a direct useof discriminative criteria was

alsoclearly shown. The MMI criterion, for instance,was heavily in�uenced by outliers sentences

with very low posteriors and led to a poor selection of model complexity.

To further investigate model selection using marginalized discriminative growth functions,

the sametwo complexity attributes of HLDA systemswere optimized on a local level for a wide

range of LVCSRtasks. Experimental results on four CTSEnglish training setupswere presented

in section 7.1.3. Acrossdifferent training data sets,if not giving further gainsover the bestman-

ually tuned system,the marginalized MPEgrowth function will at least selecta compact system

with approximately the lowest WERamong all tuned systems. Furthermore, the samecon�gu-

rations describedin section 5.6 were used throughout theseexperiments and no tunning of any

free parameterswas required. A strong correlation between marginalized discriminative growth

functions and WERwasobservedin the experiments. Theseare desirablefeaturesof a good com-

plexity control technique. Using marginalized MPEgrowth functions compactmodels tend to be

selected.This is particularly useful for discriminative training techniques,asgood generalization

to unseendata is preferred. Hence, in section 7.2 the gains from thesegrowth function systems

were also found most additive to discriminative training, and furthermore, MLLR basedspeaker

adaption. In section 7.3, complexity control using marginalized discriminative growth functions

was also found to generalize well to other LVCSRtasks. Finally, in section 7.4 complexity con-

trol using marginalized discriminative growth functions was evaluated in a state-of-the-art 10

real-time LVCSRsystem. WERgains were obtained in both adaptation and systemcombination

stages. Therefore, it may be concluded that marginalized discriminative growth functions is a

general form of complexity control technique and may be useful for current speechrecognition

systems.

Experimental results for the discriminative training of linear projection schemeswere pre-
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sented in chapter 8. HLDA projections estimated using the MPE criterion were evaluated on

three LVCSR tasks. Acrossdifferent training sets and tasks, performance improvements were

obtained over the baseline systemsusing the ML trained projections. Then the use of matched

lattices for the subsequentdiscriminative training of standard HMM parametersafter estimating

linear projections was investigated. Unfortunately, only small WERgains were obtained by us-

ing matched lattices. Considering the trade-off between the computational cost and the relative

performance improvement, the mismatch between systemsand lattices may be ignored for lin-

ear projection schemesin practice. Finally, a consistently discriminative optimization of model

complexity and parameters discussedin section 6.4.4 was evaluated. Initial experimental re-

sults showed no clear advantage in constraining the criteria for model selection and parameter

estimation to be of the same discriminative nature during complexity control. This may indi-

cate that model selection and parameter estimation may be fairly independent of one another

for current speechrecognition systems. In summary, it may be concluded that discriminatively

estimated linear projection schemesare useful to improve the performances of current speech

recognition systems.

9.2 Future Work

There are severalaspectsof the work presentedin this thesis may require further investigation,

either in terms of different application domains, or modi�cations to the existing approaches.

Theseare summarized asbelow:

� Marginalized discriminative growth functions is a general form of model complexity con-

trol technique. In this thesis complexity attributes of HLDA systemswere optimized. It

would be interesting to further apply this technique to control the complexity of other

forms of acoustic models, such as the dimensionality of the state space of factor ana-

lyzed HMMs [ 98], or the number of inverse covarianceexperts in precision matrix model-

ing [ 108].

� The discriminative growth functions investigated in this thesis are related to the MPEand

MMI criteria. For other pattern classi�cation tasks,alternative forms of error rate measure-

ment, rather than word or sentencelevel error rate, may be required. In these cases,the

marginalized discriminative growth functions basedapproach may also be used, as long

as an appropriate form of growth function is selectedfor the underlying criterion. Again

the growth function selectedshould still have reduced sensitivity to outliers and be in a

relatively tractable form. This provides a �exible framework for model complexity control

whichever cost function is used.

� Laplace'sapproximation wasusedto compute the marginalization of discriminative growth

functions in this thesis. However, this only gives a secondorder expansion of the growth

function integral. Hence, it would be preferable to explore other approximation schemes

to incorporate more information from ignored higher order terms.
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� Integrating model selection and parameter estimation under a discriminative framework

was initially investigated for HLDA systemsin this thesis. As this consistentdiscriminative

learning processis a very different approach from ML, or Bayesian, learning, it may be

interesting to further explore the advantageof this integration for other forms of statistical

models and applications.
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Derivationsof MPEGrowth Functions

This appendix details the derivation of the MPE growth function lower bound. The derivation

starts from the MPE growth function given in equation 5.6. Finally, the lower bound in equa-

tion 5.9, the MPE auxiliary function in equation 5.10 and the statistics in equation 5.11 are

derived. Following the de�nition of the MPE criterion in equation 4.6, the growth function in

equation 5.6 may be re-written as

G(� ) =
X

~W

p(O; ~Wj� )A ( ~W; W) � Fmpe(~� )p(Oj� )

+ C
X

~W
A ( ~W ;W ) < F mpe( ~� )

p(O; ~Wj� )
h
Fmpe(~� ) � A ( ~W; W)

i
(A.1)

An important aspectof the growth function is its expansion, G( ; � ), over hidden variable se-

quences,f  g. Following equation A.1 above, this is given by

G( ; � ) =
X

~W

p(O;  ; ~Wj� )A ( ~W; W) � Fmpe(~� )p(O;  j� )

+ C
X

~W
A ( ~W ;W ) < F mpe( ~� )

p(O;  ; ~Wj� )
h
Fmpe(~� ) � A ( ~W; W)

i
(A.2)

All the following derivations are basedon various forms of the expansion in equation A.2. To

make the growth function marginalization more ef�cient, a lower bound on G(� ) may be derived

using an EM-like approach via Jensen'sinequality. In a similar fashion to the log-likelihood

bound in equation 2.5, a distribution over the hidden state sequences,P( ; ~� ), is required. The

lower bound is given by

logG(� ) = log
X

 
P( ; ~� )

G( ; � )

P( ; ~� )

�
X

 
P( ; ~� ) log

G( ; � )

P( ; ~� )

= L mpe(�; ~� ) (A.3)

126



APPENDIXA. DERIVATIONS OF MPEGROWTHFUNCTIONS 127

In order to make the above bound valid, the hidden variable sequence“posterior” distribution

P( ; ~� ) must satisfy the non-negative and sum-to-one constraint. The form of posterior consid-

ered here is

P( ; ~� ) =
G( ; ~� )

P
 G( ; ~� )

(A.4)

Note that P( ; ~� ) is not the true hidden state sequenceposterior as used in the standard EM

algorithm for ML training. Neverthelessit may still be related to a term, 
 mpe
 (O), which may be

viewed as the MPEhidden state sequence“occupancy”. Following equation A.2, this is given by,

G( ; ~� ) = p(Oj~� )
 mpe
 (O) (A.5)

and


 mpe
 (O) =

X

~W

P( ; ~WjO; ~� )A ( ~W; W) � Fmpe(~� )P( jO; ~� )

+ C
X

~W
A ( ~W ;W ) < F mpe( ~� )

P( ; ~WjO; ~� )
h
Fmpe(~� ) � A ( ~W; W)

i
(A.6)

When C is suf�ciently large the non-negative and sum-to-one constraint will hold for P( ; ~� ).

In order to derive the growth function lower bound in equation 5.9 by further re-arranging

equation A.3, another form of G( ; � ), given in equation A.2, is required. This is given by

G( ; � ) = p(O;  j� )

8
<

:

X

~W

P( ~Wj )A ( ~W; W) � Fmpe(~� )

+ C
X

~W
A ( ~W ;W ) < F mpe( ~� )

P( ~Wj )
h
Fmpe(~� ) � A ( ~W; W)

i

9
>>=

>>;
(A.7)

becausefor HMMs given the state sequence,the likelihood of observationsare independent of

the words.

p(O;  ; ~Wj� ) = p(O;  j� )P( ~Wj ) (A.8)

Now following equations A.4, A.5, and A.7, the lower bound in A.3 may be re-arranged as

L mpe(�; ~� ) = logG(~� ) +
X

 


 mpe
 (O)

P
 
 mpe

 (O)
logp(O;  j� )

�
X

 


 mpe
 (O)

P
 
 mpe

 (O)
logp(O;  j~� ) (A.9)

and the only term associatedwith model parameters, � , is given by
X

 

 mpe
 (O) logp(O;  j� ) =

X

 

 mpe
 (O) logp(Oj ; � ) +

X

 

 mpe
 (O) logP( j� )
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For the complexity control problem consideredin this work, the state transition probabilities and

Gaussiancomponent priors are kept �xed. Hence the term related to the hidden state sequence

priors in equation A.9,
P

 
 mpe
 (O) logP( j� ) may be canceledout by

P
 
 mpe

 (O) logP( j~� ).

Now the only term related to model parameters,� , in equation A.9 is
P

 
 mpe
 (O) logp(Oj ; � ).

For HMMs, rather than using the state sequenceposteriors, the hidden state occupanciesare

normally used. The aim is to to re-expressthe hidden state sequenceposteriors, 
 mpe
 (O), given

in equation A.6, as the state occupanciesgiven in equation 5.11. To do so 
 mpe
 (O) needsto be

re-written using the MPEword sequenceoccupancyde�ned in equation 4.22. This is given by 1


 mpe
 (O) =

X

~W ;
 mpe
~W

� 0

P( jO; ~W; ~� )
 mpe
~W

+
X

~W ;
 mpe
~W

< 0

P( jO; ~W; ~� )
 mpe
~W

� C
X

~W ;
 mpe
~W

< 0

P( jO; ~W; ~� )
 mpe
~W

: (A.10)

When considering HMMs by summing over all the sequencespassingthrough the samestate for

each time instance, the MPEstatistics, 
 mpe
j (� ), in equation 5.11 may be derived. Now the only

term related to model parametersin equation A.9,
P

 
 mpe
 (O) logp(Oj ; � ), may be re-written

as

X

 

 mpe
 (O) logp(Oj ; � ) =

X

j ;�


 mpe
j (� ) logp(o� j � = Sj ; � ):

This gives the MPE auxiliary function, Qmpe(�; ~� ), in equation 5.10. Finally, given this form of

Qmpe(�; ~� ) the growth function lower bound in equation A.9 may bere-written asin equation 5.9.

1Note the binary partition of all possible word sequenceswith respect to the sign of 
 mpe
~W

was also used in the

standard form of MPEstatistics of equation 5.13 asproposed in [ 93] for discriminative training.
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Derivationsof MMI Growth Functions

This appendix details the derivation of the MMI growth function lower bound. The derivation

starts from the MMI growth function given in equation 5.15. The lower bound in equation 5.17,

the MMI auxiliary function in equation 5.18 and the statistics in equation 5.19 are �nally de-

rived. Following the de�nition of the MMI criterion in equation 4.1, the growth function in

equation 5.15 may be re-written as

G(� ) = p(Oj� )
h
P(WjO; � ) � P(WjO; ~� ) + CP(WjO; ~� )

i
(B.1)

An important aspectof the growth function is its expansion, G( ; � ), over hidden variable se-

quences,f  g. Following equation B.1 above, this is given by

G( ; � ) = p(O;  ; Wj� ) � P(WjO; ~� )p(O;  j� ) + CP(WjO; ~� )p(O;  j� ) (B.2)

All the following derivations are basedon various forms of the expansion in equation B.2. To

make the growth function marginalization more ef�cient, a lower bound of G(� ) may be derived

using an EM like approachvia Jensen's'inequality. In a similar fashion to the log-likelihood lower

bound in equation 2.5, a distribution over the hidden state sequences,P( ; ~� ), is required. The

lower bound is given by

logG(� ) = log
X

 
P( ; ~� )

G( ; � )

P( ; ~� )

�
X

 
P( ; ~� ) log

G( ; � )

P( ; ~� )

= L mpe(�; ~� ) (B.3)

In order to make the above bound valid, the hidden variable sequence“posterior” distribution

P( ; ~� ) must satisfy the non-negative and sum-to-one constraint. The form of posterior consid-

ered here is

P( ; ~� ) =
G( ; ~� )

P
 G( ; ~� )

(B.4)
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Note that P( ; ~� ) is not the true hidden state sequenceposterior as used in the standard EM

algorithm for ML training. Neverthelessit may still be related to a term, 
 mmi
 (O), which may be

viewed as the MMI hidden state sequence“occupancy”. Following equation B.2, this is given by

G( ; ~� ) = p(O; Wj~� )
 mmi
 (O) (B.5)

and


 mmi
 (O) = P( jO; W; ~� ) � P( jO; ~� ) + CP( jO; ~� ): (B.6)

When C is large enough the non-negative and sum-to-one constraint will hold for P( ; ~� ). To

further re-arrange the lower bound in equation B.3, another form of G( ; � ), given in equa-

tion B.2, is required. This is given by

G( ; � ) = p(O;  j� )
h
P(Wj ) � P(WjO; ~� ) + CP(WjO; ~� )

i
(B.7)

becausefor HMMs given the state sequence,the likelihood of observationsare independent of

the words sequencesas given in equation A.8. Now, following equations B.4, B.5, and B.7, the

lower bound in B.3 may be re-arranged as

L mmi(�; ~� ) = logG(~� ) +
X

 


 mmi
 (O)

P
 
 mmi

 (O)
logp(O;  j� )

�
X

 


 mmi
 (O)

P
 
 mmi

 (O)
logp(O;  j~� ) (B.8)

and the only term associatedwith model parameters, � , is given by
X

 

 mmi
 (O) logp(O;  j� ) =

X

 

 mmi
 (O) logp(Oj ; � ) +

X

 

 mmi
 (O) logP( j� )

For the complexity control problem consideredin this work, the state transition probabilities and

Gaussiancomponent priors are kept �xed. Hence the term related to the hidden state sequence

priors in equation B.8,
P

 
 mmi
 (O) logP( j� ) may be canceledout by

P
 
 mmi

 (O) logP( j~� ).

Now the only term related to model parameters,� , in equation B.8 is
P

 
 mmi
 (O) logp(Oj ; � ).

For HMMs, rather than using the state sequenceposteriors, the hidden state occupanciesare

normally used. The aim is to to re-expressthe hidden state sequenceposteriors, 
 mmi
 (O), given

in equation B.6, as the state occupancies,
 mmi
j (� ), given in equation 5.19. For HMMs, by sum-

ming over all the sequencespassing through the same state for each time instance, the MMI

statistics, 
 mmi
j (� ), in equation 5.19 may be derived. The only term related to model parameters

in equation B.8,
P

 
 mmi
 (O) logp(Oj ; � ), may also be re-written as

X

 

 mmi
 (O) logp(Oj ; � ) =

X

j ;�


 mmi
j (� ) logp(o� j � = Sj ; � ):

This is the MMI auxiliary function, Qmmi(�; ~� ), in equation 5.18. Finally, given this form of

Qmmi(�; ~� ) the growth function lower bound in equation B.8 may be re-written as in equa-

tion 5.17.



C

Derivationsof MPETraining of HLDA

This appendix details the derivation of the gradient of the weak-senseauxiliary function against

parametersof HLDA transforms on a row by row basis,asgiven in equation 6.5. The derivation

starts from the gradient of the weak-senseauxiliary function in equations 6.2, and 6.4. Finally

the gradient against rows of HLDA transforms in equation 6.5 is derived.

Substituting the gradient information in equation 6.4 into equation 6.2 givesthe weak-sense

auxiliary function's gradients againsthe rows of HLDA projections that associatedwith the useful

and nuisancedimensions repectively. Theseare given by

@Q(�; ~� )

@a (r )
i;i � p

�
�
�
�
�
� = ~�

=

2

4
X

j 2 r ;�

(
 num
j (� ) � 
 den

j (� )) +
X

j 2 r

D j

3

5 ~c(r )>
i

~a (r )
i ~c(r )

i

�
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j 2 r

~a (r )
i

�� (j )2
i

(
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� �
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+ D j

Z
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� >
do
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=
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do

�
: (C.1)

To simply the aboveequations, �rst let us the caseof useful dimensions, i � p, for example,

and examine the following expression.

131



APPENDIXC. DERIVATIONS OF MPETRAINING OF HLDA 132

X
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It is known that p(oj o = Sj ; ~� ) = N (o; ~� (j ) ; ~�
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) is a GaussianPDF, henceone may have
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and then equation C.2 may be written as
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:

Using the EBW update for Gaussianmeans and covariancesin equation 4.16, and the nu-

merator and denominator statistics de�ned in equations 4.17, 4.18, the above may be further

simpli�ed as
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and � (j ) is the discriminatively updated full covariance using the EBW algorithm in equa-

tion 4.16.
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In a similar fashion, examining the following expression for nuisance dimensions, i > p,

gives

X

j 2 r

(
X

�

�

 num

j (� ) � 
 den
j (� )

� �
o� � � (g;r )

� �
o� � � (g;r )

� >

+
Z

p(oj o = Sj ; ~� )
�

o � � (g;r )
� �

o � � (g;r )
� >

do
�

�� (j )� 2
i

=
X

j 2 r

�� (j )� 2
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#
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Finally, substituting equations C.4 and C.5 into equation C.1, the gradient against rows of

HLDA transforms given in equation 6.5 may be derived, where the suf�cient discriminative

statistics, G (r ;i ) , are accumulated as in equation 6.6.
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