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Abstract

Improving Cascaded Systems in Spoken Language Processing
Yiting Lu

Spoken language processing encompasses a broad range of speech production and per-
ception tasks. One of the central challenges in building spoken language systems is the
lack of end-to-end training corpora. For example in spoken language translation, there is
little annotated data that directly transcribes speech into a foreign language. Therefore, in
spoken language processing, a cascaded structure is widely adopted. This breaks down the
complex task into simpler modules, so that individual modules can be trained with sufficient
amount of data from the associated domains. However, this simplified cascaded structure
suffers from several issues. The upstream and downstream modules are usually connected
via an intermediate variable, which does not always encapsulate all the information needed
for the downstream processing. For example, speech transcriptions cannot convey prosodic
information, and any downstream tasks operating on transcripts will have no access to speech
prosodies. The cascaded structure also forces early decisions to be made at the upstream
modules, and early stage errors would potentially propagate through and degrade the down-
stream modules. Furthermore, individual modules in the cascaded system are often trained in
their corresponding domains, which can be different from the target domain of the spoken
language task. The mismatched training and evaluation domains would cause performance
degradation at the inference stage. The focus of this thesis is therefore to investigate multi-
modular integration approaches addressing the issues facing the simple cascaded structure,
and to improve spoken language processing tasks under limited end-to-end data.

The contributions of this thesis are three-fold. The first contribution is to describe
the general concept of multimodular combination. The scoring criteria are modified to
enable assessment of individual modules and complete systems, and approaches are explored
to improve the vanilla cascaded structure. Three categories of spoken language systems
are considered with an increasing level of module integration: cascaded, integrated and
end-to-end systems. Cascaded systems train individual modules in their corresponding
domains, and do not require any end-to-end corpora. Integrated systems propagate richer
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information across modular connections, and require a small amount of end-to-end data
to adapt to the target domain. End-to-end systems drop the notion of modules and require
large amount of end-to-end data to reach convergence. More tightly integrated systems
generally require larger amount of end-to-end training data. With the trade-off between
modelling power and data efficiency, different approaches are discussed aiming to strike
a balance between the two. The second contribution of this thesis is to propose a general
framework of reranking for multimodular systems, addressing both the error propagation
and information loss issues. Rerankers are commonly used for single module sequence
generation tasks, such as speech recognition and machine translation. In this work, rerankers
are applied to multimodular systems, where they directly access the hypothesis space of the
intermediate variables at the modular connection. Taking into account multiple hypotheses of
the modular connection leads to a richer information flow across modules, and consequently
helps reduce error propagation. The third contribution of this thesis is to propose the
embedding passing approach. The idea is to extract continuous feature representations of
the upstream context, and use them as the modular connection. The embedding connection
allows richer information propagation as well as gradient backpropagation across modules,
thus enabling joint optimisation of the multimodular system.

Among the wide range of possible spoken language tasks, this thesis considers three
example tasks with an increasing level of complexity: spoken disfluency detection (SDD),
spoken language translation (SLT) and spoken grammatical error correction (SGEC). Spon-
taneous speech often comes with disfluencies, such as filled pauses, repetitions and false
starts. As an important pre-processing step for many spoken language systems, SDD removes
speech disfluencies and recovers a fluent transcription flow for downstream text processing
tasks. SLT converts speech inputs into foreign text outputs, which is commonly adopted for
automatic video subtitling as well as simultaneous interpreting. It is a challenging application
that brings together automatic speech recognition (ASR) and neural machine translation
(NMT), both of which are complex sequence-to-sequence tasks. With growing global demand
for learning a second language, SGEC has become increasingly important to give feedback
on the grammatical structure of spoken language. SGEC converts non-native disfluent speech
into grammatically correct fluent text, and the main challenge is to operate under extremely
limited end-to-end data. The SDD and SLT systems are respectively evaluated on the pub-
licly available Switchboard and MuSTC datasets, and the SGEC system is evaluated on a
proprietary LIN corpus. The experiments demonstrate that: the simple cascaded structure
gives reasonable baselines for spoken language tasks; the proposed reranking and embedding
passing approaches are both effective in propagating richer information and mitigating error
propagation under limited end-to-end training corpora.
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Chapter 1

Introduction

Speech communication has always been the backbone of information exchange in human in-
teractions. Today’s computer development attempts to extend such human-human interaction
to human-machine interface. Recent research has focused on using deep learning approaches
for spoken language processing applications.

1.1 Spoken language processing

Spoken language processing [89] is a broad area encompassing speech production and
perception. Speech synthesis generates human-like speech from text inputs [235]. Voice con-
version [202, 146] transforms one’s voice into another without changing the speech content.
Tasks like spoken language translation [152, 195], spoken language understanding [46, 210]
and spoken dialogue systems [131, 215] all extract contextual information from the speech
sequences, and convert them into textual sequences. The scope of this work mainly concerns
the speech-to-text applications.

Speech-to-text applications take speech signals as inputs, and produce text sequences
depending on the application purposes. For example, spoken language translation systems
convert speech in one language into text in a different language, and spoken dialogue systems
produce text responses to speech inquiries from user prompts. One of the essential elements
in developing spoken language systems is end-to-end data, with which the models can be
trained to extract relevant acoustic context and further produce textual outputs upon requests.
Unfortunately, such end-to-end data across modalities is a scare resource for most tasks. For
example in spoken language translation, there is little annotated data that directly transcribes
speech into a foreign language. On the other hand, there is usually an abundance of annotated
data for speech recognition as well as various text processing tasks.
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Due to the lack of end-to-end data, spoken language systems are usually broken down into
multiple simpler modules, so that individual modules can be trained with sufficient amounts
of data from their associated domains. The upstream automatic speech recognition (ASR)
module converts speech into transcriptions, followed by some downstream natural language
processing (NLP) modules. For example, spoken language translation (SLT) is composed of
an ASR module and a machine translation (MT) module, and spoken language understanding
(SLU) consists of an ASR module and a natural language understanding (NLU) module. The
vanilla cascaded structure allows spoken language tasks to be trained under domains that are
associated with individual modules, yet it faces several challenges [89, 195]:

• Mismatched written & spoken languages: Written and spoken languages usually have
very different formats and styles. Written language contains punctuations that indicate
clear sentence actions and boundaries, yet speech transcripts are unpunctuated and
uncapitalised. Spoken language is often delivered in a conversational setting, and thus
expected to be less formal. ASR modules are trained using spoken corpora, whereas
text processing modules mainly deal with written text. Such mismatched language
styles during training are likely to cause degradation in evaluation.

• Disfluencies: Spontaneous spoken language shows a large set of disfluencies such as
repetitions, filler words and false starts [191]. ASR systems trained on read speech tend
to degrade when encountered with disfluencies. Text processing systems are even more
susceptible to spoken disfluencies, with disruptions coming from both disfluencies and
errors in ASR transcripts.

• Erroneous early decisions: In a cascaded system, early decisions are required to be
made at the upstream modules, and early stage errors would potentially propagate
through and degrade the downstream modules. For example, committing to an erro-
neous ASR hypothesis could disrupt the downstream text processing modules.

• Loss of communicative prosody: Prosodic attributes of utterances provide crucial
cues for spoken language understanding. In cascaded systems, the upstream ASR
module and the downstream text processing modules are usually connected via speech
transcripts, which do not encapsulate any prosodic information. Loss of prosodies
would potentially give rise to ambiguity in the downstream text processing.

The focus of this thesis is therefore to explore approaches that mitigates the issues in
cascaded multimodular systems, and the goal is to improve spoken language applications
under a limited amount of end-to-end training data.
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1.2 Thesis organisation

This thesis is organised as follows. Chapter 2 introduces building blocks of deep neural net-
works, training techniques, as well as sequence modelling approaches. Chapter 3 applies the
deep learning techniques to formulating individual modules of spoken language processing
tasks, including automatic speech recognition (ASR), disfluency detection (DD), neural ma-
chine translation (NMT) and grammatical error correction (GEC). Chapter 4 further discusses
challenges in combining multiple modules into a single system, and different approaches
are proposed to help improve multimodular systems. Three categories of spoken language
systems are considered, including loosely cascaded, tightly integrated, as well as end-to-end
systems. Chapter 5 investigates the spoken disfluency detection (SDD) task. An embedding
passing approach is adopted to encourage tighter integration between the ASR and DD
modules. Chapter 6 investigates the spoken language translation (SLT) task. Error mitigation
is applied to improve the cascaded multimodular system. Reranking and embedding passing
approaches are also adopted to encourage tighter modular integration between the ASR and
NMT modules. Chapter 7 investigates the spoken grammatical error correction (SGEC)
task. Error mitigation, reranking and embedding passing approaches are adopted to improve
multimodular combination, and further analyses are conducted on feedback quality. Finally,
Chapter 8 summaries the work and proposes future research directions.

1.3 Published works

Part of the author’s original work have been published during the course of the research:

• Y Lu, MJF Gales, K Knill, P Manakul, L Wang, Y Wang. Impact of ASR performance
on spoken grammatical error detection. Annual Conference of the International Speech
Communication Association (INTER-SPEECH), 2019.

• Y Lu, MJF Gales, K Knill, P Manakul, Y Wang. Disfluency Detection for Spoken
Learner English. Speech and Language Technologies in Education (SLaTE), 2019.

• Y Lu, MJF Gales, Y Wang, Spoken language ’grammatical error correction’. An-
nual Conference of the International Speech Communication Association (INTER-
SPEECH), 2020.

• Y Lu, Y Wang, MJF Gales. Efficient Use of End-to-End Data in Spoken Language Pro-
cessing. IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2021.
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• Y Lu, S Bannò, MJF Gales. On Assessing and Developing Spoken ’Grammatical Error
Correction’ Systems. Workshop on Innovative Use of NLP for Building Educational
Applications (BEA), 2022.



Chapter 2

Deep Learning Fundamentals

Deep learning refers to a broad range of machine learning approaches that are used to model
complex structured data. This chapter mainly introduces fundamental deep learning tech-
niques for sequence modelling, which are widely adopted in spoken language applications. It
starts with an overview of the basic units of neural networks including feed-forward networks,
recurrent networks, attention mechanisms as well as Transformer blocks. More complex
sequence tagging and sequence-to-sequence models are further introduced, which are widely
used in speech and language processing. The training of neural networks are then discussed,
covering commonly used objective functions for classification, regression as well as sequence
tasks, and the gradient descent based optimisation process is also reviewed. Lastly, a group
of large-scale pre-training approaches are reviewed, which has achieved great successes on
various text processing tasks.

2.1 Neural networks

Deep learning is a class of techniques that allows computational models to learn structured
representations of data with multiple levels of abstraction [120]. The most fundamental
concept is called neural network, a parametric model that maps an input xxx to an output yyy:

yyy = f (xxx;θθθ) (2.1)

where the function f denotes a non-linear mapping, and the parameters θθθ are learned to
achieve the best function approximation. Regression and classification are two commonly
seen tasks modelled using neural networks. For regression tasks, the input xxx is mapped to a
continuous or numerical output. For classification tasks, the input xxx is mapped to a vector set
of categorical output, representing which of the classes the input belongs to. Neural networks
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are called networks because f typically represents a composition of different operations [63].
The exact form of f is designed to reflect a set of assumptions about the nature of the mapping
between xxx and yyy. The choice of function f defines the parameters θθθ that need to be optimised.
It is one of the most important inductive biases introduced in a machine learning algorithm.

The following sections will review four forms of network architectures that are used in
this thesis. Deep neural networks (2.1.1) realise conversions between unstructured vector
inputs and outputs. Recurrent neural networks (2.1.2) process sequential data, modelling
conversions between vector sequences. Attention mechanisms (2.1.3) enhance some parts
of the input data over others, converting variable-length inputs into fixed-length outputs.
Transformer blocks (2.1.4) extract abstract representations of the input data with much less
inductive bias compared to other architectures.

2.1.1 Feed-forward networks

Feed-forward networks (FFNs), also known as multilayer perceptrons (MLPs), is composed
of multiple fully-connected feed-forward layers [13, 80]. As illustrated in Figure 2.1, the
input of each layer f (k) is the output of its predecessor, and information flows from the input
to the output without any feedback connections. Equation 2.1 can thus be expanded as:

hhh(1) = f (1)(xxx;θθθ
(1)) (2.2)

hhh(k) = f (k)(hhh(k−1);θθθ
(k)) 1 < k < K (2.3)

yyy = f (K)(hhh(K−1);θθθ
(K)) (2.4)

where k denotes the kth layer (K layers in total). [θθθ (1),θθθ (2)...θθθ (K)] forms the parameter set θθθ

and hhh(1),hhh(2)...hhh(k) are intermediate representations known as hidden states. Each layer can
be expressed as a linear mapping followed by a non-linear transformation:

hhh(k) = σ
(k)
a (WWW (k)hhh(k−1)+bbb(k))) (2.5)

The linear mapping is parameterised using θθθ
(k)= {WWW (k),bbb(k)}, where WWW (k) is a pre-multiplication

matrix and bbb(k) is a bias vector. The non-linear transformation σ
(k)
a is known as an activation

function. Two hyperparameters are to be determined for each layer: the activation function
σ
(k)
a , and the size of the hidden state hhh(k), which also determines the size of WWW (k) and bbb(k).

Given a sufficiently large hidden state size, a single layer feed-forward network is able
to approximate any arbitrary function in theory [120, 86]. However, its modelling power is
restricted by some practical issues: the hidden state cannot be infinitely large; and training
might not converge to a global minimum. In general, a larger number of hidden layers will
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Fig. 2.1 Illustration of a simple deep neural network with K hidden layers: mapping a
vector input of size 5 into a vector output of size 4. The left part shows an overview of
the feed-forward structure, and the right part demonstrates the operations within each layer
(using the first node of layer one hhh(1)1 as an example).

lead to stronger modelling power [12], and residual connections [74] are commonly adopted
to aid convergence in deep networks. To optimally approximate the function, both the number
of hidden layers and the size of each layer need to be tuned.

Activation functions
In order for neural networks to compute non-trivial problems using a limited number of
nodes, activation functions need to be piecewise continuous and locally bounded [124]. In
addition, activations are required to be differentiable since neural networks are typically
trained using gradient descent (see Section 2.3).

Commonly used activation functions are sigmoid and softmax functions. The sigmoid
function, also known as the logistic function, is usually used for binary classification tasks.
It normalises the input into a probability distribution between 0 and 1. Given an input xxx of
dimension D, the sigmoid activation operates on each vector entry xd:

σsigmoid(xd) =
exd − e−xd

exd + e−xd
(2.6)

The softmax function is usually used for multi-class classifications. It normalises a set of D
inputs into a probability distribution such that they sum up to 1:

σsoftmax(xd) =
exd

∑
J
j=1 ex j

(2.7)

∑
D
d=1 σsoftmax(xd) = 1 (2.8)
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Hyperbolic tangent and Rectified Linear Unit (ReLU) [148] functions are commonly used
for hidden layer activations. The hyperbolic tangent function, expressed as tanh, has a similar
S-shape as sigmoid, with a different dynamic range from -1 to 1.

σtanh(xd) =
1

1+ e−xd
(2.9)

Fig. 2.2 Comparing hidden layer activation functions (α is set at 0.1 for LReLU in this plot)

The tanh function adds non-linearities and prevent extremely large values in hidden layers.
However, in deep networks where a large number of hidden layers are used, it suffers from
saturation issues. The function becomes flat as the input goes to extreme values, causing slow
convergence when used with gradient-based optimisation methods [61]. ReLU is introduced
to alleviate this vanishing gradient problem, the positive part of which stays linear when
extending to large values:

σReLU(xd) = max(0,xd) (2.10)

One of the limitations of ReLU is known as ‘dying ReLU’ [138]. Large weight updates
could potentially make the activation input become negative, thus causing the output to stay
at 0. To prevent the negative part from saturation, a group of modified ReLUs were proposed,
such as Exponential Linear Unit (ELU) [38], Parametric ReLU [73], and Leaky Rectified
Linear Unit (LReLU) [138]. LReLU adopts a small slope for negative values as opposed to a
flat slope:

σLReLU(xd) = max(αxd,xd) 0 < α < 1 (2.11)

Figure 2.2 compares four types of hidden layer activations. Both the sigmoid and tanh
functions are S-shaped, and gradually flatten out when extending to extreme values. ReLU
and LReLU both maintain constant gradients regardless of the increasing inputs.
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Residual connection
The residual connection [74] is a type of skip-connection that learns residual functions with
reference to the layer. Such connection can be easily implemented by superimposing the
input of each sub-layer to its output:

g(xxx) = f (xxx)+ xxx (2.12)

where xxx is the layer input and f (xxx) is the residual function to be learned. The underlying
rationale is that it is easier to optimise the residual mapping than the original mapping. In
extreme cases where the identity mapping is to be learned, the residual function f (xxx) can be
pushed to zero, as opposed to fitting an identity mapping by a stack of nonlinear layers.

2.1.2 Recurrent neural networks

Recurrent neural networks (RNNs) [178] are commonly used for tasks that involve sequential
inputs, such as speech and language. RNNs process the input sequence one element at a
time, and maintain a hidden state that contains information about all the elements preceding
it (unidirectional) or those both preceding and following it (bidirectional). The hidden states
serve as a memory mechanism that enables recurrent networks to process sequential data of
variable length, and to scale up to much longer sequences.

Fig. 2.3 Different types of unidirectional RNN architectures. Blue, grey and purple squares
denote the input, hidden and output vectors respectively [102].

Figure 2.3 shows different types of RNNs. The 1-to-1 mapping can be viewed as a vanilla
FFN, and the rest of the architectures allow variable-length inputs and outputs. Different
types of RNNs have different use cases, and some examples are given as follows. 1-to-1 can
model image classification tasks. 1-to-many can model image captioning tasks where the
input is a single vector image and the output is a sequence of words. Many-to-1 can model
sentiment analysis where the input is a word sequence and the output is a sentiment class.
Synchronised many-to-many can model sentence segmentation where the input is a word
sequence and the output is a tag sequence indicating whether to put a full stop after each
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word (‘synchronised’ means the output sequence has a one-to-one correspondence with the
input sequence), and unsynchronised many-to-many can be used for machine translation.

Fig. 2.4 Illustration of RNN architectures (a) two-layer synchronised many-to-many RNNs
(b) two-layer unsynchronised many-to-many RNNs

A more detailed illustration of RNNs is shown in Figure 2.4, using the unidirectional two-
layer many-to-many RNN as an example. Given an input sequence xxx1:T , the synchronised
output sequence is yyy1:T and the unsynchronised output sequence is yyy1:N . The hidden state
hhh(k)t at time step t and layer k is dependent on the hidden state of the previous layer at the
same time step hhh(k)t−1, as well as the previous time step at the same layer hhh(k−1)

t .

hhh(k)t = f (k)(hhh(k−1)
t ,hhh(k)t−1;θθθ

(k)) 1 < k < K (2.13)

In the synchronised case, the first hidden layer is dependent on the input sequence and the
output sequence is dependent on the last hidden layer, both at the aligned time steps:

hhh(1)t = f (1)(xxxt ,hhh
(1)
t−1;θθθ

(1)) (2.14)

yyyt = f (K)(hhh(K−1)
t ;θθθ

(K)) (2.15)

Unsynchronised RNNs can be divided into two stages. The first stage converts the input
into a sequence of hidden states, and the structure remains similar to the synchronised case.
The second stage generates predictions auto-regressively, and the first hidden layer takes the
output predicted at the previous time step as its input:

yyy1 = f (K)(hhh(K−1)
T+1 ;θθθ

(K)) (2.16)

hhh(1)T+2 = f (1)(yyy1,hhh
(1)
T+1;θθθ

(1)) (2.17)

yyy2 = f (K)(hhh(K−1)
T+2 ;θθθ

(K)) (2.18)
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Bidirectional RNNs
Unidirectional RNNs only account for information from the elements preceding the current
node. Bidirectional RNNs [186] are used to capture information from both the past and the
future elements. Figure 2.5 illustrates a simple two-layer bidirectional RNN structure, which
consists of a pair of unidirectional RNNs running in opposite directions.

Fig. 2.5 Illustration of a two-layer bidirectional synchronised many-to-many RNN

At each time step t, the forward and backward networks recur in opposite directions, and
the joint hidden state hhht is a concatenation of the forward and backward hidden vectors at the
last hidden layer. Equation 2.19 and 2.20 describe the forward and backward hidden state
generation respectively, and Equation 2.21 describes the joint hidden states.

−→
hhh (k)

t =
−→
f (k)(
−→
hhh (k−1)

t ,
−→
hhh (k)

t−1;
−→
θθθ

(k)) (2.19)
←−
hhh (k)

t =
←−
f (k)(
←−
hhh (k−1)

t ,
←−
hhh (k)

t−1;
←−
θθθ

(k)) (2.20)

hhht = [
−→
hhh (K−1)

t ,
←−
hhh (K−1)

t ] (2.21)

RNNs, LSTMs and GRUs
Conventional RNNs adopts feed-forward layers, and each layer is parameterised using a
feed-forward matrix WWW (k)

f , a recurrent matrix WWW (k)
r and a bias bbb(k)r .

hhh(k)t = f (k)(hhh(k−1)
t ,hhh(k)t−1;θθθ

(k)) = σ
(k)(WWW (k)

f hhh(k−1)
t +WWW (k)

r hhh(k)t−1 +bbb(k)) (2.22)

Deep feed-forward networks tend to suffer from gradient saturation issues, and a key con-
straint of vanilla RNNs is their difficulty in maintaining long-term dependencies. At each
time step, the gradients either grow or shrink, and thus the information at an early posi-
tion will either explode or decay to zero over a long sequence of propagation [82]. Gated
Recurrent Unit (GRU) [33] and Long Short Term Memory (LSTM) [83] are proposed to
mitigate this long-term dependency issue. Both LSTM and GRU store previous activation
values in long sequences. Each unit consists of multiple gates that are used for controlling
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the information flow. Gates are capable of learning what to remember and what to forget in
the memory unit at each time step.

A vanilla RNN block pass on information from the previous hidden state and the input
through a simple tanh activation. In the first hidden layer, the input to the RNN block is the
system input xxxt . In the kth layer (k > 1), the input is the hidden state from the layer below
at the same time instance hhh(k−1)

t . For simplicity purposes, the equations listed below only
describe cases for layer k = 1, and they can be easily generalised to k > 1 cases by replacing
xxxt using hhh(k−1)

t . To describe vanilla RNNs, Equation 2.22 can be simplified as:

hhht = σtanh(WWW f xxxt +WWW rhhht−1 +bbb) (2.23)

A GRU block contains two gates: an update gate and a reset gate. The update gate
determines whether to update the cell state with the current activation. The reset gate
determines whether the previous cell state is important. The state transition is described as:

zzzt = σsigmoid(WWW z
f xxxt +WWW z

rhhht−1 +bbbz) (2.24)

rrrt = σsigmoid(WWW r
f xxxt +WWW r

rhhht−1 +bbbr) (2.25)

h̃hht = σtanh(WWW
y
f xxxt +WWW y

r[rrrt⊙hhht−1]+bbby) (2.26)

hhht = (1− zzzt)⊙hhht−1 + zzzt⊙ h̃hht (2.27)

where ⊙ denotes element-wise multiplication. zzzt , rrrt denote the values generated from the
update and the reset gates respectively. hhht−1 is the in-going hidden state, h̃hht is an intermediate
state activation, and hhht is the out-going hidden state.

LSTM uses a second hidden state, called memory cell ccct . It acts like an accumulator,
accounting for three element-wise gating functions: forget fff t , input iiit and output ooot gates.

fff t = σsigmoid(WWW
f
f xxxt +WWW f

r hhht−1 +bbb f +WWW f
mccct−1) (2.28)

iiit = σsigmoid(WWW i
f xxxt +WWW i

rhhht−1 +bbbi +WWW i
mccct−1) (2.29)

ooot = σsigmoid(WWW o
f xxxt +WWW o

r hhht−1 +bbbo +WWW o
mccct−1) (2.30)

c̃cct = σtanh(WWW c
f xxxt +WWW c

rhhht−1 +bbbc) (2.31)

ccct = fff t⊙ ccct−1 + iiit⊙ c̃cct (2.32)

hhht = ooot⊙σtanh(ccct) (2.33)

where the subscripts f ,r,m denote feed-forward, recurrent and memory functions; and the
superscripts f , i,o denote forget, input and output gates respectively.
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2.1.3 Attention mechanisms

Attention is motivated by how human pay attention to different regions of an image or
correlations between words in a sentence [216]. In deep learning, attention mechanisms can
be considered as a vector of importance weights. For example, when predicting a word in a
sentence, the attention vector indicates how strongly it is correlated with other words, and the
weighted sum of their values is used as the approximation of the target. The first attention
mechanism was introduced by Bahdanau et al. [6]. It addresses the bottleneck problem
that arises in neural machine translation, where the output only has limited access to the
information provided by the input. In the simplest form, an attention mechanism compresses
a variable-length input sequence xxx1:T into a fixed length context vector ccc:

ccc = ∑
T
t=1 αtxxxt ∑

T
t=1 αt = 1 (2.34)

αt =
exp( fatt(xxxt ;θθθ att))

∑
T
t ′=1 exp( fatt(xxxt ′;θθθ att))

(2.35)

where αt denotes the relative saliency between ccc and xxxt , and the attention function fatt is a
fully-connected layer. The scores α1:T can be viewed as an importance distribution over the
input sequence xxx1:T , and thus its elements sum to one. More advanced forms of attention
mechanisms (discussed below) are commonly adopted for sequence-to-sequence modelling.

Cross-attention
Cross-attention usually operates on two different sequences, an example of which is the
encoder-decoder attention in sequence-to-sequence tasks (see Section 2.2.2). Given an input
sequence xxx1:T and an output sequence yyy1:N , the attention mechanism generates an alignment
score vector αααn = [αn,1, ...,αn,T ]

T at each step n. Each vector entry αn,t accounts for the
relative saliency of the input element xxxt to the output element yyyn. The input xxx1:T can therefore
be mapped into a context vector cccn using weights from αααn. The context sequence ccc1:N

extracts relevant information from the input sequence xxx1:T according to the output yyy1:N .

cccn = ∑
T
t=1 αn,txxxt ∑

T
t=1 αn,t = 1 (2.36)

αn,t =
exp( fatt(yyyn,xxxt ;θθθ att))

∑
T
t ′=1 exp( fatt(yyyn,xxxt ′;θθθ att))

(2.37)

where αn,t is obtained by normalising the output of the attention function fatt parameterised
with θθθ att. The attention function is central to the attention mechanism, and can take various
forms. The initial work on attention mechanisms proposes the additive function [6], which
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uses a fully-connected feed-forward layer to compute saliencies:

fatt(yyyn,xxxt ;θθθ att) = uuuT
σtanh(WWW [yyyn,xxxt ]) θθθ att = {uuu,WWW} (2.38)

where the output element yyyn and input element xxxt are concatenated, and fed through a
single-layer feed-forward network. The additive attention does not account for positional
information, thus agnostic to the order of xxx1:T . Attention mechanisms reflect correlations
between the elements in two sequences, and the network is usually jointly trained as part of a
sequence-to-sequence model. Following additive attention, several alternatives are introduced
in the literature. Table 2.1 summarises various forms of popular attention functions.

Name fatt(yyyn,xxxt ;θθθ att)

Additive [6] uuuT σtanh(WWW [yyyn,xxxt ])

Cosine [68] β (yyyT
n xxxt)/(∥yyyn∥∥xxxt∥)

General [136] yyyT
n WWWxxxt

Dot-product [136] yyyT
n xxxt

Scaled dot-product [203] yyyT
n xxxt/
√

Dx

Table 2.1 Popular attention functions. β is a hyperparameter which amplifies or attenuates
the precision of the focus. Dx is the dimension of input xxxt .

A more general formulation of attention mechanisms makes use of three main com-
ponents, namely queries qqq1:N , keys kkk1:T , and values vvv1:T [203]. To compare these three
components to the attention mechanism described above, the query is analogous to the output
yyy1:N , and the value is analogous to the input xxx1:T . Intuitively, each query can carry as much
information from the values by weighting them with the keys. Keys and values have the same
length, since they can be viewed as two representations of the same sequence. In most cases,
keys and values are set to be identical. Equation 2.36 and 2.37 can be expressed as:

cccn = ∑
T
t=1 αn,tvvvt (2.39)

αn,t =
exp( fatt(qqqn,kkkt ;θθθ att))

∑
T
t ′=1 exp( fatt(qqqn,kkkt ′;θθθ att))

(2.40)

The attention mechanism captures saliencies between the query qqqn and the keys kkk1:T .
The values vvv1:T are then reweighed using the generated attention scores αααn, and the weighted
sum becomes the context vector cccn. The attention function fatt stays the same as described in
Table 2.1.
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Self-attention
Different from the cross-attention mechanism that extracts relative saliencies between the
key and the query sequences, self-attention [30, 159] is proposed to extract relations between
different positions of the same sequence, which is especially useful for feature representation
generation. It can be considered as a special case of the general attention, where the key,
value and query sequences are identical:

kkk1:T = vvv1:T = qqq1:N N = T (2.41)

Equation 2.39 and 2.40 can therefore be modified as:

cccn = ∑
N
n′=1 αn,n′kkkn′ (2.42)

αn,n′ =
exp( fatt(kkkn,kkkn′;θθθ att))

∑
N
n′′=1 exp( fatt(kkkn,kkkn′′;θθθ att))

(2.43)

The context sequence ccc1:N has the same length as the key sequence kkk1:N , and it can be viewed
as a better representation of the keys. Scaled dot-product (see Table 2.1) is a common choice
for the attention function fatt in self-attention. It helps mitigate problems caused by cccn

becoming too large when the vector dimension Dk gets large. Compared with RNNs, using
self-attention in representation learning reduces inductive bias, i.e. when extracting saliencies
between different elements in one sequence, self-attention does not make assumptions about
the neighbouring elements being more important compared to the further away elements.

Multi-head attention
Vanilla attention mechanisms only use one attention function at a time, whereas multi-head
attention [203] combines multiple attention mechanisms in parallel. An attention ‘head’ is
an attention mechanism with one set of parameters, and multi-head attention consists of
multiple heads with the same structure, but different parameters. Figure 2.6 illustrates the
multi-head attention mechanism and Equation 2.44 gives the expression at step n.

cccn =WWW c[ccc1
n,ccc

2
n, ...,ccc

H
n ] (2.44)

where cccn is the joint context vector at step n, and the attention context ccch
n is computed

following Equation 2.39 and 2.40. A total of H heads are simply concatenated and linearly
transformed into the expected dimensions using WWW c. The intuition behind is that the multiple
heads expand the model’s ability to focus on different positions, and they also give the
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Fig. 2.6 Illustration of multi-head attention [203]

attention layer multiple representation subspaces [203]. Both self-attention and multi-head
attention are essential mechanisms in Transformer blocks (see Section 2.1.4).

2.1.4 Transformer blocks

Transformer blocks proposed in ‘Attention is all you need’ [203] are entirely built on self-
attention mechanisms without using sequence-aligned recurrent networks. They improve
upon traditional attention mechanisms and make it possible to model sequence tasks without
recurrent units. The basic Transformer block (known as the Transformer encoder block
in [203]) is used to form a better feature representation of an input sequence.

Fig. 2.7 Illustration of the basic Transformer block. k, v, q denotes keys, values and queries
in the multi-head attention mechanism.

Figure 2.7 shows an illustration of the basic Transformer block. An input sequence is first
embedded into continuous feature representations, superimposed with positional embeddings,
and then passed to the Transformer block. A Transformer block is composed of two layers:
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a multi-head self-attention layer, and a simple fully-connected feed-forward network. The
multi-head self-attention (described in Section 2.1.3) adopts scaled dot-product attention (in
Table 2.1) to avoid context vector becoming too large when multiple Transformer blocks
are stacked together. The feed-forward layer typically consists of two linear transformations
with a ReLU non-linearity in between. All sub-layers (attention, feed-forward layers) adopt
a residual connection followed by layer normalisation. Transformer blocks are designed
to handle sequential data. With the use of self-attention mechanisms, they allow parallel
processing of all positions in the input sequence. Compared with RNNs, Transformer blocks
also lift the inductive bias exerted upon neighbouring elements.

Layer normalisation
Layer normalisations [3] normalise the activations of a layer for each instance in a batch
independently. The output vector is normalised so that its mean is zero and its standard
deviation is one. Element-wise scaling and shifting are then applied to the normalised vector.

g(xxx) = aaa⊙ f (xxx)−µµµ

σ
+bbb (2.45)

µ = 1
D ∑

D
d=1 f (xxx)d (2.46)

σ2 = 1
D ∑

D
d=1( f (xxx)d−µ)2 (2.47)

where µµµ and σ are the element-wise mean and standard deviation of the layer output f (xxx); d
is the element index and D is the vector dimension; aaa and bbb are learnable parameters used
for scaling and shifting; g(xxx) is the final layer output. Layer normalisation directly estimates
the statistics within each layer so that the process does not introduce any new dependencies
between training cases. It works well for both RNNs and Transformers in improving the
training time as well as the generalisation performance [3].

Positional embedding
As discussed in Section 2.1.3, self-attention is permutation invariant, and thus positional
encodings are important to provide order information to the model. The positional embedding
eeep has the same dimension as the textual embedding eeet , and they can be directly superimposed.
The standard Transformer block uses sinusoidal functions of varying frequencies:

eee = eeet + eeep (2.48)

ep
n,d =

sin( n
10000d/D ) if d is even

cos( n
10000d/D ) if d is odd

(2.49)
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where ep
n,d denotes the dth element of the positional embedding eeep

n , and D denotes the em-
bedding dimension. Figure 2.8 shows an illustration of the sinusoidal embedding. Each
dimension of the positional embedding corresponds to a sinusoidal wave of different wave-
lengths in different dimensions, from 2π to 10000 ·2π . The sinusoidal cyclic formulation
allows the model to extrapolate to sequence lengths longer than the ones encountered during
training [203]. Another widely used encoding is the learned positional embedding [59],
which assigns each element with a learned vector that encodes its absolute position.

Fig. 2.8 Sinusoidal positional embedding with N=32 and D=128. The value is between -1
(black) and 1 (white), and the value 0 is in grey [218].

2.2 Sequence models

Sequence data is commonly seen in day-to-day life, e.g. speech and text are both sequential.
The previous section reviewed different types of neural networks. In this section, more
advanced sequence models are discussed. To keep the discussion more general, the input is
set as a vector sequence xxx1:T , and the output form depends on the nature of the task.

2.2.1 Sequence tagging

Sequence tagging encompasses a variety of tasks, e.g. part-of-speech tagging, named entity
recognition. Given an input vector sequence xxx1:T , a sequence tagger maps each input vector
xxxt into a set of class labels yyyt , forming an output sequence yyy1:T :

ŷyy1:T = argmaxyyy1:T∈YP(yyy1:T |xxx1:T ;θθθ) (2.50)

Sequence tagging models usually consist of two steps: a context extraction step followed by a
classification step. Context dependency plays a significant role in modelling sequential data,
and the context extraction step generates a contextual feature of each input token conditioned
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on the entire input sequence:

hhh1:T = fh(xxx1:T ;θθθ h) (2.51)

where fh denotes the context extraction function, and hhh1:T denotes the contextual feature.
The two commonly used context extraction architectures are RNNs and Transformer blocks
(discussed in Section 2.1.2 and 2.1.4). Recurrent networks extract contextual dependencies
via recurrent units, and bidirectional LSTM is a popular choice [240, 130, 116]. Although
widely used, RNNs suffer from long training time due to their recurrent nature. Trans-
former blocks have been reported to perform poorly on sequence tagging tasks [71], since
the direction and relative distance information is lost in the original sinusoidal position
embedding [227]. A learned positional embedding can be used to address this problem.
Transformer blocks replace recurrent units with self-attention mechanisms, thus enabling
parallel training regardless of how long the input sequence is. This allows the model to be
trained on a large amount of data to learn a strong language model, and helps generate better
quality contextual features hhh1:T .

Fig. 2.9 Illustration of the softmax classification head for sequence tagging models

The classifier then takes the contextual feature hhh1:T as the input, under the assumption
that the output is no longer dependent of the system input xxx1:T , and makes predictions for the
output tag sequence yyy1:T :

P(yyy1:T |xxx1:T ;θθθ)≈ P(yyy1:T |hhh1:T ;θθθ y)

= ∏
T
t=1 P(yyyt |yyy1:t−1,hhh1:T ;θθθ y)

(2.52)

Two commonly used classification heads are softmax and conditional random field (CRF) [113],
and softmax (Figure 2.9) is adopted throughout this thesis. Directly applying the softmax
function makes the assumption that given the contextual feature hhht , the current tag prediction
yyyt is independent of the rest of the sequence and the previous predictions yyy1:t−1. Thus, the
autoregressive sequence tagging is simplified into a non-autoregressive process, and therefore
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Equation 2.52 can be simplified as:

P(yyy1:T |hhh1:T ;θθθ y)≈∏
T
t=1 P(yyyt |hhht ;θθθ y) (2.53)

P(yyyt |hhht ;θθθ y) = σsoftmax(WWW yhhht +bbby) (2.54)

where WWW y and bbby are the weight matrix and the bias vector.

2.2.2 Sequence-to-sequence

Sequence-to-sequence tasks include automatic speech recognition (see Section 3.2.2), neural
machine translation (see Section 3.4) and text-to-speech synthesis etc. The models learn
mappings from an input sequence xxx1:T to an output sequence yyy1:N :

ŷyy1:N = argmaxyyy1:N∈YP(yyy1:N |xxx1:T ;θθθ) (2.55)

In the scope of this thesis, it is assumed that the output generation is an autoregressive
process, i.e. the current prediction is conditioned on all the previous predictions (yyy0 is usually
initialised using a special begin-of-sequence token that is independent of the input sequence):

P(yyy1:N |xxx1:T ;θθθ) = ∏
N
n=1 P(yyyn|yyy1:n−1,xxx1:T ;θθθ) (2.56)

Fig. 2.10 Illustration of a vanilla encoder decoder sequence-to-sequence model. The blue
block indicates the encoder process, and purple indicates the decoder process.

A vanilla formulation of sequence-to-sequence tasks is to use an encoder to extract
contextual features from the input sequence, and a decoder to auto-regressively generate
predictions based on the encoder states. Figure 2.10 illustrates this encoder decoder process,
and it can be formulated as:

hhhe
1:T = fenc(xxx1:T ;θθθ enc) (2.57)

hhhd
n = fdec(hhhd

n−1,yyyn−1;θθθ dec) hhhd
1 = hhhe

T (2.58)

P(yyyn|yyy1:n−1,xxx1:T ;θθθ)≈ P(yyyn|hhhd
n;θθθ y) = fy(hhhd

n;θθθ y) (2.59)

θθθ = {θθθ enc,θθθ dec,θθθ y} (2.60)
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where hhhe
1:T and hhhd

1:N are the encoder and decoder hidden states. The current decoder state hhhd
n

only depends on the previous decoder state hhhd
n−1 and the previous prediction yyyn−1. The initial

decoder state hhhd
1 is set to be the last encoder hidden state hhhe

T , which summarises the entire
input sequence. The only connection that passes information from the encoder to the decoder
is hhhe

T , yet a single vector is not sufficient in passing contextual information from the input
sequence [136, 68]. Attention-based models are therefore introduced to address this issue.

Fig. 2.11 Illustration of an attention-based encoder decoder sequence-to-sequence model

An attention-based encoder-decoder framework is illustrated in Figure 2.11. As the name
suggests, it consists of three components: an encoder, a decoder and an attention mechanism
connecting the two. The encoder extracts contextual information from the input sequence
and generates a contextual feature vector sequence. The attention mechanism computes
the relative saliencies between the input and output sequences, and feed the alignment
information to the decoder. The decoder compresses the encoded sequence into a fixed length
vector at each time step, and generates the output. The attention-based encoder decoder
process is formulated as:

hhhe
1:T = fenc(xxx1:T ;θθθ enc) (2.61)

αααn = fatt(hhhd
n−1,hhh

e
1:T ;θθθ att) cccn = ∑

T
t=1 αn,thhhe

t (2.62)

hhhd
n = fdec(hhhd

n−1,yyyn−1,cccn;θθθ dec) (2.63)

P(yyyn|yyy1:n−1,xxx1:T ;θθθ)≈ P(yyyn|hhhd
n,cccn;θθθ y) = fy(hhhd

n,cccn;θθθ y) (2.64)

θθθ = {θθθ enc,θθθ att,θθθ dec,θθθ y} (2.65)

where αααn represents the relative saliency weights of the decoder state hhhd
n−1 and the encoder

state sequence hhhe
1:T ; the context vector cccn is a weighted sum over the encoder states according

to the predicted weights αααn; the prediction step of yyyn is conditioned on both the decoder state
hhhd

n and the contextual feature cccn. The use of attention mechanism allows the decoder to access
the entire encoder state sequence, and generates a different saliency weight distribution at
different prediction step n. With such enhanced dependencies between the input and output
sequences, the model gains stronger modelling power, and handles longer sequences better.
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Conventional sequence-to-sequence models are formulated using recurrent units such as
LSTMs, whose recurrent nature allows the network to extract the bidirectional context of
a sequence. However, when faced with long sequences, recurrent networks tend to suffer
from the ‘forgetting’ issue and take a long time to train. The Transformer architecture [203]
replaces recurrent units with self-attention mechanisms. In a Transformer-based sequence-
to-sequence model, two types of blocks are defined: an encoder block forms a contextual
feature of an input sequence, and a decoder block extracts relative saliencies between two
sequences. Figure 2.12 shows an illustration of the Transformer encoder decoder structure,
as well as their inter-block connections. The Transformer encoder consists of a stack of N
identical encoder blocks, and the decoder has N identical decoder blocks.

Fig. 2.12 Illustration of Transformer-based sequence-to-sequence models [203]. N denotes
the number of blocks in the encoder and the decoder.

Each encoder block (discussed in Section 2.1.4) consists of a multi-head self-attention
layer and a fully-connected feed-forward network. Compared with the encoder block,
the decoder block has two main differences. It has an extra multi-head cross-attention
layer between the self-attention and the feed-forward layers. The cross-attention is used
to extract the alignment between input and output sequences, where the key (and value) is
the output from the Transformer encoder and the query is the output of the decoder self-
attention. Another change from the encoder is that the decoder self-attention is imposed
with a triangular mask (see Figure 2.13) such that the current element is prevented from
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attending to future elements. Compared with recurrent networks, Transformers are capable
of processing much longer sequences with parallel processing of all positions. The use
of attention mechanisms and future masks (cross-attention in decoder) largely speed up
the training process, thus allowing large-scale pre-training on vast amounts of data (see
Section 2.4).

Fig. 2.13 The attention patterns in Transformer encoder and decoder blocks [173]

2.3 Training

Given a set of training data Dtrain, network training determines the optimal parameters θ̂θθ of
a neural network yyy = f (xxx;θθθ). The training objective is usually to minimise a loss function
L(θθθ) that is chosen to improve the model prediction ŷyy:

θ̂θθ = argminθθθL(θθθ) (2.66)

where θθθ is the set of parameter variables, and θ̂θθ is the optimal estimate of the parameters.
When xxx and yyy are clearly defined and examples of both are available during training, su-
pervised learning is adopted to learn the exact mapping. In cases where only xxx is available,
unsupervised learning is used to learn feature detectors without requiring the labelling of yyy,
and the learned feature detectors can be used to help reconstruct the input xxx. When there is a
small amount of labelled data (paired xxx and yyy) with a large amount of unlabelled data (only xxx)
available, semi-supervised learning can be used to guide the training under weak supervision.

The focus of this thesis is on supervised and semi-supervised approaches. It is defined
that there is an input xxx( j) and a reference output yyy( j) in the jth training instance of Dtrain, and
a hypothesis output ŷyy( j) can be computed:

Dtrain = {{xxx(1),yyy(1)},{xxx(2),yyy(2)}, ...{xxx(J),yyy(J)}} (2.67)

ŷyy( j) = f (xxx( j);θθθ) (2.68)
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This following sections will discuss the training criteria as well as the optimisation processes
that are used to derive the optimal parameter set θ̂θθ .

2.3.1 Training criteria

Training criteria are defined using loss functions, the exact form of which depends on the
nature of the tasks. For classification tasks, yyy is a one-hot class vector, and ŷyy denotes the post
softmax output that represents the probability of xxx belonging to each of the D classes. The
objective is to maximise the probability of assigning the correct class label:

θ̂θθ = argmaxθθθExxx,yyy∼p(xxx,yyy)[yyy
T ŷyy]

= argminθθθExxx,yyy∼p(xxx,yyy)[− log(yyyT ŷyy)]
(2.69)

Linking back to the parameter estimation defined in Equation 2.66, the loss function can
therefore be approximated by the cross-entropy loss on the training set Dtrain:

L(θθθ) =−1
J ∑

J
j=1 log(yyy( j)T ŷyy( j))

=−1
J ∑

J
j=1 ∑

D
d=1 y( j)

d log(ŷ( j)
d )

(2.70)

For regression tasks, yyy is a continuous vector, and the objective is to minimise the distance
between the ground truth yyy and the estimation ŷyy. A common mean squared error (MSE) loss
can be adopted to minimise the L2 distance between the two:

L(θθθ) = 1
J ∑

J
j=1∥ŷyy( j)− yyy( j)∥2

2 (2.71)

For sequence models discussed in Section 2.2, the objective is to minimise the Kullback-
Leibler (KL) divergence [110] between the true and the estimated sequence distributions:

θ̂θθ = argmaxθθθExxx1:T ,yyy1:N∼p(xxx1:T ,yyy1:N)
KL{P(yyy1:N |xxx1:T )||P(yyy1:N |xxx1:T ;θθθ)} (2.72)

where xxx1:T and yyy1:N denote the input and output sequences1. In practice, the loss function can
be approximated by minimising the Negative Log-Likelihood (NLL) loss over the training
instances sampled from the true distribution:

L(θθθ) =−1
J ∑

J
j=1 logP(yyy( j)

1:N |xxx
( j)
1:T ;θθθ) (2.73)

1For sequence tagging tasks, the input and output sequences are equal in length, i.e. T = N
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For non-autoregressive tasks where the current prediction is independent of the previous
predictions, the loss function can be simply expanded by summing over all tokens of the
output sequence:

L(θθθ) =−1
J ∑

J
j=1 ∑

N
n=1 logP(yyy( j)

n |xxx( j)
1:T ;θθθ) (2.74)

For autoregressive tasks, the sequence distribution P(yyy1:N |xxx1:T ;θθθ) is factorised across time
as described in Equation 2.56. The key problem lies in approximating the token distribution.
A commonly adopted approach is teacher forcing [220], where the token distribution is
computed with the reference output history yyy1:n−1. The loss function can be expanded as:

L(θθθ) =−1
J ∑

J
j=1 ∑

N
n=1 logP(yyy( j)

n |yyy( j)
1:n−1,xxx

( j)
1:T ;θθθ) (2.75)

Teacher forcing allows efficient training since the token distributions over the entire output
sequence can be computed in parallel with the use of reference output history. However,
it suffers from exposure bias [175], which arises from the mismatch between training and
inference. The model is guided with the reference output history during training, whereas
the hypothesised output history must be used during inference. Such mismatch will lead to
accumulated errors along the inference process. To further address exposure bias, scheduled
sampling [11, 52], professor forcing [114], and attention forcing [49, 50] approaches were
proposed. In this thesis, teacher forcing is adopted as the default training approach for
sequence models to ensure efficient training.

Another line of approach is called Minimum Bayes Risk (MBR) training [60], which
trains the model at the sequence-level, as opposed to token-level training described in
Equation 2.75. Given a distance metric D(yyy1:N , ŷyy1:N) between the ground truth yyy1:N and a
hypothesised output ŷyy1:N , MBR training directly minimises the distance:

L(θθθ) = 1
J ∑

J
j=1 ∑ŷyy( j)

1:T∈Y ( j) P(ŷyy( j)
n |xxx( j)

1:T ;θθθ)D(yyy( j)
1:N , ŷyy

( j)
1:N) (2.76)

where Y ( j) denotes the entire search space of ŷyy( j)
1:N . Compared with token-level training,

sequence-level training is exempted from exposure bias by taking into account the hypothe-
sised sequence as a whole during training. The distance metric D can be chosen to be any
arbitrary form, whereas in token-level training the loss function needs to be differentiable. It
is a common practice to choose the distance metric to be the same as the evaluation metric,
e.g. Word Error Rate for speech recognition, BLEU [158] for machine translation. However,
directly optimising the sequence loss is quite challenging, since the expectation over the
entire Y ( j) is intractable. In practice, MBR training is often realised with a reduced search
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space Ỹ ( j) [187] or using Monte Carlo approximation [223]. Larger search space requires
longer training time, whereas smaller search space gives a rough approximation and makes
the training less stable [175].

In general, as the number of training samples N increases, the estimated θ̂θθ gets closer to
the true global minimum and generalises better to examples that are not seen at training time.
Model capacity often scales with the complexity of the network, i.e. number of layers, and
dimension of hidden states. Complex networks are more capable of capturing high degrees
of non-linearities, yet more likely to get stuck at local minimums due to limited training
samples. This problem is commonly known as overfitting [25], where a neural network fits
exactly against its training data, but fails to perform accurately against unseen data. Several
regularisation techniques (discussed in Section 2.3.2) are used to improve generalisation by
limiting model capacity or smoothing the loss function.

2.3.2 Optimisation

Neural network training is the process of solving Equation 2.66, yet there is usually no
closed-form solution for the optimisation problem. Since the networks are deliberately
designed to be differentiable, a gradient descent approach [177] is adopted together with
error backpropagation [178, 76]. The optimisation is an iterative refinement process, and
each iteration can be described using:

θθθ [τ +1] = θθθ [τ]−∆θθθ [τ] = θθθ [τ]−η
∂L(θθθ)

∂θθθ
|θθθ [τ] (2.77)

where θθθ [τ] denotes the parameter estimation at iteration step τ and η is the learning rate. The
iterative learning process ends when τ hits a pre-determined maximum number of iterations,
or when an early stopping criterion (discussed below) is satisfied. The optimisation process
searches for a global minimum on a high-dimensional loss surface, and the negative gradient
follows the direction of the steepest descent at the current location.

The vanilla optimisation process operates on the loss function over the entire training
set, and thus suffers from slow training as well as poor generalisation performance. A more
commonly adopted training scheme in recent years is stochastic gradient descent (SGD) [20],
which speeds up training and adds extra regularisation measure. It partitions the data into
multiple batches followed by random shuffling, and updates the parameters based on one
batch at a time. Gradients are calculated on a small batch of data each time, thus regularising
the model through constraining its capacity. The name ‘stochastic’ arises from the noise
introduced by estimating the gradient over the entire training set using a small batch.
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A known issue with stochastic gradient descent is slow convergence. Sudden direction
changes in gradients can be caused by switching batches, and consequently slow down
the optimisation process. Momentum methods are introduced to stabilise gradients by
updating parameters using a rolling sum of current and previous gradients. Commonly
used momentum approaches includes Nesterov accelerated gradient (NAG) [151], Adaptive
Gradient Algorithm (Adagrad) [51] and Adaptive Moment Estimation (Adam) [105]. Adam
is adopted throughout this thesis, which uses both the first and second moment to decelerate
sudden changes in gradient updates:

∆θθθ [τ] = η
mmm[τ]√
vvv[τ]+ε

(2.78)

mmm[τ] = 1
1−β τ

1
(β1mmm[τ−1]+ (1−β1)ggg[τ]) (2.79)

vvv[τ] = 1
1−β τ

2
(β2vvv[τ−1]+ (1−β2)ggg2[τ]) (2.80)

ggg[τ] = ∂L(θθθ)
θθθ
|θθθ [τ] (2.81)

where ggg[τ] is the gradient at the current step τ ; mmm[τ] and vvv[τ] are estimates of the first moment
(the mean) and the second moment (the variance) of the gradients respectively; β1 and β2 are
hyperparameters controlling the decay rates. Adam stores an exponentially decaying average
of past squared gradients vvv[τ] and keeps an exponentially decaying average of past gradients
mmm[τ]. If momentum is seen as a ball running down a slope, Adam behaves like a heavy ball
with friction, which thus prefers flat minima in the error surface [79].

Each iteration of gradient descent methods updates the parameters based on their gradi-
ents, and backpropagation is used to compute the gradients in weight space, with respect to
the loss function. The underlying principle of backpropagation is to apply the chain rule for
derivatives: the derivative of the loss function can be expressed as a product of derivatives
between each layer (working backwards), and the gradients of the weights between each
layer are calculated using a modification of the partial products.

∂L(θθθ)
∂WWW (k)

=
∂L(θθθ)
∂ zzz(k)

∂ zzz(k)

∂WWW (k)
=

∂L(θθθ)
∂ zzz(k)

xxx(k)T (2.82)

∂L(θθθ)
∂ zzz(k)

=
∂L(θθθ)
∂ zzz(k+1)

∂ zzz(k+1)

∂yyy(k)
∂yyy(k)

∂ zzz(k)
=

∂L(θθθ)
∂ zzz(k+1)

WWW (k+1)T ∂yyy(k)

∂ zzz(k)
(2.83)

xxx(k+1) = yyy(k) = σ(zzz(k)) = σ(WWW (k)xxx(k)) (2.84)

where θ = {WWW (1), ...,WWW (K)} is the parameter set; xxx(k), yyy(k) are the input and output of the kth

layer; and zzz(k) is the pre-activation layer output. Equation 2.83 shows the chain rule operating
on the kth layer, and Equation 2.82 calculates the derivative of the weight matrix WWW (k). FFNs
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are optimised by repeatedly applying backpropagation to propagate gradients through all
modules, and RNNs can also be trained using the same approach by unfolding along their
hidden layers, which is known as backpropagation through time [219, 109].

Once the gradients are calculated, the gradient descent step updates all layers simultane-
ously, assuming that the parameters stay unchanged relative to each other. Such assumption
ignores the higher order effects, and would potentially lead to a rough loss surface. An
ill conditioned loss surface tends to be particularly sensitive to its hyperparameters, and
consequently makes the training process less stable or even fail to reach convergence. Such
effects become even greater with deeper networks. The following sections will discuss
various approaches to mitigate this issue by making the loss surface smoother.

Regularisation
Regularisation techniques are widely used to overcome the overfitting issue by improving
generalisability. Limiting the size and number of layers is a straight-forward approach to
restrict models from high degrees of non-linearities. Weight decay [147] is also effective
in limiting model capacity, i.e. adding a penalty term to the loss function L(θθθ) to limit the
absolute magnitude of the model parameters:

L′(θθθ) = L(θθθ)+α∥θθθ∥2 (2.85)

where α is a weight penalty coefficient. Another common approach is early stop [25], i.e.
during training, a held-out validation set is used to evaluate the model performance, and
training will be terminated if the validation loss stops decreasing for a few consecutive
iterations. Dropout [196] restricts networks from achieving their full capacity during training
by randomly dropping a certain percentage of the hidden units in the network. Batch and
layer normalisation techniques (discussed in Section 2.1.4) both help smooth the loss function
and consequently speed up convergence.

Parameter initialisation
At the beginning of the training, model parameters need to be assigned initial values. The
optimisation process can be sensitive to the initial values, especially with complex networks
and small training sets. Poor initialisation can lead to convergence to local minima or even
gradient saturation [63]. Glorot initialisation [61] is introduced to mitigate this issue. Biases
are initialised to be 0 and every element wi j in the weight matrix WWW is initialised using a
normal distribution:

wi j ∼N (− 1√
N
,

1√
N
) (2.86)
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where N is the number of columns in WWW . With the rise of Transformers and large-scale
pre-training, the state-of-the-art initialisation uses large pre-trained models (see Section 2.4).
Model parameters are initialised using the optimised values of another network with a similar
architecture pre-trained on a related task. This allows efficient use of data from related tasks,
and speeds up convergence on the target task by bootstrapping its parameters in a favourite
state that is closer to its optimum.

Learning rate scheduling
Learning rate scheduling, also known as warm-up, is used to help adaptive optimisers (Adam
for example) compute correct statistics of the gradients at the beginning of training. When the
dataset is highly differentiated, the training might suffer from ‘early over-fitting’, i.e. if the
training data batch happens to include a cluster of correlated observations, the initial training
will potentially skew towards those features. Warm-up [64] is used to mitigate this issue,
without which the training might require additional epochs to reach desirable convergence. It
begins with a high learning rate to learn simple patterns, and then lower the learning rate at
later stages to learn more complex patterns [128]. Equation 2.87 describes a commonly used
scheduling strategy:

η [τ] =

ηpτ/τp 0≤ τ ≤ τp

ηpe−ατ τ > τp
(2.87)

where τ is the iteration step, α is a decay coefficient, ηp and τp are the peak learning rate
and its corresponding iteration. The learning rate is set to increase linearly to a specific peak
value in the first few epochs, followed by exponential weight decay to zero [121].

2.4 Large pre-trained models

In recent years, large-scale pre-training has achieved great successes on a wide range of
natural language processing tasks. The initial efforts aim to learn word-to-vector (word2vec)
mappings, such as Skip-gram [145], CBOW [143] and GloVe [161]. The learned models
generate distributed and continuous representations of words, which are able to capture
semantic meanings. However, the embeddings are context-free and thus cannot extract
correlations and higher-level concepts. More advanced techniques aim to learn contextual
word embeddings, such as CoVe [140] and ELMo [183]. The embedding mapping functions
modelled using recurrent networks can only be trained on a limited amount of data, due
to its long training time that scales with sequence lengths. With the emergence of the
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Transformer architectures, more recent approaches are able to achieve more generalised
language modelling purposes, as well as train on vast amounts of unlabelled data. The
main advantages of pre-training are to extract high-quality contextual embeddings to help
downstream training, and to provide a good initialisation point to speed up convergence.

This section gives a brief introduction of different variants of the recent Transformer-
based pre-training models. The existing pre-trained models are categorised into three groups
in terms of their architectures, namely Transformer encoder, decoder and encoder-decoder
structures. The encoder and decoder both use self-attention to extract contextual information
from the input, and the decoder adopts an additional causal mask to prevent tokens from
attending to their future context. The encoder-decoder architecture follows the original
Transformer formulation with cross-attention.

Transformer encoder
BERT [104], short for Bidirectional Encoder Representations from Transformers, is a

bidirectional language model consisting of multiple Transformer encoder blocks. It is trained
on free-text, and is able to predict both the left and right context. The pre-training tasks are:

• Masked language model (MLM): 15% of the tokens are randomly masked out in the
input sequence, each replaced with either a mask token [MASK] or a random word.
The model makes predictions on the masked words, without additional information
about which of the words have been replaced.

• Next sentence prediction (NSP): Sentence pairs (A, B) are sampled so that there is
a 50% chance that B follows A, and the model is trained to predict a binary label
indicating whether B is the next sentence of A.

These training objectives encourage BERT to consider bidirectional context, and enhance
sentence-level understanding. In addition to the word embeddings and positional embeddings
that are proposed in the original Transformer, the input embeddings in BERT also include
segment embeddings, allowing input sequences to contain two sentences. Another trick is to
apply the WordPiece [185] tokenisation, which divides words into smaller sub-word units
so that it can handle rare or unknown words. The Transformer architecture speeds up the
training process, thus allowing BERT to be trained on over 3 billion words at the pre-training
stage. Once pre-trained, BERT can be fine-tuned to downstream tasks by simply adding a
classification head. Typical downstream applications include sentence classification (one
label per sentence), sequence tagging (one label per token), as well as question answering
tasks (predict the start and end of a span in a sentence).

RoBERTa [134] is a robustly optimised BERT approach, which uses an optimised training
recipe to achieve better results. The recipe includes: train with a larger batch size for a longer
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time; remove the NSP objective; concatenate multiple sentences into a longer segment input;
dynamically change the mask pattern used for the masked language model objective. The
hyperparameter fine-tuning also have a large impact on model performance.

ALBERT [117] is a lightweight version of BERT. Under the same configuration, ALBERT
can be trained with 18 times fewer parameters and is about 1.7 times faster. It proposes two
parameter efficient modifications: factorised embedding parameterisation decomposes the
embedding matrix V ×H into two matrices V ×E and E×H; cross-layer parameter sharing
forces the same set of parameters to be shared across multiple layers. Both approaches
make significant cut to the number of parameters without compromising much performance.
Another tweak is to replace NSP with a sentence order prediction (SOP) objective, which
requires a coherent understanding of the full segment.

XLNet [229] aims to address two critical issues in BERT: the MLM training assumes that
the masked tokens are conditionally independent, and the special mask token ‘[mask]’ never
occurs at the fine-tuning stage. XLNet adopts a permutation language modelling (PLM)
objective, which is a causal language model (CLM) over all possible permutations of words
within a sentence. The PLM bypasses the independence assumption on masked tokens, and
learns to capture the bidirectional context. To further account for the positional information,
a two-stream self-attention is introduced with share parameters. In addition to the general
self-attention for content extraction, it adds a second attention steam to encode the position
to be predicted.

XLM [41] extends the monolingual language models to cross-lingual scenarios. Apart
from the common MLM objective, it proposes a translation language model (TLM) objective
which extends MLM to pairs of sentences in different languages. The TLM attends to both
the source and target languages, and encourages alignment between the two.

XLM-R, short for XLM-RoBERTa, is an XLM [41] model trained with the RoBERTa [134]
criteria. It adopts the translation language model (TLM) objective to learn the alignment
between the source and target language pairs. The main changes from the original XLM are
that XLM-R drops the language embedding to allow better code-switching, and it scales up to
a much larger set of languages and more training data. XLM-R is pre-trained on over 2.5 TB
of clean CommonCrawl corpus in 100 languages, and obtains state-of-the-art performance
on various cross-lingual NLP tasks.

Transformer decoder
GPT [171], GPT-2 [172], GPT-3 [21] are a series of Generative Pre-training Transformers

proposed by OpenAI. The architecture is an autoregressive language model which consists
of multiple layers of Transformer decoders. One limitation of the GPT series is that they
only account for the unidirectional left-to-right context. Compared with GPT, GPT-2 is 10
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times larger and allows zero-shot transfer. By attaching task specific labels at the end of
each input sequence, the model is able to infer task-specific conditional probabilities without
fine-tuning. GPT-3 adopts the exact same architecture as GPT-2, but is 10 times larger than
GPT-2. The parameters in the giant model are spliced along the width and depth dimensions,
in order to fit onto GPUs for training. Under the few-shot setting, GPT-3 achieves comparable
performance as the fine-tuned BERT models on benchmark NLP tasks.

Transformer encoder-decoder
BART [125], short for Bidirectional and AutoRegressive Transformer, jointly trains a

BERT-like bidirectional encoder and a GPT-like autoregressive decoder [217]. It corrupts
text by adding various noising transformations, and trains the model to de-noise the corrupted
version and recover the original context. It is found that span-based masks and sentence
shuffling are the most effective noising functions.

T5 [173], short for ‘Text-to-Text Transfer Transformer’, is an encoder-decoder style
generative language model following the original Transformer architecture. T5 proposes
to use a unified ‘Natural Language Decathlon’ framework [141] to convert all text-based
tasks into a text-to-text question-answering format. The training process can be split into
two stages. In the initial pre-training stage, T5 adopts the unsupervised de-noising objective
following BERT, and the 750 gigabyte Colossal Clean Crawled Corpus (C4) corpus is used
for training. In the supervised fine-tuning stage, task-specific prefixes are added to the
input sequence to indicate the nature of the downstream tasks, and the model can then be
separately fine-tuned to a wide range of NLP tasks, such as machine translation and document
summarisation. This general purpose pre-training allows efficient transfer learning, and has
achieved state-of-the-art results on many NLP benchmarks.

2.5 Summary

This chapter reviewed the fundamentals of neural networks, and covered a wide range of
deep learning techniques that are further used in the following chapters to model a wide
range of spoken language tasks. Section 2.1 reviewed the basic units of neural networks,
which are then used as building blocks in Section 2.2 for sequence tagging and sequence-to-
sequence models. Section 2.3 discussed the training criteria and the gradient descent based
optimisation process. Finally, Section 2.4 discussed the state-of-the-art Transformer-based
pre-training approaches that are used in future chapters to initialise individual modules of
spoken language tasks.



Chapter 3

Individual Modules

Chapter 2 reviewed a wide range of deep learning techniques, including sequence mod-
els, training methods, as well as large-scale pre-training approaches. In Chapter 3, these
techniques are applied to formulating individual modules of spoken language tasks.

Due to the lack of end-to-end data, spoken language tasks are often modelled as multi-
modular cascaded systems. This chapter first gives a multimodular cascaded formulation
of spoken language tasks, and discusses the approximations being made for the cascaded
structure. The rest of this chapter focuses on the modelling of individual modules in spoken
language systems. Automatic speech recognition (ASR) converts speech into transcriptions,
and is often considered as the upstream module of spoken language tasks. The generative
hybrid structure and the discriminative end-to-end ASR models are both described. Connect-
ing to the upstream ASR module, various text-based tasks can be used as the downstream
modules. Disfluency detection (DD), neural machine translation (NMT) and grammatical
error correction (GEC) are used in this thesis as the example downstream tasks. DD helps
remove speech disfluencies, NMT translates one language into another, and GEC converts
grammatically incorrect sentences into correct ones.

3.1 Multimodular systems

Spoken language processing can be broadly viewed as a pattern recognition problem. It
takes a sequence of speech input xxx1:T and generates a sequence of textual output yyy1:N . The
maximum a posteriori (MAP) decision can be expressed as:

ŷyy1:N = argmaxyyy1:N∈YP(yyy1:N |xxx1:T ;θθθ) (3.1)
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For complicated objectives that do not have sufficient data to train the system end-to-end, a
commonly adopted approach is to break down the complex task into multiple simpler mod-
ules, and use intermediate representations to pass information across modular connections.
Equation 3.1 can therefore be expressed as a multiplication of multiple modules:

P(yyy1:N |xxx1:T ;θθθ) =
X

zzz(1)1:L∈Z (1)

...
X

zzz(M)
1:L ∈Z (M)

P(yyy1:N ,zzz
(1)
1:L,zzz

(2)
1:L, ...,zzz

(M)
1:L |xxx1:T ;θθθ)

=
X

zzz(1)1:L∈Z (1)

...
X

zzz(M)
1:L ∈Z (M)

P(yyy1:N |zzz
(1)
1:L, ...,zzz

(M)
1:L ,xxx1:T ;θθθ)

( M

∏
m=2

P(zzz(m)
1:L |zzz

(1)
1:L, ...,zzz

(m−1)
1:L ,xxx1:T ;θθθ)

)
P(zzz(1)1:L|xxx1:T ;θθθ)

(3.2)

where there are a total of (M + 1) modules, zzz(1)1:L...zzz
(M)
1:L denote the intermediate represen-

tations1, and Z (1)...Z (M) denote their respective search spaces2. To make the modules
separable, it is assumed that the current module prediction is independent of all the interme-
diate variables from the upstream modules, except for the direct input of the current module.
Therefore, Equation 3.2 can be simplified as:

P(yyy1:N |xxx1:T ;θθθ)≈
X

zzz(1)1:L∈Z (1)

...
X

zzz(M)
1:L ∈Z (M)

P(yyy1:N |zzz
(M)
1:L ;θθθ)

( M

∏
m=2

P(zzz(m)
1:L |zzz

(m−1)
1:L ;θθθ)

)
P(zzz(1)1:L|xxx1:T ;θθθ)

(3.3)

However, it is still computationally expensive to realise the full marginalisation in Equa-
tion 3.3. It can be further simplified so that the marginalisation over intermediate variables is
approximated using a most likely hypothesis:

P(yyy1:N |xxx1:T ;θθθ)≈ P(yyy1:N |zzz
(M)
1:L ;θθθ) (3.4)

zzz(m)
1:L ≈ argmax

zzz(m)
1:L∈Z (M){P(zzz

(m)
1:L |zzz

(m−1)
1:L ;θθθ)} (3.5)

Such approximations lead to a cascaded formulation of spoken language processing tasks,
where each individual module can be separately trained in their corresponding domains.

1Here L is used to denote the sequence lengths for all zzz(1)1:L...zzz
(M)
1:L to simplify equations. In practice, L varies

for different intermediate variables.
2Equation 3.2 assumes that the intermediate variables are discrete sequences, and therefore summations are

used for marginalisation purposes. If they are continuous variables, integrations will be used instead.
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Fig. 3.1 Illustration of a multimodular cascaded system

Figure 3.1 shows an illustration of the multimodular cascaded system. Take spoken
language translation (SLT) as an example, a cascaded SLT system can be modelled using an
automatic speech recognition (ASR) module followed by a neural machine translation (NMT)
module, and speech transcripts are used as the intermediate variable zzz1:L connecting the two
modules. The underlying assumption is that the intermediate variable encapsulates all the
information from its upstream modules, and then passes them onto its downstream modules.
This approximation gives rise to various issues in cascaded systems, and more detailed
module combination approaches will be discussed in Chapter 4. The focus of this chapter is
to review the modelling of individual modules in cascaded spoken language systems, and
the sequence modelling approaches discussed in Section 2.2 will be applied in the following
sections to formulate the speech and text processing modules.

For a general spoken language processing task, the initial stage is usually to convert
speech signals into transcriptions, and thus an automatic speech recognition (ASR) module
is needed. Following the upstream ASR, there are usually one or more downstream textual
processing modules, and the downstream tasks covered in this thesis are listed below:

• Disfluency detection (DD) removes speech disfluencies so that speech transcriptions
can be made more text-like. It is commonly used as a post-processing procedure for
speech transcripts, which recovers a fluent text flow for downstream processing.

• Neural machine translation (NMT) translates sentences into a foreign language. When
operating on speech transcriptions, it can be seen as the downstream module of a
spoken language translation (SLT) system.

• Grammatical error correction (GEC) corrects grammatical errors in a sentence. When
used to correct grammar errors in speech transcriptions, it can be seen as part of a
spoken grammatical error correction (SGEC) system.

3.2 Automatic speech recognition

Automatic speech recognition (ASR) is a sequence-to-sequence task that converts input
speech into its corresponding transcriptions. It aims to maximise the posterior probability of
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a word sequence w1:L given the observation utterance xxx1:T
3.

ŵ1:L = argmaxw1:L∈WP(w1:L|xxx1:T ;θθθ ASR) (3.6)

The initial breakthrough in speech recognition is the use of generative hybrid modelling [8,
170, 150], where speech is decomposed at the different acoustic levels with separate models.
More recent work has been transiting to discriminative end-to-end (E2E) modelling [67, 168]
where speech sequences are directly translated into transcripts using a single network. Hybrid
models tend to be more robust when faced with a limited amount of training data, whereas
E2E models allow potential tighter integration with downstream tasks of the ASR module.
This section gives a brief overview of the hybrid and E2E models, which will be used in the
following chapters as part of the spoken language processing tasks.

3.2.1 Hybrid models

In a traditional hybrid model, the posterior can be rewritten using a joint distribution:

P(w1:L|xxx1:T ) =
P(w1:L,xxx1:T )

∑w′1:L∈W P(w′1:L,xxx1:T )
(3.7)

where the denominator can be dropped since it is independent of w1:L. The hybrid model
can therefore be viewed as a generative model, which optimises for the joint distribution
P(w1:L,xxx1:T ). The joint distribution can be further expanded using Bayes Law:

P(w1:L,xxx1:T ) = P(xxx1:T |w1:L)P(w1:L) (3.8)

where P(xxx1:T |w1:L) accounts for the acoustic model (AM) that approximates the observation
distribution given a word sequence, and P(w1:L) is the prior distribution of the word sequence
determined by a language model (LM).

Acoustic model (AM)
Since modelling alignment between the observation and word sequences can be difficult on
different length scales, word sequences are often decomposed into state sequences s1:T that
have the same length T as the observation sequences:

P(xxx1:T |w1:L) = ∑s1:T∈S P(xxx1:T ,s1:T |w1:L) (3.9)

3θθθ ASR is omitted for the rest of this section.
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where S is the collection of the state sequences. The posterior can be further expanded into:

P(xxx1:T ,s1:T |w1:L) = P(s1:T |w1:L)P(xxx1:T |s1:T ,w1:L) (3.10)

Hidden Markov Model (HMM) is adopted to compute the joint likelihood of the observation
and the state sequences [58, 57], and two assumptions are made in HMM in order to simplify
the probability estimation. The first one assumes that the current state is conditionally
independent of all other states, given the previous state:

P(s1:T |w1:L) = ∏
T
t=1 P(st |st−1,w1:L) (3.11)

The second assumption is that the current observation is conditionally independent of all
other observations, words and states, given the current state:

P(xxx1:T |s1:T ,w1:L) = ∏
T
t=1 P(xxxt |st) (3.12)

The posterior distribution can therefore be approximated as:

P(xxx1:T |w1:L) = ∑s1:T∈S∏
T
t=1 P(xxxt |st)P(st |st−1) (3.13)

where P(xxxt |st) is the emission probability and P(st |st−1) is the state transition probability. In
practice, the states are often defined by dividing a word into sub-word units (phones), then
converting those sub-word units into states.

Language model (LM)
P(w1:L) denotes the prior distribution of a word sequence w1:L jointly occurring, which can
be decomposed into:

P(w1:L) = P(w1)∏
L
l=2 P(wl|w1:l−1) (3.14)

The dimension of the distribution grows exponentially with the sequence length L. To
make the distribution tractable, conditional independence assumptions are made. N-gram
approximation [7] is commonly used, which assumes that the probability of the current word
is conditionally independent of all other words, given the previous (N−1) words:

P(w1:L)≈ P(w1)∏
L
l=2 P(wl|wl−N+1:l−1) (3.15)

The quality of the estimation increases with N, yet it also makes the system less statistically
reliable due to the limited amount of training data. If an N-gram phrase does not exist in the
training corpus, its probability estimation will be zero, which prevents the phrase from being
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generated in any occasion. Smoothing, discounting [103] and back-off [106] methods are
used to improve the statistical reliability of the N-gram language model.

Neural language models has shown to be more powerful in generalising to unseen
corpora [14]. A commonly adopted approach is recurrent neural network language model
(RNNLM) [144], which models the probability distribution of the current word wl as:

P(wl|w1:l−1) = P(wl|wl−1,hhhl−2;θθθ) (3.16)

where the current word prediction is conditioned on the previous word wl−1 and the back
history representation hhhl−2. The previous word sequence w1:l−2 is represented using a hidden
state hhhl−2, which is modelled using a recurrent network:

hhhl−2 = f (hhhl−3,wl−2;θθθ rnn) (3.17)

The network is trained to maximise the probability of observing a word given its history (or
in some cases future) context. The main advantages of neural based models are that they
are able to extend to a much larger context window, and can be easily generalised when
encountered with unseen words.

Recognition
The posterior distribution combining the acoustic and language models can be expressed as:

P(w1:L|xxx1:T ) ∝ P(w1:L)
γ

∑s1:T∈S∏
T
t=1 P(xxxt |st)

αP(st |st−1)
α (3.18)

where γ,α are the language model and acoustic model scaling factors. The language and
acoustic models are separately trained with dramatically different dynamic ranges, and
the scaling factors are used to reach a balanced range between the two. At the decoding
stage, hypotheses can be represented using lattices [156], which are directed acyclic graphs
composed of vertices and arcs. Each arc is associated with a word hypothesis, an acoustic
model score and a language model score. Each vertex corresponds to a time stamp that
connects an arbitrary number of incoming and outgoing arcs.

To reduce computational cost, speech recognition is often performed as such: lattices
are generated with a first pass decoding using a weak language model such as a bigram or
trigram LM; in the second pass, the lattice re-scoring is performed using a more advanced
language model such as a higher order N-gram model or RNNLM. The re-scored lattices can
be decoded using Viterbi [205] to obtain an N-best list of the recognition hypotheses.
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3.2.2 End-to-end models

Generative hybrid ASR systems require separate training of an acoustic model and a language
model, both of which can be complex. In contrast, end-to-end (E2E) ASR4 refers a group
of discriminative approaches which directly optimise for the posterior P(w1:L|xxx1:T ). This
allows a much simpler training pipeline, reduces both the training and decoding time, and
also enables joint optimisation with its downstream processing. With abundant training
data, E2E ASR models have been shown to outperform traditional hybrid models both in
academia [213] and in industry [180, 127]. However, current E2E ASR systems need orders
of magnitude more training data than hybrid ASR systems to achieve similar performance,
since E2E models tend to overfit to the training corpus when it is limited [112].

There are three main branches of E2E ASR models [126]: (a) Connectionist Temporal
Classification (CTC) [66], (b) Attention-based Encoder-Decoder (AED) [34], and (c) Re-
current neural network Transducer (RNN-T) [65]. Figure 3.2 illustrates the three model
architectures, where the encoder and decoder networks usually adopt RNN or Transformer
blocks discussed in Section 2.1.

Fig. 3.2 Architectures of three popular E2E ASR models [75].

The CTC-based ASR maps the input speech into an output label sequence, with blank
labels in between neighbouring output labels to construct a CTC path that has the same
length as the input. The CTC model is the first E2E approach widely used in ASR [72, 242],
yet most CTC-based works require external language models due to the lack of implicit
language modelling [67, 137]. The RNN-T model is most commonly used for streaming
ASR [168, 180], since its current prediction is conditioned on the previously predicted
words and the input speech until the current time step. In this thesis, AED-based ASR is

4‘End-to-end’ is a commonly used name in the speech community, which indicates the use of a single
network for ASR modelling. The underlying commonality of this line of approaches is that they all adopt the
discriminative objective to directly optimise for the posterior distribution.
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adopted. It uses an attention mechanism to align the speech and transcription sequences. In
spoken language tasks, the alignment information is beneficial for tighter integration with
the downstream text processing modules (see Chapter 4).

Attention-based Encoder-Decoder (AED)
AED-based ASR (see Figure 3.2b) uses an attention mechanism to directly calculate the
alignment between the input speech and the output labels. The underlying structure is
an attention-based sequence-to-sequence model (discussed in Section 2.2.2): the encoder
converts the input speech into a sequence of hidden representations; the decoder compresses
the encoded sequence into a fixed length vector through a weighted sum generated from the
attention mechanism, and then makes a word prediction accordingly. The training objective
is to maximise the probability of the output sequence:

LAED =− logP(w1:L|xxx1:T ) =− log∏
L
l=1 P(wl|xxx1:T ,w1:l−1) (3.19)

With the current word prediction being conditioned on all previously generated words, an
implicit language model is built in to AED models. However, AED models usually suffer
from latency issues, since the attention is to be applied to the entire encoded sequence, which
forces it to wait until the encoding process to be completed before proceeding forward. A
popular approach to building low-latency streaming AED systems is to apply attention on
chunks of the input speech [32].

3.3 Disfluency detection

Disfluency is a commonly observed linguistic phenomenon in spontaneous spoken language.
A typical disfluency structure consists of reparandum, interregnum and repair regions [191]:

I want a train [

reparandum︷ ︸︸ ︷
to Oxford

interregnum︷ ︸︸ ︷
uh I mean +

repair︷ ︸︸ ︷
to London]

where reparandum refers to repetitions and restarts, and interregnum includes filled pauses
and discourse markers. The underlying fluent sentence can be recovered by removing the
associated words in the reparandum and interregnum regions. Interregnum regions often
consist of fixed phrases of filled pauses and discourse markers (‘um’, ‘you know’ etc.) that
are easy to detect using rule-based methods [99]. Automatic disfluency detection therefore
focuses on reparandum detection.

Disfluency detection (DD) models can be generally divided into two categories: parsing-
based models and sequence tagging models. Parsing-based methods [28, 241] identify
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disfluency structures by learning the syntactic structure of spoken sentences. They can
jointly perform parsing and detection, yet the training requires a large amount of annotated
tree-banks. Alternatively, sequence labelling methods assign fluent and disfluent tags to each
word [169, 234]. In this work, DD is modelled as a sequence tagging task, where each input
word wl is assigned a binary disfluency tag dl (illustrated in Figure 3.3):

d̂1:L = argmaxd1:L
P(d1:L|w1:L;θθθ DD) (3.20)

The general framework of sequence tagging models are discussed in Section 2.2.1. The
model posterior can be expanded depending on the nature of the sequence tagging process. In
the scope of this thesis, sequence tagging is always modelled as a non-autoregressive process
where the current prediction dl is conditionally independent of the prediction history:

P(d1:L|w1:L;θθθ DD) = ∏
L
l=1 P(dl|d1:l−1,w1:L;θθθ DD)≈∏

L
l=1 P(dl|w1:L;θθθ DD) (3.21)

Initial works on tagging models [234] adopt hand-crafted features as inputs e.g. words, part-
of-speech tags and N-gram based patterns. Under the context of spoken language processing,
the DD model in this thesis serves as a downstream module of an ASR system, thus taking
speech transcriptions as inputs. Features such as part-of-speech are not readily available
for speech transcripts, neither do punctuations and capitalisations. Therefore, a sequence of
unpunctuated and uncapitalised word tokens are used as the only input to the DD module.

Fig. 3.3 An example of disfluency tagging: ‘O’ and ‘E’ denote fluent and disfluent tags.

Sequence tagging models first extract contextual features from the input sequence, and
the extracted features are fed to a classification layer. Disfluency detection is a simple binary
classification problem with ‘E’ and ‘O’ respectively denoting disfluent and fluent tags. The
classification head therefore adopts a simple feed-forward layer followed with a sigmoid
function. The tagging performance largely depends on the quality of the feature represen-
tations. The following sections will introduce two realisations of the non-autoregressive
disfluency tagger with different feature extractors: a simple RNN-based approach, and a
more advanced large pre-trained Transformer-based architecture.
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3.3.1 Recurrent network

An RNN-based DD model (Figure 3.4) first converts words w1:L into continuous embedding
vectors eee1:L, and then uses a bidirectional long short term memory (BLSTM) layer (see
Section 2.1.2) for contextual feature extraction:

eeel =WWW ewl (3.22)
−→
hhh l = LSTM(eeel,

−→
hhh l−1;

−→
θθθ )

←−
hhh l = LSTM(eeel,

←−
hhh l+1;

←−
θθθ ) (3.23)

hhhl = [
−→
hhh l,
←−
hhh l] (3.24)

where eeel is the embedding of the word wl , and WWW e is the trainable embedding matrix.
−→
hhh l,
←−
hhh l

denote the left and right context representations, and
−→
θθθ ,
←−
θθθ are the LSTM parameters. The

concatenation of the two context vectors becomes the contextual representation hhhl , which is
then fed through a feed-forward classification layer:

P(dl|hhhl,θθθ cls) = σsigmoid(WWW f
σtanh(WWW hhhhl +bbbh)) (3.25)

where the parameter set θθθ cls contains {WWW f ,WWW h,bbbh}. Given the ground truth labels, a standard
negative log-likelihood loss can be used for training.

Fig. 3.4 Illustration of an RNN-based DD model. The dotted rectangle outlines the contextual
feature extraction process.

The BLSTM generates reasonably good quality feature representations, since it is able to
extract contextual information from both sides of the current word. However, the training
time of the vanilla RNN-based tagger scales with sequence lengths, which prohibits it from
large-scale training on large corpora.
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3.3.2 Large pre-trained model: BERT

BERT [104] is a Transformer encoder based large language model trained on a giant collection
of free text corpora (described in Section 2.4). It can be further fine-tuned on specific tasks
without additional customisation of network architectures.

Fig. 3.5 Illustration of a BERT-based DD model. The DD model overview is on the left, and
the BERT internal architecture is shown on the right.

Figure 3.5 shows an illustration of the BERT-based DD model. Compared with the
RNN-based DD, the feature extractor is replaced by BERT, and the classifier layer stays the
same. Equation 3.22-3.24 are simply replaced using:

hhh1:L = BERT(w1:L) (3.26)

where hhh1:L denotes the contextual feature. With the Transformer architecture, BERT is a
strong language model pre-trained on a large amount of data. It is therefore capable of
extracting high quality feature representations. The BERT-based DD model is initialised
with the pre-trained BERT, and further fine-tuned using the disfluency detection objective.

3.4 Neural machine translation

Machine translation translates source text in one language to target text in another language.
Early works on machine translation mainly uses hand-crafted translation rules [107]. The
ideas of statistical machine translation (SMT) were first introduced in the 1940s [90], where
translations are generated based on statistical models. With the rise of deep neural networks,
neural-based statistical models are gaining more interest. Neural machine translation (NMT)
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is a neural-based approach of SMT, which can be viewed as an end-to-end trainable sequence-
to-sequence model with variable length inputs and outputs.

Fig. 3.6 An example of English to German (En-De) translation

An NMT model conducts a sequence-to-sequence mapping from an input sequence w1:L

to an output sequence y1:N (illustrated in Figure 3.6):

ŷ1:N = argmaxy1:N∈YP(y1:N |w1:L;θθθ NMT) (3.27)

Initial works on NMT make use of attention mechanisms together with RNNs for sequence
modelling, and achieve comparable performance to the existing phrase-based systems [6,
222]. Further advances are made with the introduction of the Transformer-based translation
models [203]. Another line of work explores edit-based approaches [48, 139], which targets
at translation problems that only require small changes to the input, such as post editing,
style transfer and grammatical error correction. This thesis mainly adopts the attention-based
approach, since it allows translation between two distanced language pairs.

This section discusses various realisations of attention-based sequence-to-sequence mod-
els (see Section 2.2.2) under the context of machine translation: an RNN-based NMT and a
Transformer-based NMT models are discussed, following which a large-scale pre-trained
Transformer-based T5 model is also described.

3.4.1 Recurrent network

Fig. 3.7 Illustration of an RNN-based NMT model [222]. The model overview is shown on
the left, and the right part shows a more detailed architecture.
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Under the general framework of the attention-based encoder decoder model, an RNN-
based NMT model consists of an encoder, an attention mechanism and a decoder. Figure 3.7
shows an illustration of the model architecture. Each word token wl in the input w1:L is
mapped into an embedding eeel via a multiplication with a learnable embedding matrix WWW e:

eeel =WWW ewl (3.28)

The rest of the model follows the attention-based sequence-to-sequence described in Sec-
tion 2.2.2. The encoder maps the embeddings eee1:L into context vectors hhhe

1:L. The attention
mechanism generates attention weights αααn over the input context hhhe

1:L according to the
previous decoder state hhhd

n−1 (some implementations use hidden vectors from lower layers of
the decoder instead). Based on the context vector cccn and the previous predictions y1:n−1, the
decoder generates a new state hhhd

n , and makes the prediction for yn.

hhhe
1:L = fenc(eee1:L;θθθ enc) (3.29)

αααn = fatt(hhhd
n−1;hhhe

1:L,θθθ att) cccn = ∑
L
l=1 αn,lhhh

e
l (3.30)

hhhd
n = fdec(hhhd

n−1,yn−1,cccn;θθθ dec) (3.31)

ŷn ∼ P(yn|hhhd
n;cccn,θθθ y) (3.32)

The encoder and decoder functions fenc and fdec are composed of multiple RNN layers.
The attention weights can be interpreted as the alignment between the inputs and outputs,
which allows the decoder to attend to the most relevant segments to the next token prediction.
The first token fed to the decoder is a special ‘beginning of sentence’ (BOS) token, and the
sequence generation terminates when a special ‘end of sentence’ (EOS) token is predicted by
the decoder. At the training stage, the reference back history of the output sequence is used
in the decoder, whereas at the inference stage, the hypothesised back history is used.

RNNs are designed to handle sequential data, and their recurrent nature enables an
infinite receptive field [192] both for the encoder context vectors and for the decoder states.
However, they suffer from the vanishing gradient problem [16], and approaches like LSTM
and GRU (see Section 2.1.2) are used to mitigate this issue. In addition, residual [73] and
highway [197] connections are widely used to speed up convergence. Another known issue
of RNN-based models is the long training time, which prohibits the sequence-to-sequence
model from being trained on a large amount of data.
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3.4.2 Transformer

The Transformer-based NMT also consists of an encoder, an attention mechanism and
a decoder conceptually. The three components serve similar purposes as those in RNN-
based NMT, yet the network architecture is designed differently. Figure 3.8 illustrates a
Transformer-based NMT model (Transformer blocks are discussed in Section 2.1.4).

Fig. 3.8 Illustration of a Transformer-based NMT model [203]

The Transformer encoder is composed of multiple encoder blocks, each containing
a multi-head self-attention layer and a feed-forward layer. With the self-attention layer
replacing the recurrent units, the encoder is able to convert input sequences into feature
vectors in constant time regardless of the sequence length. Different from RNN-based
models, the attention mechanism and the conceptual decoder are merged into the Transformer
decoder. The Transformer decoder has multiple decoder blocks, each containing a multi-head
self-attention layer, a multi-head cross-attention layer and a feed-forward layer. The cross-
attention layer replaces the encoder-decoder attention in RNN-based models, which aligns
the encoded feature vectors and the decoder states. The self-attention layer serves the same
purpose as the RNN decoder, which generates decoder states from the previous predictions.

At training time, the reference back history is used in the decoder, and an additional
triangular mask is applied to the decoder self-attention layer to prevent it from attending to
future words. The use of self-attention allows parallel processing of the input and output
sequences, and therefore the training time is independent of the lengths of input and output
sequences. At inference time, the hypothesised back history is used, and thus the sequence
generation time scales linearly with the output sequence length. Under sufficient training data,
the Transformer-based NMT usually out-performs the RNN-based NMT. The transformer
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structure allows parallel training, reduces training time on large datasets, and enables a larger
receptive field with the self-attention layers.

3.4.3 Large pre-trained model: T5

T5 [173] is an encoder-decoder style Transformer model which adopts a unified framework
that formulates all text-based tasks with a question-answering format (described in Sec-
tion 2.4). To adapt the original T5 model to the domain of interest, further fine-tuning can be
easily conducted on supervised corpus that is pre-processed into a question answering format.
Figure 3.9 shows an example of the fine-tuning pipeline. In the case of machine translation,
a task specific prefix ‘translate A into B:’ is added to the source sequence, where ‘A’ and
‘B’ are replaced with the source and target languages respectively. In general, fine-tuned T5
models out-perform conventional Transformers trained from scratch, and the main advantage
comes from the good initialisation point yielded from the large scale pre-training.

Fig. 3.9 An example pipeline of T5 fine-tuning of the En-De task [173]

3.5 Grammatical error correction

The problem of automatic assessment of second language has been wildly studied in computer-
assisted language learning (CALL). Among others, grammatical construction is one of the
key aspects of language assessment, and grammatical error correction (GEC) has attracted
considerable interest over the past few years [22, 153, 44].

Fig. 3.10 An example of the GEC process

A GEC model converts a grammatically incorrect input sentence w1:L into a grammatically
correct output sequence y1:N . An example of the GEC process is shown in Figure 3.10, and
the prediction process can be formulated as:

ŷ1:N = argmaxy1:N∈YP(y1:N |w1:L;θθθ GEC) (3.33)
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Inspired by machine translation, GEC is often viewed as a translation task. Phrase-based
statistical machine translation (SMT) [236, 101], and more recent neural machine translation
(NMT) models [233, 184] have both achieved high performance in GEC. An alternative line
of work adopts an edit-based approach, which emphasises the characteristics of the GEC task
by directly editing certain parts of the sentence [35, 157]. In this thesis, the translation-based
approaches are adopted, since it allows more complex transformations from the source to
target sequences. This section discusses the translation-based GEC approaches realised using
RNNs and Transformers.

3.5.1 Recurrent network and Transformer

The RNN-based and Transformer-based GEC models both follow the general formulation
of an attention-based encoder decoder structure, which are similar to the NMT models
introduced in Section 3.4.1 and 3.4.2 respectively. The main difference is that in GEC
tasks, the grammatically incorrect source sequence may contain spelling mistakes, which
significantly increases the number of out-of-vocabulary (OOV) words. One remedy to the
high OOV rate is to switch to character level inputs, and it allows attention mechanism to
directly access each character [224]. In the scope of this thesis, the inputs to GEC models
are always speech transcriptions, which have a fixed set of vocabulary. Although speech
recognition might introduce extra transcription errors, it avoids any OOV words, and thus the
conventional token level inputs can be used.

3.5.2 Large pre-trained model: Gramformer

Gramformer [45] is a Transformer encoder-decoder model, initialised with T5 pre-training
and further fine-tuned on GEC corpora. The original T5 model is not trained with the GEC
task, therefore an additional task prefix ‘gec: ’ is assigned, and the fine-tuning pipeline is
shown in Figure 3.11.

Fig. 3.11 An illustration of Gramformer training: fine-tuning T5 on GEC corpora

There is a limited amount of manual GEC annotation, and thus several GEC corpora
with synthetically generated errors [129] are adopted for Gramformer training: WikiEd [69]
extracts edits from Wikipedia revisions to form correction pairs; C4 [198] adopts tagged
corruption models to generate a desired type of errors by attaching an error tag to a clean
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sentence; PIE [2] adopts BERT to introduce synthetic errors through local sequence editing.
Benefited from large-scale pre-training, The Gramformer outperforms Transformer models
trained from scratch. It inherits a strong language model from T5, and further transfers the
knowledge into the GEC domain. With additional manually annotated correction pairs, the
Gramformer model can be further fine-tuned to the domain of interest.

3.6 Summary

This chapter applied the sequence modelling techniques introduced in Chapter 2, and for-
mulated individual modules of spoken language tasks. Section 3.1 motivated the cascaded
formulation of multimodular spoken language systems, and the rest of this chapter discussed
in detail how each individual module can be modelled.

The first step in spoken language tasks is to convert speech into transcripts, and Section 3.2
reviewed both the generative hybrid ASR and the discriminative end-to-end ASR systems.
Taking the speech transcripts as the inputs, several downstream processes were described:
Section 3.3 discussed the Disfluency Detection (DD) task, and laid the focus on the sequence-
tagging style approach; Section 3.4 and 3.5 respectively introduced the Neural Machine
Translation (NMT) and Grammatical Error Correction (GEC) tasks, both of which are
modelled using the sequence-to-sequence style approach in this thesis. For each of the
downstream tasks, both the basic recurrent network based models, and the more advanced
Transformer-based pre-trained models were discussed.





Chapter 4

Module Combination Approaches

One of the key challenges in building spoken language applications is the lack of end-to-
end data. As discussed in Chapter 3, the multimodular cascaded structure is commonly
adopted so that individual modules can be separately trained with sufficient amounts data
from the associated domains. However, the multimodular formulation gives rise to issues like
information loss, error propagation and domain mismatches. This chapter first discusses the
challenges facing multimodular spoken language systems, and gives an overview of various
module combination techniques. Three categories of spoken language systems are considered
with an increasing level of module integration: cascaded, integrated and end-to-end systems.

Cascaded systems are discussed in Section 4.2. Individual modules in a cascaded system
are separately trained and loosely coupled at inference time, which leads to domain mismatch
and error propagation issues. Domain adaptation, supervised and semi-supervised error
mitigation approaches are described to tackle these issues. Section 4.3 investigates integrated
systems. They are composed of more tightly integrated modules, and require a small
amount of end-to-end data to adapt to the target domain. Discrete information passing and
embedding passing approaches are introduced to propagate richer information across the
modular connection via discrete and continuous sequences. Section 4.4 discusses end-to-end
systems. They do not rely on interpretable intermediate variables to aid training, and therefore
require a large amount of end-to-end training data to reach convergence. Data augmentation
and meta-learning approaches are discussed to overcome the low data efficiency issue.
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4.1 Challenges in multimodular systems

As discussed in Section 3.1, spoken language processing tasks can be formulated as:

yyy1:N ∼ P(yyy1:N |xxx1:T ;θθθ) (4.1)

where xxx1:T is the input speech sequence, and yyy1:N is the output text sequence. Due to the lack
of end-to-end training corpus, the task is often broken down into multiple simpler modules1:

P(yyy1:N |xxx1:T ;θθθ) =
X

zzz1:L∈Z
P(yyy1:N |zzz1:L,xxx1:T ;θθθ y)P(zzz1:L|xxx1:T ;θθθ z) (4.2)

≈
X

zzz1:L∈Z
P(yyy1:N |zzz1:L;θθθ y)P(zzz1:L|xxx1:T ;θθθ z) (4.3)

≈ P(yyy1:N |ẑzz1:L;θθθ y) ẑzz1:L = argmaxzzz1:L∈ZP(zzz1:L|xxx1:T ;θθθ z) (4.4)

where zzz1:L denotes the intermediate variable, and Z denotes its corresponding search space.
Equation 4.4 shows the cascaded formulation of the multimodular system, which is derived
with two important approximations. The first approximation (from Equation 4.2 to 4.3)
assumes that given the intermediate variable zzz1:L, the downstream process is independent of
the input signals xxx1:T . zzz1:L can be viewed as the modular connection between the upstream
and the downstream modules. The second approximation (from Equation 4.3 to 4.4) collapses
the marginalisation over the intermediate variable with the most likely hypothesis. ẑzz1:L is
used as the input of the subsequent translation module, instead of traversing through the
entire search space Z . For example, a cascaded spoken language translation (SLT) system
consists of an upstream automatic speech recognition (ASR) module and a downstream
neural machine translation (NMT) module, with the modular connection zzz1:L being speech
transcripts2. Modules in the cascaded system are separable, so that they can be individually
trained with their corresponding corpora. However, due to the approximations being made
in the derivations and the separately trained modules, the cascaded systems are faced with
several challenges.

• Loss of information: As approximated in 4.3, given the intermediate variable zzz1:L, it is
assumed that the downstream module is independent of the input xxx1:T , and therefore the
output yyy1:N is generated with zzz1:L as the only input. The conditional independence only

1To simply the equations, it is assumed that there is only one intermediate variable zzz1:L in this system. The
two modules are parameterised with θθθ z and θθθ y respectively. The discussions in this chapter can be easily
generalised to cases with more than two modules. The full multimodular formulation is in Section 3.1.

2The SLT example will be used across this chapter to help put the abstract ideas into context. Similar ideas
can be easily generalised to other spoken language processing tasks.
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holds when zzz1:L encapsulates all the information from its upstream modules, which
is not always the case. The loss of information issue arises when zzz1:L fails to deliver
the full context of the input xxx1:T . For example in a cascaded SLT system, prosodic
information in speech signals cannot be conveyed via transcriptions. Prosody provides
emphasis to certain words or parts of the speech, and conveys the speaker’s attitude and
emotional state while speaking [190]. Loss of prosodic information would potentially
give rise to ambiguity in the downstream translation module.

• Error propagation: As approximated in 4.4, when computing the output distribution
of yyy1:N , the marginalisation over Z is approximated using the most likely hypothesis
ẑzz1:L. This forces early decisions to be made at the upstream module, and any error in
ẑzz1:L would propagate through to the downstream task. The downstream module is not
trained on erroneous inputs, and therefore errors in ẑzz1:L tends to degrade the module
performance. This is known as the error propagation problem. In the cascaded SLT
example, error propagation often refers to the erroneous transcriptions ẑzz1:L causing
disruptions to the translation process.

• Domain mismatch3: Cascaded systems allow individual modules to be separately
trained in their corresponding domains. However, the training domains are often
different from the evaluation domain, which will potentially lead to performance
degradation. In the cascaded SLT example, the ASR module is trained on spoken
corpora, whereas the NMT module is often trained on written text. Written and spoken
languages usually have very different formats and styles: spontaneous spoken language
shows a large set of disfluencies such as repetitions and false starts, which is not
accounted for by the NMT module during training. Another example is the spoken
grammatical error correction task (SGEC, will be further discussed in Chapter 7).
SGEC usually consists of three modules, namely ASR, disfluency detection and error
correction. Due to limited data availability, there is no training data that allows the three
modules to be trained under the same target domain. Another important aspect is that
individually trained modules usually have different dynamic ranges. Therefore, module
posteriors cannot be superimposed with simple product, and additional calibration or
weighting is required when linking modules together.

With the introduction of the end-to-end trainable encoder-decoder models (reviewed in
Section 2.2.2), direct end-to-end (E2E) approaches are gaining more attention [214, 95].

3In this thesis, domain can be considered as a slightly broader concept compared with dataset. Different
training datasets can belong to the same domain, e.g. the spoken language translation domain can contain
paired datasets for both ASR and NMT model training. Therefore, in the following section, a dataset is defined
using both domain information and input / output variables.
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Fig. 4.1 The spectrum of module integration

Figure 4.1 shows a spectrum of module integration. The end-to-end style systems sit on the
most tightly integrated end, opposite to the loosely coupled cascaded systems. End-to-end
systems directly model the output probability of yyy1:N given the input xxx1:T , and therefore avoid
the aforementioned issues caused by module decomposition. They require stronger modelling
power to model complex structured data in a single network, and with great capability comes
the issue of low data efficiency.

• Low data efficiency: The strong modelling power of end-to-end systems are often
achieved through delicately designed networks. As discussed in Section 2.1, compli-
cated networks usually lead to a rough cost function surface, which slows down con-
vergence and reduces data efficiency. It is shown that performance gains in end-to-end
SLT systems is often achieved through incorporating additional training data [162, 97].

• Limited end-to-end data: There is usually an abundance of data pairs to train individual
modules, yet end-to-end corpora of spoken language tasks is only available in small
quantities due to increased cost for more complicated annotation processes. Restricted
by both low data efficiency and limited training resource, it is very challenging to build
high quality end-to-end systems.

This section has so far analysed the two ends of the module integration spectrum, cas-
caded and end-to-end, and discussed various challenges facing spoken language systems.
There is a potential trade-off between modelling power and data efficiency: cascaded systems
can be efficiently trained with loosely coupled modules, yet assumptions made for module de-
composition will lead to issues like information loss, error propagation and domain mismatch;
end-to-end systems with strong modelling power are exempt from module decomposition
issues, yet low data efficiency and limited end-to-end data prevent direct systems from further
improvements.

The rest of this chapter will discuss integration approaches to tackle the aforementioned
issues, aiming to strike a balance between modelling power and data efficiency. The dis-
cussion here assumes that the multimodular system has two modules with the modular
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Fig. 4.2 Illustration of a two-module cascaded system. The upstream and downstream
modules are parameterised with θθθ z and θθθ y.

connection being zzz1:L (see Figure 4.2), and similar ideas can be extended to systems with
more than two modules. To assist future discussions, the training data notation is defined as:

Ddomain(aaa,bbb) (4.5)

where aaa,bbb are the input and output variables. This chapter considers a total of three data
domains: Dup and Ddn respectively denote the upstream and downstream domains, and Dtgt

denotes the target domain. For example in the SLT task, Dup(xxx,zzz) denotes the speech xxx and
transcription zzz pair from the upstream ASR domain, and Dtgt(xxx,zzz) denotes the same speech
to transcription pair but from the target SLT data domain4. In cases where end-to-end data is
needed for training, Dtgt(xxx,zzz,yyy) denotes the speech, transcription and translation triplet from
the target SLT domain.

The following discussion on spoken language systems is split into three overarching cate-
gories: loosely coupled cascade, tightly integrated, and direct end-to-end systems. Loosely
coupled cascaded systems do not require end-to-end data, and individual modules can be
separately trained with Dup(xxx,zzz) and Ddn(zzz,yyy). Integrated systems can be initialised with
data pairs corresponding to individual modules Dup(xxx,zzz) and Ddn(zzz,yyy), and requires further
fine-tuning with a small amount of end-to-end data Dtgt(xxx,yyy). Direct end-to-end systems can
only be trained on end-to-end data Dtgt(xxx,yyy). Sometimes the intermediate variable zzz is also
included in the target domain to form a data triplet Dtgt(xxx,zzz,yyy).

4.2 Cascaded systems

Loosely coupled cascaded systems combine individual modules via direct concatenation, and
they can be formulated as:

P(yyy1:N |xxx1:T ;θθθ)≈ P(yyy1:N |ẑzz1:L;θθθ y) ẑzz1:L = argmaxzzz1:L∈ZP(zzz1:L|xxx1:T ;θθθ z) (4.6)

where xxx1:T , yyy1:N denote the input and output sequences. ẑzz1:L denotes the most likely hypothe-
ses of the modular connection zzz1:L, which is a vector sequence of discrete variables following

4Alternatively, under the context of an SLT task, Dup(xxx,zzz) can be expressed as DASR(xxx,zzz), and Dtgt(xxx,zzz)
can be expressed as DSLT(xxx,zzz).
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the distribution parameterised with θθθ z. Figure 4.3 shows an illustration of the training and
evaluation processes of the cascaded system.

Fig. 4.3 Illustration of the training and evaluation processes of a two-module cascaded system.
Dotted lines indicate hypotheses, and data domains are colour coded: blue indicates Dup,
purple indicates Ddn, and green indicates the target domain for evaluation Dtgt.

The cascaded system does not require any end-to-end annotation for training. Individual
modules can be separately trained following the individual module formulations (discussed
in Section 3) with their respective training corpora5:

L(θθθ z) =−1
J ∑

J
j=1 logP(zzz( j)

1:L|xxx
( j)
1:T ;θθθ z) {xxx( j)

1:T ,zzz
( j)
1:L} ∈Dup(xxx,zzz) (4.7)

L(θθθ y) =−1
J ∑

J
j=1 logP(yyy( j)

1:N |zzz
( j)
1:L;θθθ y) {zzz( j)

1:L,yyy
( j)
1:N} ∈Ddn(zzz,yyy) (4.8)

where {xxx( j)
1:T ,zzz

( j)
1:L} and {zzz( j)

1:L,yyy
( j)
1:N} indicate the jth training pairs for the upstream and down-

stream modules. As discussed in Section 4.1, vanilla cascade suffers from issues arising
from assumptions made for module decomposition. The following sections will introduce
approaches to improve cascaded systems without altering the nature of each module.

4.2.1 Domain adaptation

Cascaded systems with modules trained in their individual domains usually perform poorly
at the inference stage due to domain mismatches. The domain mismatch issues are two-fold:
the mismatch between the upstream and downstream domains, and the mismatch between
the training and inference domains. Domain adaptation (DA) [176, 10] is a commonly
adopted approach to transfer the model trained from the source domain to the target domain.
Assuming there is a small amount of training data available in the target domain for both the
upstream and downstream modules, the domain adaptation training can be conducted as:

L(θθθ DA
z ) =− logP(zzz1:L|xxx1:T ;θθθ

DA
z ) {xxx1:T ,zzz1:L} ∈Dtgt(xxx,zzz) (4.9)

L(θθθ DA
y ) =− logP(yyy1:N |zzz1:L;θθθ

DA
y ) {zzz1:L,yyy1:N} ∈Dtgt(zzz,yyy) (4.10)

5This section adopts the Negative Log-Likelihood (NLL) loss with teacher forcing training (discussed in
Section 2.3.2) as the default objective function. To simplify the notation, the data index and the average over
the training set 1

J ∑
J
j=1 will be omitted in the following sections.
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Figure 4.4 illustrates the domain adaptation. Compared with Equation 4.7 and 4.8, the
upstream domain is transferred from Dup to Dtgt, and the downstream domain is transferred
from Ddn to Dtgt. Training individual modules under the same target domain helps alleviate
the domain mismatch between modules, and also closes the gap towards the target domain.

Fig. 4.4 Illustration of the domain adaptation training. The green colour indicates that training
is conducted under the target domain Dtgt.

4.2.2 Error mitigation

Cascaded systems also suffer from error propagation. Erroneous outputs from the upstream
module tend to cause disruptions to downstream tasks. To mitigate error propagation, a
straight forward approach is to adapt the downstream module to the upstream output: the
upstream module is fixed, and the downstream module is trained with the hypothesised
modular connection ẑzz (illustrated in Figure 4.5.a):

ẑzz1:L = argmaxzzz1:L∈ZP(zzz1:L|xxx1:T ;θθθ z) (4.11)

L(θθθ EM
y ) =− logP(yyy1:N |ẑzz1:L;θθθ

EM
y ) {xxx1:T ,yyy1:N} ∈Dtgt(xxx,yyy) (4.12)

where ẑzz1:L is the most likely hypothesis from the upstream module. Tuning with the hypothe-
sis ẑzz1:L allows the downstream module to account for the errors in the input during training,
and therefore helps mitigate error propagation during inference. Ideally, the training pair
{xxx1:T ,yyy1:N} is sampled from Dtgt(xxx,yyy) if the target domain data is available.

However, the fully annotated target domain corpus is not always readily available. In
cases where the target domain data is only partially annotated, the supervised fine-tuning
approach described above is no longer feasible. For spoken language tasks, it is quite
common that the target domain corpus only contains annotations for the upstream module
{xxx1:T ,zzz1:L} ∈Dtgt(xxx,zzz), for example in the spoken language translation task, it is relatively
easy to obtain manual transcripts for the upstream ASR module, compared with the reference
translations for the downstream NMT module. In this case, a semi-supervised error mitigation
approach can be adopted instead: the pseudo references for the output yyy1:N can be obtained
by feeding the manual annotation for the modular connection zzz1:L through the downstream
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module (Figure 4.5.b):

ẑzz1:L = argmaxzzz1:L
P(zzz1:L|xxx1:T ;θθθ z ∈ Z) (4.13)

yyyp
1:N = argmaxyyy1:N∈YP(yyy1:N |zzz1:L;θθθ y) (4.14)

L(θθθ EMsemi
y ) =− logP(yyyp

1:N |ẑzz1:L;θθθ
EMsemi
y ) {xxx1:T ,zzz1:L} ∈Dtgt(xxx,zzz) (4.15)

where yyyp
1:N denotes the pseudo reference, and θθθ

EMsemi
y denotes the parameters updated with

semi-supervised training. The main difference between the semi-supervised and supervised
error mitigation is in the loss function, where the pseudo reference yyyp

1:N is used in the
semi-supervised training as opposed to the ground truth reference yyy1:N used in Equation 4.12.

Fig. 4.5 Illustration of the supervised and semi-supervised error mitigation training. The
upstream module in grey is fixed, and the downstream module in green is updated.

Semi-supervised fine-tuning enables the downstream module to account for erroneous
inputs from the target domain, yet its effectiveness is largely constrained by the quality of
the pseudo references. To further mitigate the potential degradation caused by the poor
quality pseudo references, self-distillation can be applied. Self-distillation originated from
knowledge distillation [81], which often trains a student model to learn from predictions
made by a teacher model. The teacher is usually superior to the student, i.e. the teacher is a
more complex model than the student, or an ensemble teacher for a single model student.
Self-distillation [237] is originally proposed in the computer vision community. It extends
the idea of knowledge distillation by proposing to use the same model for both the teacher
and the student. Self-distillation has proved effective in improving both image and text based
tasks [226]. To conduct self-distillation under the semi-supervised fashion, the teacher model
is fixed as θθθ

EMsemi
y from Equation 4.15, and the student model θθθ

EMdistil
y is a self-distilled

version of the teacher. The training objective is to minimise the KL divergence of the per
word posterior distribution between the teacher and the student:

LKL(θθθ
EMdistil
y ) = ∑

N
n=2 KL{P(yyyp

n |yyyp
1:n−1, ẑzz1:L;θθθ

EMsemi
y )||P(yyyp

n |yyyp
1:n−1, ẑzz1:L;θθθ

EMdistil
y )}

(4.16)

where yyyp
n denotes the nth token in the pseudo reference sequence yyyp

1:N , and the loss function
is summed over the output sequence length N. In addition to the empirical successes of
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self-distillation, the intuition behind adopting self-distillation on semi-supervised data are
two folded: it provides regularisation under a small amount of training data; and also guides
the student model with richer probability distributions rather than relying solely on the
one-hot pseudo references.

An alternative line of work aims to obtain higher quality hypotheses for the modular
connection, which mitigates error propagation by passing fewer error to the downstream
module. For example in the cascaded SLT system, using transcripts with fewer ASR errors
will cause less disruption to the translation module, and consequently help improve the
translation quality. Lattice rescoring [225] and N-best list6 rescoring with shallow language
model fusion [36] are commonly adopted approaches for sequence-to-sequence tasks. The
idea is to over generate hypotheses at the decoding stage, and then adopt a stronger language
model to rescore and choose the best candidate. For a cascaded system with N-best rescoring
on the intermediate variable zzz1:L, Equation 4.6 can be re-written as:

P(yyy1:N |xxx1:T ;θθθ)≈ P(yyy1:N |ẑzz1:L;θθθ y) (4.17)

ẑzz1:L = argmaxzzz1:L∈Z{P(zzz1:L|xxx1:L,θθθ z)
αP(zzz1:L|θθθ LM)β} |Z |= M (4.18)

where Z denotes the top M candidates, and ẑzz1:L denotes the 1-best candidate chosen from
the rescoring process. θθθ LM refers to the language model, and α,β are the weight coefficients
to fuse the posterior distribution with the language model. The language model training
(discussed in Section 3.2.1) only requires monolingual data from the domain of interest, e.g.
zzz1:L ∈Dtgt(zzz) in the SLT example. An extension to this approach is to propagate lattices or
N-best candidates across the modular connection, as opposed to a single hypothesis. This
requires additional end-to-end data for training, and will be further discussed in Section 4.3.1.

4.3 Integrated systems

This section considers more tightly integrated systems, which pass richer information flows
across modular connections. Integrated systems preserve the modular concept, but with
softer connections between neighbouring modules to allow richer information propagation.
Compared with cascaded systems where individual modules are separately trained in their
corresponding domains, integrated systems require a small amount of end-to-end corpora
from the target domain for training. Figure 4.6 shows an illustration of the integrated system.

6N-best list is a conventionally used notion referring to the top N candidates from sequence generation tasks.
N not to be confused with the sequence length in yyy1:N .
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Fig. 4.6 Illustration of the initialisation and joint training processes of an integrated two-
module system. The initialisation process can operate on modular data, whereas the in-
domain training requires end-to-end data from the target domain.

An integrated system is usually trained in two stages: at the initialisation stage, individual
modules are trained with module specific data; at the in-domain training stage, end-to-end
corpora are used to adapt the system to the target domain. The initialisation stage allows
individual modules to make use of module specific corpora, which often come in large
quantities. With a better initialisation, the system can be more efficiently adapted to the
target domain under limited end-to-end data7. The following sections will discuss two forms
of the integrated systems: discrete information passing propagates information via discrete
sequences; embedding passing propagates information across modules in continuous forms.

4.3.1 Discrete information passing

As the name suggests, discrete information passing uses discrete variables to pass information
across modules. The main differences from the vanilla cascaded system are that: the modular
connection is not restricted to a single sequence, and the modules require further in-domain
training with end-to-end corpora8.

4.3.1.1 Lattice / N-best list passing

In order to propagate richer information and mitigate error propagation, a natural extension
from cascaded systems is to pass multiple hypotheses of zzz1:L to the downstream module, as
opposed to the 1-best prediction. The integrated system can therefore be formulated as:

P(yyy1:N |xxx1:T ;θθθ)≈ P(yyy1:N |Z ;θθθ
DIP
y ) (4.19)

ẑzz(i)1:L ∼ P(zzz1:L|xxx1:T ;θθθ z) Z = {ẑzz(1)1:L, ..., ẑzz
(M)
1:L } (4.20)

7It is also feasible to skip the initialisation stage in cases where there is abundant end-to-end data.
8The vanilla cascaded system can be seen as a special case of the integrated system with discrete information

passing, when a) the discrete modular connection is chosen to be a single sequence, and b) the modules are not
further trained with end-to-end data.
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where ẑzz(i)1:L denotes the ith best hypothesis from the upstream module, and Z denotes the
M-best list, or a lattice, which also represents the top M hypotheses but in a more compact
structure. The collected discrete sequences Z carries richer information from the upstream
module compared with the 1-best estimation, which also helps alleviate the error propagation
issue in the cascaded formulation. For example when applying this approach to the speech
translation task, Z denotes the M-best ASR hypotheses. Z contains more information
about the input speech xxx1:T compared with the 1-best transcripts, and the richer context will
potentially benefit the downstream translation process.

At the initialisation stage, the modules can be individually initialised in their correspond-
ing domains following Equation 4.7 and 4.8. At the in-domain training stage, the downstream
module needs to be partially modified to account for the inputs in the form of M-best lists or
lattices, and training requires end-to-end data from the target domain9:

L(θθθ DIP
y ) =− logP(yyy1:N |Z ;θθθ

DIP
y ) {xxx1:T ,yyy1:N} ∈Dtgt(xxx,yyy) (4.21)

The downstream processing can be divided into two steps conceptually: the first step extracts
similarities and differences among the candidates Z , and embeds discrete sequences into
a single sequence of continuous feature representations; the second step simply performs
a standard sequence-to-sequence task. Different approaches are adopted for the feature
extraction step: Zhang et el. [238] proposes to use a lattice Transformer, which applies an
attention mechanism over lattices to obtain latent representations; Liu et el. [133] fuses the
n-best list using convolutional neural networks, and passes fused features into the downstream
sequence-tagging module; Leng et el. [123] first extracts the alignment between the N-best
candidates, and then feeds a concatenation of the aligned sequences into the downstream
sequence-to-sequence module.

Propagating richer information in discrete forms allows the downstream module to ac-
count for a larger hypothesis space. It exploits the voting effect that cross-verifies token
correctness among multiple candidates, and thus recovers from early decision errors to some
extent. The modules in the system with discrete information passing can not be simultane-
ously optimised, since the discrete modular connection prohibits gradient backpropagation.
A potential remedy is to adopt gradient estimators such as straight-through estimator [15] or
Gumbel softmax [96] to approximate the gradient and work around the discrete bottleneck.
Another line of work with embedding passing (see Section 4.3.2) allows joint optimisation
through continuous modular connections. Error propagation can be mitigated with an increas-
ing level of complexity involved in the modular connection Z . However, maintaining a rich

9If the reference zzz1:L is available to form a data triplet Dtgt(xxx,zzz,yyy), the upstream module can also be adapted
to the target domain following Equation 4.9
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search space is computationally expensive, and with a limited search space, the information
loss remains an issue. In the speech translation example, discrete transcription sequences
cannot pass prosodic information, which will potentially incur ambiguity in the downstream
translation.

4.3.1.2 Reranking

An alternative discrete information passing approach is to adopt an external reranker over-
looking the cascaded system, which directly accesses the hypotheses of the intermediate
variable zzz1:L. Rerankers are widely used in sequence generation tasks, such as speech recog-
nition [132, 225], and translation tasks [39, 154, 122]. Figure 4.7 shows an illustration of a
reranking process. Given a set of hypotheses from a sequence generation task, a reranker
assigns new scores to each of them, and selects the best candidate among all. The underlying
idea is that maximum likelihood training for sequence generation tasks does not always
lead to posteriors that align with task specific metrics, such as BLEU scores. A reranker
can therefore be used to rescore the candidates, ideally according to the metric of interest.
Serving as a post-processing step, rerankers have access to all the N-best hypotheses. This
allows rerankers to obtain a more accurate approximation of the posterior probabilities, and
mitigates exposure bias by directly training on the model generated sequences.

Fig. 4.7 Illustration of a reranking process operating on the 10-best hypotheses of a sequence
generation model. The sequences are initially ordered with decreasing posterior probabilities
from top to bottom, and then reordered using the reranking scores.

There are mainly two lines of work on rerankers: generative and discriminative reranking.
Generative methods [135, 91] rescore hypotheses with strong language models, rather than
directly predicting the rank ordering. Lattice rescoring with language model fusion is a
commonly adopted approach in speech recognition [132]. Noisy-channel decoding [231, 232]
scores hypotheses by incorporating three language models: a forward model that scores
the hypothesis given the source, a backward model that scores the source conditioned on
the hypothesis, and a target-side contextual language model. More recent works adopt a
masked language model for rescoring [181]. Discriminative approaches directly predict the
rank ordering according to the metrics of interest. Minimum Bayes Risk decoding [111] can
be seen as a non-trainable discriminative reranking process, which ranks candidates with



4.3 Integrated systems 63

sequence-level cost functions. Trainable discriminative rerankers can be considered as an
alternative to sequence-level training (discussed in Section 2.3.1), which directly optimises
for a task specific distance metric. Naskar et el. [18] proposes to use energy based models,
and the reranker is optimised for a pair-wise margin loss on hypotheses sampled from the
output space. Lee et el. [122] maps the N-best hypotheses to a probability distribution
according to the desired metric. In this thesis, the discriminative line of work is adopted in
order to directly optimise for the metric of interest, and the reranker model discussed below
is an extension of Lee et el.’s work [122].

Fig. 4.8 Illustration of a reranking process operating on a two-module cascaded system

The reranking idea can be generalised to multimodular cascaded systems. Figure 4.8
illustrates a reranking pipeline operating on a two-module cascaded system. Individual
modules in the cascaded systems are separately trained, and N-best hypotheses are generated
for both the intermediate variable Z and the system output Y . The reranker takes into
account hypotheses in Z , and predicts a new rank ordering for Y :

ŷyy1:N = argmaxyyy1:N∈YP(yyy1:N |Z ;θθθ r) (4.22)

where ŷyy1:N denotes the optimal output according to the reranker posterior, and θθθ r denotes the
reranker parameters. In addition to mitigating exposure bias, adding rerankers to cascaded
systems has added merits. Hypotheses from the upstream module can be directly accessed
by the reranker without additional modifications to the cascaded system. It helps propagate
richer information across modules, and thus mitigate the error propagation issue. As an
alternative to sequence-level training, rerankers can be directly optimised towards the metric
of interest. The reranker training process is described below.

Given a cascaded system with individually trained modules, an input sequence xxx1:T can
be mapped into a set of Mz hypotheses of the intermediate variable zzz1:L, each of which is
used to generate My hypotheses of the output yyy1:N :

ẑzz(i)1:L ∼ P(zzz1:L|xxx1:T ;θθθ z) Z = {ẑzz(1)1:L, ..., ẑzz
(Mz)
1:L } (4.23)

ŷyy(i, j)1:N ∼ P(yyy1:N |ẑzz
(i)
1:L;θθθ y) Y (i) = {ŷyy(i,1)1:L , ..., ŷyy(i,My)

1:L } (4.24)

Y = {Y (1)...Y (i)...Y (Mz)} (4.25)
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where Z denotes the top Mz hypotheses from the upstream module, and ẑzz(i)1:L denotes the
ith candidate in Z . Y (i) denotes the top My hypotheses generated from ẑzz(i)1:L through the
downstream module, ŷyy(i, j)1:N denotes the jth candidate in Y (i), and Y denotes the whole
hypotheses set of size MzMy. Individual modules θθθ z and θθθ y can be separately trained with
domain specific corpora Dup(xxx,zzz) and Ddn(zzz,yyy), whereas the reranker training requires
end-to-end data from the target domain Dtgt(xxx,yyy). By taking into account the intermediate
hypotheses Z , the reranker aims is to produce a scalar score for each ŷyy(i. j)1:N ∈ Y indicating
the quality of the candidate10:

f (ŷyy(i, j)1:N ,Z ;θθθ r) (4.26)

where θθθ r indicates the learnable reranker parameters, and the scoring function f can be
normalised over the candidate set Y to form a score distribution11:

P(ŷyy(i, j)1:N |Z ;θθθ r) =
1

Zhyp
exp{ f (ŷyy(i, j)1:N ,Z ;θθθ r)} (4.27)

Zhyp = ∑ŷyy(i, j)1:N ∈Y
exp{ f (ŷyy(i, j)1:N ,Z ;θθθ r)} (4.28)

In order to optimise for θθθ r, the training process minimises the distance between the hypothesis
distribution P(yyy1:N |Z ;θθθ r) with a reference distribution P(yyy1:N):

L(θθθ r) = KL{P(yyy1:N)||P(yyy1:N |Z ;θθθ r)} {xxx1:T ,yyy1:N} ∈Dtgt(xxx,yyy) (4.29)

where KL divergence is used as the distance measure, and the end-to-end training instances
come from the target domain. The reference distribution can be defined with a task specific
metric function µ:

P(ŷyy(i, j)1:N ) = 1
Zref

exp{µ(ŷyy(i, j)1:N ,yyy1:N)/T } (4.30)

Zref = ∑ŷyy(i, j)1:N ∈Y
exp{µ(ŷyy(i, j)1:N ,yyy1:N)/T } (4.31)

where yyy1:N denotes the reference output. P(yyy1:N) is the distribution of the reference scores
µ(ŷyy(i, j)1:N ,yyy1:N) normalised over the entire candidate set Y , and T is the temperature coefficient
controlling its smoothness.

10A more general scoring function is f (ŷyy(i, j)1:N ,Z ,xxx1:T ;θθθ r), which also accounts for the input xxx1:T . In practice,
xxx1:T is often the input speech, and it is difficult to extract correlations between speech and text without a large
amount of data. Therefore, only discrete information Z is considered here for the purpose of reranker training.

11For simplicity purposes, the hypothesis probability of an instance ŷyy(i, j)1:N is expressed as P(ŷyy(i, j)1:N |Z ;θθθ r),

short for P(yyy1:N = ŷyy(i, j)1:N |Z ;θθθ r). Similarly, P(yyy1:N = ŷyy(i, j)1:N ) is expressed as P(ŷyy(i, j)1:N ).
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The scoring function f is central to the reranking process. It produces a scalar score
indicating how likely each hypothesis ŷyy(i, j)1:N is the top-ranked candidate among Y given the
intermediate hypothesis set Z . Under the simplest setup, the scoring function only accounts
for the sequence ẑzz(i)1:L that is used to generate the output hypothesis ŷyy(i, j)1:N ∈ Y (i):

f (ŷyy(i, j)1:N , ẑzz(i)1:L;θθθ r) = σtanh(WWWhhh+b) (4.32)

hhh = g(ẑzz(i)1:L, ŷyy
(i, j)
1:N ;θθθ h) (4.33)

where g is a feature extraction process that captures the correlation between the input and
output sequences of the downstream module θθθ z, and further produces a hidden representation
hhh. The feature vector hhh is then fed through a feed-forward layer to reach a scalar score. A
common practice to extract correlations between a sequence pair is to use a Transformer
encoder based architecture to produce a contextual feature representation. Several large pre-
trained Transformer encoders can be used for g, the exact form of which depends on the nature
of the task. For example in the speech translation task, XLM-R [40] (a Transformer-based
multilingual language model) is used to extract the bilingual context between the transcription
and translation pairs. More detailed design choices will be discussed in Chapter 6 and 7.

In order to propagate more information from the upstream module, the feature extraction
process can be extended to account for more hypotheses from Z . The scoring function in
Equation 4.32 is updated to be conditioned on a subset Z̃ ⊂ Z :

f (ŷyy(i, j)1:N , Z̃ ;θθθ r) = σtanh(WWWhhh+b) (4.34)

Z̃ = {ẑzz(1)1:L, ..., ẑzz
(M)
1:L } (4.35)

where the feature extraction process to obtain hhh can take various forms to account for the
hypotheses in Z̃ . A straight-forward approach is to simply concatenate the hypotheses in Z̃
with the candidate ŷyy(i, j)1:N :

hhh = g(ẑzz(i)1:L,{ẑzz
(1)
1:L, ..., ẑzz

(i−1)
1:L , ẑzz(i+1)

1:L , ..., ẑzz(M)
1:L }, ŷyy

(i, j)
1:N ;θθθ h) (4.36)

Vanilla concatenation treats all hypotheses in Z̃ indifferently, and poor quality hypotheses
could potentially disrupt the feature vector hhh. An alternative to vanilla concatenation is to
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adopt an attention mechanism, which assigns larger weights to the most relevant context:

hhh = ∑
M
m=1 αmhhhm ∑

M
m=1 αm = 1 (4.37)

αm = fatt(hhhm,hhhi;θθθ att) (4.38)

hhhm = g(ẑzz(m)
1:L , ŷyy

(i, j)
1:N ;θθθ h) (4.39)

where fatt is the attention function, and the overall feature representation hhh is a weighted sum
over the feature vectors hhhm∈{1,...,M}. The feature vector hhhi is generated from the matching

hypotheses pair ẑzz(i)1:L and ŷyy(i, j)1:N ∈ Y (i), and the rest of the features extract correlations between
unpaired hypotheses ẑzz(m)

1:L and ŷyy(i, j)1:N ∈ Ŷ (i). The attention mechanism accounts for the relative
saliencies between hhhi and hhhm∈{1,...,M}, which allows more flexibilities in weighing relevant
hypotheses in Z̃ over less correlated ones.

4.3.2 Embedding passing

Compressing information into discrete sequences would cause information loss. For example,
speech transcriptions cannot carry prosodic information from speech due to their discrete
nature. Alternatively, continuous embeddings can be used to propagate richer context across
modules. Embedding passing with a two module integrated system can be formulated as:

P(yyy1:N |xxx1:T ;θθθ)≈ P(yyy1:N |eee1:L;θθθ
EP
y ) (4.40)

eee1:L = f (xxx1:T ;θθθ e) (4.41)

where eee1:L denotes the embedding connection linking the input xxx1:T and output yyy1:N . θθθ e

and θθθ
EP
y parameterise the upstream and downstream modules respectively. The idea is to

use continuous variables as the modular connection to carry richer upstream context, and
thus help mitigate information loss in multimodular systems. Another advantage of using
embeddings is to allow gradient backpropagation across modular connection. Therefore,
all modules in the integrated system can be jointly optimised towards the metric of interest,
which helps mitigate error propagation. The limitation of embedding passing is that it requires
a small amount of target domain data to fine-tune the system in an end-to-end fashion. It is
also constrained that the tokenisation and vocabulary of the intermediate variables connecting
the upstream and downstream modules need to be matched, such that they can be mapped
into the same embedding space. The following sections will discuss how the embeddings
can be extracted, as well as the training of the integrated system under embedding passing.
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Embedding extraction
An embedding is usually a structured representation that allows efficient training under
limited end-to-end data without compromising model capacity. For multimodular systems,
module connections with highly abstracted information lead to information loss and early
decision errors, whereas low abstraction level results in low data efficiency. For example in
the speech translation task, highly abstracted word sequences (i.e. in cascaded systems) fail
to capture prosodic information and suffer from error propagation, whereas directly passing
raw waveforms (i.e. in end-to-end systems) to perform downstream translation yields poor
data efficiency. Under limited end-to-end data, this work adopts embeddings with a relatively
high abstraction level for higher data efficiency. The embeddings eee1:L are directly associated
with the intermediate sequences zzz1:L in cascaded systems, and each embedding vector eeel can
be viewed as a continuous representation of the context associated with each token zzzl . For
example in speech translation, the embedding vector sequence has the same length as the
transcription token sequence, and they are expected to encapsulate both the acoustic and
textual context associated with each token. Figure 4.9 shows an illustration of the embedding
extraction process from speech inputs.

Fig. 4.9 Illustration of an embedding extraction process from speech inputs. The speech
and the transcription sequence are aligned, and the relevant context is summarised into an
embedding sequence.

Attention-based sequence-to-sequence models are adopted here for embedding extraction.
The attention mechanism attends over relevant segments in the input sequence that match with
individual tokens in the output sequence, and produces corresponding feature vectors. The
extracted features corresponding to individual tokens are used as the embedding connection
to the downstream module. Figure 4.10 shows an illustration of a two-module integrated
system with embedding passing. The left part shows the transitions of hidden states with
an increasing level of abstraction in the upstream module, and the right part shows the
downstream module. The integrated system combines partially activated upstream and
downstream modules, with the inactive blocks shaded in the plot. The individual modules
can be initialised using domain specific data, and the system can be jointly adapted to the
target domain with end-to-end data. When the input is speech sequences, the upstream
module can be seen as an attention-based encoder decoder ASR (discussed in Section 3.2.2),
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and the embedding extraction can be seen as an alignment process between speech and
transcripts. The attention-based approach gives a soft alignment which allows overlapping
attention intervals between neighbouring transcription tokens. An alternative approach is to
directly extract hard embeddings with timestamps produced from hybrid ASR (discussed
in Section 3.2.1), which are strictly non-overlapping between neighbouring tokens. More
comparison on the soft and hard embedding extractions are discussed in Chapter 5.2.

Fig. 4.10 Illustration of an integrated system with embedding passing. The green arrows
indicate the information flow across the integrated system, and the shaded blocks are inactive
during the in-domain end-to-end training.

The embedding extraction process follows a standard attention-based encoder-decoder
formulation with θθθ e = {θθθ enc

e ,θθθ att
e ,θθθ dec

e ,θθθ ffn
e }. The upstream module first maps the input

sequence xxx1:T into a sequence of hidden states hhhe
1:T :

hhhe
1:T = fenc(xxx1:T ;θθθ

enc
e ) (4.42)

where fenc is the encoding function in sequence-to-sequence models. For speech inputs, fenc

will also act as a down-sampling function to reduce redundancies in speech. The encoder
hidden states are fed through an attention mechanism, followed by a decoder:

ααα l = fatt(hhhd
l ,hhh

e
1:T ;θθθ

att
e ) cccl = ∑

T
t=1 αl,thhh

e
t (4.43)

hhhd
l = fdec(hhhd

l−1,zzzl−1,cccl;θθθ
dec
e ) (4.44)

eeed
l = fffn(cccl,hhh

d
l ;θθθ

ffn
e ) (4.45)

where fatt denotes the attention mechanism, fdec is the decoder function, and fffn is a feed-
forward layer. The hidden states of the upstream sequence-to-sequence module achieve an
increasing level of information abstraction: hhhe

1:T is the encoder hidden state that has the same
length as the input; ccc1:L is the context vector that directly derives from weighing the encoder
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hidden states; hhhd
1:L is the decoder hidden state that takes into account both the input context

and the previously predicted tokens; eeed
1:L is a linear transform of the concatenated ccc1:L and

hhhd
1:L. eeed

1:L is just one layer below the softmax prediction, and it is referred to as the dynamic
embedding since different embedding values may result in the same token prediction. The
embedding connection can be chosen among the upstream hidden states, and is directly used
as the input to the downstream module.

Sperber et el. [194] proposes attention passing, which uses context vectors ccc1:L extracted
from the attention mechanism as inputs to downstream tasks. With a low level of information
abstraction, context vectors are robust against potential exposure bias, yet tend to suffer from
low data efficiency. Under limited end-to-end data, it is favourable to use features with a
relatively high level information abstraction for higher data efficiency. In order to strike a
balance between information richness and efficient use of data, the dynamic embedding eeed

1:L

is used as the modular connection in this thesis. In some cases, the dynamic embedding eeed
1:L

can be concatenated with the static word embedding, and together they form the input to the
downstream module. Dynamic embeddings have a many-to-one mapping from embeddings
to the token prediction, whereas static embeddings have a one-to-one correspondence with
the tokens, thus called static. The modular connection eeed

1:L maintains a richer information
flow compared with discrete tokens, and it also allows higher data efficiency compared with
the lower level hidden states.

Training
The embedding passing approach preserves the modular concept, and therefore at the initiali-
sation stage, individual modules can be separately initialised with domain specific corpora
using auxiliary objectives. The initialisation process takes three steps, and Figure 4.11 shows
an illustration of the auxiliary tasks. The first step trains the upstream module with the
auxiliary objective to optimise θθθ z with Dup(xxx,zzz):

L(θθθ z) =− logP(zzz1:L|xxx1:T ;θθθ z) {xxx1:T ,zzz1:L} ∈Dup(xxx,zzz) (4.46)

The auxiliary output zzz1:L follows the standard autoregressive sequence generation, and is
conditioned on the dynamic embeddings eeed

1:L:

P(zzz1:L|xxx1:T ;θθθ z) = ∏
L
l=1 P(zzzl|zzz1:l−1,xxx1:T ;θθθ z)≈∏

L
l=1 P(zzzl|eeed

l ;θθθ aux) (4.47)

eeed
1:L = f (xxx1:T ;θθθ e) θθθ z = {θθθ e,θθθ aux} (4.48)

The second step matches the static eees
l and dynamic eeed

l embeddings. The upstream module is
fixed and the embedding mapping function θθθ emb in the downstream module is updated with
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the same corpora used in the first step. The training objective is to minimise the L2 distance
between the static and dynamic embeddings:

L(θθθ emb) = ∑
L
l=1 ||eeed

l − eees
l || eees

l = f (zzzl;θθθ emb) {zzz1:L} ∈Dup(zzz) (4.49)

where eees
l denotes the static embedding produced from θemb. In cases where both the static eees

1:L

and dynamic eeed
1:L embeddings are fed to the downstream module, the embedding matching

step can be skipped. Once the static and dynamic embeddings are matched and fixed, the
third step is to initialise the downstream module with the auxiliary training data Ddn(zzz,yyy):

L(θθθ EP
y ) =− logP(yyy1:N |zzz1:L;θθθ emb,θθθ

EP
y ) {zzz1:L,yyy1:N} ∈Ddn(zzz,yyy) (4.50)

Fig. 4.11 Illustration of the auxiliary training process of an integrated system with embedding
passing (modules are connected via dynamic embeddings eeed

1:L)

Auxiliary task training is an effective approach to exploit knowledge from domain specific
data. Part of the parameters in the integrated system are initialised with the auxiliary pre-
training. With a good initialisation point, the integrated system can reach convergence more
efficiently when trained on a limited amount of end-to-end data. At the in-domain training
stage, the integrated system can be jointly trained under the target domain:

L(θθθ e,θθθ
EP
y ) =− logP(yyy1:N |xxx1:T ;θθθ e,θθθ

EP
y ) {xxx1:T ,yyy1:N} ∈Dtgt(xxx,yyy) (4.51)

Gradients can back propagate through the continuous embedding connection, and thus the
upstream θθθ e and downstream θθθ

EP
y can be simultaneously optimised for the system output.
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4.4 End-to-end systems

This section considers end-to-end systems, which no longer have the notion of modules.
Given input xxx1:T and output yyy1:N , an end-to-end system can be directly formulated with:

P(yyy1:N |xxx1:T ;θθθ) (4.52)

where θθθ is often modelled with an attention-based encoder-decoder architecture. Figure 4.12
shows an illustration of an end-to-end system.

Fig. 4.12 Illustration of an end-to-end system

Different from cascaded and integrated systems, the end-to-end system cannot be pre-
trained with auxiliary tasks, and requires end-to-end corpora for training:

L(θθθ) =− logP(yyy1:N |xxx1:T ;θθθ) {xxx1:T ,yyy1:N} ∈Dtgt(xxx,yyy) (4.53)

Directly training with end-to-end corpora avoids issues seen in cascaded systems, such as
error propagation, information loss or domain mismatch. However, strong modelling power
comes at the cost of low data efficiency. End-to-end systems require a large amount of
end-to-end data for training, which is a scarce resource due to its high annotation cost. The
following sections will discuss approaches to improve end-to-end models through boosting
training data, as well as improving data efficiency by learning more general knowledge.

4.4.1 Data generation

When faced with constraints on data availability, a straight forward approach is to obtain
more data. While obtaining manual annotations for spoken language applications can be
costly, using machine generated annotations is a cheaper and more efficient alternative. There
is usually an abundance of corpora in auxiliary domains Dup(xxx,zzz) and Ddn(zzz,yyy), where zzz1:L

is the intermediate modular connection used in cascaded systems. As shown in Figure 4.13,
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two transition cycles can be trained using the auxiliary data:

L(θθθ xz) =− logP(zzz1:L|xxx1:T ;θθθ xz) {xxx1:T ,zzz1:L} ∈Dup(xxx,zzz) (4.54)

L(θθθ zx) =− logP(xxx1:T |zzz1:L;θθθ zx) {xxx1:T ,zzz1:L} ∈Dup(xxx,zzz) (4.55)

L(θθθ zy) =− logP(yyy1:N |zzz1:L;θθθ zy) {zzz1:L,yyy1:N} ∈Ddn(zzz,yyy) (4.56)

L(θθθ yz) =− logP(yyy1:N |zzz1:L;θθθ yz) {zzz1:L,yyy1:N} ∈Ddn(zzz,yyy) (4.57)

For example in the speech translation task, θθθ xz and θθθ zx denote speech recognition (ASR) and
speech synthesis (TTS) tasks, whereas θθθ zy and θθθ yz are neural machine translation (NMT)
tasks running in reverse directions.

Fig. 4.13 Two transition cycles

Following the transition cycles, end-to-end corpora can be generated with the partially
annotated data: {xxx1:T ,zzz1:L} ∈ Dup(xxx,zzz) can be augmented with θθθ zy to obtain ŷyy1:N , and
{zzz1:L,yyy1:N} ∈Ddn(zzz,yyy) can be augmented with θθθ zx to obtain x̂xx1:T :

ŷyy1:N ∼ P(yyy1:N |zzz1:L;θθθ zy) {zzz1:L} ∈Dup(xxx,zzz) →{xxx1:T ,zzz1:L, ŷyy1:N} ∈Dup(xxx,zzz,yyy) (4.58)

x̂xx1:T ∼ P(xxx1:N |zzz1:L;θθθ zx) {zzz1:L} ∈Ddn(zzz,yyy) →{x̂xx1:T ,zzz1:L,yyy1:N} ∈Ddn(xxx,zzz,yyy) (4.59)

Following the data augmentation pipeline, the end-to-end pairs {xxx1:T , ŷyy1:N} and {x̂xx1:T ,yyy1:N}
can be used for end-to-end training. In the speech translation example, ASR corporaDup(xxx,zzz)
can be augmented to obtain hypothesised translations ŷyy1:N by running forward translation
θθθ zy, and NMT corpora Ddn(zzz,yyy) can be augmented to obtain synthesised speech x̂xx1:T by
conducting speech synthesis θθθ zx. Pino et al. [163] has shown that, for speech translation tasks,
augmenting ASR corpora to infer automatic translations are more effective than augmenting
NMT corpora. Bentivogli [17] attests that with data generation and knowledge transfer
techniques, end-to-end systems can achieve comparable performance as cascaded systems.
However, the synthetically generated data pairs may still suffer from degraded quality, and
fine-tuning the end-to-end system in the target domain will further improve its performance.
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4.4.2 Meta-learning

Training end-to-end systems on pseudo references might lead to degraded performance due
to biases introduced from data augmentation. An alternative approach is to tackle the low
data efficiency issue through learning more general knowledge from the readily available
datasets. Meta-learning [204] refers to a group of algorithms that learns the target task from
a suite of other related prediction tasks. The recent model-agnostic meta-learning algorithm
(MAML) [55] proposes to learn representations through relevant tasks, so that they can be
efficiently adapted to the target task with a few steps of gradient update.

The MAML idea can be extended to spoken language tasks and becomes a modality-
agnostic meta-learning approach [93]. The training process is split into two phases: the
meta-learning phase that trains with auxiliary tasks, and the fine-tuning phase that trains
with in-domain end-to-end data. In the meta-learning phase, the goal is to find a good
initialisation point for the target task using the related auxiliary tasks. To handle different
modalities in auxiliary tasks, additional compression layers can be added, which will be
activated depending on the task being conducted. For example, the compression layers for
input speech sequences will not be activated when the inputs are text sequences. In each
iteration i, an auxiliary gradient is calculated for task τ sampled from a set of auxiliary tasks:

θθθ
i
τ = θθθ

i−1−α∇
θθθ

i−1L(Dτ ;θθθ
i−1) (4.60)

where θθθ
i−1 is the parameter from the previous iteration, θθθ

i
τ is the auxiliary parameter of task

τ , and Dτ is the training batch of task τ . The meta-gradient can then be updated with:

θθθ
i = θθθ

i−1−β∇
θθθ

i−1L(D′τ ;θθθ
i
τ) (4.61)

where θθθ
i is the parameter resulted from the current iteration, D′τ is the test batch of task τ ,

and α,β are learning rates. The intuition is that training with Dτ simulates the task-specific
learning, and evaluating on D′τ extracts the more generalisable gradient updates from the
auxiliary parameters. Finally, after I iterations of meta-learning, the parameter θθθ

I learns
general knowledge from the auxiliary tasks. It can then be used as the initialisation point for
fine-tuning, which follows the conventional end-to-end training.

4.5 Summary

Under limited end-to-end corpora, it is challenging to build multimodular spoken language
systems. This chapter reviewed three categories of spoken language systems with an increas-
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ing level of integration. The cascaded system is composed of directly concatenated modules,
which can be separately trained in their corresponding domains. Loosely coupled modules
suffer from domain mismatch and error propagation issues, and thus domain adaptation and
error mitigation approaches were described. The integrated system aims to propagate richer
information across modular connections. The challenge lies in designing the system so that
individual modules can be efficiently pre-trained with domain specific corpora, and then
further jointly optimised with in-domain end-to-end data. Discrete information passing and
embedding passing approaches were discussed to pass discrete and continuous sequences
across the modular connection. The end-to-end system requires a large amount of end-to-end
training data to reach convergence. Data augmentation and meta-learning approaches were
discussed to tackle the low data efficiency issue.

The contributions of this chapter are three-fold. 1) It describes the general concept
of multimodular combination, and discusses different module combination approaches for
spoken language systems. 2) It proposes a general framework of reranking for multimodular
systems, addressing both the error propagation and information loss issues. 3) An embedding
passing approach is also proposed, which passes the upstream context to the downstream
modules via continuous representations. The embedding connection allows richer informa-
tion propagation as well as gradient backpropagation across modules, thus enabling joint
optimisation of the multimodular system. The following Chapter 5, 6 and 7 will further apply
the approaches proposed in this chapter to several spoken language tasks12.

12Due to limited time and computing resource, not all approaches were experimented with. The main focus
of this work is on investigating the cascaded and integrated multimodular systems.



Chapter 5

Spoken Disfluency Detection

Chapter 3 and 4 respectively discussed the formulations of individual modules and various
module combination approaches. This chapter investigates module combination for the
spoken disfluency detection (SDD) task, which is an important pre-processing step for
many spoken language tasks. Section 5.1 gives an overview of the task and describes the
cascaded pipeline of spoken disfluency detection. Section 5.2 discusses the embedding
passing approach for tighter modular combination. Detailed evaluation metrics, experimental
setups and analyses are reported in Section 5.3.

5.1 Task descriptions

Disfluencies are commonly seen in spontaneous speech, which includes filled pauses, repeti-
tions and false starts. Human-to-human interactions conduct a natural de-noising process
that extracts the underlying fluent context. On the other hand, disfluencies pose significant
challenges in computer based spoken language applications [99, 85]. Spoken disfluency
detection refers to the process of converting disfluent speech into fluent text sequences, which
is an important pre-processing step for many spoken language tasks.

Previous works on disfluency detection mainly focus on text based approaches that take
speech transcripts as inputs. The proposed methods include parsing based noisy channel
models [28, 241], and tagging based detection models [87, 234]. Text based disfluency
removal mainly operates on manual transcriptions of speech, and thus known as transcription
disfluency detection (TDD). State-of-the-art TDD models [208, 228] achieves very high
detection accuracy, yet their performance degrades significantly when operating on ASR
transcriptions. The focus of this work is spoken disfluency detection (SDD), which accounts
for the entire process of converting raw speech inputs into fluent text sequences. Figure 5.1
shows a vanilla cascaded SDD system. The main detection process consists of an automatic
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speech recognition (ASR) module and a tagging based disfluency detection (DD) module
(individual modules were described in Section 3.2 and 3.3). Fluent text can then be obtained
by feeding the disfluent transcripts together with the corresponding disfluency labels into a
trivial text removal process.

Fig. 5.1 Illustration of a cascaded spoken disfluency detection (SDD) system

Feeding the input speech xxx1:T through the cascaded SDD pipeline, speech transcripts
w1:L can be generated via the ASR module, and a sequence of binary disfluency tags d1:L can
be generated via the DD module. The cascaded SDD process can be formulated as:

ŵ1:L = argmaxw1:L∈WP(w1:L|xxx1:T ;θθθ ASR) (5.1)

P(d1:L|xxx1:T ;θθθ)≈ P(d1:L|ŵ1:L;θθθ DD)≈∏
L
l=1 P(dl|ŵ1:L;θθθ DD) (5.2)

where ŵ1:L is the most likely hypotheses generated from the upstream ASR module. The
downstream detection process directly operates on the ASR hypothesis, and disfluency
tagging is modelled as a non-autoregressive process in this thesis. As discussed in Chapter 4,
cascaded systems rely on a single discrete sequence to pass information, and thus tend to
suffer from loss of information and error propagation issues. Under the context of spoken
disfluency detection, erroneous transcriptions and loss of important prosodic cues, such as
pauses and hesitations, could potentially lead to degraded detection performance. The focus
of this chapter is therefore to explore tighter combination of the ASR and DD modules, and
consequently improve the quality of the output fluent transcriptions.

5.2 Embedding passing

Vanilla cascaded disfluency removal suffers from ASR error propagation as well as loss of
prosodic cues. This section describes the application of the embedding passing approach
(introduced in Section 4.3.2) on the spoken disfluency detection task. The idea is to propagate
richer acoustic information from the upstream ASR to the downstream DD module, in the
form of continuous embeddings.

Figure 5.2 illustrates the embedding passing approach. An ASR module converts speech
xxx1:T into transcripts w1:L, and for each word wl in the speech transcripts, a corresponding
acoustic representation eeed

l is extracted. The concatenation of the textual embeddings eees
1:L and
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Fig. 5.2 Illustration of the embedding passing approach for spoken disfluency detection

acoustic embeddings eeed
1:L are passed on to the downstream disfluency detection module1:

ŵ1:L = argmaxw1:L∈WP(w1:L|xxx1:T ;θθθ ASR) eees
1:L = f (ŵ1:L;θθθ emb) (5.3)

P(d1:L|xxx1:T ;θθθ)≈ P(d1:L|ŵ1:L,xxx1:T ;θθθ
EP
DD)≈ P(d1:L|{eees

1:L,eee
d
1:L};θθθ

EP
DD) (5.4)

where the disfluency tags d1:L are conditioned on both the textual and acoustic information,
and θθθ emb parameterises the embedding mapping function. The key to embedding passing is
to extract acoustic embedding sequence eeed

1:L, which has the same length as the transcription
sequence, by aligning the audio xxx1:T with the transcription ŵ1:L sequences:

eeed
1:L = f (ŵ1:L,xxx1:T ;θθθ e) (5.5)

As shown in Figure 5.3, two acoustic embedding extraction processes are considered here.

Hard alignment - timestamps
Hybrid ASR models produce transcriptions together with the corresponding per-word times-
tamps, specifying the start and end time of each word. A straight-forward approach is to
extract acoustic features following the timestamps. A recurrent layer first runs over the entire
speech sequence xxx1:T to obtain more abstract contextual hidden vectors hhh1:T .

hhh1:T = f (xxx1:T ;θθθ enc) (5.6)

where a bidirectional LSTM is used for θθθ enc. For each token ŵl , the acoustic signals within
the corresponding time window {tl1, tl2} is kept, and the rest of the sequence is masked out.
As shown in Figure 5.3a, a local attention mechanism is adopted to convert the windowed

1The textual and acoustic embeddings respectively correspond to the static and dynamic embeddings
discussed in Section 4.3.2. Here, the concatenation of both embeddings are fed to the downstream module in
order to account for both textual and prosodic information.
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hidden vector sequence into a fixed-length feature embedding eeed
l for word ŵl:

ααα l = f (ŵl,hhhtl1:tl2;θθθ att) cccl = ∑
tl2
t=tl1 αl,thhht (5.7)

eeed
l =WWWcccl +bbb (5.8)

The timestamp based alignment provides a rigid correspondence between speech and text. It
directly makes use of the by-product of hybrid ASR decoding, and the generated dynamic
embeddings eeed

1:L can be used to form part of the input to the downstream disfluency detection.
The hard embedding extraction process can be jointly optimised with the downstream module
using the disfluency detection objective.

Fig. 5.3 Illustration of two alignment approaches for acoustic embedding extraction

Soft alignment - attention
The attention-based encoder decoder (AED) ASR framework (see Section 3.2.2) trains an
attention mechanism over acoustics, which effectively offers an alignment between the input
acoustic sequence and the output word tokens. The soft alignment approach makes use of
such attention alignment trained with the AED ASR to extract relevant acoustic features.
As described in Section 4.3.2, the feature extraction process consists of several steps. An
acoustic encoder is first applied to reduce the time resolution and consequently speed up
training. Here pyramidal bidirectional LSTM (pBLSTM) layers are adopted:

hhh j
t = fenc(hhh

j
t−1, [hhh

j−1
2t ,hhh j−1

2t+1];θθθ
j
pBLSTM) hhh0

1:T = xxx1:T j ∈ [1,J] (5.9)

where θθθ
j
pBLSTM parameterises the jth layer, and each layer reduces the time resolution by

a factor of two. The final encoded states hhhJ
1:τ (τ is the time-reduced sequence length) are

then fed through the attention mechanism to produce the speech to text alignments. For each
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token wl , a fixed length dynamic embedding eeed
l can be extracted as:

ααα l = fatt(hhhd
l ,hhh

J
1:τ ;θθθ att) cccl = ∑

τ
t=1 αl,thhh

J
t (5.10)

hhhd
l = fdec(hhhd

l−1, ŵl−1,cccl;θθθ dec) (5.11)

eeed
l =WWWcccl +bbb (5.12)

For the embedding extraction training, an auxiliary AED ASR training objective is adopted
to optimise the attention alignment process (Figure 5.3b). For the downstream disfluency
detection training, the soft embedding extraction process is fixed and operates under the ASR
inference mode (Figure 5.3c). The word sequence ŵ1:L can be chosen as the predicted ASR
hypotheses or any given word sequences2.

The hard and soft alignment processes have their respective merits and drawbacks.
Hard alignment can be directly trained together with its downstream disfluency detection,
whereas soft alignment requires additional training of the auxiliary AED ASR. Soft alignment
moves away from using explicit timestamps, thus achieving added flexibility in attending to
overlapping intervals between neighbouring word in the speech sequence. Attending to the
hesitations and silence intervals in between words may come in useful for the downstream
disfluency detection task.

5.3 Experiments

This section analyses the impact of embedding passing on the spoken disfluency detection
task, and contrasts the acoustic feature extraction processes with hard and soft alignment.

5.3.1 Evaluation metrics

F-score [167] is a standard evaluation metric for binary classification tasks, which measures
the classification accuracy. Given a binary classification task that generates positive and

2End-to-end ASR is not as robust as hybrid ASR under a limited amount of training data, therefore the
embedding vectors eeed

1:L are generated with the hybrid ASR transcriptions. It also allows fair comparison with
the hard embedding extraction, which also makes use of the hybrid ASR transcripts.
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negative predictions, the general formulation of F-score is defined as:

Precision (P) =
True positive (TP)

True positive (TP)+False positive (FP)
(5.13)

Recall (R) =
True positive (TP)

True positive (TP)+False negative (FN)
(5.14)

Fβ = (1+β
2)

Precision ·Recall
β 2Precision+Recall

(5.15)

where true positives are correctly identified positive predictions, false positives are incorrectly
identified positive predictions, and similarly true negatives and false negatives stand for
correctly and incorrectly identified negative instances. The positive class is conventionally
used as the class of interest, and thus both precision and recall use the number of true positives
as the numerator. The intuition behind is that precision measures the accuracy of the positive
predictions, whereas recall measures the coverage of the positive predictions. F-score is a
weighted mean of precision and recall, with a positive real factor β indicating the relative
importance of recall compared with precision.

In disfluency detection, each word in the sequence is tagged as either fluent or disfluent,
with the disfluent class defined as the positive class in the equations above. F1 score,
also known as the harmonic mean of the precision and recall, is conventionally used for
transcription disfluency detection [234]. It can be easily computed for manual transcriptions
annotated with disfluency labels, for example:

Fig. 5.4 An example evaluation of disfluency detection using F1 score

However, it is not straight-forward to apply F1 score to spoken disfluency detection,
since there is no manual labelling available for the hypothesised transcriptions generated
from the upstream ASR module. Two alternative metrics are adopted with different focuses:
a modified F1 score reflects the tagging accuracy, and an edit distance based word error
rate (WER) assesses the quality of the output fluent sequences. To apply F1 score on ASR
transcripts, a set of reference disfluency labels are required for ASR transcriptions: the ASR
transcripts are first aligned with the manual transcripts, and then the manual disfluency labels
are mapped over onto the ASR transcripts. Figure 5.5 illustrates the pseudo tag generation
process: after alignment, the matched (M) and substituted (S) words are tagged with the
aligned label; the inserted (I) and deleted (D) words are excluded from the F1 scoring.
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Fig. 5.5 Illustration of the pseudo reference tag generation on ASR transcriptions

Word error rate (WER) is a standard metric commonly used for speech recognition, which
assesses the quality of the transcription hypotheses:

WER =
S+I+D
M+S+I

=
S+I+D

Total #words in hypothesis
(5.16)

Here, WER is used to assess the quality of the fluent sequence, which is an indication of how
clean the sentences are post disfluency removal. The manual fluent sequence w f

1:N is used as
the reference, and the hypothesised fluent sequence is generated by removing words tagged
as disfluencies from the ASR transcripts w1:L:

ŵ f
1:N = Removal(ŵ1:L, d̂1:L) →WER(w f

1:N , ŵ
f
1:N) (5.17)

5.3.2 Corpora

Switchboard [62] is used as the main corpus for the spoken disfluency detection task, fol-
lowing previous works on transcription disfluency detection. It consists of approximately
260 hours of telephone conversations of native English speakers, sampled at 8 kHz. There
are multiple versions of transcription annotations in the speech community. The Treebank3
corpus [200] provides manual transcripts together with disfluency annotations. Switchboard-
300 (Mississippi State transcriptions) [98] provides higher quality manual transcriptions than
the Treebank3 corpus, and is commonly used for speech recognition. For spoken disfluency
removal, the transcription quality and disfluency annotations are both essential. Therefore, in
this work, the Switchboard disfluency annotation were obtained by aligning the Treebank-3
transcriptions with the Switchboard-300 corpus, and the disfluency annotations were mapped
from Treebank-3 to Switchboard-300. The alignment was conducted at the per speaker level
due to segmentation mismatches between the two corpora, and the utterance segmentations
were recovered after the alignment process.

Switchboard provides data triplets of raw speech, manual transcriptions and disfluency
annotations. There is few auxiliary corpora for text based disfluency detection, since dis-



82 Spoken Disfluency Detection

fluency detection naturally operates on speech transcripts, i.e. written text does not contain
disfluencies. Therefore, the experiments in this chapter were directly conducted on the
end-to-end Switchboard corpus, without pre-training on data from auxiliary domains. For
the individual modules and the embedding passing experiments, the same dev and test sets
conventionally used for disfluency detection [99] were adopted. Table 5.1 summarises the
statistics of the data splits used for the following experiments. Filler words (e.g. uh, huh)
can be easily removed with rule based approaches, and were not counted as disfluencies for
evaluation. All the results quoted in the following sections were evaluated on the Switchboard
test set unless specified otherwise.

Split #Sent. #Words %Disfluency

Train 173.9K 1.3M 5.70
Dev 10,172 86.4K 6.52
Test 8,039 65.8K 6.58

Table 5.1 Switchboard corpus statistics

5.3.3 Model training

Two spoken disfluency detection systems were trained: a cascaded system and an integrated
system with embedding passing. The vocabulary used for model training was generated with
the Switchboard corpus excluding rare words with less than two occurrences. All neural
models were trained using the Adam optimiser [105] with a batch size of 256, and a learning
rate of 0.001 with gradient clipping. Dropout was set at 0.2 if not specified.

For the cascaded system, a hybrid ASR module and a disfluency detection module were
separately trained. The hybrid ASR module is a factorised time-delay neural network (TDNN-
F) [166, 165] model with a trigram lattice generation, followed by rescoring with a 4-gram
language model trained on the Fisher Corpus [37]. Word-level timestamps were generated
alongside the ASR decoding. For manual transcriptions, timestamps were obtained through
force alignment. The disfluency detection module consists of a 200D word embedding
initialised using GloVe [161], a 2-layer 300D BLSTM followed by a binary classifier. The
dropout rate was set at 0.5. Training was run for 50 epochs, with early stop if the performance
on the development set stops improving for over 5 epochs. The performance of the individual
modules in the cascaded system are listed in Table 5.2.

The integrated system was trained with both hard and soft acoustic embedding extrac-
tions. For the hard embedding extraction, a 2-layer 256D BLSTM was used to extract the
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Module (Metric) Result

ASR (WER ↓) 15.60
DD (F1 ↑) 81.71

Table 5.2 Individual module (ASR and DD) performance evaluated on Switchboard test.
The ASR module was evaluated against manual transcriptions as the reference, and the DD
module was evaluated by feeding manual transcriptions as the module input.

bidirectional speech context, followed with a bilinear attention over per-word time windows.
The hard embedding extraction layers were trained together with its downstream disfluency
detection objective. For the soft embedding extraction, the alignment pipeline was initialised
with an auxiliary attention-based encoder decoder (AED) ASR. Following the listen-attend-
and-spell style model [27], the AED ASR was trained with three components: an acoustic
encoder with a 1-layer 256D BLSTM and a 3-layer 256D pyramidal BLSTM (pBLSTM), a
bilinear attention, and a decoder with a 4-layer 200D LSTM. After training with the ASR
objective, the encoder and the attention mechanism combined were fixed, and used for the
soft embedding extraction in the downstream disfluency detection training. The downstream
disfluency detection module stays the same as the one in the cascaded system, with both word
and acoustic embeddings as inputs. 40-dimensional filter banks were used as the acoustic
features, and speaker level normalisation and spec augmentation [160] were both adopted.

5.3.4 Embedding passing

The baseline cascaded system is compared with the embedding passing (EP) approach
discussed in Section 5.2 with both hard and soft acoustic feature extraction. Table 5.3 lists
the system performance on both manual and ASR transcriptions, with the F1 score analysing
the disfluency tagging accuracy and WER assessing the quality of the output fluent sentences.

Compared with the cascaded system, adding acoustic information through embedding
passing consistently reduced WER and improved F1 scores on both manual and ASR tran-
scriptions. Embedding passing gave slightly larger gain on F1 scores of ASR transcripts
compared with manual transcripts, which shows that acoustic information can potentially
make up for transcription errors during tagging. Between the soft and hard embedding extrac-
tion approaches, the hard alignment using explicit timestamps yielded smaller gain compared
with the soft alignment through the global attention trained with the speech recognition
objective. The reason behind is that the timestamps generated from hybrid ASR decoding
tend to cut-off sharply at the word boundaries, whereas the soft attention is more flexible
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MAN ASR
Models F1 ↑ WER ↓ F1 ↑ WER ↓

Cascade 81.71 2.22 70.37 15.32
EP+timestamps 82.23 2.23 71.15 15.28
EP+attention 83.74 2.00 73.13 15.10

Table 5.3 Comparing vanilla cascade and embedding passing (EP) based spoken disfluency
detection evaluated on the Switchboard test set. The disfluency detection operating threshold
was chosen at 0.50. All models were trained on manual transcriptions, and F1 / WER
were evaluated against the manually annotated fluent transcriptions. MAN: hypothesised
fluent sequence generated by feeding manual transcriptions as the DD module input; ASR:
hypothesised fluent sequence generated with ASR transcriptions.

in attending to cross-over regions. Prosodic cues that are particularly informative to the
disfluency detection task often lie across word boundaries, i.e. long pauses or hesitations
tend to indicate disfluencies around their neighbouring regions. Figure 5.6 plots the precision
recall curves of each system. It shows that the embedding passing approach with soft acoustic
extraction achieved higher accuracies throughout the sweep over different thresholds, on
both manual and ASR transcriptions.

(a) MAN (b) ASR

Fig. 5.6 Precision-recall curves of the vanilla cascade and the embedding passing (EP)
systems, evaluated on manual and ASR transcriptions
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5.4 Summary

This chapter investigated spoken disfluency detection as an example spoken language process-
ing task. The main focus is to compare the cascaded system and the integrated system with
embedding passing under the same amount of end-to-end training data. F1 scores and WER
were both adopted to measure the tagging accuracy and the output quality respectively. It is
shown that extracting acoustic information via embedding passing effectively improved the
downstream disfluency tagging accuracy as well as the output fluent sequences. As shown in
Table 5.3, soft embedding passing with global attention worked better than hard embedding
passing with timestamps, since the global attention accounts for the prosodic cues across
word boundaries that are important for disfluency detection. The experiments confirmed that
more tightly integrated systems with richer information passing across modules help mitigate
the information loss issue in the cascaded formulation.





Chapter 6

Spoken Language Translation

This chapter takes spoken language translation (SLT) as an example spoken language process-
ing task, and investigates the impact of various module combination approaches discussed
in Chapter 4. Section 6.1 gives an overview of the task and discusses the cascaded SLT
pipeline. Section 6.2 describes both supervised and semi-supervised error mitigation ap-
proach. Section 6.3 discusses an integrated SLT system with reranking, which takes into
account rich information across modular connections via an external reranker. In Section 6.4,
an embedding passing approach is proposed to encourage tighter modular connection in
integrated SLT systems. Detailed evaluation metrics, experimental setups and analyses are
reported in Section 6.5.

6.1 Task descriptions

Spoken language translation (SLT) is a translation task that converts speech in one language
into text in a foreign language. It is a complex task that brings together both automatic speech
recognition (ASR) and neural machine translation (NMT). The application areas include
automatic video subtitling [179], simultaneous interpreting [56], and travel assistant [211] etc.
End-to-end SLT corpora require speech utterances to be translated, and its high annotation
costs lead to limited availability of speech translation data [195]. The central challenge is
therefore to overcome the constraints on data availability, and leverage the modular nature to
strike a balance between modelling power and data efficiency.

Traditional cascaded SLT systems directly concatenate an ASR module and an NMT
module that are separately trained in their corresponding domains. Given the input speech
xxx1:T , the speech transcript w1:L and the output translation y1:N , the cascaded SLT process
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(shown in Figure 6.1) can be formulated as:

ŵ1:L = argmaxw1:L∈WP(w1:L|xxx1:T ;θθθ ASR) (6.1)

P(y1:N |xxx1:T ;θθθ)≈ P(y1:N |ŵ1:L;θθθ NMT) (6.2)

where the most likely hypothesis from the ASR module ŵ1:L is used as the input of the
subsequent NMT module. As discussed in Chapter 4, traditional cascaded systems face
challenges such as information loss, domain mismatches and erroneous early decisions.

Fig. 6.1 Illustration of a cascaded spoken language translation system

Past literature has explored richer modular connections through N-best lists [206, 119]
and lattices [182, 238]. Error propagation can be mitigated to some extent with an increasing
level of complexity involved in the connection point. However, maintaining a rich search
space for transcriptions is computationally expensive. With recent advances in attention-
based encoder-decoder models, more work has been done on integrating ASR and NMT
into a single model. Direct end-to-end model [9, 199] does not rely on intermediate speech
recognition, but it requires significant quantities of in-domain, end-to-end data to reach good
performance. Another line of approaches relies on explicit speech recognition, and adopts
end-to-end trainable triangle structures [1, 194, 207]. The following sections will discuss
various module combination approaches proposed in Section 4.2 and 4.3 under the context
of multimodular spoken language translation systems. Error mitigation approaches directly
operate on the cascaded structure, whereas the reranking and embedding passing approaches
modify the system structure to allow richer information propagation across modules.

6.2 Error mitigation

Error propagation is one of the inherent deficiencies in cascaded multimodular systems. As
discussed in Section 4.2.2, error mitigation is a straight-forward technique to tackle such issue
without altering the cascaded structure. Given a cascaded SLT system with separately trained
ASR and NMT modules, either supervised or semi-supervised error mitigation training can
be adopted depending on the data availabilities. With end-to-end annotations containing the
input speech and its corresponding translation {xxx1:T ,y1:N} ∈Dtgt(xxx,y)1, the NMT module

1The dataset notation follows the definition in Section 4.1.



6.3 Reranking 89

can be trained using the ASR transcripts ŵ1:L from Equation 6.1 and the reference translation
y1:N :

L(θθθ EM
NMT) =− logP(y1:N |ŵ1:L;θθθ

EM
NMT) {xxx1:T ,y1:N} ∈Dtgt(xxx,y) (6.3)

In cases where only speech data with its paired transcripts {xxx1:T ,w1:L} are available from the
target domain, the NMT module is trained with semi-supervised error mitigation:

yp
1:N = argmaxy1:N∈YP(y1:N |w1:L;θθθ NMT) (6.4)

L(θθθ EMsemi
NMT ) =− logP(yp

1:N |ŵ1:L;θθθ
EMsemi
NMT ) {xxx1:T ,w1:L} ∈Dtgt(xxx,w) (6.5)

where the semi-supervision relies on the pseudo reference yp
1:N generated from w1:L. Semi-

supervised error mitigation familiarises the NMT module with ASR transcripts, and also
indirectly exposes the NMT module under the target domain by training with generated
pseudo references. Further semi-supervised self-distillation can be applied to guide the model
with a richer distribution rather than the one-hot pseudo reference:

LKL(θθθ
EMdistil
NMT ) = ∑

N
n=2 KL{P(yp

n |yp
1:n−1, ŵ1:L;θθθ

EMsemi
NMT )||P(yyyp

n |yp
1:n−1, ŵ1:L;θθθ

EMdistil
NMT )}

(6.6)

6.3 Reranking

To allow richer information propagation across modules, an external reranker can be adopted
to directly access the transcription and translation hypotheses of the ASR and NMT modules.
As introduced in Section 4.3.1.2, the reranker leverages the rich transcription search space,
and then selects the best translation candidate among all. Without having to re-train the indi-
vidual modules, reranking is especially useful when individual components of the cascaded
pipeline are costly to build or to modify.

When feeding a sequence of speech input xxx1:T into a cascaded SLT system, a transcription
setW = {ŵ(1)

1:L, ..., ŵ
(Mw)
1:L } and a corresponding translation set Y = {Y (1), ...,Y (Mw)} with

Y (i) = {ŷ(i,1)1:N , ..., ŷ(i,My)
1:N } can be obtained. For each translation hypothesis ŷ(i, j)1:N ∈ Y , the

reranker assigns a scalar score to indicate the quality of the candidate. The score is then
normalised over the rest of the candidate scores, and the highest scoring candidate is chosen
as the optimal output according to the reranker posterior:

ŷ1:N = argmaxy1:N∈YP(y1:N |W ;θθθ r) (6.7)
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Figure 6.2 illustrates a reranking pipeline operating on the cascaded SLT system. In the
centre of the reranker formulation, there are two design choices to be made: the metric µ (in
Equation 4.30) used for the reference rank ordering generation; and the form of the feature
extraction function f (in Equation 4.27). This section mainly addresses the design choices
and practical consideration when applying reranking to the spoken language translation task.

Fig. 6.2 Illustration of the SLT reranking pipeline

The rank ordering of the translation candidates is modelled as a score distribution indicat-
ing the probability of each hypothesis ŷ(i, j)1:N ∈ Y being the best candidate. The reference score
is defined using BLEU, which is the standard metric used for speech translation evaluation.
The utility function µ is therefore set to be BLEU, where the BLEU scores are computed be-
tween each translation hypothesis ŷ(i, j)1:N and the reference translation y1:N , and then converted
into probabilities by normalising over the entire candidate set Y .

The feature extraction function f captures the correlations between the transcription
hypotheses and the translation candidate, and then generates a hidden representation used for
score prediction, i.e. f (ŷ(i, j)1:N . Large pre-trained Transformer-based models are commonly
used as feature extractors. XLM-R [40] (described in Section 2.4) is used here to initialise
the bilingual feature extractor in the reranker, and then jointly fine-tuned with the reranking
objective. The hidden state corresponding to the initial begin-of-sentence ‘<s>’ token is
used as the feature representation hhh. Figure 6.3 shows a basic reranker structure, which only
accounts for the paired transcription ŵ(i)

1:L and translation hypothesis ŷ(i, j)1:N ∈ Y (i).

Fig. 6.3 Illustration of a basic SLT reranker with the XLM-R feature extractor [122]

The feature extraction process can also account for more than one transcription hypothe-
ses. The same XLM-R structure can be adopted, with additional concatenation or attention
mechanisms to propagate extra information from the ASR module. For the concatenation
approach, multiple ASR hypotheses are concatenated via the end-of-sentence ‘</s>’ token.
For the attention approach, a basic dot product attention is adopted to attend over multiple
feature vectors. The feature vectors are extracted by pairing different transcription hypotheses
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with the same translation candidate to be scored, and they are further combined into a single
hidden vector hhh using the attention weights. Figure 6.4 shows an illustration of the SLT
reranker with an attention over multiple transcription to translation pairs.

Fig. 6.4 Illustration of the reranker with an attention mechanism over 3 ASR hypotheses
paired with the translation candidate.

Another practical consideration is on the diversity of the translation candidates. The
translation set Y to be ranked is usually generated using beam search in order to ensure
high quality translations, and therefore the diversity among the candidates is often quite low.
When the candidate diversity reduces to a certain level, the XLM-R feature extractor tends
to neglect the differences, and consequently the reranker will fail to converge. Therefore,
measures need to be taken to diversify the candidates without compromising the translation
quality. Detailed diversification approaches will be introduced in the experiments section.

6.4 Embedding passing

Cascaded systems pass information through discrete words, which incur issues such as error
propagation and loss of acoustic information. Vanilla end-to-end systems drop the notion
of modules, and thus suffer from low data efficiency. As described in Section 4.3.2, the
embedding passing approach aims to strike a balance between modelling power and data
efficiency via tightly integrated modules:

P(y1:N |xxx1:T ;θθθ)≈ P(y1:N |eee1:L;θθθ
EP
NMT) eee1:L = f (xxx1:T ;θθθ e) (6.8)

where θθθ
EP
NMT denotes the downstream translation module that takes embeddings eee1:L as inputs,

and θθθ e parametrises the embedding extraction function. Figure 6.5 contrasts the three forms
of the SLT systems with increasingly tighter integration: vanilla cascade, integration with
embedding passing (EP), and end-to-end (E2E) systems. The ASR and NMT modules both
adopt the attention-based encoder decoder (AED) formulation.
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Fig. 6.5 Comparing cascade, embedding passing integration, and end-to-end SLT systems.
The active components are coloured and the inactive components are shaded.

For the embedding passing SLT system, an attention-based soft embedding extraction is
adopted, as opposed to the hard embedding extraction with timestamps. The global attention
allows more flexibility in attending over distance context, which provides richer information
for the downstream translation module. The acoustically derived dynamic embeddings eeed

1:L

are matched with the static word embeddings eees
1:L, which are used as the modular connection:

eee1:L = eees
1:L = eeed

1:L (6.9)

Figure 6.5b shows an illustration of the integrated SLT system with embedding passing. The
embedding connection maintains a rich information flow, and is particularly useful during
the in-domain training with end-to-end speech translation data.

Static embeddings are derived using a one-to-one mapping from words, whereas dynamic
embeddings follow a many-to-one mapping since the same word can be pronounced in
different ways. The embedding matching process reaches a compromise between richness
from acoustics and robustness from transcripts. However, the many-to-one nature of the
dynamic embeddings causes a systematic mismatch from the static embeddings. To strike a
balance between rich information and regularisation through words, joint embedding passing
(EP-J) can be adopted, which uses both embeddings as the modular connection:

eee1:L =WWW [eees
1:L,eee

d
1:L] (6.10)

where WWW is a transformation matrix setting the dimension of the joint embedding. EP-J
aims to loosen the constraints of embedding matching by decoupling the static and dynamic
embeddings, and simply concatenates the two to yield a joint embedding for translation.
Figure 6.6a shows an illustration of the integrated SLT system with joint embedding passing.
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The downstream translation module can still be initialised with auxiliary translation corpora
by fixing eeed

1:L to be an averaged dynamic embedding derived from the auxiliary ASR corpora.
Under a limited amount of training data, AED ASR is not as robust as hybrid ASR.

Embedding passing models, which rely on the transcripts from the AED ASR, tend to suffer
from poor speech recognition, and consequently lead to inferior speech translation quality.
Compared with direct end-to-end models, one of the advantages of having an explicit speech
recognition module in integrated systems is the flexibility of incorporating external sources of
information. In embedding passing systems, it is possible to modify the AED ASR generated
hypotheses during inference, and propagate its impact through the ASR attention with the
modified back history. One way of improving the transcriptions is via shallow fusion, i.e.
decode the AED ASR module with an external language model. Another more effective
approach is to directly replace the AED generated ASR hypotheses with higher quality
transcriptions. Figure 6.6b illustrates the process of incorporating external transcripts to the
joint embedding passing system. The predicted transcription history w1:l−1 is replaced with a
higher quality transcription history w′1:l−1, which indirectly improves the static and dynamic
embeddings to be passed on to the downstream translation module.

Fig. 6.6 Joint embedding passing system: decode without / with external transcripts

6.5 Experiments

The experiments in this chapter mainly analyse the impact of the module combination
approaches discussed from Section 6.2 to 6.4. This section first discusses the evaluation
metrics and the corpora of the spoken language translation task, followed with the details
on model training. Three module combination approaches are then analysed, namely error
mitigation, reranking and embedding passing.
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6.5.1 Evaluation metrics

Bilingual Evaluation Understudy Score (BLEU) [158] is an edit based evaluation metric
conventionally used for machine translation tasks. BLEU analyses the translation quality by
considering the distance between the machine predicted output and the gold standard manual
annotations. Given a translation candidate C with a reference R, the score is calculated as the
geometric average over the n-gram matching precision over the entire test corpus:

BLEU(C,R) = BP · exp(∑N
n=1 wn log pn) (6.11)

BP = min(1,e1−r/c) (6.12)

pn =
∑n-gram∈C Countclip(R)(n-gram)

∑n-gram′∈C Count(n-gram′)
(6.13)

where pn is the n-gram precision, wn is the weight coefficient, and BP is the brevity factor
with c being the candidate translation length and r being the reference length. Countclip(R)

clips the total count of each candidate n-gram by its maximum count in reference R. This
thesis adopts the conventional combination where n = 4 with uniform weights wn = 1/4.
Another line of metrics adopts large language models such as BERT to measures the semantic
similarity between the generated text and the reference text, e.g. BERTScore [239]. In this
thesis, BLEU score is adopted to be consistent with past literature on the SLT task.

Another important aspect is the diversity of the generated candidates. A translation
model can produce a group of hypotheses via beam search or sampling during decoding.
Cross-BLEU [188] measures candidate diversity by averaging over the pair-wise BLEUs.
Given a group of hypotheses {ŷ(m)}M

m=1, cross-BLEU can be calculated as:

crossBLEU = 1
M(M−1) ∑

M
m1=1 ∑

M
m2=1 BLEU(ŷ(m1), ŷ(m2))m1 ̸=m2 (6.14)

Lower cross-BLEU indicates higher diversity in the hypotheses set. For a translation model,
it is usually ideal to have a high quality and diverse hypotheses set. Both BLEU and cross-
BLEU scores can be directly applied to the spoken translation task, since they do not rely on
the transcriptions and only compare the output translation sequences.

6.5.2 Corpora

The experiments were conducted on the English-to-German (En-De) speech translation task.
Three main corpora used here are summarised in Table 6.1. MuST-C [47] is a multilingual
speech translation corpus translating English TED Talks into 8 different languages. The
En-De direction is used as the target task in this thesis. The corpus provides data triplets
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consisting of speech, its corresponding English transcription and German translation. TED-
LIUM3 [78] is collected from TED conference videos and dedicated to speech recognition
tasks in English. It is used in this work to initialise the ASR module. WMT17 [19] refers to
a public release of machine translation shared task, and the En-De subset is adopted for the
speech translation task. WMT17 En-De has over 4M sentences in total, but only 10% is used
here for pre-training purposes to save computational time. All results are evaluated on the
MuST-C tst-COMMON test set with case-sensitive BLEU.

On the audio side, 40 dimensional filter bank features were extracted at 10ms frame rate.
For text pre-processing, English transcriptions were lower-cased, punctuation-normalised
using Moses toolkit [108], and German translations were kept punctuated and true-cased.
Byte Pair Encoding (BPE) [77] tokenisation was adopted for the English transcripts, which
splits words into subword units and helps alleviate the issue of out-of-vocabulary words.

Corpus Domain #Hour #Sent. #Words

MuST-C En-De (MuSTC) SLT - Dtgt(xxx,w,y) 408h 229.7K 4.3M
TED-LIUM3 (TED) ASR - Dup(xxx,w) 452h 268.3K 4.5M

WMT17-P En-De (WMT) NMT - Ddn(w,y) - 454.4K 11.5M

Table 6.1 Corpora used for training spoken language translation systems. Word count is
calculated on the source English text.

6.5.3 Model training

There are a total of four individual models being separately trained2. For the upstream ASR
module, an attention-based encoder decoder (AED) ASR and a hybrid ASR model were
trained. For the downstream NMT module, a vanilla Transformer-based NMT model was
trained from scratch, and a T5-based pre-trained NMT model was also adopted. The error
mitigation and reranker experiments were conducted on the cascaded system consisting of
the hybrid ASR and the T5-based NMT. The embedding passing experiment adopted the
concatenation of the AED ASR and the Transformer-based NMT as the baseline. It further
investigated the data efficiency of different forms of modular integration. All models were
trained using Adam optimiser [105] with a batch size of 256, dropout 0.2, and a learning rate
of 0.001 with gradient clipping. The final model parameters were calculated using checkpoint
averaging [94], which took the average over the 5 best checkpoints.

2Different combinations of the individual models were adopted for different experiments, since some of the
more advanced models were introduced during the course of the research development.
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The AED-based ASR model has an encoder of 1x256D bidirectional LSTM and 3x256D
pyramidal bidirectional LSTM layers, reducing the acoustic sequence lengths by 8. The
decoder then uses bilinear attention, followed by 3x512D unidirectional LSTM layers.
Speaker level normalisation and spec augmentation [160] were enabled during training.
The target transcriptions were tokenised using Byte Pair Encoding (BPE) [189] with a 40K
vocabulary trained on transcriptions of MuSTC. The hybrid ASR model adopts a lattice-free
maximum mutual information (LF-MMI) factorised time-delay neural network (TDNN-F)
acoustic model [166, 165] followed by a trigram decoding. The decoding language model
(LM) was trained on TED, and the LM scale factor was set at 10. Table 6.2 contrasts the
RNN-based AED and hybrid ASR modules trained on the in-domain MuSTC corpus. Under
limited training data, the hybrid ASR model achieved much lower WER compared with the
recurrent network based AED ASR model3.

Module (Metric) Model Result

ASR (WER↓)

RNN AED 20.99
Hybrid 7.32

Transformer AED from corpus paper [47] 27.00
Transformer AED from ESPnet [212] 12.70

Transformer AED from ESPnet-ST [92] 7.00
Conformer AED from ESPnet-ST [92] 5.60

NMT (BLEU↑)

Transformer 27.07
T5 31.55

Transformer from corpus paper [47] 28.09
Transformer from ESPnet [212] 30.16

Transformer from ESPnet-ST [92] 35.50

Table 6.2 Individual model performances trained on MuSTC, evaluated on MuSTC tst-
COMMON split. Manual transcripts were used both for NMT training and evaluation. For
the ASR module, the RNN AED ASR is compared with the hybrid ASR, as well as the
literature. For the NMT module, the vanilla Transformer NMT trained from scratch is
compared with T5-based pre-trained NMT, as well as the literature.

The Transformer NMT is a standard base-sized model with 512D hidden states, 6 encoder
layers, and 6 decoder layers. The translation source sequences adopted the same BPE
tokenisation that is consistent with the vocabulary used for the AED-based ASR, and the

3This work was done before the current state-of-the-art Conformer-based ASR [70], which achieves a much
lower WER compared with the recurrent network based AED ASR.



6.5 Experiments 97

target sequences were tokenised into character level units. The T5-based NMT [174] follows
the standard Transformer structure, but is pre-trained with large quantities of data under a
unified multitask framework. The Huggingface pre-trained T5 implementation4 was adopted
for this work, and the model was further fine-tuned to the in-domain MuSTC data. Table 6.2
contrasts the vanilla Transformer and the T5 NMT models, both trained on the in-domain
MuSTC corpus. Translation decoding was conducted via greedy search unless specified
otherwise. The T5-based pre-trained NMT model outperformed the vanilla Transformer
model trained from scratch by 4.5 BLEU scores.

In Table 6.2, the ASR and NMT performances were also compared with results in
literature. The original paper [47] that describes the corpus were quoted, as well as the
results from the ESPnet toolkit [212] and the more recent ESPnet-ST paper [92]5. The
ASR performance of ESPnet-ST improved significantly from the original paper and ESTnet,
and there is also a huge gap between our RNN-based AED to ESPnet-ST’s Transformer
and Conformer based AED. This may be due to different choices of tokenisation, audio
pre-processing, model structure, as well as more datasets being used for ESPnet-ST training.
The NMT performance from ESPnet-ST beats the rest, which may be benefited from the
significantly larger amount of training corpora. It also beats the T5 model fine-tuned with
MuST-C dataset. This may be because they also used TED training data, which is in a very
similar domain as the target domain MuSTC set. The focus of this work is to explore the
integration of the ASR and NMT modules, and thus no further effort was made to improve
the individual module performances.

6.5.4 Error mitigation

This section analyses the impact of the error mitigation approaches discussed in Section 6.2.
The cascaded system is composed of the hybrid ASR and the T5-based NMT modules: the
ASR module was trained on the in-domain MuSTC data and fixed from further update;
the downstream NMT module was initialised with the pre-trained T5 model. Various error
mitigation approaches were adopted to adapt the NMT, and the results are listed in Table 6.3.

The baseline model (Base) is the pre-trained T5 model without in-domain training.
Under partially annotated data Dtgt(xxx,w), where there is only speech with its paired manual
transcripts from the target MuSTC domain, semi-supervised error mitigation (EMsemi)
trained the NMT module with the ASR transcripts as the inputs, and used the manual

4https://huggingface.co/t5-base
5Our work discussed in this thesis was conducted in between the developemnt of the ESPnet and the

ESPnet-ST systems.

https://huggingface.co/t5-base
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Model In-domain Data BLEU ↑

Base - 20.65
EMsemi Dtgt(xxx,w) 22.11
EMdistil Dtgt(xxx,w) 22.41
EM Dtgt(xxx,y) 28.89

Table 6.3 The impact of error mitigation on the NMT module, with different availabilities
of data pairs under the target domain. BLEU scores were computed against the manual
translations, and the NMT module inputs were ASR transcripts. The BLEU scores therefore
directly reflect the speech translation performance.

transcripts translated hypotheses as the pseudo reference. Semi-supervised self-distillation
(EMdistil) further distiled the EMsemi model, by setting the EMsemi model as both the
teacher and the student. Under fully annotated in-domain data, where there is speech paired
with its corresponding translations, the NMT module can be directly fine-tuned under manual
supervision (EM). Semi-supervised error mitigation improved the speech translation BLEU
by 1.46, which confirms that familiarising the NMT module with in-domain ASR transcripts
effectively mitigates ASR error propagation, and semi-supervised self-distillation further
improved the speech translation performance to 22.41. Under end-to-end data, supervised
error mitigation gave the largest gain, pushing the speech translation performance to 28.89.

αKL BLEU ↑

0.0 22.11
0.5 22.21
1.0 22.41

Table 6.4 The impact of adding negative log likelihood loss to the semi-supervised self-
distillation training. The KL coefficient αKL is the weight of the KL divergence loss, and the
weight of the likelihood loss is (1.0-αKL).

A common practice in self-distillation is to combine the KL divergence loss (Equation 6.6)
with the standard negative log likelihood loss (Equation 6.5). It aims to reach a balance
between learning the distribution and learning the one-hot prediction. Table 6.4 shows
the impact of incorporating the log likelihood objective with different KL loss coefficients.
Setting the KL coefficient αKL to 0.0 turns off the KL loss and the model falls back to the
semi-supervised EMsemi model; setting αKL to 1.0 effectively turns off the log likelihood
objective and the model becomes the fully distilled EMdistil model; and setting αKL to 0.5
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weighs the two losses equally during training. It is shown that adding the log likelihood loss
degraded the translation performance. This confirms that under semi-supervised scenario
where the quality of the pseudo reference is not good enough, the KL loss over the distribution
leaves the model with more freedom to explore and reach a better candidate.

6.5.5 Reranking

This section investigates the reranking approach discussed in Section 6.3. The baseline
system is a cascaded concatenation of the hybrid ASR and the T5-based NMT, both trained
on the in-domain MuSTC data6. The following sections will discuss the candidate generation
process from the ASR and NMT modules, followed with discussions on reranker training
and further analyses on the reranker performance.

Candidate generation
In modular systems, if each individual module generates a fixed number of candidates for
each input, the total number of the candidates increases exponentially with the number of
the modules. With a larger search space and more candidates to choose from, it is more
likely that the best candidate in the hypotheses set gets closer to the ground truth translation.
However, it is computationally expensive to keep expanding the search space. Table 6.5
contrasts the impact of branching out the search spaces with varying sizes for the ASR
and NMT modules. To compare across different candidate sets, several non-neural based
ranking approaches are used in the table: oracle ranking directly uses BLEU scores calculated
against the manual translation to select the best candidate, which sets the upper bound of
any reranking algorithm; PASR, PNMT, Scomb respectively ranks the translation hypotheses
according to the sentence level confidence scores using the ASR posterior, NMT posterior,
and a combination of both the ASR and NMT posteriors. When calculating Scomb, since the
dynamic range of PASR and PNMT are different, the ASR confidence was first softened using
a temperature factor and then combined with the NMT posterior. The optimal temperature
factor and PASR weighting were chosen as 30 and 0.2 respectively.

To ensure fair comparison, the total number of the translation candidates was fixed at 50.
Keeping the 5-best ASR candidates and then branching out to 10 NMT hypotheses per ASR
candidate (Na = 5, Nn = 10) led to the highest BLEU score of 30.29 with the probabilistic
ranker Scomb. For the following experiments, this setup was adopted for candidate generation,
and 30.29 is considered as the baseline reranker performance. Further expanding the search
space to a total of 2500 candidates with (Na = 50, Nn = 50) gave an oracle performance of

6It is not required that the ASR and NMT modules are trained on the in-domain corpora, and the reranking
approach applies to any pre-trained cascaded SLT system that is able to generate reasonable hypotheses.
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Cand. Generation Ranker (BLEU↑)
ASR (Na) NMT (Nn) Oracle PASR PNMT Scomb

1 1 28.89 28.89 28.89 28.89
1 50 42.09 29.95 29.95 29.95
5 10 40.26 29.29 30.14 30.29

10 5 39.51 28.59 30.01 30.12
50 1 37.50 27.34 28.89 29.05

50 50 49.30 27.60 29.95 29.96

Table 6.5 Speech translation performance with varying size search spaces for the ASR and
NMT modules. ASR: keep the top Na ASR hypotheses; NMT: for each ASR hypothesis, the
NMT decoding generates Nn candidates with a beam width of Nn. For each speech input,
there are a total of NaNn candidates.

49.30, yet the top candidate selected using the probabilistic rankers did not reach higher
scores in spite of the better oracle candidate. This is due to the mismatch between the
posterior confidence and the reference BLEU score of the candidates. One of the advantages
of adopting an external reranker is to address such mismatch between the model predicted
posterior and the true distribution of the scores.

Sampling aveBLEU crossBLEU

✗ 17.21 43.49
✓ 18.33 30.58

Table 6.6 The average BLEU and cross BLEU scores of the candidate set (Na = 5, Nn = 10)
before and after the diversification process with sampling.

Translations generated via beam search are not as diverse as those generated with sam-
pling [84]. In order for the neural based rerankers to train, the candidate set needs to reach
a certain level of diversity. Selective sampling can be used to diversify the hypothesis set
without compromising the translation quality: a set of candidates is first generated with beam
search; the top half are selected according to the reference BLEU scores, and the other half
are replaced with candidates generated using sampling. Table 6.6 compares the average
BLEU (aveBLEU) and crossBLEU scores before and after the diversification process, where
the chosen candidate set (Na = 5, Nn = 10) is described in Table 6.5. It is shown that adding
sampling reduced crossBLEU by 12.91, with the average translation BLEU improving by
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1.12. Candidate diversification is only required for training, and the trained reranker can be
used to rank the full candidate set generated from beam search during inference.

Reranker training and evaluation
With the translation candidates generated as described, the neural based rerankers can be
trained on the MuSTC data. The rerankers extract correlations between the ASR transcripts
and the translation hypotheses, and predict a score for each hypothesis. The pre-trained XLM-
R model was adopted for feature extraction, and different neural rerankers were trained with
an increasing number of ASR hypotheses and different scoring functions. The vanilla scoring
function operated on a matched translation pair {w(i)

1:L,y
(i, j)
1:N }. To take into account multiple

ASR hypotheses, a concatenation based and an attention-based feature extraction functions
were adopted. Table 6.7 compares the reranker performance with different feature extraction
functions. All reranker posteriors were interpolated with the ASR and NMT posteriors for
the final results. The baseline ranker (Base) selects the best hypotheses according to the
combined posterior of ASR and NMT module, and the Oracle ranker uses the reference
translation score to choose the best candidate, which sets the upper-bound for the rerankers.

Ranker NASR Mode BLEU↑

Base - - 30.29
Oracle - - 40.26

XLM-R

1 - 31.26
2 cat 31.23
2 att 31.47
3 cat 31.37
3 att 31.50

Corpus paper (2019) [47] 18.50
ESPnet (2020) [212] 22.91

KIT (2020) [201] 30.60
RWTH (2021) [5] 26.50

ESPnet-ST (2021) [92] 35.50

Table 6.7 SLT performance with neural reranking. NASR: the top-NASR ASR hypotheses
taken into account for feature extraction; Mode: approaches to incorporate multiple ASR
hypotheses into feature representation - cat: concatenation, att: attention. Base and Oracle
performances are quoting the Na = 5,Nn = 10 case listed in Table 6.5. The model perfor-
mances from the literature were also included for reference. The best performing reranker
reaches 31.50 BLEU with an attention over NASR = 3. It outperforms most recent works, yet
still lagging compared with ESPnet-ST.
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As shown in Table 6.7, the vanilla neural ranker operating on the matched translation
pair improved the translation performance to 31.26 from the baseline 30.29. This verifies
that directly optimising the reranker to learn the reference score distribution helps adjust
the model posterior to better align with the evaluation metric. Further incorporating more
ASR hypotheses gave additional gains. The attention combination was more effective than
simply concatenating the ASR transcripts, since the attention mechanism is more flexible
in assigning larger weights to the most relevant context during feature combination. The
best performing reranker reaches 31.50 with an attention feature combination over NASR = 3,
outperforming the baseline by 1.21. This confirms that adopting an external reranker to
access multiple ASR hypotheses is an effective approach of addressing information loss
and error mitigation issues in cascaded SLT systems. However, it is not feasible to keep
increasing the number of ASR hypotheses being used. Running large pre-trained models,
such as XLM-R, on long sequences requires large memory usage, and the limiting factor is
usually the GPU memory.

6.5.6 Embedding passing

This section investigates integrated systems with embedding passing as discussed in Sec-
tion 6.4. Three SLT systems are considered here with an increasing level of integration: the
vanilla cascaded (Casc) system is connected through discrete word sequences, the integrated
system is connected through word-level continuous embeddings (EP), and the direct end-
to-end (E2E) system directly uses acoustic-level hidden states for downstream translation.
The system development details are first discussed, and the analyses mainly focus on the
following aspects: the impact of different levels of in-domain data availability, data efficiency,
as well as the output translation performance.

System development
The cascaded system is a simple concatenation of the separately trained ASR and NMT
modules. Table 6.8 contrasts the AED and hybrid ASR models, and their corresponding
cascaded SLT performance when connected with the downstream NMT module. For the
ASR module, the AED and hybrid models were respectively trained on the out-of-domain
TED corpus Dup(xxx,w), and the MuSTC corpus from the target domain Dtgt(xxx,w). The NMT
module adopts a standard Transformer structure. The baseline model (Base) was trained on
the out-of-domain WMT corpus Ddn(w,y), and the fine-tuned model (Tuned) was further
trained on the MuSTC data from the target domain Dtgt(w,y). The hybrid ASR model
largely outperformed AED ASR, and they consequently led to improved speech translation
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performance when connected with the NMT models. The highest BLEU score 25.45 was
achieved by connecting the in-domain trained hybrid ASR model with the Tuned NMT.

ASR NMT
Model Corpus WER↓ Base Tuned

Hybrid
TED 10.58 13.58 23.85

MuSTC 7.32 14.41 25.45

AED
TED 35.20 9.60 15.97

MuSTC 20.99 12.25 20.54

Table 6.8 The cascaded SLT system performance with different combinations of ASR and
NMT models (BLEU ↑). Base: the baseline NMT trained on WMT from Ddn(w,y), Tuned:
NMT trained on MuSTC from the target domain Dtgt(w,y). All results were evaluated on the
MuSTC tst-COMMON set.

In the direct E2E system, the acoustic encoder adopts a similar structure as the AED
ASR, which consists of 1x256D bidirectional LSTM and 3x256D pyramidal bidirectional
LSTM layers. The translation decoder is a standard Transformer decoder but with acoustic
level hidden states as the inputs. The E2E training requires end-to-end data from the target
domain Dtgt(xxx,y), yet it is difficult for the E2E system to converge under limited quantities
of data. Therefore, the acoustic encoder was initialised using the auxiliary speech recognition
objective with Dtgt(xxx,w), and then fixed when trained for the translation objective.

As discussed in Section 6.4, two integrated systems were developed: an embedding
passing (EP) system that matches the static and dynamic embeddings, and a joint embedding
passing (EP-J) system that passes both the static and dynamic embeddings. Both the static
and dynamic embeddings were set to be 512D. For both EP and EP-J, the upstream AED ASR
module was initialised with the auxiliary ASR corpus from Dup(xxx,w), and the downstream
NMT module was initialised with the auxiliary NMT data from Ddn(w,y). At the in-domain
training stage, all parameters were fine-tuned with the SLT data: if the target domain corpus
only contains speech with its paired translation Dtgt(xxx,y), the acoustic encoder is fixed,
and the translation objective is imposed during fine-tuning; when manual transcriptions are
available in Dtgt(xxx,w,y), fine-tuning adopts both the auxiliary ASR objective and the SLT
objective. All results in this section were decoded with a beam width of 5.

In-domain data availability
This section compares the SLT systems under different levels of in-domain data availability.
The key difference that distinguishes the SLT systems is the information flow passed from
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the acoustic side to the translation side. Cascade uses discrete words, EP uses continuous
embeddings, and E2E uses acoustic level hidden states. To directly contrast the impact
of different information flows, AED ASR was used across all systems, and hybrid ASR
will be considered in later sections. Three levels of data availabilities were considered:
(1) no in-domain data - None; (2) in-domain speech paired with its translation, without
manual transcription - Dtgt(xxx,y); (3) in-domain data triplet containing speech, transcription
and translation - Dtgt(xxx,w,y). The Cascade, EP and EP-J systems were initialised under
the auxiliary ASR domain Dup(xxx,w) and NMT domain Ddn(w,y), and further fine-tuned
under the target SLT domain7, whereas the E2E system was directly trained under the target
domain.

Models None Dtgt(xxx,y) Dtgt(xxx,w,y)

E2E - - 19.29
Cascade 9.60 16.56 20.54

EP 7.97 18.84 22.56
EP-J 9.60 16.24 23.25

Table 6.9 Comparing the Cascade, EP, EP-J and E2E systems under three levels of in-
domain data availabilities (BLEU↑). None: no in-domain data; Dtgt(xxx,y): in-domain speech
paired with its translation, without manual transcription; Dtgt(xxx,w,y): in-domain data triplet
containing speech, transcription and translation.

Table 6.9 shows that Cascade and EP-J performed similarly under zero in-domain data.
EP-J performed the best with fully annotated target domain data Dtgt(xxx,w,y), whereas EP
performed the best in cases when manual transcriptions are not available in Dtgt(xxx,y). When
there is no in-domain data, EP fell short mainly because of the imperfect matching between
the static and dynamic embeddings, and embedding mismatch is a systematic issue before
any in-domain training takes place. In comparison, EP-J loosens the restriction and makes
use of both the dynamic and static embeddings. The downstream NMT module in EP-J
was initialised using the averaged dynamic embeddings over all training instances. Before
in-domain training (None), the EP-J system was not better than Cascade, since it is yet to
benefit from the rich acoustic context. After training with fully annotated target domain
data Dtgt(xxx,w,y), EP-J achieved the best performance among all. It obtained robustness
through regularisation provided by the static embeddings, while retaining richness of the

7For the ASR module in the Cascade system, the TED trained AED was adopted for condition (1) and (2),
and the MuSTC trained AED was adopted for condition (3). When fine-tuning the NMT module in the Cascade
system, the AED-TED model predicted transcripts were adopted for condition (2).
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acoustic features from the dynamic embeddings. However, when manual transcriptions
are not available in Dtgt(xxx,y), i.e. the ASR errors were passed down to the NMT module
during in-domain training, EP outperformed Cascade and EP-J by over 2 BLEU points.
This confirms that having a soft dynamic modular connection does help mitigate the error
propagation issue. In the following sections, the focus is laid on comparing the Cascade and
EP-J systems, since they are the most competitive systems when trained with fully annotated
SLT corpus.

Data efficiency

(a) Cascaded system with AED ASR versus EP-J system

(b) Cascaded system with Hybrid ASR versus EP-J sys-
tem

Fig. 6.7 Data efficiency: BLEU↑ versus Data ratio (from left to right: systems were fine-tuned
with an increasing amount of end-to-end SLT data using manual transcriptions)
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The previous section analysed two ends of the data spectrum, with either none or fully
end-to-end SLT data. This section further explores how the Cascade and EP-J systems behave
under different quantities of target domain data Dtgt(xxx,w,y). To analyse the data efficiency,
both systems were initialised with the ASR corpus Dup(xxx,w) and NMT corpus Ddn(w,y),
and then fine-tuned with a sweep through the in-domain SLT data (from 0% to 100%).
Their respective performances were recorded for each data ratio. Figure 6.7a compares the
Cascade and EP-J systems with the AED ASR module. For Cascade, both AED-TED and
AED-MuSTC transcriptions were used, setting the lower bound (out-of-domain trained AED)
and the upper bound (in-domain trained AED) respectively. EP-J and Cascade behaved
similarly in the zero data region. With an increasing amount of in-domain SLT data, EP-J
adapted to the target domain much more quickly, starting to outperform the Cascade upper
bound with only 10% of end-to-end SLT data. The main difference between Cascade and
EP-J is the additional dynamic embeddings used at the modular connection. The observation
confirms that dynamic embeddings do provide downstream modules with a richer acoustic
context, and thus allow more efficient domain adaptation.

However, it is not fair to only compare EP-J with Cascade systems that use the inferior
AED transcriptions. One of the benefits of cascaded structures is the flexibility in improving
each individual module. To construct a stronger cascaded baseline, two hybrid ASR models
were used to provide better speech transcriptions: Hybrid-TED and Hybrid-MuSTC respec-
tively set the lower and upper bounds. Figure 6.7b shows that when the Cascade system
adopts hybrid ASR transcriptions, its lower bound achieved similar performances as the EP-J
system, and the upper-bound outperformed EP-J. The inferior performance of EP-J is mainly
due to the performance gap between the AED and the hybrid ASR.

Improved AED back history
As discussed above, the EP-J system suffered from poor AED performance, and consequently
led to inferior speech translation quality. With an explicit speech recognition module, the
EP-J system is able to incorporate external sources of information as discussed in Section 6.4.
The AED generated hypotheses can be improved via two approaches: (1) adding an external
language model with shallow fusion - here a 4-gram language model trained on TED was
adopted; (2) directly replace the AED hypotheses with external ASR transcriptions - here the
hybrid ASR transcripts were used. Figure 6.8 shows the impact of incorporating external
information, with the same sweep through the data ratio as in the previous section.

In general, adopting a better AED back history led to lower AED WER, and higher SLT
BLEU scores8. Shallow fusion with a 4-gram language model reduced AED WER, and led

8Figure 6.8b shows some mismatches between the back history quality and the AED performance. The
back history quality follows the order of FR < Hybrid-TED < Hybrid-MuSTC < MAN, yet the generated AED
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to slightly improved BLEU scores (dotted orange lines). Adopting the higher quality hybrid
ASR transcripts gave more significant gains (blue lines). With the in-domain Hybrid-MuSTC
transcripts, EP-J improved by around 2 BLEU points throughout the sweep. It is also worth
notice that, even when manual transcriptions are used as the AED back history (green lines),
the WER of AED hypotheses were still above 10% (3 points higher than Hybrid-MuSTC).
The suboptimal AED transcripts have led to 28.34 BLEU at 100% data ratio, which is higher
than the Cascade highest 25.45 BLEU.

(a) SLT BLEU scores versus Data ratio

(b) AED WER versus Data ratio

Fig. 6.8 EP-J decoded with different AED ASR back histories. From left to right, SLT
systems were fine-tuned with an increasing amount of end-to-end data. (FR: back history
generated under free running, i.e. AED transcripts are used; FR with 4gram LM: shallow
fusion with 4gram LM; Hybrid-TED/MuSTC: back history adopts transcripts from hybrid
ASR trained with TED/MuSTC; MAN: back history adopts manual transcripts.)

Figure 6.9 compares EP-J with Cascade, both making use of the hybrid ASR transcrip-
tions. The plot only shows the lower and upper bounds of the system performance. Under
zero in-domain data, the true performance is closer to the lower bound (Hybrid-TED);

hypotheses gave a different order of Hybrid-TED < Hybrid-MuSTC < FR < MAN (from the highest to the
lowest WER). The inversion between FR and Hybrid-TED/MuSTC is mainly due to the degradation in AED
caused by the mismatch between the AED hypotheses and the hybrid ASR transcripts.
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whereas full data leads to the upper bound (Hybrid-MuSTC). Compared with the vanilla
Cascade, it is more challenging for EP-J to indirectly propagate ASR transcripts through
the AED back history. In the low data region, Cascade performed better, suggesting that
regularisation via words is still effective in handling out-of-domain corpus. After training
with 40% of the in-domain data or more, EP-J started to outperform the Cascade system even
though the AED performance was still not as good as Hybrid-MuSTC. This confirms that
joint embedding passing helps make the system more robust against poor AED performance,
and further supports efficient adaptation towards the target domain.

Fig. 6.9 Cascade versus EP-J with Hybrid ASR transcripts

6.6 Summary

This chapter investigated various modular combination approaches for the spoken language
translation task. The error mitigation approach operates on a cascaded SLT system. As shown
in Table 6.3, under partially annotated data, semi-supervised error mitigation effectively
mitigated ASR error propagation by guiding the downstream NMT module with pseudo
references, and semi-supervised self-distillation led to further improvement by learning richer
distributions as opposed to one-hot references. When fully annotated end-to-end data is
available, supervised error mitigation gave the largest gain. The reranking approach adopts
an external reranker to access the hypotheses space of both the ASR and NMT modules. The
reranker was trained under the target domain, and its posterior was directly optimised to
align with the evaluation metric. As shown in Table 6.7, the optimal candidate chosen by the
reranker outperformed the maximum a posterior candidate of the vanilla cascaded system,
and further incorporating more ASR hypotheses led to additional gains. This confirms that
accessing multiple ASR hypotheses via reranking is an effective approach to mitigate infor-
mation loss in cascaded SLT systems. In the embedding passing experiments in Section 6.5.6,
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the static embeddings carry textual information and pose strong regularisation, whereas the
dynamic embeddings carry richer acoustic information across modular connections. The
combination of the static and dynamic embeddings were adopted as the modular connection
to strike a balance between regularisation and richness, thus allowing efficient adaptation
towards the target domain under limited end-to-end data.





Chapter 7

Spoken Grammatical Error Correction

This chapter investigates the spoken grammatical error correction (SGEC) task to further
analyse multimodular combination under extremely limited end-to-end data. The SGEC task
builds on top of the spoken disfluency detection (SDD) task discussed in Chapter 5. It adds an
additional error correction module following the speech recognition and disfluecy detection
modules. Section 7.1 gives an overview of the task and discusses the cascaded pipeline of
the SGEC system. Section 7.2 describes the semi-supervised error mitigation approach that
aims to improve the cascaded SGEC system under partially annotated data. Section 7.3
discusses the reranking approach that directly optimises towards the evaluation metric without
training on in-domain corpora. In Section 7.4, the embedding passing approach is proposed
to encourage tighter modular combination in an integrated SGEC system. An important
aspect in computer assisted language learning (CALL) tasks is to give feedback to learners.
Section 7.5 describes the feedback extraction process and discusses approaches to improve
feedback quality for SGEC systems. Detailed experimental results and analyses are further
reported in Section 7.6.

7.1 Task descriptions

Grammatical construction is one of the key elements in second language acquisition, and text-
based grammatical error correction (GEC) has been widely studied over the past decade [44,
153, 23]. With speaking skills playing a big part in language learning, it has become
increasingly important to analyse spoken grammars. Although no strict rules are followed in
free speaking, there are nonetheless phrases that a native speaker is highly unlikely to say.
The focus of this work is therefore to give feedback on these ‘grammatical errors’ to help
learners reflect on their spoken language. This chapter discusses the spoken grammatical
error correction (SGEC) task, which converts non-native disfluent spoken language into
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grammatically correct fluent text. There are several challenges facing SGEC: running
automatic speech recognition (ASR) on learner English is harder than native speech due to
potential pronunciation and grammatical errors; spoken language often comes with disfluent
speech events such as repetitions and false starts, which are disruptive to downstream tasks;
there is very little end-to-end speech to correction data that can be used for training.

Constrained by the limited end-to-end data, this work considers a cascaded SGEC system
that consists of three modules (shown in Figure 7.1): an ASR module that converts speech
into transcripts; a disfluency detection (DD) [234] module that recovers a fluent text flow; and
a conventional machine translation style GEC [233] module that conducts error corrections.

Fig. 7.1 Illustration of a cascaded spoken grammatical error correction system. Three
trainable modules are shown in colours. The removal step will be omitted in later diagrams.

Given input speech xxx1:T , disfluent transcription w1:L, its corresponding disfluency tags
d1:L, fluent transcription w f

1:L post disfluency removal1, and the grammatically correct output
sequence y1:N , the cascaded SGEC process can be formulated as:

ŵ1:L = argmaxw1:L∈WP(w1:L|xxx1:T ;θθθ ASR) (7.1)

d̂l = argmaxdl
P(dl|ŵ1:L;θθθ DD) ŵ f

1:L = Removal(ŵ1:L, d̂1:L) (7.2)

P(y1:N |xxx1:T ;θθθ)≈ P(y1:N |ŵ f
1:L;θθθ GEC) (7.3)

The most likely hypothesis from the ASR module ŵ1:L is used as the input to the subsequent
DD module, and the hypothesised fluent text ŵ f

1:L is further used as the input to its downstream
GEC module. Under limited quantities of end-to-end corpora, individual modules in the
cascaded SGEC system are separately trained to allow efficient use of data. As discussed in
Section 4.1, cascaded systems suffer from issues such as error propagation and information
loss. This chapter therefore explores various module combination approaches for the SGEC
task, aiming to improve the quality of the corrected sentences as well as the feedback given
to learners.

1To simplify the notation, L is used to represent the sequence length of both the disfluent and fluent
transcription sequence. In practice, the length of the fluent sequence w f

1:L is usually different from the disfluent
transcription w1:L.
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7.2 Error mitigation

The cascaded SGEC system suffers from error propagation due to mismatches between the
training and evaluation domains. For example, the GEC module is usually trained on written
text corpora due to limited spoken corpora. At the inference stage, the ASR errors in the input
to the GEC module would potentially disrupt its performance. Ideally, training on non-native
spoken corpora from the target domain would most effectively mitigate error propagation,
yet there is usually very little end-to-end data available for training. Semi-supervised error
mitigation approaches (discussed in Section 4.2.2) are therefore adopted here to fine-tune the
cascaded SGEC system with partially annotated target domain data.

Here a non-native ASR corpus {xxx1:T ,w1:L} ∈DθT (xxx,w) is adopted as the main training
set, which is comparatively abundant and less costly to obtain than the end-to-end SGEC
annotation. It consists of non-native audio sequences xxx1:T and the corresponding manual
transcriptions w1:L, without references for fluent text w f

1:L or grammatical error corrections
y1:N . Figure 7.2 illustrates the semi-supervised error mitigation pipeline. The pseudo
references are generated by feeding manual transcriptions through the cascaded SGEC
system, and the hypotheses are generated by feeding the non-native audio sequences through
the pipeline. The pseudo references derived from manual transcripts are not impacted by
ASR errors, and therefore minimising the distance between the references and hypotheses
helps mitigate ASR error propagation.

Fig. 7.2 Semi-supervised error mitigation pipeline. Grey arrows denote reference generation,
and orange arrows denote hypotheses generation. The ASR block is fixed during semi-
supervised training, and the DD and GEC modules are separately updated.

The pseudo references dp
1:L and w fp

1:L for disfluency tagging can be generated by feeding
the manual transcripts w1:L through the DD module:

dp
1:L = argmaxd1:L

P(d1:L|w1:L;θθθ DD) w fp
1:L = Removal(w1:L,d

p
1:L) (7.4)

For sequence tagging tasks, reference tags have a one-to-one correspondence with the input
tokens, and thus the pseudo reference tags dp

1:L of the manual transcripts cannot be directly
applied to the ASR transcripts. Alternatively, reference tags on ASR transcripts dp′

1:L can be
derived by aligning the reference fluent text w fp

1:L with the ASR transcripts ŵ1:L: all insertions
in ŵ1:L are considered as disfluencies; substitutions and matched words are tagged as fluent;
deletions are ignored (illustrated in Figure 7.3). With the pseudo reference dp′

1:L, the binary
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cross entropy loss can be applied:

L(θθθ EMsemi
DD ) =− logP(dp′

1:L|ŵ1:L;θθθ
EMsemi
DD ) (7.5)

where ŵ1:L denotes the ASR transcripts from Equation 7.1, and minimising the cross entropy
loss is equivalent to directly optimising for higher quality fluent transcripts w f

1:L.

Fig. 7.3 An example of generating reference tags dp′
1:L by aligning the pseudo reference fluent

text w fp
1:L, and the ASR transcript ŵ1:L. M:match, D:deletion, S:substitution, I:insertion;

E:disfluent, O:fluent, ’-’: no label for deleted tokens.

The pseudo reference yp
1:N for the correction output can be generated by feeding w fp

1:L through
the GEC module, and the standard cross entropy loss can be used:

yp
1:N = argmaxy1:N∈YP(y1:N |w

fp
1:L;θθθ GEC) (7.6)

L(θθθ EMsemi
GEC ) =− logP(yp

1:N |ŵ
f
1:L;θθθ

EMsemi
GEC ) (7.7)

where ŵ f
1:L denotes the hypothesised fluent transcripts from Equation 7.2. Minimising the

cross entropy loss is equivalent to maximising the sentence-level probabilities, which leads
to higher quality correction outputs y1:N .

Semi-supervised error mitigation relies on the pseudo references generated from the
manual transcripts, the quality of which largely depends on the baseline SGEC system. To
alleviate the potential degradation caused by erroneous pseudo references, semi-supervised
self-distillation can be further applied to the GEC module:

LKL(θθθ
EMdistil
GEC ) = ∑

N
n=2 KL{P(yp

n |yp
1:n−1, ŵ

f
1:L;θθθ

EMsemi
GEC )||P(yyyp

n |yp
1:n−1, ŵ

f
1:L;θθθ

EMdistil
GEC )}

(7.8)

7.3 Reranking

Reranking (discussed in Section 4.3.1.2) is an alternative approach to improve the cascaded
SGEC system by directly optimising towards the metric of interest. Due to extremely limited
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end-to-end SGEC data, the reranker in this chapter can only be trained on written GEC
data Dθy(w

f ,y), and further evaluated on the spoken GEC corpus DθT (xxx,w,w
f ,y). When

feeding a sequence of fluent text input w f
1:L into the GEC module, a hypothesis set Y can be

generated for the correction sequence y1:N :

ŷ( j)
1:N ∼ P(y1:N |w f

1:L;θθθ GEC) Y = {ŷ(1)1:N , ..., ŷ
(My)
1:N } (7.9)

The reranker assigns a scalar score to each correction hypothesis ŷ( j)
1:N ∈ Y , and the highest

scoring candidate is chosen as the optimal output:

ŷ1:N = argmaxy1:N∈YP(y1:N |w f
1:L;θθθ r) (7.10)

Constrained by data availability, the GEC reranker only accounts for the single input sequence
w f

1:L, and adopts the basic scoring function defined in Equation 4.32. Figure 7.4 shows an
illustration of the text based GEC reranker.

Fig. 7.4 Illustration of the GEC reranking pipeline

The reference scores are defined using the BLEU [158] metric, which a standard metric for
translation tasks. Ideally, the reranker can be optimised towards the task specific evaluation
metric, i.e. sentence error rate (SER) or translation edit rate (TER) of the correction sequences
(see Section 7.6.1). SER calculates the sentence level matches, and TER gives the token level
edit distance. Neither of the two provides the level of granularity required to differentiate
the correction candidates. The n-gram based BLEU score, being an average over multiple
levels of n-gram matches, provides a much higher granularity, and is therefore adopted here
for reference calculation. For the feature extraction function in the reranker, the pre-trained
RoBERTa [134] model is adopted. RoBERTa follows the basic BERT [104] architecture,
but is trained with a robustly optimised training recipe (discussed in Section 2.4). Being a
large pre-trained unilingual model, RoBERTa is capable of extracting correlations between
sentences before and after the error correction process, which suits well with the GEC task.
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7.4 Embedding passing

Loosely cascaded systems adopt discrete sequences to pass information, which leads to error
propagation and information loss. This section focuses on the embedding passing approach
(introduced in Section 4.3.2), which encourages tighter integration by propagating richer
information between the DD and GEC modules2. While reserving a sequential modular
structure, the embedding passing system allows gradients to back propagate through the
modular connection, and thus simultaneously optimises for both modules.

Three data domains3 are considered for the SGEC task (Figure 7.5a): the auxiliary DD
domain DDD converts disfluent native transcripts into fluent native transcripts; the auxiliary
GEC domainDGEC converts fluent non-native text into fluent native text; and the target SGEC
domain DSGEC converts disfluent non-native transcripts w1:L into fluent native transcripts
y1:N . There are readily available corpora for both DD and GEC domains, yet there is little
data for the target SGEC domain. The challenge is therefore to make use of the auxiliary
DD and GEC data and optimise for the unseen SGEC task. As shown in Figure 7.5b, three
system architectures are considered here, each using the auxiliary corpora differently.

Fig. 7.5 a) The DD, GEC and SGEC domains. b) The information flows from the three
domains in the multi-style, cascaded and embedding passing systems. Note: ‘native’ implies
grammatically correct text, whereas ‘non-native’ implies grammatically incorrect text.

Multi-style The multi-style system simply blends together the data from the DD and
GEC domains, and trains a single sequence-to-sequence model that simultaneously does
disfluency removal and error correction:

L(θθθ multi) =− logP(y1:N |w1:L;θθθ multi) {w1:L,y1:N} ∈ {DDD,DGEC} (7.11)

2This section only considers the combination of DD and GEC, with the upstream ASR module fixed.
3Ideally, the DD and GEC modules should be trained on non-native spoken data. However, there is little

annotated in-domain corpora available, and therefore the auxiliary DD and GEC domains are adopted.



7.4 Embedding passing 117

where the input w1:L and output y1:N pairs are from both the DD and GEC domains. At
the inference stage, the multi-style system is directly applied to the SGEC domain DSGEC.
The idea of multi-style training is borrowed from the multilingual machine translation [100].
The multilingual training enables zero-shot translation, where the unseen task benefits from
interlingua representation through diversifying the source and target domains. Here the
multi-style data forces the system to simultaneously remove disfluencies and correct errors,
which to some extends enables the system to handle disfluent non-native transcripts. The
multi-style system drops the notion of modules, and the stand-alone structure is not trained
to separate the DD and GEC domains.

Fig. 7.6 Illustration of the cascaded and embedding passing SGEC systems (omitting the ASR
module). Purple blocks represent modular connections: the cascaded system is connected
via words, and the embedding passing system is connected via embeddings. The upper half
shows the system with SeqTag DD, and the lower half shows the system with Seq2seq DD.
Text in orange denotes disfluencies, and text in red denotes grammatical errors.

Cascaded Unlike the implicit modelling of disfluency removal in the multi-style system,
the cascaded system adopts an explicit DD module and a text-based GEC module. As shown
in Figure 7.5b, the DD and GEC modules are trained in their corresponding domains, and
then concatenated together for evaluation in the SGEC domain:

L(θθθ DD) =− logP(w f
1:L|w1:L;θθθ DD) {w1:L,w

f
1:L} ∈DDD (7.12)

L(θθθ GEC) =− logP(y1:N |w f
1:L;θθθ GEC) {w f

1:L,y1:N} ∈DGEC (7.13)

The cascaded system uses word tokens w f
1:L as the modular connection (Figure 7.6), which

can be interpreted as the non-native fluent transcripts. Two different DD formulations are
considered here: sequence tagging (Seqtag) and sequence-to-sequence (Seq2seq). SeqTag
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DD assigns a binary tag to each input token (discussed in Section 3.3), and Seq2seq DD
models a translation process that removes speech disfluencies. During training, the down-
stream GEC module will not be disrupted by disfluencies, yet at the evaluation stage, errors
in disfluency removal will potentially propagate through and degrade the SGEC performance.

Embedding passing The embedding passing system keeps the modular structure, and
adopts embeddings as the modular connection:

P(y1:N |w1:L;θθθ)≈ P(y1:N |eee1:L;θθθ
EP
GEC) eee1:L = f (w1:L;θθθ

EP
DD) (7.14)

where the embeddings eee1:L can be viewed as the continuous representations of the modular
connection w f

1:L used in the cascaded system. In order to allow gradients to flow through
the modular connection, the embedding passing approach is used with the Seq2seq style
DD structure (see Figure 7.6). The embeddings contain the information of the complete
back history of the previous context, and allows a much richer information flow through the
modular connection between the DD and GEC modules. The embedding passing system
can be initialised under the auxiliary domains DDD and DGEC. The auxiliary DD training is
formulated similarly as the cascaded system:

L(θθθ DD) =− logP(w f
1:L|w1:L;θθθ DD) =− logP(w f

1:L|eee1:L;θθθ aux) (7.15)

θθθ DD = {θθθ EP
DD,θθθ aux} {w1:L,w

f
1:L} ∈DDD (7.16)

where θθθ aux denotes the auxiliary parameters that project the embeddings eee1:L to the interme-
diate fluent sequences w f

1:L. The embeddings eee1:L are later used as the modular connection
for integrated training. When training under DGEC, the non-native fluent text w f

1:L is piped
through both the DD and GEC modules4:

L(θθθ) =− logP(y1:N |w f
1:L;θθθ) {w f

1:L,y1:N} ∈DGEC (7.17)

The rationale behind exposing the DD module under DGEC is to encourage better generalisa-
tion to the non-native disfluent data in the target SGEC domain. At the fine-tuning stage, the
embedding passing system can be further adapted to the target domain DSGEC:

L(θθθ) =− logP(y1:N |w1:L;θθθ) {w1:L,y1:N} ∈DSGEC (7.18)

4Note that this is different from the general embedding passing approach described in Section 4.3.2. In
general, the upstream module is not trained on the auxiliary domain associated with the downstream module.
Here, an ideal DD module will make no change to the input fluent text w f

1:L, and the embedding connection eee1:L

should directly correspond to the input sequence w f
1:L.
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7.5 Feedback

The previous sections discussed approaches that aim to improve the output quality of the
SGEC system. Another important aspect of language learning applications is feedback,
which directly impacts learner’s progression in learning. This section first describes how
feedback is extracted and assessed for SGEC systems, and then introduces confidence-based
filtering that aims to improve the feedback precision.

For GEC tasks, feedback usually suggests where the error occurred and how to make
the correction. Feedback is therefore extracted by comparing the sequences before and after
error correction using MaxMatch (M2) [43], which is a phrase-level edit extraction algorithm.
Given a source sequence w f

1:L, a reference correction y1:N and a hypothesised correction ŷ1:N ,
the reference and hypothesised edits can be extracted as:

E = M2(w f
1:L,y1:N) Ê = M2(w f

1:L, ŷ1:N) (7.19)

Each edit E is defined using a triplet {p1, p2,c}, where p1 and p2 are the start and end
positions with respect to the source sentence, and c denotes the correction phrase. Figure 7.7
gives an example of the extracted edits. F0.5 scores can then be calculated by comparing the
reference and hypothesised edits, following the general F-score formulation (Section 5.3.1):

F0.5(E, Ê) (7.20)

When computing F0.5, true positives are defined as correctly predicted edits, false positives
are incorrectly predicted edits, and false negatives are reference edits that are not successfully
predicted. False negatives are not defined in GEC tasks. F0.5 assesses GEC performance in
terms of edit accuracy, which suits well with feedback oriented applications.

Fig. 7.7 An example of the M2 edit extraction process for F0.5 calculation. The edit coloured
in orange is a false negative feedback.

However, Equation 7.19 is not directly applicable to SGEC, since the reference edits
change with the upstream ASR transcriptions, are consequently F0.5 scores are not comparable
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across systems. To adapt to SGEC systems, the reference and hypothesised edits are modified:

E = M2(w f
1:L,y1:N) Ê = M2(ŵ f

1:L, ŷ1:N) (7.21)

where the reference edits E are generated using manual fluent transcripts w f
1:L as source

sequences, and the hypothesised edits Ê use hypothesised fluent transcriptions ŵ f
1:L as source

sequences. With the reference edits E defined independently of the ASR and DD modules,
feedback F0.5 can be compared across systems. The hypothesised edits Ê account for errors
from all ASR, DD and GEC modules, and reflects the true feedback given to users when
the system is deployed. Note that the mismatched source sequences in E and Ê put extra
penalties on F0.5, and Figure 7.8 illustrates this issue with an example: even when the system
output ŷ1:N matches exactly with the reference y1:N , differences in w f

1:L and ŵ f
1:L still resulted

in differences in E and Ê, leading to degraded F0.5 scores.

Fig. 7.8 An example of reference and hypothesis feedback extraction with mismatched w f
1:L

and ŵ f
1:L. The edits coloured in orange indicate the artificial mismatches in feedback due to

the ASR transcription error.

The SGEC system faces potential errors arising from the transcripts, disfluencies as well
as the correction process, and it is important not to give erroneous feedback to language
learners. A confidence filtering approach can be adopted to filter out edits that the system
has little confidence in, assuming lower confidence indicates lower accuracy. To conduct
confidence filtering, a confidence measure needs to be defined. In a cascaded SGEC pipeline,
each module produces a token-level confidence score associated with its prediction, and the
sentence-level confidence can be defined for each module as the lowest token probability
over the entire sentence. Sentence-level filtering can be conducted by rejecting sentences
with low confidence. An alternative is to adopt edit-level confidence, where the confidence
scores are calculated over each edit instead of the sentence5. The overall confidence score of
the SGEC system can be calculated using a weighted sum over all three modules:

logP = α logPASR +β logPDD + γ logPGEC (7.22)
5For the ASR module, the edit-level confidence remains as the lowest token probability over the sentence,

in order to mitigate a known issue of ASR error propagation.
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where PASR, PDD, PGEC represent sentence-level or edit-level confidence scores of each
module, and α,β ,γ are their respective weight coefficients.

7.6 Experiments

The experiments in this chapter investigate the module combination approaches discussed
from Section 7.2 to 7.4. This section first discusses the evaluation metrics and the corpora,
followed with the model training details. The error mitigation and reranking approaches
directly operate on the cascaded SGEC system, both of which are trained with out-of-domain
corpora. The embedding passing approach builds a tightly integrated multimodular system
under extremely limited end-to-end data. In addition to output quality, emphasis is also laid
on feedback quality. Confidence based filtering approaches discussed in Section 7.5 are
adopted to improve the feedback precision.

7.6.1 Evaluation metrics

Multimodular systems can be evaluated both in terms of individual module performance,
and combinations of multiple modules. When evaluating individual modules of the SGEC
system, standard metrics can be used: word error rate (WER) is used to assess the ASR
module; F1 score is adopted to account for the tagging accuracy of the DD module (described
in Section 5.3.1); GLUE and M2 F0.5 can be used to assess the GEC module. The feedback
based metric M2 F0.5 was introduced in Section 7.5, and the GLUE [149] metric, short for
Generalized Language Evaluation Understanding, is a BLEU [158] inspired metric that
accounts for a weighted n-gram precision. M2F0.5 is adopted in this thesis.

For individual module assessment, the input to each module is fixed as the reference
transcripts rather than the hypotheses. However, when evaluating combinations of modules,
the input to each module depends on the upstream module output, and therefore metrics that
rely on a fixed input would no longer work. When evaluating the ASR and DD modules
combined, the standard DD metric F1 score no longer applies. As discussed in Section 5.3.1,
the reference tags d1:L have a one-to-one correspondence with input word tokens w1:L, and
a different set of reference is needed for the ASR transcriptions. Thus, an alternative is
proposed, WER, to directly analyse the quality of the fluent text after disfluency removal.
When evaluating the ASR, DD and GEC modules combined, i.e. the overall SGEC system,
the standard GEC metric M2F0.5 cannot be used, since it does not allow comparison across
systems. M2F0.5 requires the input sequence w f

1:L to be fixed for edit extraction, and changes
in the upstream ASR and DD modules will lead to a different set of reference edits E.
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Therefore, the focus is laid on the quality of the system outputs. Sentence error rate (SER) is
used to analyse sentence-level matches between the reference and hypothesised correction
sequences. To achieve greater granularity, translation edit rate (TER) [193] is also adopted to
assess the word-level distance. Given a set of hypothesis ŷ1:N and reference y1:N sentences,
SER and TER can be calculated:

SER =
#matched sentences

#sentences
(7.23)

TER =
S+I+D

M+S+D
=

S+I+D
#words in reference

(7.24)

where S, I, D, M respectively stands for the number of substitution, insertion, deletion and
matched words. When evaluating the DD and GEC combined, the GEC metrics still apply,
since the system input is fixed as the disfluent manual transcripts w1:L.

Modules Metrics Args

ASR WER ŵ,w
DD F1 d̂,d,w
GEC GLEU, M2 F0.5 ŷ,y,w f

DD + GEC GLEU, M2 F0.5 ŷ,y,w
ASR + DD WER ŵ f ,w f

ASR + DD + GEC TER,SER ŷ,y

Table 7.1 Evaluation metrics and their corresponding arguments for assessing individual
modules and combinations of modules in the SGEC system. w: disfluent transcripts, w f :
fluent transcripts post disfluency removal, d: disfluency tags, y: grammar correction output.

Table 7.1 summarises the assessment metrics for individual and combinations of modules.
Individual module evaluation helps develop each module separately. System-level metrics on
ASR+DD and ASR+DD+GEC both emphasise the output quality, which enables comparison
across systems even when the upstream modules change. They also help guide further tuning
and development of the SGEC system as a whole.

7.6.2 Corpora

This work focuses on spoken grammatical error correction for the English language. The
corpora used in the experiments are grouped in terms of their respective domains, namely
ASR, DD, GEC and SGEC. Relevant corpora statistics are summarised in Table 7.2.



7.6 Experiments 123

Corpus Spoken Usage #Sent #Word %Disfluency

ASRtrn ✓ Train - ASR 62K 2.5M* -
SWBD ✓ Train - DD 174K 1.3M 5.7†

CLC ✗ Train - GEC 1.9M 25.2M -
BEA ✗ Train - GEC 1M 11.5M -

SWBDtst ✓ Eval - DD 8,039 66K 6.58
FCEtst ✗ Eval - GEC 2,681 37K -
BULATS ✓ Eval - SGEC 3,650 64K 3.4(+5.8‡)
LIN ✓ Eval - SGEC 3,361 38K 5.0

Table 7.2 Corpora statistics. Spoken: whether it is derived from speech; *: approximated
value, no manual transcriptions available; †: fillers are not counted as disfluencies; ‡:
percentage of words that are annotated as unnecessary, most of which are disfluencies.

ASRtrn is used for ASR training, as well as the experiments on semi-supervised error
mitigation. It consists of 334 hours of an online English speaking test data, which mainly
covers 28 L1s6 and the 5 CEFR [42] grades ranging from A1 to C2. Different from usual
ASR training corpora, it only provides crowd source transcriptions, the quality of which is
not as good as manual transcriptions. A remedy for this is to bootstrap multiple ASR systems
with the crowd source data, and use an ensemble to generate higher quality transcriptions as
discussed in [209]. Such lightly supervised approach is often used to produce higher quality
transcriptions given the low quality original transcriptions [115, 118]. For the following
experiments, manual transcriptions always refer to the higher quality transcriptions generated
using the ensemble. Switchboard (SWBD) [142] is used for DD training. It consists of 260
hours of telephone conversations of Native American English speakers. The Treebank-3
annotation [200] provides manual transcripts and disfluency annotations, and Switchboard-
300 [98] provides higher quality manual transcriptions. The two corpora were aligned
as described in Section 5.3.2 to obtain the paired transcription and disfluency annotation.
Cambridge Learner Corpus (CLC) [155] is used for GEC training. It is a collection
of written exams of candidates from 86 L1s at different proficiency levels. The corpus
was annotated with grammatical errors. BEA [22] is also used for GEC training. It is a
collection of text-based grammatical error correction corpora, including Write & Improve,
LOCNESS, Lang-8 and NUCLE (FCE train split excluded, since it overlaps with CLC).
SWBDtst is a held out test set from the Switchboard corpus, and it is used to evaluate the
DD models. FCEtst [230] is a held out subset of the CLC corpus used for GEC evaluation.

6L1 stands for first language. Similarly, L2 stands for second language.
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Punctuation and capitalisation were removed from all corpora derived from written text, to
make the text closer to speech transcriptions. BULATS [26] and Linguaskill (LIN) are the
evaluation datasets from the SGEC domain. BULATS is a free speaking business English
test consisting of prompted responses of up to 1 minute. The 225 learners are from 6 L1s and
have an even distribution across all speaking CEFR grades. BULATS manual transcriptions
were annotated with metadata, error types and corrections, with some ambiguous words
annotated as unknown. LIN is from the same domain as the BULATS set, but with better
annotation quality. It consists of 340 learners from over 30 L1s. The manual transcriptions
were segmented at the phrase level, with incomplete or ambiguous phrases rejected. The
remaining set was annotated with disfluencies and grammatical errors. Experiments in
this section were mostly evaluated on the LIN dataset, except for the embedding passing
experiments, which involved fine-tuning to BULATS before LIN became available.

7.6.3 Model training

Three individual modules are considered: ASR, DD and GEC. For the ASR module, a
hybrid based ASR model was adopted. For the DD module, both an RNN-based model and
a BERT-based pre-trained model were used. For the GEC module, an RNN-based model
and a Gramformer-based pre-trained GEC model were used. The RNN models use a 200D
word embedding with GloVe [161] initialisation, and the vocabulary was generated from
the Switchboard and CLC corpora excluding rare words with less than four occurrences.
The learning rate was set to 0.001 with gradient clipping. The Transformer-based models
were initialised from the pre-trained weights, and further training was conducted under a
learning rate of 5e-4 with warm up. Unless specified otherwise, all neural models were
trained using the Adam optimiser [105] with a batch size of 256 and a dropout rate of 0.2,
and the maximum sentence length was set at 64. The model parameters were calculated
using checkpoint averaging [94], which took the average over the 5 best checkpoints.

Individual modules
For the hybrid ASR model, a lattice-free maximum mutual information (LF-MMI) [166]
TDNN-F [165] acoustic model was trained on the ASRtrn corpus, and evaluated on BULATS
and LIN (Table 7.3). The model adopted sequence-level teacher student training [209], which
trains the student to produce the same decoding output as the teacher ensemble. The decoding
stage adopted a trigram lattice generation, followed with a succeeding word RNNLM [29]
rescoring. Confidence scores used for the feedback filtering experiments were returned by
the ASR engines, and the scores were rescaled with a piece-wise linear mapping [53].
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WER↓ BULATS LIN

Hybrid 19.50 19.97

Table 7.3 The hybrid ASR model evaluated on BULATS and LIN corpora. The language
model scale factor was set at 10.

The DD module is modelled as a binary classification task. The RNN-based DD consists
of 2x300D BLSTM followed by a binary classifier, and the dropout rate was set at 0.5.
The BERT-based [104] DD adopts the ‘bert-base-uncased’ implementation provided by
the HuggingFace Library [221]. The BERT layer is connected to a 768x128 dense layer,
followed with an output layer of size 2. The model was trained with a learning rate of 1e-06
and dropout 0.1. Table 7.4 contrasts the RNN and BERT-based DD, both trained on the
native SWBD corpus, and evaluated on the SWBDtst and the non-native LIN dataset. The
BERT initialisation gave significant improvements on both the in-domain and out-of-domain
evaluation sets compared with the vanilla RNN-based DD.

F1 ↑ SWBDtst LIN

RNN 81.87 62.97
BERT 89.63 79.29

Table 7.4 Comparing RNN-based and BERT-based DD models. Manual transcripts were
used for evaluation. The operating thresholds were chosen at 0.40 for RNN and 0.60 for
BERT taggers.

The GEC module is modelled as a sequence-to-sequence translation task. The RNN-
based GEC consists of an encoder with 2x200D bidirectional LSTM layers, a decoder with
a 4x200D unidirectional LSTM layers, and a bilinear attention connecting the two. The
RNN model was trained on the CLC corpus. The Gramformer-based GEC (described in
Section 3.5) adopts the basic Transformer structure. In this thesis, the pre-trained Gramformer
model was further fine-tuned on both the CLC and BEA corpora, and then used for the SGEC
task. Table 7.5 contrasts the RNN-based and Gramformer-based GEC models, and evaluates
their performance on both the in-domain FCEtst set and the spoken style LIN dataset. The
Gramformer model significantly outperformed the RNN model. The additional BEA training
data used for the Gramformer model helps, and the Transformer-based structure inherently
has stronger modelling power. The general purpose T5 initialisation for the Gramformer
model also improves the implicit language model, and thus Gramformer generalises better to
the unseen LIN dataset from the spoken domain.
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M2 F0.5 ↑ FCEtst LIN

RNN 48.90 36.52
Gramformer 56.60 53.57

Table 7.5 Comparing the RNN-based and Gramformer-based GEC models. Fluent manual
transcripts were used for evaluation, and the hypotheses were generated using greedy search.

The error mitigation and reranker experiments are conducted on the cascaded system
consisting of the hybrid ASR, BERT-based DD and Gramformer-based GEC. The analyses
on feedback also adopt this cascaded pipeline consisting of the pre-trained models. The
embedding passing experiment uses the concatenation of the RNN-based DD and RNN-based
GEC as the baseline, and it further investigates the impact of the embedding connection.

Metrics and tuning
With the system level metrics defined in Section 7.6.1, hyperparameters of individual modules
in the cascaded SGEC system (hybrid ASR, BERT-based DD and Gramformer-based GEC)
can be jointly tuned towards a better quality output.

Two tunable variables are considered here: the ASR language model (LM) scale factor,
and the disfluency removal threshold, above which the words are classified as disfluencies.
A two-dimensional grid search was conducted over a range of LM factors (6-13) and DD
thresholds (0.0-1.0). Figure 7.9a shows a sweep over the disfluency removal thresholds at the
chosen LM scale factor, and Figure 7.9b shows a sweep over the LM factor at the chosen
DD threshold. It can be seen that all edit distance based metrics are relatively insensitive
to the sweep, whereas the feedback M2F0.5 shows a stronger preference (feedback quality
will be further analysed in Section 7.6.7). According to the best WER for the intermediate
DD output, the optimal DD threshold is at 0.7, whereas the best SER/TER for the final GEC
output led to a threshold of 0.4. Although the differences are insignificant, this shows that
an intermediate optima can be different from the overall optima. The final operating point
was chosen according to system SER/TER, which is at a LM scale of 11 and a disfluency
threshold of 0.4.

Table 7.6 summarises the system level performance of the cascaded SGEC system at the
chosen operating point (this tuned system is used as the baseline for future experiments), and
the evaluation was conducted on both manual and ASR transcripts. It can be seen that, going
from manual to ASR transcripts, there was a significant increase in the overall SER and TER,
which motivates further system development in mitigating ASR error propagation.
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(a) A sweep over DD thresholds at the chosen LM scale = 11

(b) A sweep over LM scale factor at the chosen DD threshold = 0.4

Fig. 7.9 Sweeping over DD thresholds and LM scale factors. WER assesses the ASR+DD
output, SER and TER assess the ASR+DD+GEC output, and M2F0.5 assesses the SGEC
feedback quality. The optimal point for each metric are marked in triangles in the plot, and
the operating point was chosen according to the system level metrics SER and TER, with a
LM scale of 11 and a disfluency threshold of 0.4.
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Modules Metric ASR MAN

ASR+DD WER ↓ 21.20 1.96
ASR+DD+GEC WER ↓ 27.22 9.00

SER ↓ 76.76 43.26
TER ↓ 27.89 8.27

Table 7.6 Evaluating the cascaded SGEC system on LIN corpus. The ASR column shows the
performance on ASR transcriptions with automatic disfluency removal, with the ASR and
DD modules at their respective operating points. The MAN column shows performance on
fluent manual transcriptions.

7.6.4 Error mitigation

This section analyses the impact of error mitigation (discussed in Section 7.2) on the cascaded
SGEC pipeline, and all experimental results are reported on the LIN dataset from the SGEC
domain. The cascaded system is composed of the hybrid ASR, the BERT-based DD and the
Gramformer-based GEC modules, with its baseline results listed in Table 7.6. It is shown
that ASR transcription errors tend to induce large performance drop, which motivates the
error mitigation experiments.

ASR errors resulted in large performance degradation, since the DD and GEC modules
have not encountered any non-native spoken data during training. Directly fine-tuning on
non-native spoken corpora is the most efficient way to mitigate ASR error propagation.
However, constrained by data availability, semi-supervised error mitigation was adopted
instead. The ASR training data (ASRtrn) was fed through the cascaded SGEC pipeline for
pseudo reference generation. The system performance on the manual transcripts of LIN
in Table 7.6 gives an approximation of how much the semi-supervised approach will fall
behind the supervised error mitigation. Table 7.7 shows the impact of error mitigation: the
Base model is the vanilla cascaded SGEC system, and EMsemi-DD, EMsemi-GEC are the
systems with the respectively fine-tuned DD and GEC modules.

Semi-supervised fine-tuning of the DD module (EMsemi-DD) improved the WER of the
DD output, yet it did not further improve the SER/TER of the GEC output. When generating
the pseudo reference tags, the objective is to minimise the edit distance between reference and
hypothesised fluent transcripts, which leads to direct optimisation for lower WER. However,
optimising for the intermediate output does not always help improve the overall output, and
here the improved DD WER did not lead to further gain in its downstream GEC. On the
other hand, tuning the GEC module (EMsemi-GEC) improved both SER and TER, since
the fine-tuning process maximises the sentence-level probabilities, which helps to achieve
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ASR+DD ASR+DD+GEC
Model WER↓ SER↓ TER↓

Base 21.20 76.76 27.89
EMsemi-DD 21.06 76.79 27.83
EMsemi-GEC - 76.35 27.47
EMdistil-GEC - 76.35 27.51

Table 7.7 Impact of the error mitigation training on the DD and GEC modules. Base: the
vanilla cascaded SGEC system with performance shown in Table 7.6.

lower SER/TER7. To further improve the SGEC system, semi-supervised self-distillation
was adopted to train the GEC model (EMdistil-GEC) to learn a probability distribution at
each time step, as opposed to predicting a one-hot token. The rationale is that a probability
distribution potentially offers richer information than a single prediction, especially when the
reference is synthetically generated. The EMsemi-GEC system was adopted as the teacher
model, and the student model was also initialised from the teacher. It is shown that SER/TER
are quite insensitive to self-distillation, and further experiments in Section 7.6.7 showed that
semi-supervised self-distillation helps improve the feedback performance.

7.6.5 Reranking

This section investigates the reranking approach discussed in Section 7.3. The baseline
system is a cascaded concatenation of the hybrid ASR, BERT DD and Gramformer-based
GEC, each trained in their corresponding domains. The idea is to train an external ranker
that scores each correction candidate according to the reference metric, without having to
retrain individual modules of the cascaded pipeline. Since the in-domain SGEC annotation is
extremely limited, the reranker was trained purely on the written GEC corpora (CLC and
BEA). A set of hypotheses was generated from the GEC module, and the reranker was trained
to select the best correction candidate among all. All reranker results were interpolated with
the GEC posterior to reach the final prediction unless specified otherwise.

Candidate generation
For each input, correction candidates can be generated from the GEC module using beam
search decoding (beam width equals to the number of candidates N). Table 7.8 shows the
impact of the number of candidates on the correction quality. Increasing N from 1 to 50 did

7Combining the DD and GEC fine-tuning did not yield better performance, and thus the EMsemi-GEC
system was used for future experiments.
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not give much gain to the top candidate with the highest model posterior (PGEC), yet the top
candidate according to the oracle score (Oracle) largely outperforms the MAP hypothesis.

N Ranker M2 F0.5 ↑ BLEU ↑

1 - 56.60 85.38
50 PGEC 56.64 85.30
50 Oracle 85.08 94.85

Table 7.8 GEC performance with different numbers of candidates, evaluated on the FCEtst
set. FCEtst set is used here since it is the closest in nature to the training data (both are
non-native written English). PGEC: the maximum-a-posterior (MAP) candidate according to
GEC posterior, Oracle: using BLEU scores computed against reference corrections to choose
the best candidate.

Candidates generated via beam search tend to be very similar, which will cause conver-
gence failure when the reranker fails to extract meaningful differences among the candidates.
Selective sampling and corruption approaches can be used to diversify the candidate set.
Both approaches keep the higher quality half according to the reference scores, and replace
the other half with alternative hypotheses. The sampling approach generates candidates by
sampling from the posterior distribution at each decoding step of the sequence generation.
The corruption approach selects a random number of words, and replaces them with their con-
jugate forms, which essentially adds artificial grammatical errors to the hypotheses. Table 7.9
compares the two diversification processing in terms of the average BLEU (aveBLEU) and
crossBLEU scores (discussed in Section 6.5.1) of the final candidate set. The ideal scenario
is to improve diversity (decrease crossBLEU) without affecting the average candidate quality
(aveBLEU). Sampling increases both aveBLEU and crossBLEU. The Gramformer GEC
module is a strong pre-trained language model with a highly biased posterior distribution,
thus yielding very similar sampled candidates. The corruption process reduced crossBLEU
by 13.1 without losing much on the average performance. The candidate set used for the
following experiments was generated with a fixed beam width of 50, with the corruption
approach adopted to diversify the candidate set for reranker training8.
Reranker training and evaluation
For translation tasks, the model posterior does not usually align well with the reference
ranking, whereas for GEC tasks, high quality hypotheses typically concentrate in the higher
ranked region according to the model posterior.

8Candidate diversification was only adopted for training, and the trained reranker can be used to rank the
full candidate set generated from beam search during inference.
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Diversification aveBLEU crossBLEU

None 58.06 52.39
Sampling 74.28 80.01

Corruption 50.59 39.28

Table 7.9 Comparing the aveBLEU and crossBLEU before and after the diversification
process of the candidate set (N = 50) on FCEtst.

Fig. 7.10 Probability of the Oracle Top1 hypothesis appearing in the TopN hypotheses, i.e.
Oracle error rate as a function of N-best depth. NMT: MuSTC En-De tst-COMMON set, with
candidates generated using T5-based NMT (details described in Section 6.5). LIN-MAN:
fluent manual transcriptions of LIN; LIN-ASR: disfluent transcriptions generated with the
hybrid ASR module. The GEC candidates were generated using the Gramformer fine-tuned
on CLC+BEA.

Given a candidate set with its corresponding reference sequence, the oracle candidate is
the highest scored candidate when compared against the reference. Figure 7.10 shows the
percentage of oracle candidates being included in the top N hypotheses, with N increasing
along the x-axis. The oracle candidates for the NMT task spread quite evenly across the
top N candidates, whereas for GEC, over 50-75% of the oracle candidates were included
within the top 5 hypotheses. Rerankers rely on large pre-trained models, and increasing
the number of hypotheses directly leads to larger memory usage. The distribution of the
oracle hypotheses suggests that GEC rerankers can be trained more efficiently with fewer
candidates.

The reranker assigns a scalar score to each candidate independently, thus the number
of candidates can be set differently for training and evaluation. Table 7.10 shows how the
number of candidates impacts the reranker performance. The rerankers adopted the RoBERTa
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model for feature extraction, and were trained on the CLC+BEA corpora with the candidates
generated using a beam width of 50. It is shown that training with the top 5 candidates
gave the best performance, and expanding the candidate set to 50 at the inference stage
further improved the F0.5 score. The best performing system adopts Ntrn = 5 and Neval = 50,
achieving a final F0.5 score of 57.55. This confirms that it is not necessary to expose the
reranker to a large candidate set during training, which helps save computational costs. Once
the model is trained, it has the flexibility to be applied to a larger candidate set.

Neval

Ntrn 50 5 3

50 57.29 57.07 57.27
5 57.55 57.35 57.39
3 57.25 57.15 57.05

Table 7.10 RoBERTa reranker performance (in M2 F0.5) with a varying number of candidates
during training Ntrn and evaluation Neval. Results are reported on the FCEtst set, with the
baseline MAP candidate scored at 56.64 (shown in Table 7.8).

Adopting the best configuration with Ntrn = 5 and Neval = 50, Table 7.11 further evaluates
the reranker performance on the out-of-domain spoken style LIN dataset. The fluent manual
transcripts LIN-MAN is from a similar domain as the FCEtst set, and the reranker improved
the F0.5 score by 2.07 points. The LIN-ASR set was evaluated through the complete cas-
caded SGEC pipeline with reranking: the ASR transcripts were generated from the hybrid
ASR, followed with BERT-based disfluency removal, and the correction candidates were
generated with Gramformer-based GEC. The reranker reduced the TER by 0.27 from the
MAP prediction. This shows that the reranker knowledge trained from the written domain is
transferable to improve the cascaded system in the spoken domain.

7.6.6 Embedding passing

This section investigates three different modes of integration between the DD and GEC
modules, namely multi-style (Multi), cascaded (Casc), and embedding passing (EP). The
multi-style system trains a single sequence-to-sequence model using data from both DD
and GEC domains. The main difference between the cascaded and the embedding passing
systems lies in the modular connection: the Cascade system use words to connect two
modules, whereas the EP system allows richer information flow with embeddings as the
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FCEtst LIN-MAN LIN-ASR
Ranker M2 F0.5 ↑ M2 F0.5 ↑ TER ↓ TER ↓

Baseline 56.60 53.57 8.27 27.89
PGEC 56.64 54.35 8.18 27.81

RoBERTa 57.55 56.42 7.86 27.54
Oracle 85.08 87.07 2.15 18.83

Table 7.11 RoBERTa reranker performance on SGEC data. The reranker adopted Ntrn = 5 and
Neval = 50, with the hypotheses generated from Gramformer-based GEC under a beam width
of 50. LIN-MAN: fluent manual transcriptions of LIN, LIN-ASR: hybrid ASR transcriptions
of LIN with BERT-based disfluency removal. Baseline: only consider 1 hypothesis from
greedy search.

connection. RNN-based models are adopted for both the DD and GEC modules9. All results
are reported on the BULATS dataset10, and manual transcriptions are used throughout since
the focus is on tighter integration between DD and GEC. As discussed in Section 7.6.1, the
standard GEC metric M2 F0.5 are used to assess the DD and GEC modules combined, and
the system input is fixed as the disfluent manual transcriptions.

Base systems
The base systems were trained on the SWBD and CLC corpora from the auxiliary DD and
GEC domains respectively. The multi-style system was trained on the randomly shuffled
combination of the two datasets. For the cascaded system, the DD and GEC modules were
separately trained under their respective domains, and the DD module can take either of
the sequence tagging (SeqTag) or sequence-to-sequence (Seq2seq) form. The embedding
passing system adopts an embedding modular connection, which is constrained to use the
Seq2seq style DD. As discussed in Section 7.4, the DD module in the EP system was exposed
to both the disfluent native SWBD data and the fluent non-native CLC data, and the GEC
module was trained on CLC. The performance of the base systems are listed in Table 7.12.

The multi-style system does not generate any intermediate fluent transcripts, and can
only be assessed in terms of the output correction sentences. The cascaded system scored
3.95 F0.5 higher than the multi-style system, which confirms that having a structured pipeline
benefits the SGEC training under auxiliary data domains. Between the cascaded systems

9The embedding passing work was done before the introduction of large pre-trained Transformer-based
models such as BERT and Gramformer, and therefore RNN-based models were used.

10This work was done before the LIN dataset becomes available, and thus BULATS was used for evaluation
as well as cross-validation fine-tuning.
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DD DD+GEC
Model DD style F1 ↑ M2 F0.5 ↑

Multi - - 27.61
Cascade SeqTag 53.94 31.56

Seq2seq 44.63 24.86
EP Seq2seq 37.13 29.30

Table 7.12 Base systems trained on out-of-domain SWBD and CLC corpora

with two different DD styles, the Seq2seq DD performed much worse than the SeqTag DD,
and consequently degraded its downstream GEC performance. It is because the nature of the
DD task requires only deletion, and the Seq2seq structure is inherently disadvantaged due to
its flexibility in substitution and insertion operations. The deficiency in using SeqTag DD is
also observed in the embedding passing framework, where the DD F1 fell behind by 16.81
points compared with the SeqTag DD in the cascaded system. The correction outputs from
the EP system scored 4.44 points higher than the cascaded system with the same Seq2seq
DD, leaving a 2.66 gap from the best performing cascaded system with SeqTag DD. This
result confirms that by allowing a richer information flow, the embedding connection helps
compensate for the disadvantages posed by the Seq2seq DD, and potentially mitigates the
errors made at earlier stages of the pipeline.

Fine-tuned systems
Without training under the target domain, the cascaded system with SeqTag DD performed
the best. The word connection offers strong regularisation against domain mismatch, yet the
information flow passed across modules is restricted to be discrete sequences. Although the
embedding passing system suffers from trade-offs between the DD and GEC objectives, the
continuous embedding connection shows potential benefit in mitigating error propagation.
With a small amount of annotated target domain SGEC data (BULATS), it is possible to run
fine-tuning with 10-fold cross-validation. There are two levels of annotation for each source
sequence, one being disfluency tags, and the other being the target grammatically correct
fluent sentence. For learner speech, it is often more difficult to tag each word with its error
type, than simply generating a correction sequence. Therefore, fine-tuning was carried out
without using reference disfluency tags, and the cascaded system was only fine-tuned with
the best performing SeqTag DD. Table 7.13 shows the fine-tuning results on BULATS.

The embedding passing system outperformed the multi-style and cascaded systems by
3.13 and 1.20 F0.5 respectively. Although trained end-to-end, the multi-style system was
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Model DD style Base Fine-tune

Multi - 27.61 31.90
Cascade SeqTag 31.56 33.83

EP Seq2seq 29.30 35.03

Table 7.13 Comparing the Multi, Cascade and EP systems after 10-fold cross-validation
fine-tuning on BULATS. Manual transcriptions were used both for fine-tuning and evaluation,
and the DD+GEC results are reported in M2 F0.5 ↑.

constraint by the limited amount of parallel data due to lack of explicit DD modelling. In
comparison, the EP system provides a more structured pipeline, which uses two separate
attention mechanisms, each focusing on the DD and GEC tasks respectively. Fine-tuning
individual modules in the cascaded system is difficult without reference for the intermediate
disfluency tags, and only the GEC module was fine-tuned to the target domain11. On the
contrary, the EP system can be easily adapted with different levels of annotations by switching
the DD objective on or off. The embedding connection in the EP system encapsulates the full
back history of the DD decoder, and it is confirmed that the richer information flow helps the
system to swiftly adapt to the target domain under limited target domain data.

7.6.7 Feedback

Experiments in previous sections mainly focused on improving the correction output, and
this section shifts the focus to analyse the feedback quality. The cascaded system consists of
the hybrid ASR, the BERT-based DD and the Gramformer-based GEC modules discussed
in Section 7.6.3. A slightly different operating point was chosen to optimise for feedback
F0.5 (according to Figure 7.9), which sets the LM scale factor at 11 and the DD threshold
at 0.5. Table 7.14 tabulates the impact of the error mitigation approaches (discussed in
Section 7.2) on the feedback F0.5 scores. The semi-supervised fine-tuning (EMsemi) and
self-distillation (EMdistil) approaches on the GEC module both benefited the feedback,
respectively improving the F0.5 score by 1.66 and 2.31. The optimal F0.5 score of 22.57 is
adopted as the baseline for the following experiments.

Excluding ambiguous errors
The GEC feedback usually suggests the error location, error type and the correction phrase.
To give high quality feedback to language learners, it is important to pass on a clear and

11The inputs to the GEC module during fine-tuning was generated using DD from the base system.
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Models Base EMsemi-GEC EMdistil-GEC

Feedback F0.5↑ 20.26 21.92 22.57

Table 7.14 Impact of the error mitigation approaches on feedback F0.5. EMsemi-GEC:
semi-supervised fine-tuning on GEC, EMdistil-GEC: semi-supervised self-distillation on
GEC

accurate message in terms of the error type and suggested correction. Feedback edits are
automatically typed using a rule-based framework ERRANT [24, 54] in this thesis. To give
some examples of the error types12: ‘R:PREP’ means replacement of preposition, ‘M:PREP’
means missing preposition, ‘U:DET’ means unnecessary determiner. If the edits do not fall
into any other category, they will be typed as ‘OTHER’, and a large part of the ‘OTHER’
errors are paraphrases. To reduce ambiguity and give a clear feedback to learners, the edits
typed as ‘OTHER’ are excluded from the feedback.

F0.5↑ %Edits Excluded
Eval Include Exclude REF HYP

FCEtst 56.60 59.73 13.87 9.65
LIN 22.57 24.30 14.21 12.54

Table 7.15 Feedback F0.5 before and after excluding ‘OTHER’, and percentage edits being
excluded from the reference and hypothesis by excluding the ‘OTHER’ type.

Table 7.15 show the impact of removing the ‘OTHER’ errors. Approximately 10-15% ed-
its were excluded from the reference and hypothesis edits. Removing ‘OTHER’ in reference
reduced the total number of edits, and made it much easier for the model to achieve a higher
F0.5, since most rejected edits are ambiguous and difficult to predict. Both the precision and
recall scores increased, thus improving the baseline F0.5. All ‘OTHER’ errors were excluded
from scoring for the following confidence filtering experiments.

Confidence filtering
To further improve the feedback precision, sentence-level and edit-level confidence filtering
were applied to reject ill-conditioned edits (discussed in Section 7.5). When conducting the
filtering, both true positives (TP: correctly predicted edits) and false positives (FP: incorrectly

12There are three prefixes, namely R: replacement, U: unnecessary, M: missing. The error types are defined
using part-of-speech (POS) tags. More details on edit types can be found in Bryant et al. 24.
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predicted edits) will reduce. Assuming that there are more FPs than TPs in the low confidence
region, it is expected that filtering will improve the precision score, and will consequently
boost up F0.5. Figure 7.11 shows the change in feedback F0.5 score with an increasing number
of edits being filtered out under an increasing confidence threshold. Both sentence-level
and edit-level filtering peaked midway (peak: operating point), and drop back as more edits
got filtered out. The sentence-level filtering worked better than the edit-level filtering. This
can be explained by the nature of the grammatical corrections being intertwined within
one sentence, i.e. removing one edit will potentially result in inconsistencies with other
corrections made to the sentence.

Fig. 7.11 Comparing the sentence-level and edit-level confidence filtering. Moving from left
to right, more edits get filtered out with an increasing confidence threshold.

Table 7.16 shows the feedback performance at the operating points. Removing 33.8% of
the edits using sentence-level confidence led to significant gains in both the precision and F0.5

scores; whereas edit-level filtering gave mild improvement with 3.7% removal. When the
SGEC system gets deployed, the confidence threshold can be adjusted according to desired
level of percentage edit removal and the precision score.

Filter P R F0.5 %Remove

None 27.75 16.24 24.30 0
Sent 33.96 13.15 25.80 33.8
Edit 28.53 16.05 24.69 3.7

Table 7.16 The operating points of confidence filtering. P: precision, R: recall, %Remove:
percentage edits being removed, None: no filtering.
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The system confidence combines the confidence scores from the ASR, DD and GEC
modules (see Equation 7.22). The coefficients for confidence combination were selected
using the optimal feedback F0.5 score, which gives α = 0.3,β = 0.4,γ = 0.3. Figure 7.12
contrasts the filtering results with the sentence-level confidence of each individual module.
With an increasing number of edits gets filtered out, the precision-recall curve moves from the
bottom right to the top left corner, and having a larger area under the curve indicates higher
F0.5 scores throughout the sweep. Filtering with Pa outperforms both Pd and Pg, and filtering
with the combined confidence Pcomb led to the highest F0.5. This observation suggests that
the ASR confidence is quite indicative of the feedback quality, and also confirms that filtering
with the combined confidence score is an effective approach in improving the feedback
quality of the cascaded SGEC system.

Fig. 7.12 Precision and recall curves with feedback filtering using sentence-level confidences
of individual modules. Pcomb: combined confidence, Pa: ASR, Pd: DD, Pg: GEC. From right
to left, an increasing number of edits are filtered out.

Table 7.17 further analyses the impact of the sentence-level filtering on different edit types,
showing the change in precision, recall and F0.5 scores before and after filtering. Confidence
filtering improved feedback F0.5 on most edit types, among which the most significant ones
are ‘R:PREP’, ‘U:DET’, ‘M:PREP’. The two degraded edit types are ‘R:VERB:TENSE’,
‘R:VERB:FORM’, both of which often have more than one feasible corrections. Confidence-
based filtering tends to remove edits with diverse solutions, due to the high entropy and low
confidence in the hypotheses. This rejection pattern will lead to a significant drop in recall,
and thus reduced F0.5 of edits with diverse corrections. On the other hand, for edits like
‘R:PREP’, ‘U:DET’, ‘M:PREP’, there usually exists a single, definite fix. Baseline F0.5 scores
on those edits are in general quite high, and confidence filtering helps to further improve
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the performance. This observation suggests that applying confidence filtering helps reduce
feedback on ambiguous edits, and further boosts precision on more deterministic corrections.

No filtering Sentence-level filtering
Edit Type P R F0.5 P R F0.5

M:DET 30.18 27.39 29.57 35.86 22.61 32.10
R:PREP 37.86 18.47 31.29 46.88 15.68 33.53
R:NOUN:NUM 37.88 20.66 32.47 44.68 17.36 33.98
R:VERB:TENSE 35.63 13.60 26.91 35.00 9.21 22.44
U:DET 23.20 16.20 21.36 29.49 12.85 23.42
R:VERB 27.27 11.69 21.53 33.33 10.39 23.12
R:NOUN 11.77 4.29 8.72 18.52 3.57 10.08
M:PREP 23.29 13.39 20.29 35.56 12.60 26.06
R:VERB:FORM 31.17 20.00 28.04 38.10 13.33 27.78
R:VERB:SVA 31.92 27.78 30.99 37.31 23.15 33.25

Table 7.17 Comparing P, R, F0.5 scores before and after sentence-level confidence filtering,
with breakdown in terms of edit types.

7.7 Summary

This chapter investigated multimodular combination for the spoken grammatical error cor-
rection task. The cascaded SGEC system consists of the ASR, DD and GEC modules, and
different metrics were discussed to evaluate different combinations of modules. As shown
in Table 7.7, with partially annotated non-native spoken corpora, semi-supervised error
mitigation effectively improved the quality of the output correction sentences. The reranking
approach adopts an external reranker trained from the auxiliary written GEC domain. As
seen in Table 7.10, reranking is helpful in further improving the cascaded system in the
unseen SGEC domain. The embedding passing approach was adopted to encourage tighter
integration between the DD and GEC modules. As seen in Table 7.12, the rich information
flow via the continuous embedding connection helped the system more efficiently adapt
to the target domain, under limited quantities of target domain data. Furthermore, confi-
dence filtering was adopted to improve the feedback quality of the cascaded SGEC system.
With the combined confidence score from individual modules, Table 7.16 showed that the
sentence-level confidence filtering was beneficial in reducing ambiguous feedback, boosting
precision on more deterministic corrections (see Table 7.17), and thus improving the overall
feedback quality.





Chapter 8

Conclusion

This thesis investigated multimodular combination of spoken language processing tasks. Due
to the lack of end-to-end training corpora, spoken language tasks are often formulated in a
cascaded multimodular fashion. Loosely cascaded structure allows individual modules to
be trained in their corresponding domains, yet the simplified structure gives rise to several
challenges: loss of information due to discrete modular connections; error propagation due
to early decisions; as well as domain mismatches across modules. This thesis has examined
the general concept of multimodular combination, and explored approaches to overcome the
limitations of the vanilla cascaded structure under limited end-to-end data.

Chapter 1 introduced the scope of this thesis and the research questions. Fundamentals
of deep neural networks were reviewed in Chapter 2, and individual module formulations
of spoken language tasks were introduced in Chapter 3. Chapter 4 discussed the challenges
in cascaded spoken language systems, and discussed several multimodular combination
approaches. Chapter 5, 6 and 7 respectively investigated multimodular combination on spoken
disfluency detection (SDD), spoken language translation (SLT), and spoken grammatical
error correction (SGEC) tasks. This chapter provides a brief summary of the contributions of
this work, and presents several potential directions for future research.

8.1 Summary

The first contribution of this thesis is to examine the general concept of multimodular
combination. Three forms of spoken language systems are considered in Chapter 4 with an
increasing level of module integration: namely cascaded, integrated and end-to-end systems.
More tightly integrated systems generally require larger amount of end-to-end training data,
and different approaches are discussed aiming to strike a balance between modelling power
and data efficiency. Cascaded systems train individual modules in their corresponding
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domains, and do not require any end-to-end corpora. Loosely coupled modules suffer from
information loss, domain mismatch and error propagation issues, and thus domain adaptation
and error mitigation approaches are discussed to address these issues. Integrated systems
seek tighter modular integration, and require a small amount of end-to-end data to adapt
to the target domain. Discrete information passing and embedding passing approaches are
proposed to propagate richer information in different forms across the modular connection.
End-to-end systems do not rely on intermediate variables to aid training, and require large
amount of end-to-end data to reach convergence. Data augmentation and meta-learning
approaches are discussed to overcome the low data efficiency issue.

The second contribution of this thesis is to propose a general framework of reranking for
multimodular systems, addressing the error propagation and information loss issues in the
vanilla cascaded system. Rerankers are commonly used for single module systems such as
speech recognition and machine translation. In Section 4.3.1.2, rerankers are generalised
to multimodular systems, where they directly access the hypothesis space of the modular
connection. Taking into account multiple hypotheses of the modular connection allows a
richer information flow and helps reduce error propagation.

The spoken language translation (SLT) experiments in Section 6.5.5 applied an external
reranker to a cascaded SLT system. The ASR and NMT modules were initialised in their
respective domains, and the reranker was trained using an end-to-end corpus. Experiments
have shown that adopting an external reranker helped adjust the model posterior to better
align with the evaluation metric, and further incorporating multiple ASR hypotheses led
to additional gains. When combining multiple ASR hypotheses into reranking, using an
attention mechanism tends to be more effective than simple concatenation. The attention
mechanism assigns larger weights to the most relevant context, and thus extracts better
feature representation for the reranking process. The spoken grammatical error correction
(SGEC) experiments in Section 7.6.5 applied reranking to the GEC module of the cascaded
SGEC system. The ASR, DD and GEC modules of the cascaded pipeline were initialised
with their corresponding corpora, and the reranker was trained on a written GEC corpus
due to the limited target domain SGEC data. It is shown that training the reranker under an
auxiliary domain also helps improve the performance in the target domain.

The third contribution of this thesis is to propose embedding passing. Introduced in
Section 4.3.2, the idea of embedding passing is to extract continuous feature representations of
the upstream context, and use them as the modular connection to pass richer information to the
downstream modules. Another advantage is that embeddings allow gradient backpropagation
across modules, thus enabling joint optimisation of the multimodular system.
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The spoken disfluency detection (SDD) experiments in Section 5.3.4 extracted acoustic
embeddings from the upstream speech inputs to aid the downstream disfluency tagging
process. It is shown that propagating acoustic information through embedding passing
consistently improved the disfluency removal performance. The hard embeddings extracted
from the ASR timestamps yielded smaller gains compared with the soft embeddings extracted
using a global attention mechanism over the speech input. It is because the soft attention
is more flexible in attending to cross-over regions between neighbouring words, which are
particularly informative to the disfluency detection task. The spoken language translation
(SLT) experiments in Section 6.5.6 contrasted the data efficiency of the embedding passing
system with the vanilla cascaded system. By providing a richer acoustic context, embedding
passing helped mitigate error propagation, and also allowed more efficient domain adaptation
under limited amount of end-to-end data. The embedding passing performance can be further
improved by incorporating an external language model or high quality ASR transcriptions.
The spoken grammatical error correction (SGEC) experiments in Section 7.6.6 adopted
embedding passing to achieve tighter integration between the DD and GEC modules. When
trained under auxiliary domains, the embedding passing system helped mitigate the errors
made at the disadvantaged DD module. After fine-tuned under the target domain, the
embedding passing system outperformed both the end-to-end trained multi-style system and
the vanilla cascaded system. It shows that the richer information flow via the embedding
connection allows efficient adaptation under limited target domain data.

8.2 Future work

This thesis has mainly experimented with the module combination approaches on cascaded
and integrated systems. Future experiments may further explore the data augmentation
and meta-learning approaches on end-to-end systems, as discussed in Section 4.4. The
spoken grammatical error correction experiments were conducted on extremely limited target
domain data, and it will be interesting to extend the current analyses when more target
domain annotations become available.

The reranking approach in Section 4.3.1.2 only considered text sequences for reranker
feature extraction. Future research may explore the more general form, where the scoring
function can be extended to account for the input speech signals, and further extracts the
correlations between the speech input and its associated downstream textual information. The
current reranking approach adopts large pre-trained language models for feature extraction.
The number of candidates being considered is largely restricted by the high memory usage.
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Future work may adopt model compression techniques [31, 164] to compress the pre-trained
language models, and further account for a larger candidate set during reranking.

With the recent advances on self-supervised speech representation learning [4, 88], it is
possible to extract higher quality speech representations, as well as train a more powerful
speech recognition module. Future research may explore the interactions between the pre-
trained acoustic models with the proposed multimodular combination approaches. It is not
known whether a better speech recognition module would reduce the gap between the vanilla
cascade and the more tightly integrated systems. It will also be interesting to see to which
extent the higher quality speech representations would benefit the spoken language tasks.
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