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Speaker and Noise Factorisation for Robust Speech
Recognition

Y.-Q. Wang and M. J. F. Gales

Abstract—Speech recognition systems need to operate in a
wide range of conditions. Thus they should be robust to extrin-
sic variability caused by various acoustic factors, for example
speaker differences, transmission channel and backgroundnoise.
For many scenarios, multiple factors simultaneously impact the
underlying “clean” speech signal. This paper examines techniques
to handle both speaker and background noise differences. An
acoustic factorisation approach is adopted. Here separatetrans-
forms are assigned to represent the speaker (maximum likelihood
linear regression (MLLR)), and noise and channel (model-based
vector Taylor series (VTS)) factors. This is a highly flexible
framework compared to the standard approaches of modelling
the combined impact of both speaker and noise factors. For
example factorisation allows the speaker characteristicsobtained
in one noise condition to be applied to a different environment.
To obtain this factorisation modified versions of MLLR and VTS
training and application are derived. The proposed scheme is
evaluated for both adaptation and factorisation on the AURORA4
data.

I. I NTRODUCTION

To be applicable to many real-life scenarios, speech recog-
nition systems need to be robust to theextrinsic variabilities
in the speech signal, such as speaker differences, transmis-
sion channel and background noise. There has been a large
amount of research into dealing with individual factors such
as speaker [2] or noise [3]. Schemes developed to adapt
the speech recognisers to specific speakers are often known
as speaker adaptation, while schemes designed to handle
the impact of environment are referred to asenvironmental
robustness. It is possible to combine the above techniques
to adapt the speech recogniser to the target speaker and
environment. Normally, this is done via feature enhancement
or model compensation to remove the effect of noise, followed
by speaker adaptation. However, these approaches typically
model the two distinct acoustic factors as a combined effect.
Thus in the standard schemes there is no distinction between
the transforms representing the speaker characteristics and
the noise characteristics. The transforms are simply estimated
sequentially, with the, typically linear, speaker transforms
modelling all the residual effects that are not modelled by
the noise transforms. This paper proposes a new adaptation
scheme, where the impacts of speaker and noise differences
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are modelled separately. The proposed scheme sits in a fully
model-based framework, which allows two different model
transforms, i.e., a model-based VTS transform and an MLLR
mean transform, to be estimated in afactorisedfashion and
applied independently. This allows, for example, the speaker
characteristics obtained in one noise condition to be applied
to a different environment. This is important for some ap-
plications, where the speaker characteristics are known tobe
relatively constant while the background environment changes.

A variety of schemes have been proposed for speaker
adaptation, e.g., [4], [5], [6], [7], [8], [9]. For adaptation
with limited data, linear transform-based schemes are the most
popular choices. In these schemes, a set of linear transforms,
e.g., MLLR [5], [6] and constrained MLLR (CMLLR) [6],
are used to adapt the mean and/or covariances of Gaussian
components in the acoustic models, such that the target speaker
can be better modelled. Theseadaptivetechniques modify the
acoustic models to better match the adaptation data, and do
not rely on an explicit model of speaker differences. Hence
they can be also used for the purpose of general adaptation,
e.g., environmental adaptation [10], [11]. Furthermore, to train
acoustic models onfound data which is inhomogeneous in
nature, adaptive training [12] has been proposed, where
“neutral” acoustic models are estimated on multi-style data
and the differences among speakers are “absorbed” by speaker
transforms. This adaptive training framework has also beenex-
tended to train neutral acoustic models on data from different
environment, e.g., [13], [14].

Approaches for handling the effect of background and
convolutional noise can be broadly split into two categories. In
the first, feature compensation, category, schemes attempt to
denoise (or clean) the noise corrupted feature vectors. These
enhanced feature vectors are then treated as clean speech
observations. Schemes fitting into this category include ETSI
advanced front-end (AFE) [15], SPLICE [16], model-based
feature enhancement (MBFE) [17], and feature-space Vector
Taylor Series (VTS) [18]. In the second,model compensation,
category, the back-end acoustic models are compensated to
reflect the noisy environment. Normally, the impact of channel
and background noise is expressed as a mismatch function
relating the clean speech, noise and noisy speech. Using a
mismatch function as an explicit distortion model will be
referred to aspredictiveapproaches. Examples of predictive
approaches include Parallel Model Combination (PMC) [19],
model-space VTS [20], [21], joint uncertainty decoding
(JUD) [13] and joint compensation of additive and convolutive
distortions (JAC)[22]. Both feature compensation and model-
based approaches achieve good acoustic model robustness.
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Model-based approaches are more powerful than standard
enhancement schemes, as they allow a detailed representation
of the additional uncertainty caused by background noise.
Recently, adaptive training framework have been successfully
extended to handle variations in the training data environment,
e.g.,[13], [14], [23]. Here noise-specific transforms are esti-
mated for each environmental homogeneous block of data,
allowing “clean” acoustic models to be estimated from multi-
style data that are corrupted by different noises. Experimental
results demonstrated that adaptively trained acoustic models
are more amenable to be adapted to the target acoustic
conditions.

Speaker adaptation can be combined with environmental
robustness to adapt the speech recogniser to both speaker and
environment factors. There are generally two approaches in
the literature for joint speaker and environment adaptation.
The first one is to use feature enhancement techniques to
denoise the observation before back-end model adaptation,
e.g., [24]. The other approach, discussed in [25], is a fully
model-based approach: acoustic models are first compensated
for the effect of noise, then linear transform-based adaptation
can be performed to reduce the residual mismatch, including
the one caused by speaker differences. Little work has been
done to separate the speaker and environmental differences.
Two notable works are [26] and [27]. In [26], component-
specific biases based on Jacobian compensation with speaker-
dependent Jacobians were used to clean the observation prior
to the speaker adaptation and only the mean vectors are
compensated for the effect of noise. This work will also
use speaker-dependent Jacobians, but in a full model-based
framework. The proposed scheme is based on the concept
of “acoustic factorisation” in [27], and uses the structured
transform in [28]. In acoustic factorisation, transforms are
constructed in such a way that each transform is related to
only one acoustic factor. Note that in [28], though multiple
transforms are used, they are not constrained to be related
with one specific acoustic factor. Ideally, different sets of
transforms should be “orthogonal”, i.e., the impact of each
set of transforms should be able to be applied independently.
This will yield a highly flexible framework for using the
transforms. To achieve this orthogonality, the transformsneed
to be different in nature to each other. In this work, a model-
based VTS transform [20] is associated with each utterance,
while a block-diagonal MLLR mean transform [5], [6] is
used for each speaker who may have multiple recordings.
The amount of data required to estimate an MLLR transform
is far greater than that required for a VTS transform: VTS
transform can be robustly estimated on a single utterance,
while MLLR transform requires multiple utterances. Thus
when estimating the speaker transform, the system must be
able to handle changing background noise conditions. As these
two transforms are different in nature, and are estimated on
different adaptation data, it is now possible to decouple them,
thus achieve the factorisation.

This paper is organised as follows. The next section intro-
duces the general concept of acoustic factorisation. Speaker
and noise compensation schemes and the ways to combine
them are discussed in section III. Estimation of transform

parameters is presented in section IV. Experiments and results
are presented and discussed in section V with conclusions in
section VI.

II. A COUSTICFACTORISATION

Model-based approaches to robust (in the general sense)
speech recognition have been intensively studied and extended
in the last decade. In this framework, intrinsic and extrinsic
variability are represented by a canonical modelMc and a set
of transformsT , respectively. Consider a complex acoustic
environment, in which there are two acoustic factors,s and
n, simultaneously affecting the speech signal. The canonical
model is adapted to represent this condition by the transform
T (sn):

M(sn) = F(Mc, T
(sn)) (1)

whereM(sn) is the adapted acoustic model for condition
(s, n), T (sn) the transform for that condition, andF is the
mapping function. The transform is normally estimated using
the ML criterion:

T (sn) = argmax
T

{

p(O(sn)|Mc, T )
}

(2)

whereO(sn) is a sequence of feature vectors observed in the
acoustic condition(s, n). It is possible to combine different
forms of transforms to obtain the final transformation,T (sn).
However the amount of data required to estimate the parameter
of final transformation is determined by the need to robustly
estimate parameters of all transforms. Thus in the case consid-
ered in this work, combining MLLR and VTS, sufficient data
in the target condition(s, n) is required to estimate the MLLR
transform, as the VTS transform can be rapidly estimated on
far less data. When the transforms are estimated to model
the combined condition it will be referred to asbatch-mode
adaptation in this paper.

To more effectively deal with complex acoustic environ-
ments, the concept of acoustic factorisation was proposed in
[27], where each of the transforms is constrained to be related
to an individual acoustic factor. In the above example, this
requires that the transformT (sn) can be factorised as:

T (sn) = T (s) ⊗ T (n) (3)

where T (s) and T (n) are the transforms associated with
acoustic factorss andn, respectively.

The factorisation attribute in Eq. (3) offers additional flex-
ibility for the models to be used in a complex and rapid
changing acoustic environment. This can be demonstrated by
considering a speaker (s) in a range of different noise (n)
conditions. Forr acoustic conditions,(s, n1), · · · , (s, nr), it is
necessary to estimate a set of transformsT (sn1), . . . , T (snr),
using the data,O(sn1), . . . ,O(snr), from each of these con-
ditions. Using factorisation only a single speaker transform,
T (s), and a set of noise transformsT (n1), . . . , T (nr) are
required. As noise transforms can be robustly estimated from a
single utterance, it is only necessary to have sufficient data of
a specific speaker over all conditions to estimate the speaker
transform.
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Fig. 1. Speaker and noise adaptation in the factorisation mode.

Furthermore, for a new condition(s, n′) it is only neces-
sary to estimate the noise transformT (n′) and combine this
transform with the existing speaker transform. This form of
combination relies on the “orthogonality” of the transforms:
the speaker transform only models speaker attributes and
the noise transform the noise attributes. Figure 1 shows the
concept of acoustic factorisation for speaker and noise factors.

The following procedure illustrates how the speaker and
noise adaptation can be performed in this factorisation frame-
work. Note that the canonical model,Mc, is assumed to have
been trained.

1) Initialise the speaker transform to an identity transform,
i.e., T (s) = [I,0], and obtain initial estimates (for
example using voice activity detection) for the noise
transforms.

2) Estimate the noise transform for each condition as

T (ni) = argmax
T

{

p(O(sni)|Mc, T
(s) ⊗ T )

}

(4)

3) Estimate the speaker transformT (s) using

T (s) = argmax
T

{

r
∏

i=1

p(O(sni)|Mc, T ⊗ T
(ni))

}

(5)

4) Goto (2) until converged.
Having obtained the speaker and noise transforms for the

training data, the transform for a new acoustic condition
(s, n′), can be obtained simply by estimating the noise trans-
form

T (n′) = argmax
T

{

p(O(sn′)|Mc, T
(s) ⊗ T )

}

(6)

Given the speaker transform and the noise transforms, the
acoustic model is adapted to the test condition using the
transformT (sn′) = T (s) ⊗ T (n′).

III. SPEAKER AND NOISE COMPENSATION

To achieve acoustic factorisation, the speaker transformT (s)

and noise transformT (n) must have different forms to yield
a degree of orthogonality. In this work, a linear transform,
MLLR, and a nonlinear one, model-based VTS compensation,
are used for speaker and noise adaptation respectively. This

section describes the forms of VTS compensation and the
options for combining it with MLLR-based speaker adaptation.

Additive and convolutional noise corrupt “clean” speech,
resulting in the noisy, observed, speech. In the Mel-cepstral
domain, themismatch functionrelating the clean speech static
x and the noisy speech staticy is given by:

y = x + h + C log
(

1 + exp
(

C−1(n− x− h)
))

= f(x, h, n) , (7)

where n and h are the additive and convolutional noise,
respectively, andC is the DCT matrix. It is assumed that for
theu-th noise condition or utterance:n is Gaussian distributed
with mean µ

(u)
n and diagonal covarianceΣ(u)

n ; h = µ
(u)
h

is an unknown constant . Model-based VTS compensation
[20], [21] approximates the mismatch function by a first-
order vector Taylor series, expanded at the speech and noise
mean,µ(m)

x , µ
(u)
h , µ

(u)
n , for each componentm. Under this

approximation,

p(y|m, u) = N (y; µ
(mu)
vts,y ,Σ

(mu)
vts,y ) (8)

where the compensated meanµ
(mu)
vts,y and covariance matrix

Σ
(mu)
vts,y are given by:

µ
(mu)
vts,y = f(µ(m)

x , µ
(u)
h , µ(u)

n ) ,

Σ
(mu)
vts,y = diag

(

J(mu)
x Σ(m)

x J(mu)T
x + J(mu)

n Σ(u)
n J(mu)T

n

)(9)

andµ
(m)
x andΣ(m)

x are the mean and covariance of component
m, J

(mu)
x and J

(mu)
n are the derivatives ofy with respect

to x and n respectively, evaluated atµ(m)
x , µ

(u)
h , µ

(u)
n . With

the continuous time approximation [29], the delta parameters
under VTS compensation scheme are compensated by:

µ
(mu)
vts,∆y = J(mu)

x µ
(m)
∆x ,

Σ
(mu)
vts,∆y = diag

(

J(mu)
x Σ

(m)
∆x J(mu)T

x +J(mu)
n Σ

(u)
∆n J(mu)T

n

)(10)

where µ
(m)
∆x and Σ

(m)
∆x are the mean and covariance matrix

of clean delta parameters. The delta-delta parameters are
compensated in a similar way. For notational convenience,
only the delta parameters will be considered in the following.

To adapt the speaker independent model to the target
speakers, the MLLR mean transform [5] in the following
form is often used:

µ(sm) = A(s)µ(m) + b(s), (11)

where[A(s), b(s)] is the linear transform for speakers, µ(m)

and µ(sm) the speaker independent and speaker dependent
mean for the componentm respectively.

A. “VTS-MLLR” scheme

The simplest approach to combining VTS with MLLR to
yield a speaker and noise adapted model is to take the VTS
compensated models and apply MLLR afterwards. Consider-
ing block-diagonal transforms1, the following transform to the

1It is possible to use full-transforms, however in this work to be consistent
with the factorisation approach only block-diagonal transforms are considered.
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speaker and noise condition is obtained.

µ(smu)
y = A(s)f(µ(m)

x , µ
(u)
h , µ(u)

n ) + b(s)

µ
(smu)
∆y = A

(s)
∆ J(mu)

x µ
(m)
∆x + b

(s)
∆

(12)

and

Σ(smu)
y = Σ

(mu)
vts,y , Σ

(smu)
∆y = Σ

(mu)
vts,∆y (13)

whereW(s) = [A(s), b(s)] and W
(s)
∆ = [A

(s)
∆ , b

(s)
∆ ] are the

speakers’s linear transform for the static and delta features,
respectively. The combined MLLR transform will be written
as K(s) = (W(s),W

(s)
∆ ) This scheme will be referred to as

“VTS-MLLR”.

B. “Joint” scheme

In “VTS-MLLR”, the speaker linear transform is applied on
top of the noise-compensate models. This means that it will
represent attributes of both speaker and noise factors, as the
VTS compensated model will depend on the noise condition.
Thus the “VTS-MLLR” scheme may not have the required
factorisation attribute, i.e., the linear transform in “VTS-
MLLR” does not solely represent the speaker characteristics.
To address this problem a modified scheme, named as “Joint”,
is proposed where the speaker transform is applied to the
underlying “clean” speech model prior to the application of
VTS. The speaker transform should therefore not depend on
the nature of the noise.

As the speaker adaptation in the “Joint” is applied to the
clean speech models, this adaptation stage can be expressed
for speakers as

µ(sm)
x = A(s)µ(m)

x + b(s), Σ(sm)
x = Σ(m)

x , (14)

where µ
(sm)
x and Σ(sm)

x are the compensated clean speech
distribution parameters for componentm of speakers.

For standard VTS compensation scheme above, the compen-
sation and Jacobian are based on the speaker independent dis-
tributionN (µ

(m)
x ,Σ(m)

x ). For the “Joint” scheme these terms
need to be based on the speaker compensated distribution
N (µ

(sm)
x ,Σ(sm)

x ). Substituting the speaker dependent mean
Wξ(m)

x (for clarity of notation, the speaker indexs will be
dropped if there is no confusion) into Eq. (9) yields a new,
“Joint”, compensation scheme:

µ(mu)
y = f(Wξ(m)

x , µ
(u)
h , µ(u)

n ) ,

Σ(mu)
y =diag

(

J(mu)
x,w Σ(m)

x J(mu)T
x,w + J(mu)

n,w Σ(u)
n J(mu)T

n,w

) (15)

whereξ(m)
x = [µ

(m)T
x , 1]T, and

J(mu)
x,w =

∂y

∂x
|
Wξ

(m)
x , µ

(u)
h

, µ
(u)
n

, J(mu)
n,w = I− J(mu)

x,w . (16)

In this work, the MLLR mean transform is constrained
to have a block diagonal structure, where the blocks corre-
sponding to the static and delta parameters. With this block
diagonal structure2 and the continuous time approximation,

2It is possible to extend the theory to handle full transforms, however this
is not addressed in this paper.

the compensated delta parameters are given by:

µ
(mu)
∆y = J(mu)

x,w (A∆µ
(m)
∆x + b∆) ,

Σ
(mu)
∆y = diag

(

J(mu)
x,w Σ

(m)
∆x J(mu)T

x,w + J(mu)
n,w Σ

(u)
∆n J(mu)T

n,w

) (17)

whereµ
(m)
∆x , Σ(m)

∆x are them-th component parameters for the
clean delta features respectively, andΣ

(u)
∆n is the variance of

∆n, the noise delta.
The above “Joint” scheme uses a speaker transform,K =

(W,W∆) to explicitly adapt the models to the target speaker.
In contrast to the “VTS-MLLR” scheme, the speaker transform
is appliedbeforethe noise transform.

IV. T RANSFORM ESTIMATION

There are two sets of transform parameters to be estimated
in the “Joint” and “VTS-MLLR” schemes: the linear transform
K and the noise model parametersΦ = {Φ(u)}, whereΦ(u)

is the noise model parameters ofu-th utterance,Φ(u) =

(µ
(u)
n , µ

(u)
h ,Σ(u)

n ,Σ
(u)
∆n ). These parameters can be optimised

using EM. This yields the following auxiliary function for both
forms of compensation3:

Q(K,Φ) =
∑

u,m,t

γ
(mu)
t logN (o

(u)
t ; µ(mu)

o ,Σ(mu)
o ) , (18)

where the summation overu involves all the utterances belong-
ing to the same speaker,γ

(mu)
t is the posterior probability of

componentm at timet of theu-th utterance given the current
transform parameters(K̂, Φ̂), o

(u)
t = [y

(u)T
t , ∆y

(u)T
t ]T is the

t-th observation vector of theu-th utterance, and

µ(mu)
o =

[

µ
(mu)
y

µ
(mu)
∆y

]

, Σ(mu)
o =

[

Σ(mu)
y 0

0 Σ
(mu)
∆y

]

(19)

are the adapted mean and covariances, obtained by Eq. (15)
and Eq. (17) for “Joint” or Eq. (12) and Eq. (13) for “VTS-
MLLR”.

To estimateK and Φ for both “Joint” and “VTS-MLLR”
schemes, ablock coordinate descentstrategy is adopted: first,
for each speaker,W andW∆ are initialised as[I,0], andΦ

as the standard VTS-based noise estimates for each utterance;
then K is optimised at the speaker level while keeping the
noise model parameter fixed at the current noise estimates
Φ̂; finally, given the speaker transform updated,K̂, the noise
parameterΦ is re-estimated. This process is repeatedNEM

times.

A. Transform estimation for “VTS-MLLR”

In the“VTS-MLLR” scheme, the VTS-compensated static
and dynamic parameters are transformed independently byW

andW∆ respectively. Hence the estimation ofK = (W,W∆)
can be done separately. Given the noise estimates for each
utterance,Φ(u), the transformW needs to be estimated at
the speaker level, involving multiple utterances thus associ-
ated with different noise conditions. The transform estimation

3This section does not discuss multiple speakers. The extension to multiple
speakers is straightforward.
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statistics in [6] are modified to reflect the changing noise
conditions:

ki =
∑

u

∑

m

∑

t

γ
(mu)
t y

(u)
t,i

σ
(mu)2
vts,i

ξ
(mu)
vts,y ,

Gi =
∑

u

∑

m

γ(mu)

σ
(mu)2
vts,i

ξ
(mu)
vts,yξ

(mu)T
vts,y ,

(20)

with y
(u)
t,i being the i-th element ofy(u)

t , and σ
(mu)2
vts,i the

i-th diagonal item ofΣ(mu)
vts,y , γ(mu) =

∑

t γ
(mu)
t . Given

these statistics, thei-th row of W, wT

i , is obtained by
wT

i = kT

i G−1
i . Estimating ofW∆ is done similarly.

Given the current linear speaker transform̂K, the parame-
ters of the noise transform can be updated. This requires the
noise estimation approaches in, for example [13], [21], [30] to
be modified to reflect that the compensated model will have
the speaker transform applied. To estimate the additive and
convolutional noise mean, a first-order VTS approximation is
made, e.g., the mean and covariance for the static feature are
approximated as follows:

µ(mu)
y ≈µ̂

(mu)
y + ÂĴ

(mu)
h (µ

(u)
h − µ̂

(u)
h ) + ÂĴ(mu)

n (µ(u)
n − µ̂

(u)
n )

Σ(mu)
y ≈ diag

(

Ĵ(mu)
x Σ(m)

x Ĵ(mu)T
x + Ĵ(mu)

n Σ(u)
n Ĵ(mu)T

n

)

(21)

whereĴ
(mu)
x ,Ĵ(mu)

h , Ĵ
(mu)
n andµ̂

(mu)
y are the Jacobian matri-

ces and the compensated mean based on the current noise
estimation µ̂

(u)
h , µ̂(u)

n and the current linear transform̂K.
Because of this VTS approximation, the auxiliary is now a
quadratic function of the noise means. Henceµ

(u)
h , µ

(u)
n can

be obtained via solving a linear equation, in a similar fashion
as the one in [30]. After the noise mean estimation, the noise
varianceΣ(u)

n , Σ
(u)
∆n and Σ

(u)
∆n2

are estimated via the second
order method, in the same way as [13]. At each iteration a
check that the auxiliary function increases is performed and
the estimates backed-off if necessary [30]4.

B. Transform estimation for “Joint”

For the “Joint” scheme, estimating the noise parameters,
given the current speaker transform̂K is a simple extension
of VTS-based noise estimation in [21], [30]: prior to the
noise estimation, the clean speech mean is transformed to the
speaker-dependent clean speech mean. However, estimating
the speaker transformK is not straight-forward, since the
transform is applied to the “clean” speech and then VTS com-
pensation applied. To address this non-linearity, a first-order
vector Taylor series approximation can again be employed to
expressµ(mu)

y andΣ(mu)
y as functions of the current,̂W, and

new,W, estimates of the speaker transform,

µ(mu)
y ≈ f(Ŵξ(m)

x , µ
(u)
h , µ(u)

n ) + J
(mu)
x,ŵ (W− Ŵ)ξ(m)

x

Σ(mu)
y ≈ diag

(

J
(mu)
x,ŵ

Σ(m)
x J

(mu)T
x,ŵ

+ J
(mu)
n,ŵ

Σ(u)
n J

(mu)T
n,ŵ

) (22)

4Since the second order optimisation assumes the approximation in Eq.
(21), there is no guarantee that the auxiliary function in Eq. (18) will be
non-decreasing.

while for the delta parameters,

µ
(mu)
∆y ≈ J

(mu)
x,ŵ W∆ξ

(m)
∆x

Σ
(mu)
∆y ≈ diag

(

J
(mu)
x,ŵ

Σ
(m)
∆x J

(mu)T
x,ŵ

+ J
(mu)
n,ŵ

Σ
(u)
∆n J

(mu)T
n,ŵ

) (23)

Due to the approximation in Eq. (23), the optimisation of
W andW∆ again becomes two separate but similar problems.
The estimation ofW, given the current noise estimation̂Φ
and the VTS approximation in Eq. (22), uses the following,
approximate, auxiliary function (up to some constant term):

q(W;Ŵ)=
∑

u,m,t

γ
(mu)
t logN (z

(mu)
t ;Wξ(m)

x ,Σ
(mu)
full ) (24)

where

z
(mu)
t = J

(mu)−1
x,ŵ (y

(u)
t − µ̂

(mu)
y + J

(mu)
x,ŵ Ŵξ(m)

x )

Σ
(mu)
full = J

(mu)−1
x,ŵ Σ̂

(mu)

y J
(mu)−T

x,ŵ

and µ̂
(mu)
y , Σ̂

mu)
y are the compensated parameters using the

current transformŝW andΦ̂
(u)

. As Σ
(mu)
full is a full matrix (in

terms of the static parameters), this optimisation is equivalent
to the MLLR estimation with full covariance matrices [31].
Let p(mu)T

i be thei-th row vector ofΣ(mu)−1
full , p

(mu)
ij thej-th

element ofp(mu)
i , and

ki =
∑

u,m,t

γ
(mu)
t p

(mu)T
i z

(mu)
t ξ

(m)
x −

∑

j 6=i

Gijwj ,

Gij =
∑

m,u

γ(mu)p
(mu)
ij ξ(m)

x ξ(m)T
x .

(25)

Differentiating the auxiliary with respect towT

i yields

∂q(W;Ŵ)

∂wT

i

= −wT

i Gii + kT

i . (26)

The update formula forwi depends on all the other row
vectors throughki. Thus an iterative procedure is required
[31]: first Gij is set as0 for all j 6= i to get an initialwi;
thenwi andki are updated on a row-by-row basis. Normally,
one or two passes through all the row vectors is sufficient.

For estimation ofW∆, another auxiliary function is used:

q∆(W∆;Ŵ) =
∑

u,m,t

γ
(mu)
t logN (∆z

(mu)
t ;W∆ξ

(m)
∆x ,Σ

(mu)
full,∆)

(27)

where

∆z
(mu)
t = J

(mu)−1
x,ŵ ∆y

(u)
t

Σ
(mu)
full,∆ = J

(mu)−1
x,ŵ Σ̂

(mu)

∆y J
(mu)−T

x,ŵ .

This has the same form as the auxiliary function in Eq. (24).
Thus the same procedure can be applied to estimateW∆.

As a first-order approximation, Eq. (22), is used to derive the
approximate auxiliary functions. OptimisingK via q(W;Ŵ)
and q∆(W∆;Ŵ) is not guaranteed to increaseQ(K, Φ̂) or
the log-likelihood of the adaptation data. To address this
problem, a simple back-off approach similar to the one used
in [30], is adopted in this work. Note the back-off approach,
i.e., step 3 in the following procedure, guarantees that the
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auxiliary function is non-decreasing. The estimation of the
“Joint” speaker transform is thus:

1 Collect sufficient statisticski andGij based on the current
transformŴ andΦ̂. Similar statistics are also collected for
W∆.

2 Use the row-iteration method to find thěK = (W̌,W̌∆)
such that W̌ = argmaxW q(W;Ŵ) and W̌∆ =
argmaxW∆

q∆(W∆;Ŵ)
3 Find α ∈ [0, 1], such thatK = αK̂ + (1 − α)Ǩ satisfy
Q(K, Φ̂) ≥ Q(K̂, Φ̂)

4 Update current estimatêK ← K, and go to step 1Nq

times. It is observed in the experiments that settingNq = 5
is enough for the auxiliary to converge in most of the cases.

The above procedure allows the speaker transform to be
estimated. The noise transforms can then be re-estimated and
the whole process repeated. However it is worth noting that
there is no unique optimal value for the speaker and noise
transforms. There is no way to distinguish between the speaker
bias,b, from the convolutional noise mean,µ

(u)
h . This is not

an issue as the parameters of the speaker model are estimated
given the set of noise parameters. This ensures that all the
convolutional noise means are consistent with one another.

V. EXPERIMENTS

The performances of the two model-based schemes, and
as a contrast, a feature enhancement approach, was evaluated
in terms of both adaptation (batch-mode) and factorisation
(factorisation mode).

The AURORA4 [32] corpus was used for evaluation. This
corpus is derived from the Wall Street Journal (WSJ0) 5k-word
closed vocabulary dictation task. 16kHz data were used in all
the experiments here. Two training sets, clean and multi-style
training datasets, are available. Both these two sets comprise
7138 utterances from 83 speakers. In the clean training dataset,
all these 7138 utterances were recorded using a close-talking
microphone, whilst for the multi-style data, half of them came
from desk-mounted, secondary microphones. The multi-style
data had 6 different types of noise added, with the SNR
ranging from 20dB to 10dB, averaged 15 dB. There are 4 test
sets for this task. 330 utterances from 8 speakers, recorded
by the close talking microphone, form01 (set A). 6 types of
noises, as those in multi-style training data, were added tothe
clean data, with randomly selected SNRs (from 15dB to 5dB,
average 10 dB). These form the02 to 07 (set B). Recordings
of these utterances for desk-mounted secondary microphones
were also provided in08 (set C). Noise were added to set C
to form 09 to 14 (set D).

All the acoustic models used in experiments were cross-
word triphone models with 3140 distinct tied-states and 16
component per state. The standard bi-gram language model
provided for the AURORA4 experimental framework was used
in decoding. For all the experiments unsupervised adaptation
was performed. Where MLLR adaptation was performed,
block-diagonal transforms with two regression classes (one
speech, one silence) were used. The VTS-based noise estima-
tion was performed on a per-utterance basis, while the speaker
adaptation was performed on the speaker level. To minimise

differences due to the different forms of adaptation, multiple
EM iterations were performed when estimating transforms.

A. Baseline systems

In order to evaluate the effectiveness of the proposed
speaker and noise adaptation scheme, a series of baseline
systems were build. The first one was the “clean” system,
where the acoustic models were trained on the clean training
set. A 39 dimensional front-end feature vector was used,
consisting of 12 MFCCs appended with the zeroth cepstrum,
delta and delta-delta coefficients. Without adaptation, this
clean-trained model achieved a WER of 7.1% on clean test
set (set A), but the performance was severely affected by
the noise: the average WER on all 4 sets was 58.5%, which
indicates that the clean-trained model is fragile when operated
in noisy conditions. When VTS adaptation was performed,
the noise model parameters were initialised using the first
and last 20 frames of each utterance. The acoustic models
were then compensated using these noise models, and the
initial hypotheses generated. With this initial hypothesis, the
noise models were re-estimated, followed by the generation
of updated hypothesis. This first iteration of VTS was used
to provide the supervision for the following adaptation. A
second iteration of VTS was also performed to refine the noise
models, then the final hypothesis was generated. Note that
performing more VTS iterations is possible, but only provided
a minimal performance gain. The second system used the same
front-end, but is adaptively trained on the multi-style data. A
“neutral” model, denoted as “VAT”, was estimated using VTS-
based adaptive training ([14], [30]), where the differences due
to noise were reduced by the VTS transforms. The same pro-
cedure for noise model estimation and hypothesis generation
as the one used for the clean-trained acoustic models was
performed. As a comparison of model compensation versus
feature compensation approaches, the ETSI advanced feature
(AFE) was used to build the third baseline on the multi-style
data. This system is referred to as “AFE”.

Results of these baselines are presented in Table I. Using
VTS-based noise adaptation, the clean-trained model achieved
a WER of 17.8%. Compared with other feature-based or
model-based noise robustness schemes on AURORA4 (e.g.,
[33]), it is clear this provides a fairly good baseline on this
task. As expected, the use of the adaptively trained acoustic
model (the VAT system) gave gains over the clean system
on noisy data: the average WER was further reduced from
17.8% to 15.9%. However, a small degradation on the clean
set (8.5% of VAT vs. 6.9% of clean) can be seen. This may
be explained as VTS is not able to completely remove the
effects of noise. Thus the “pseudo” clean speech parameters
estimated by adaptive training will have some residual noise
effects and so will be slightly inconsistent with the clean
speech observation in set A. It is also interesting to look
at the performances of the AFE system. With AFE, multi-
style training achieved a WER of 21.4%. Note that, the
multi-style model using MFCC feature achieved a WER of
27.1%. However, the large performance gap (21.4% vs. 15.9%)
between AFE and its counterpart of model-based schemes,
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Model Adaptation A B C D Avg.

Clean VTS 6.9 15.1 11.8 23.3 17.8
VAT VTS 8.5 13.7 11.8 20.1 15.9
AFE — 8.8 16.7 19.1 28.6 21.4

TABLE I
PERFORMANCES(WER, IN %) OF THREE BASELINE SYSTEMS.

Adaptation A B C D Avg.

VTS 6.9 15.1 11.8 23.3 17.8

VTS-MLLR 5.0 12.1 9.0 19.8 14.7
Joint 5.0 12.1 8.6 19.7 14.6

Joint-MLLR 5.0 11.5 8.1 19.1 14.1

TABLE II
BATCH MODE SPEAKER AND NOISE ADAPTATION OF CLEAN-TRAINED

ACOUSTIC MODEL

the VAT system, demonstrates the usefulness of model-based
schemes for this task.

B. Batch-mode speaker and noise adaptation

The above experiments built a series of baseline systems,
where only noise adaptation was performed. In the following
experiments, acoustic models were adapted to both the target
speaker and environment. In the first set of experiments,
speaker and noise adaptation was performed in a batch mode
(referred to as “bat”), i.e. the adaptation experiments were
run where speaker and noise (utterance-level) transforms were
estimated for each speaker for each task5. The “Joint” and
“VTS-MLLR” schemes were first examined using the clean-
trained acoustic model. Following the same procedure used
in the baseline systems, one VTS iteration was run for
each utterance to generate the supervision hypothesis. The
generated noise models were also taken to initialise the noise
parametersΦ. The speaker level transform,K, was initialised
as the identity transform. Then, as discussed in Section IV,
the block coordinate descent optimisation strategy is applied
for “Joint” and “VTS-MLLR”. Multiple iterations,NEM = 4,
were used to update the speaker transform and noise models.
As an additional contrast, an MLLR transform was applied on
top of the “Joint”, again estimated at the speaker level, yielding
another scheme “Joint-MLLR”. The results of these batch-
mode speaker and noise adaptation experiments are presented
in Table II. Significant performance gains6 were obtained using
both “Joint” (14.6%) and “VTS-MLLR” (14.7%), compared to
the baseline VTS performance (17.8%). The best performance
was obtained using the “Joint-MLLR” scheme (14.1%), which
indicates that there is still some residual mismatch after “Joint”
adaptation and a general linear transform can be used to reduce
this mismatch. These experiments serve as a contrast to the
factorisation experiments in the next section.

5The speaker transforms were estimated for each speaker on each noise
condition ( 01-14 ), and were used only in the noise conditionwhere speaker
transforms were estimated from. The noise transform was always estimated
for every utterance.

6All statistical significance tests are based on a matched pair-wise signifi-
cance test at a 95% confidence level.

C. Speaker and noise transform factorisation

To investigate the factorisation of speaker and noise trans-
forms, a second set of experiments were conducted. Again, the
noise transforms were estimated for each utterance. However
in contrast to the batch-mode adaptation, the speaker trans-
forms were estimated from either01 or 047. These speaker
transforms were then fixed and used for all the test sets, justthe
utterance-level noise transforms were re-estimated. The same
setup as the previous experiments was used to estimate the
speaker transform from either01 or 048. This factorisation
mode allows very rapid adaptation to the target condition.

Table III presents the results of the speaker and noise
factorisation experiments using clean-trained acoustic models.
It is seen that speaker transforms estimated from either01
(clean) or04 (restaurant) improve the average performance
over all conditions ( 16.7% and 15.4% compared with 17.8%
). This indicates that it is possible to factorise the speaker
and noise transform to some extent. For the speaker transform
estimated using01, the “clean” data, gains in performance
(compared with VTS adaptation only) for all the four sets were
obtained. Interestingly the average performance was improved
by estimating the speaker transform in a noisy environment,
04. Other than on the clean set A this yielded lower WERs
than the clean estimated model for all of the B test sets.
This indicates that although the speaker and noise transforms
can be factorised to some extent, the linear transform for the
speaker characteristics derived from the “Joint” scheme isstill
modelling some limitations in the VTS mismatch function
to fully reflect the noise environment. It is also interesting
to compare the results with the batch-mode system from
Table II. For test set B the average WER for the batch-
mode “Joint” scheme was 12.1%, compared to 12.5% when
the speaker MLLR transform was estimated using04 and
then fixed for all the test sets. This indicates that for these
noise conditions the factorisation was fairly effective. However
for the clean set A, the performance difference between the
batch-mode and the factorisation mode was greater. This again
indicates that the speaker transform was modelling some of the
limitations of the VTS mismatch function. Results of speaker
and noise factorisation using “VTS-MLLR” scheme are also
presented in Table III. It is clear that the “VTS-MLLR” scheme
does not have the desired factorisation attribute, as the linear
transforms estimated from one particular noise conditions
cannot generalise to other conditions. Hence, “VTS-MLLR”
scheme is not further investigated for factorised speaker and
noise adaptation.

The above experiments demonstrate the factorisation at-
tribute of “Joint” when the clean-trained acoustic models
were used. To examine whether this attribute is still valid for
adaptively trained acoustic models, a second set of experiments

7In principle, it is possible to estimate speaker transform from any of the
14 test sets. Unfortunately, utterances from three speakers in set C and set
D were recorded by a handset microphone which limits the speech signal
to telephone bandwidth. This also means it is not useful to estimate speaker
transforms from set C or set D.

8When the clean-trained acoustic models were adapted by VTS (line 1,
Table III), 04 was the worst performed in set B. This trend was also observed
in line 1, Table IV.
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Models
Adaptation A B C D

Avg.
Scheme Spk. Est. 01 02 03 04 05 06 07 Avg. 08 09 10 11 12 13 14 Avg.

AFE

— — 8.8 13.1 15.9 20.0 18.4 15.1 17.416.7 19.1 24.1 27.8 31.1 30.9 28.6 29.428.6 21.4

MLLR
bat 7.0 8.9 13.1 16.6 15.3 12.2 14.413.4 10.5 14.6 19.8 23.0 21.9 18.5 21.419.9 15.5
01 7.0 18.5 20.6 25.8 24.1 20.7 21.521.9 21.0 28.1 32.9 37.7 35.6 32.0 33.133.2 25.6
04 8.7 10.5 14.3 16.6 16.2 13.0 15.114.3 16.3 19.2 24.7 26.4 27.0 23.4 26.524.5 18.4

VAT

VTS — 8.5 9.8 13.2 16.0 14.6 12.0 16.413.7 11.8 12.4 19.6 23.1 23.2 18.8 23.820.1 15.9

Joint
bat 5.6 6.7 10.5 13.4 12.1 9.5 13.811.0 8.8 10.3 17.8 20.7 20.8 16.5 20.817.8 13.4
01 5.6 7.6 12.9 17.7 14.2 11.7 16.013.4 11.1 11.5 19.6 24.8 22.6 19.7 23.920.3 15.6
04 6.9 7.4 11.2 13.4 12.6 10.3 14.111.5 10.4 11.0 18.2 21.2 20.4 17.9 22.218.5 14.1

TABLE IV
FACTORISED SPEAKER AND NOISE ADAPTATION OFVAT AND AFE MODELS.

Scheme Spk. Est. A B C D Avg.

VTS — 6.9 15.1 11.8 23.3 17.8

VTS- 01 5.0 20.2 16.5 28.0 22.2
MLLR 04 10.2 19.7 19.7 28.0 22.5

Joint
01 5.0 14.1 10.4 22.3 16.7
04 7.0 12.5 11.0 20.4 15.4

TABLE III
FACTORISED SPEAKER AND NOISE ADAPTATION OF CLEAN-TRAINED

ACOUSTIC MODELS USING“JOINT” AND “VTS-MLLR”.

was run. VAT acoustic models were adapted by “Joint”, in both
batch and factorisation modes. For the latter,01 and04 were
again used for speaker transform estimation. Results on all14
subsets are presented in Table IV. Since the acoustic models
are adaptively trained, improved performances are expected,
compared with those in Table III. Note that factorisation mode
adaptation on01(04) using the speaker transform estimated
from 01(04) is equivalent to the batch-mode adaptation, thus
gives identical results tobat on 01(04). The same trends
as those observed in the previous experiments can be seen: a
batch-mode “Joint” adaptation yielded large gains over VTS
adaptation only ( 13.4% vs. 15.9%, average on all 4 sets),
while using the speaker transform estimated on04 achieved
a very close performance, 14.1%. The advantages of using
“Joint” scheme were fairly maintained with the adaptively
trained acoustic models.

It is also of interest to look at the experiments of the
speaker and noise adaptation with the AFE acoustic models.
Speaker adaptation for AFE model was done via an MLLR
mean transform with the same block diagonal structure, again
estimated at the speaker level. The AFE model was first used to
generate the supervision hypothesis, following the MLLR ada-
ptation, and then the final hypothesis was generated. Though
multiple iterations of hypothesis generation and transform re-
estimation could be used, it was found in the experiments
the gain was minimal. In the batch-mode adaptation, speaker
transforms were estimated for every single set, while for the
factorisation mode, speaker transforms were estimated from
01 or 04. Results of these experiments are summarised in
the first block of Table IV. It can be seen that the speaker
transform estimated from01 did not generalise well to other
noisy sets (WER increased from 21.4% to 25.6%), while
the one estimated from04 can generalise to other noise

conditions. This suggests that for feature normalisation style
trained acoustic models, the linear transform estimated from
one noise data can be applied to other noise conditions for
the same speaker. However examining the results in more
detail shows that this factorisation using AFE is limited. A
19% relative degradation ( 18.4% of the factorisation mode
vs 15.5% of the batch-mode ) was observed. This compares
to only 5% relative degradation for the “Joint” scheme. It is
worth noting that batch-mode AFE with MLLR (15.5%) is still
significantly worse that the “Joint” scheme run in a factorised
mode on the04 data (14.1%)

VI. CONCLUSION

This paper has examined approaches to handling speaker
and noise differences simultaneously. A new adaptation
scheme, “Joint”, is proposed, where the clean acoustic model
is first adapted to the target speaker via an MLLR transform,
and then compensated for the effect of noise via VTS-based
model compensation. Adapting the underlying clean speech
model, rather than the noise compensated model, enables the
speaker transform and the noise compensation to be kept
distinct from one another. This “orthogonality” thus supports
acoustic factorisation, which allows flexible use of the esti-
mated transforms. For example, as the one examined in this
paper, the same speaker transform can be used in a range of
very different noise conditions.

This scheme is compared with two alternatives for handling
both speaker and noise differences. The first one, “VTS-
MLLR”, is a more standard combination of VTS and MLLR
where the MLLR transform is applied after VTS compen-
sation. Note this form of scheme is extended in this paper
to support inter-leaved estimation of the noise and speaker
transforms, rather than estimating them sequentially. The
second scheme “AFE-MLLR” uses AFE to obtain de-noised
observations prior to adaptation to the speaker.

The AURORA4 data was used for evaluation. Experimental
results demonstrate that if operated in a batch mode, both
“VTS-MLLR” and “Joint” give gains over noise adaptation
alone. However, only “Joint” supports the factorisation mode
adaptation, which allows a very rapid speaker and noise
adaptation. “Joint” scheme was also compared with the scheme
that use feature-based approach to noise compensation, the
“AFE-MLLR”. Results show “AFE-MLLR” does not achieve
the same level of performance as “Joint”.



SUBMITTED TO IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING 9

This paper has proposed the “Joint” scheme for speaker and
noise adaptation. As speaker and noise factors are modelled
separately, it also enables speaker adaptation using a broad
range of noisy data. Throughout the paper, it is assumed that
the speaker characteristics does not change over the time, and
the speaker adaptation is carried out in a static mode. It will be
interesting to apply “Joint” in an incremental mode in future
work to domains where the adaptation data has large variations
in background noise, for example in-car applications.
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