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Speaker and Noise Factorisation for Robust Speech
Recognition

Y.-Q. Wang and M. J. F. Gales

Abstract—Speech recognition systems need to operate in aare modelled separately. The proposed scheme sits in a fully
wide range of conditions. Thus they should be robust to extn- model-based framework, which allows two different model
sic variability caused by various acoustic factors, for exmple transforms. i.e.. a model-based VTS transform and an MLLR

speaker differences, transmission channel and backgroundoise. ¢ f to b timated irfactorised fashi d
For many scenarios, multiple factors simultaneously impatcthe mean transiorm, {o beé estimated inactorisediashion an

underlying “clean” speech signal. This paper examines teatiques applied independently. This allows, for example, the speak
to handle both speaker and background noise differences. An characteristics obtained in one noise condition to be agdpli
acoustic factorisation approach is adopted. Here separateans- to a different environment. This is important for some ap-
forms are assigned to represent the speaker (maximum likélood — jications, where the speaker characteristics are knoviseto

linear regression (MLLRY)), and noise and channel (model-bsed . . .
vector Taylor series (VTS)) factors. This is a highly flexibe relatively constant while the background environment gfesn

framework compared to the standard approaches of modelling A variety of schemes have been proposed for speaker
the combined impact of both speaker and noise factors. For adaptation, e.g., [4], [5], [6], [7], [8], [9]. For adaptati
example factorisation allows the speaker characteristicebtained with limited data, linear transform-based schemes are & m
in one noise condition to be applied to a different environmat. ; ;
To obtain this factorisation modFi)fFi)ed versions of MLLR and VTS popular choices. In these schemes, a set of linear transform
training and application are derived. The proposed schemesi €:9- MLLR [5], [6] and constrained MLLR_ (CMLLR) [6], .
evaluated for both adaptation and factorisation on the AURCRA4 ~ are used to adapt the mean and/or covariances of Gaussian
data. components in the acoustic models, such that the targetapea
can be better modelled. Theadaptivetechniques modify the
acoustic models to better match the adaptation data, and do
. INTRODUCTION not rely on an explicit model of speaker differences. Hence

To be applicable to many real-life scenarios, speech recdbey can be also used for the purpose of general adaptation,
nition systems need to be robust to terinsic variabilities e.g., environmental adaptation [10], [11]. Furthermaoerain
in the speech signal, such as speaker differences, transmagoustic models orfiound data which is inhomogeneous in
sion channel and background noise. There has been a largture, adaptive training [12] has been proposed, where
amount of research into dealing with individual factorstsuc'neutral” acoustic models are estimated on multi-styleadat
as speaker [2] or noise [3]. Schemes developed to adapd the differences among speakers are “absorbed” by speake
the speech recognisers to specific speakers are often kndkamsforms. This adaptive training framework has also f@en
as speaker adaptatignwhile schemes designed to handléended to train neutral acoustic models on data from differe
the impact of environment are referred to exsvironmental environment, e.g., [13], [14].
robustness It is possible to combine the above techniques Approaches for handling the effect of background and
to adapt the speech recogniser to the target speaker andvolutional noise can be broadly split into two categaria
environment. Normally, this is done via feature enhancemehe first, feature compensatiorcategory, schemes attempt to
or model compensation to remove the effect of noise, foltbwelenoise (or clean) the noise corrupted feature vectorsseThe
by speaker adaptation. However, these approaches typicalhhanced feature vectors are then treated as clean speech
model the two distinct acoustic factors as a combined effeobservations. Schemes fitting into this category includSIET
Thus in the standard schemes there is no distinction betweslvanced front-end (AFE) [15], SPLICE [16], model-based
the transforms representing the speaker characteristids #eature enhancement (MBFE) [17], and feature-space Vector
the noise characteristics. The transforms are simply astion Taylor Series (VTS) [18]. In the seconahodel compensation
sequentially, with the, typically linear, speaker tramsfe category, the back-end acoustic models are compensated to
modelling all the residual effects that are not modelled bflect the noisy environment. Normally, the impact of chelnn
the noise transforms. This paper proposes a new adaptaga background noise is expressed as a mismatch function
scheme, where the impacts of speaker and noise differentgdating the clean speech, noise and noisy speech. Using a

mismatch function as an explicit distortion model will be
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Cambridge CB2 1PZ, U.K. (e-mail: yw293@cam.ac.uk). . . .

This work was partially supported by Google research awadi RARPA approaches include Parallel Model Combination (PMC) [19],
under the GALE program. The authors would also like to thankPDFlego model-space VTS [20], [21], joint uncertainty decoding
for making VTS code available. This work is an extension sfdonference (JUD) [13] and joint compensation of additive and convaleti
version presented in [1]. . . .

distortions (JAC)[22]. Both feature compensation and nhode
based approaches achieve good acoustic model robustness.
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Model-based approaches are more powerful than standpedtameters is presented in section 1V. Experiments andtsesu
enhancement schemes, as they allow a detailed representaiie presented and discussed in section V with conclusions in
of the additional uncertainty caused by background noisgection VI.

Recently, adaptive training framework have been succigsfu

extended to handle variations in the training data enviremm Il. ACOUSTICFACTORISATION

e.g.,[13], [14], [23]. Here noise-specific transforms asti-e .
mated for each environmental homogeneous block of dataModel-based approaches to robust (in the general sense)

allowing “clean” acoustic models to be estimated from naultFP€ech recognition have been intensively studied and éaten

style data that are corrupted by different noises. Expartaie M t_hell_ast decade. In this framework_, intrinsic and extdns

results demonstrated that adaptively trained acousticetsod?@"1ability are represented by a canonical madél and a set

are more amenable to be adapted to the target acou@fidransforms7, respectively. Consider a complex acoustic

conditions. environment, in which there are two acoustic factorgand
Speaker adaptation can be combined with environmental Simultaneously affecting the speech signal. The canbnica

robustness to adapt the speech recogniser to both spewerraﬁgﬁl is adapted to represent this condition by the tramsfor

environment factors. There are generally two approaches%

the literature for joint speaker and environment adaptatio M) — }-(MC’T(M)) 1)

The first one is to use feature enhancement techniques to

denoise the observation before back-end model adaptatishere M™ is the adapted acoustic model for condition

e.g., [24]. The other approach, discussed in [25], is a fully,n), 7™ the transform for that condition, and is the

model-based approach: acoustic models are first compénsat@pping function. The transform is normally estimated gsin

for the effect of noise, then linear transform-based adipta the ML criterion:

can be performed to reduce the residual mismatch, including (sn) _ (sm)

the one caused by speaker differences. Little work has been 7" = argmax {p((’) |MC’T)} (2)

done to separate the speaker and environmental differences , i

Two notable works are [26] and [27]. In [26], componentWhere(?(m) is a sequence_of featgre vectors o_bser\(ed in the

specific biases based on Jacobian compensation with speaREPUStiC conditior(s,n). It is possible to combine different

. . i i i )
dependent Jacobians were used to clean the observation gREMS ©f transforms to obtain the final transformatiar;).
to the speaker adaptation and only the mean vectors wever the amount of data required to estimate the paramete

compensated for the effect of noise. This work will alsQf final transformation is determined by the need to robustly

use speaker-dependent Jacobians, but in a full model-baSglimate parameters of all transforms. Thus in the casédtons

framework. The proposed scheme is based on the concBid N this work, combining MLLR and VTS, sufficient data
of “acoustic factorisation” in [27], and uses the structureln the target conditiorts, n) is required to estimate the MLLR

transform in [28]. In acoustic factorisation, transforms g ransform, as the VTS transform can be rapidly estimated on

constructed in such a way that each transform is related [ €SS d_ata. When_ thg trqnsforms are estimated to model
only one acoustic factor. Note that in [28], though multipléhe combln_ed cpndltlon it will be referred to #mtch-mode
transforms are used, they are not constrained to be relafPtation in this paper. _ _ _
with one specific acoustic factor. Ideally, different sefs o 10 more effectively deal with complex acoustic environ-
transforms should be “orthogonal”, i.e., the impact of eadfents, the concept of acoustic fac_torlsatlon_was propased i
set of transforms should be able to be applied independenl/]: Where each of the transforms is constrained to beeglat
This will yield a highly flexible framework for using the to an individual acoustic factor. In the aboye example, this
transforms. To achieve this orthogonality, the transfoneed "eduires that the transforfi*") can be factorised as:
to be different in nature to each other. In this work, a model- Tn) () () 3)
based VTS transform [20] is associated with each utterance,
while a block-diagonal MLLR mean transform [5], [6] iswhere 7(*) and 7(") are the transforms associated with
used for each speaker who may have multiple recordingsoustic factors andn, respectively.
The amount of data required to estimate an MLLR transform The factorisation attribute in Eq. (3) offers additionakfle
is far greater than that required for a VTS transform: VTility for the models to be used in a complex and rapid
transform can be robustly estimated on a single utterancbanging acoustic environment. This can be demonstrated by
while MLLR transform requires multiple utterances. Thusonsidering a speakegr)(in a range of different noisenj
when estimating the speaker transform, the system mustdmnditions. For- acoustic conditiongs, n1),-- - , (s, n.), itis
able to handle changing background noise conditions. Aseth@ecessary to estimate a set of transfofMg™), ... 7",
two transforms are different in nature, and are estimated osing the data@(™) ... O from each of these con-
different adaptation data, it is now possible to decoupderth ditions. Using factorisation only a single speaker tramsfo
thus achieve the factorisation. 7©), and a set of noise transfornE(™) ... T() are
This paper is organised as follows. The next section intreequired. As noise transforms can be robustly estimated &o
duces the general concept of acoustic factorisation. $peagingle utterance, it is only necessary to have sufficierd dét
and noise compensation schemes and the ways to comhangpecific speaker over all conditions to estimate the speake
them are discussed in section Ill. Estimation of transfortmansform.
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section describes the forms of VTS compensation and the
options for combining it with MLLR-based speaker adaptatio

o dapicd mode Additive and convolutional noise corrupt “clean” speech,
M(”‘ v resulting in the noisy, observed, speech. In the Mel-capstr
. domain, themismatch functiomelating the clean speech static

) Epm o x and the noisy speech staticis given by:
model M¢ T /\4(5"7‘)

y::B+h+Clog(1—I—exp(C_l(n—m—h)))

Adapted model B f(m, h, n) ’ @)
& ) where n and h are the additive and convolutional noise,
(Eryh ol GEFe respectively, andC is the DCT matrix. It is assumed that for
olsn) theu-th noise condition or utterance:is Gaussian distributed

with mean p{*) and diagonal covariancE(; h = p"

is an unknown constant . Model-based VTS compensation
Fig. 1. Speaker and noise adaptation in the factorisatiodemo [20], [21] approximates the mismatch function by a first-

order vector Tag/lor series, expanded at the speech and noise

N o mean,uﬁm),uﬁu ,,ur(,“), for each component:. Under this
Furthermore, for a new conditios, n') it is only neces- gpnroximation,

sary to estimate the noise transfof”™) and combine this
transform with the existing speaker transform. This form of plylm,u) = N (y; ulee), S0Y) (8)
combination relies on the “orthogonality” of the transfarm ) ) )
the speaker transform only models speaker attributes aff er? the compensated megi).;; and covariance matrix
the noise transform the noise attributes. Figure 1 shows Bets,y are given by:
concept of acoustic factorisation for speaker and noisefac (mu) m (W) (u
The followin i Hyts,y = f(u}({ )Hu’h aﬂr(x ))7

g procedure illustrates how the speaker and™vtsy 9)
noise adaptation can be performed in this factorisatioméra 25?;@2 = diag (J}({mu)z}({m)J}({mu)T + Jr(lmu)zr(lu)Jr(lmu)T)
work. Note that the canonical mode¥{.., is assumed to have

been trained. andu}({m) andEf{m) are the mean and covariance of component

1) Initialise the speaker transform to an identity transfor m, J{™* and J{™ are the derivatives of with respect
ie., 7( = [1,0], and obtain initial estimates (forto = andn respectively, evaluated at{™, p'™, ", With
example using voice activity detection) for the noiséhe continuous time approximation [29], the delta paramsete
transforms. under VTS compensation scheme are compensated by:

2) Estimate the noise transform for each condition as () _ g )

vts,Ay T Yx Ax
7O = argmpx {pOIMTO O @) o _ g (3gm g gimoTyggr g gm0

3) Estimate the speaker transfof®) using

(s) _ (sn)
T argmax {H p(O

i=1

(m

where NAX) and Eg;”) are the mean and covariance matrix
of clean delta parameters. The delta-delta parameters are
compensated in a similar way. For notational convenience,
. only the delta parameters will be considered in the follayvin
4) Goto (2) until converged. To adapt the speaker independent model to the target

Having obtained the speaker and noise transforms for t§geakers, the MLLR mean transform [5] in the following
training data, the transform for a new acoustic conditiogyrm is often used:

(s,n’), can be obtained simply by estimating the noise trans-
form u(sm) — A(S)H(m) + b(s)7 (11)

Mo, T ® 7<"f>)} (5)

7() = argmax {p(O(S"')|Mc,T(S> ® T)} (6) where[A®) b)) is the linear transform for speakey p.(™)
7 and p©™) the speaker independent and speaker dependent
Given the speaker transform and the noise transforms, {h@an for the component respectively.
acoustic model is adapted to the test condition using the
(sn”) — 7(s) (n")
transform7 =eT™. A. “VTS-MLLR” scheme
I1l. SPEAKER AND NOISE COMPENSATION The simplest approach to combining VTS with MLLR to
To achieve acoustic factorisation, the speaker transfbfth yield a speaker and noise adapted model is to take the_VTS
and noise transforr (™) must have different forms to yield _compensat_ed models and apply MLLR. afterwards. Consider-
a degree of orthogonality. In this work, a linear transforrr'{lg block-diagonal transformisthe following transform to the
MLLR, and a nonlinear one, model-based VTS CC'mpensaﬂonllt is possible to use full-transforms, however in this wookbe consistent

are used for speaker and noise adaptation respectivelg. Twith the factorisation approach only block-diagonal tfanss are considered.
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speaker and noise condition is obtained. the compensated delta parameters are given by:
) = AOF(u{™, ", ) + 5 piy = I (Aspgy +bs),
(smu) (s) g(mu) ,(m) 4 p(s) (12) (mu)_ )y(m) T )3 (w) )T (47)
py™ = AL IO U 4 b = diag (I BEV I 4 3 B0 30T
and (m) s (m
wherep,, ’, ¥,,~ are them-th component parameters for the
2§5m“) = E‘(,Ts?y), 2&;7"“) = zil’gugy (13) clean delta features respectively, aBg" is the variance of
*) ) () ) () +(s) An, the noise delta.
where W) = [A), b'*] and W, = [A;",b,"] are the  The ahove “Joint” scheme uses a speaker transfbérm;

speakers’s linear transform for the static and delta featuregyy, W) to explicitly adapt the models to the target speaker.

respectively. The combined MLLR transform will be written, contrast to the “VTS-MLLR” scheme, the speaker transform
asK®) = (W(S),WAS)) This scheme will be referred to asSjg app"edbeforethe noise transform.

“VTS-MLLR”.

IV. TRANSFORMESTIMATION

B. "Joint” scheme There are two sets of transform parameters to be estimated

In “VTS-MLLR?”, the speaker linear transform is applied onn the “Joint” and “VTS-MLLR” schemes: the linear transform
top of the noise-compensate models. This means that it Wil and the noise model parametabs= {& (")}, where®®
represent attributes of both speaker and noise factordieasit the noise model parameters ofth utterance,®™ =
VTS compensated model will depend on the noise conditig I(g)’u}(lu)7 El(lu)’ 2&1?). These parameters can be optimised
Thus the “VTS-MLLR" scheme may not have the require&ing EM. This yields the following auxiliary function fookth
factorisation attribute, i.e., the linear transform in “ST forms of compensatior?:

MLLR” does not solely represent the speaker charactesistic
To address this problem a modified scheme, named as “Joint’ Q(K, ®) = > 4" log N'(o{"); u{™), 5™ | (18)
is proposed where the speaker transform is applied to the u,m,t

underlying “clean” speech model prior to the application qfhere the summation overinvolves all the utterances belong-

VTS. The speaker transform should therefore not depend 9 to the same speakefﬂ(m“) is the posterior probability of

the nature of the noise. o _ componentn at timet of the u-th utterance given the current
As the speaker adaptation in the “Joint” is applied to thl‘?an ()T o (u)T

\ : form parameter&K, &), ol") = ,A T is the
clean speech models, this adaptation stage can be expressg bser\f)ation vecgfof t)he—tth utte[i/a:nce grid ]
for speakers as ’

I N I Y 2 € ) B A I IR oy | (19)
Ay 0 Z:Ay

sm)

( (sm)
where i and 33, are the compensated clean speecé}e the adapted mean and covariances, obtained by Eq. (15)

distribution parameters for component of speakers. €Y mi gt w )
For standard VTS compensation scheme above, the com arrllq gq (17) for *Joint” or Eq. (12) and Eq. (13) for VTS

sation and Jacobian are based on the speaker independent d|§0 estimateK and & for both “Joint’ and “VTS-MLLR"

H H (m) (m) “ HL ]
tribution A(pex ™, £,™). For the “Joint” scheme these. ter,msschemes, dlock coordinate descemstrategy is adopted: first,
need( to) be( b:;lsed on _the_ speaker compensated distributlan, . ., speakeWV and W, are initialised asT, 0], and ®
N(“(fn) ) iy )_' Subst|tut|.ng the speaker erendgnt Meak the standard VTS-based noise estimates for each uteranc
W™ (for clarity of notation, the speaker indexwill be  yhen K is optimised at the speaker level while keeping the
dropped if there is no confusion) into Eq. (9) yields a NeWgise model parameter fixed at the current noise estimates
Joint", compensation scheme: ®; finally, given the speaker transform updat#g, the noise
Hgmu):f(wégm)7ul(lu)’ugu))7 . Erar\]rinete@ is re-estimated. This process is repeafégy
) —diag (30 509" o mag) 1Y

A. Transform estimation for “VTS-MLLR”

whereg!™ = [p{™T 1T, and

P In the*VTS-MLLR” scheme, the VTS-compensated static
—y|W£<m> W o, Jmw =1 Jm) (1) and dynamic parameters are transformed independent¥by
O Wex b e ' ' and W, respectively. Hence the estimationkf= (W, W,)

In this work, the MLLR mean transform is constraine@an be done separately. Given the noise estimates for each
to have a block diagonal structure, where the blocks corrgtterance,®(*), the transformW needs to be estimated at
sponding to the static and delta parameters. With this blogke speaker level, involving multiple utterances thus @isso
diagonal structuré and the continuous time approximationated with different noise conditions. The transform estiora

3 =

2|t is possible to extend the theory to handle full transfarimavever this 3This section does not discuss multiple speakers. The eatets multiple
is not addressed in this paper. speakers is straightforward.
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statistics in [6] are modified to reflect the changing noisshile for the delta parameters,

conditions: (mu) _ 1 (mu) (m)
(mu) (u) Moy '~ Jy s Wiy 23)
BB Siy e ding (1 S50 30 T 3 ST
u m ot ths,i
() (20) Due to the approximation in Eq. (23), the optimisation of
G, = Z Z ngﬁ?&gﬁ?f, W andW, again becomes two separate but similar problems.
u m vts)i The estimation ofW, given the current noise estimatich
, ) ) (w) (mu)2 and the VTS approximation in Eq. (22), uses the following,
with y; ;' being thei-th element ofy; ™, and oy ;° the  jo50yimate, auxiliary function (up to some constant term)

i-th diagonal item ofEf,ZZf;, Hmu) = 5 A0 Given X
these statistics, thé-th row of W, w', is obtained by a(W; W)= 21 log N (2™, We™, =) (24)
w] = k:iTG;l. Estimating ofW, is done similarly. u,m,t
Given the current linear speaker transfolfi the parame- where
ters of the noise transform can be updated. This requires the (maw) (mu)=1, (u)  ~(mu) (mw)xkr ¢ (m)
noise estimation approaches in, for example [13], [21]] [80 2t =diw W - e WET)
be modified to reflect that the compensated model will have  sy(mu) _ j(mu)—1,(mw) y(mu)-T
the speaker transform applied. To estimate the additive and ~ *** v ooy

convolutional noise mean, a first-order VTS approximat®n gnd ﬂgm@, f;;”“) are the compensated parameters using the

made, e.g., the mean an.d covariance for the static featare & rrent transformaV and®™ . As Egﬁ) is a full matrix (in
approximated as follows:

terms of the static parameters), this optimisation is exjaivt
uf,m“) zﬂl(fmln + AJ}(lm“) (Hﬁu) _ ﬂflu)) + AJmw () — pwto th(?ml\il)l%LR estimation with full co(\:s\ur;zirfce(nrystncesf [31].

Letp,; be thei-th row vector of¥;,)," *, p;; ~ thej-th
element ofp{"™™, and

mu mu)T _(mu m
2(mu) F(mu) F(mu) ~ (mu) . . ki= Z /Yt( )pl(' ) z§ )S’E = Z Gijw;,
whereJx ™, J, 7, Jo 7 and " are the Jacobian matri- wym,t j#i

(21)

ces and the compensated mean based on the current nois&__ _ Z (m“>p(.’.”“)§(m)§(m” (25)
estimation "), () and the current linear transfor. Y mu7 oSk S

Because of this VTS approximation, the auxiliary is now a

quadratic function of the noise means. Hepd¥, u'* can Differentiating the auxiliary with respect tar] yields

be obtained via solving a linear equation, in a similar fashi Dq(W; W)

as the one in [30]. After the noise mean estimation, the noise — = —w,; Gy + le (26)
variancex(*, ={*) and Zgzz) are estimated via the second ow;

order method, in the same way as [13]. At each iterationTdhe update formula fow; depends on all the other row
check that the auxiliary function increases is performed awectors throughk;. Thus an iterative procedure is required
the estimates backed-off if necessary {30] [31]: first G;; is set asO for all j # ¢ to get an initialw;;
thenw; andk; are updated on a row-by-row basis. Normally,
one or two passes through all the row vectors is sufficient.

B. Transform estimation for “Joint For estimation ofW,, another auxiliary function is used:

For the “Joint” scheme, estimating the noise parameters, .
given the current speaker transfoia is a simple extension ¢a(Wa; W)= > 21" log N (az™; Wt Semi)y)
of VTS-based noise estimation in [21], [30]: prior to the Uyt
noise estimation, the clean speech mean is transformeato th
speaker-dependent clean speech mean. However, estimafipgre

the speaker transforniK is not straight-forward, since the

(27)

R . mu) _ y(mu)—1 u)
transform is applied to the “clean” speech and then VTS com- Azz(e = Ji,w Ay§
pensation applied. To address this non-linearity, a firdeo »(mu) J(mu)flg(mu)J(mu)fT
full, A = Yx, W Ay X, W .

vector Taylor series approximation can again be employed to
expresgy™" and (™" as functions of the currentV, and This has the same form as the auxiliary function in Eq. (24).

newW, estimates of the speaker transform, Thus the same procedure can be applied to estifMte
() R () < (m) As a first-order approximation, Eq. (22), is used to deriee th
py" R E(WE™ ) + 3w (W = W)E approximate auxiliary functions. Optimisiri§ via q(W; W)

2y diag (J(mu)z(m)J(r@u)T +J(ngu)2(u)J(ngu)T) (22)  ang @ (W,; W) is not guaranteed to increasg(K, ®) or
v WoTE L TRW W W the log-likelihood of the adaptation data. To address this
te N L problem, a simple back-off approach similar to the one used
Since the second order optimisation assumes the approaimet Eq. . . . .
(21), there is no guarantee that the auxiliary function in Ed) will be !n (30], is ad.opted n th|S.W0rk- Note the back-off approach,
non-decreasing. i.e., step 3 in the following procedure, guarantees that the
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auxiliary function is non-decreasing. The estimation o thdifferences due to the different forms of adaptation, rpieti
“Joint” speaker transform is thus: EM iterations were performed when estimating transforms.
1 Collect sufficient statistick; and G;; based on the current

transformW and®. Similar statistics are also collected fory g5seline systems

2 ‘LT;Ae the row-iteration method to find tHé = (W, W,) In order to eyaluate the_ effectiveness of 'Fhe proposeq
such that W = argmaxw ¢(W; W) and W, = speaker and noise adapta_tlon scheme, a series of baseline
argmaxw, qa(Wp; W) systems were bu_|Id. The first one was the “clean” system,

3 Finda € [0,1], such thatK = aK + (1 — a)K satisfy where the acoustic models were trained on the clean training
O(K,®) > O(K, &) set. A 39 dimensional front-end feature vector was used,

4 Update current estimatK «— K, and go to step 1N, consisting of 12 MFCCs appended with the zeroth cepstrum,
is enough for the auxiliary to converge in most of the case@€an-trained model achieved a WER of 7.1% on clean test
eét (set A), but the performance was severely affected by

i 0 :
estimated. The noise transforms can then be re-estimated _notlse;(r;thteﬂ?verlage YVER (;)n al(; ‘} .Sefts V\_/las ‘?18'5@’ which
the whole process repeated. However it is worth noting th@pmq es ad't'e cezi\/r\wl-hram\e/_r;node 'f trag| € when a:fqael q

there is no unique optimal value for the speaker and noik M!Sy conditions. en adapration was pertormed,

transforms. There is no way to distinguish between the spea e noise model parameters were initialised usmg_the first
. . . (w) o and last 20 frames of each utterance. The acoustic models
bias, b, from the convolutional noise meap, ’. This is not

an issue as the parameters of the speaker model are estimated, then compensated using these noise models, and the

given the set of noise parameters. This ensures that all {H'e'al hypotheses generated. With this initial hypotiseshe

convolutional noise means are consistent with one another’ 2 >c models were r_e-estlmat_ed, .follov.ved by the generation
of updated hypothesis. This first iteration of VTS was used
to provide the supervision for the following adaptation. A
second iteration of VTS was also performed to refine the noise

The performances of the two model-based schemes, anddels, then the final hypothesis was generated. Note that
as a contrast, a feature enhancement approach, was edalupgeforming more VTS iterations is possible, but only predd
in terms of both adaptation (batch-mode) and factorisati@aminimal performance gain. The second system used the same
(factorisation mode). front-end, but is adaptively trained on the multi-styleadah

The AURORAA4 [32] corpus was used for evaluation. Thitnheutral” model, denoted as “VAT”, was estimated using VTS-
corpus is derived from the Wall Street Journal (WSJO0) Skelvobased adaptive training ([14], [30]), where the differendae
closed vocabulary dictation task. 16kHz data were usedlin # noise were reduced by the VTS transforms. The same pro-
the experiments here. Two training sets, clean and muyleé-st cedure for noise model estimation and hypothesis generatio
training datasets, are available. Both these two sets deenpias the one used for the clean-trained acoustic models was
7138 utterances from 83 speakers. In the clean trainingefataperformed. As a comparison of model compensation versus
all these 7138 utterances were recorded using a closexgalkieature compensation approaches, the ETSI advanceddeatur
microphone, whilst for the multi-style data, half of thermm (AFE) was used to build the third baseline on the multi-style
from desk-mounted, secondary microphones. The multestydata. This system is referred to as “AFE”".
data had 6 different types of noise added, with the SNRResults of these baselines are presented in Table |. Using
ranging from 20dB to 10dB, averaged 15 dB. There are 4 tasTS-based noise adaptation, the clean-trained modelasthie
sets for this task. 330 utterances from 8 speakers, recor@edVER of 17.8%. Compared with other feature-based or
by the close talking microphone, forfil (set A). 6 types of model-based noise robustness schemes on AURORA4 (e.g.,
noises, as those in multi-style training data, were adddbeo [33]), it is clear this provides a fairly good baseline onsthi
clean data, with randomly selected SNRs (from 15dB to 5dBsk. As expected, the use of the adaptively trained aapusti
average 10 dB). These form tBR to 07 (set B). Recordings model (the VAT system) gave gains over the clean system
of these utterances for desk-mounted secondary microghoor noisy data: the average WER was further reduced from
were also provided i®8 (set C). Noise were added to set CL7.8% to 15.9%. However, a small degradation on the clean
to form 09 to 14 (set D). set (8.5% of VAT vs. 6.9% of clean) can be seen. This may

All the acoustic models used in experiments were crodse explained as VTS is not able to completely remove the
word triphone models with 3140 distinct tied-states and Jéfects of noise. Thus the “pseudo” clean speech parameters
component per state. The standard bi-gram language moelgtimated by adaptive training will have some residual eois
provided for the AURORA4 experimental framework was useeffects and so will be slightly inconsistent with the clean
in decoding. For all the experiments unsupervised adaptatispeech observation in set A. It is also interesting to look
was performed. Where MLLR adaptation was performedt the performances of the AFE system. With AFE, multi-
block-diagonal transforms with two regression classes (ostyle training achieved a WER of 21.4%. Note that, the
speech, one silence) were used. The VTS-based noise estimaki-style model using MFCC feature achieved a WER of
tion was performed on a per-utterance basis, while the gpeaR7.1%. However, the large performance gap (21.4% vs. 15.9%)
adaptation was performed on the speaker level. To minimisetween AFE and its counterpart of model-based schemes,

The above procedure allows the speaker transform to

V. EXPERIMENTS
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[ Model | Adaptation [[ A B C D [ Avg. |

C. Speaker and noise transform factorisation

Clean VTS 69 151 118 233 178
VAT VTS 85 137 118 201 159 To investigate the factorisation of speaker and noise trans
AFE — 88 167 19.1 286 214 . ;
forms, a second set of experiments were conducted. Again, th
TABLE |

noise transforms were estimated for each utterance. Howeve
in contrast to the batch-mode adaptation, the speaker-trans
forms were estimated from eith@l or 04’. These speaker
transforms were then fixed and used for all the test setsthjast

PERFORMANCES(WER,IN %) OF THREE BASELINE SYSTEMS

[ Adaptation | A B C D [ Avg. |

[ Vis [60 151 118 233 17.8] utterance-level noi_se transfor_ms were re-estimated. 'ﬁh&as
VISMLIR 1 50 121 _ 90 198 147 setup as the previous experiments was used to estimate the
Joint 50 121 86 19.7| 14.6 speaker transform from eith€l or 048. This factorisation
JointMLLR | 50 115 81 191 141 mode allows very rapid adaptation to the target condition.
TABLE Il Table Il presents the results of the speaker and noise

BATCH MODE SPEAKER AND NOISE ADAPTATION OF CLEANTRAINED

ACOUSTIC MODEL factorisation experiments using clean-trained acoustidets.

It is seen that speaker transforms estimated from eiitier
(clean) or04 (restaurant) improve the average performance
over all conditions ( 16.7% and 15.4% compared with 17.8%
the VAT system, demonstrates the usefulness of model-baged his indicates that it is possible to factorise the speake
schemes for this task. and noise transform to some extent. For the speaker tramsfor
estimated usind1, the “clean” data, gains in performance
(compared with VTS adaptation only) for all the four setsaver
B. Batch-mode speaker and noise adaptation obtained. Interestingly the average performance was ingoro

. . . . by estimating the speaker transform in a noisy environment,
The above experiments built a series of baseline systera%,

. . Other than on the clean set A this yielded lower WERS
where only noise adaptation was performed. In the followi 9an

. . the clean estimated model for all of the B test sets.
experiments, acoustic models were adapted to both thEttargﬁis indicates that although the speaker and noise transfor

spea::er andd e_nvwor;metni._ In the flrsft SEtdO_f exgetrlrrr:en n be factorised to some extent, the linear transform fer th
speaxer and noise adaptation was periormed in a batch Mgy e characteristics derived from the “Joint” schenssilis

(referred to as Bat”), i.e. Fhe adaptation experiments Weremodelling some limitations in the VTS mismatch function
run where speaker and noise (utterance-level) transforens w.

timated f h Ker f h faskhe “Joint’ and to fully reflect the noise environment. It is also interegtin
estimated for €ach speaker lor each tasihe Joint™ and ., compare the results with the batch-mode system from

“VTS-MLLR" schemes were first examined using the cleans ., .o || Eor test set B the average WER for the batch-

trained acoustic model. Following the same procedure used ye “Joint” scheme was 12.1% compared to 12.5% when
in the baseline systems, one VTS iteration was run f speaker MLLR transform' wa,s estimated uslmj and

o . e
each utterance to generate the supervision hypothesis. Ip@n fixed for all the test sets. This indicates that for these

generated noise models were also taken to 'n't"”.‘“?? t_m’enohoise conditions the factorisation was fairly effectivevtever
parameter@®. The speaker level transfori, was initialised

. ; ) . _ r the clean set A, the performance difference between the
as the identity transform. Then, as discussed in Section | P

the block coordinate descent optimisation strategy isiegpl atch-mode and the factorisation mode was greater. Thia aga
. : ) . indicates that the speaker transform was modelling somteeof t
for “Joint” and “VTS-MLLR”". Multiple iterations, Ngy = 4, P 9

i dIi itations of the VTS mismatch function. Results of speake
were used to update the speaker transform and noise mo §Tﬁj

A dditional MLLR p lied noise factorisation using “VTS-MLLR” scheme are also
S an additional contrast, an transform was applied 0f} o santed in Table IIl. It is clear that the “VTS-MLLR” schem

top of the “Joint”, again estimated at the speaker levelding does not have the desired factorisation attribute, as deadi

another scheme “Joint-MLLR". The results of these batCtPr'ansforms estimated from one particular noise conditions

mode speaker and noise adaptation experiments are pr@se@é%not generalise to other conditions. Hence, “VTS-MLLR"
in Table I1. Significant performance gafhsere obtained using - . : ' =

. scheme is not further investigated for factorised speahdr a
both “Joint” (14.6%) and “VTS-MLLR" (14.7%), compared to _ .. adaptation ¢ P

the baseline VTS performance (17.8%). The best performanc he above experiments demonstrate the factorisation at-
was obtained using the “Joint-MLLR” scheme (14.1%), Whicp. wm . .
ribute of “Joint” when the clean-trained acoustic models

indicates that there is still some residual mismatch afteimit were used. To examine whether this attribute is still vatid 1

adaptation and a general linear transform can be used togedu anti ; . )
: : : aptively trained acoustic models, a second set of expetsn
this mismatch. These experiments serve as a contrast to ?he

factorisation experiments in the next section. e , ,
In principle, it is possible to estimate speaker transforamf any of the

14 test sets. Unfortunately, utterances from three spgakeset C and set
5The speaker transforms were estimated for each speakerabnneése D were recorded by a handset microphone which limits the cipaignal
condition ( 01-14 ), and were used only in the noise condititrere speaker to telephone bandwidth. This also means it is not useful timete speaker
transforms were estimated from. The noise transform wasyavestimated transforms from set C or set D.
for every utterance. 8When the clean-trained acoustic models were adapted by Vi 1,
6All statistical significance tests are based on a matchedwisé signifi-  Table I1), 04 was the worst performed in set B. This trend was also observed
cance test at a 95% confidence level. in line 1, Table IV.
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Models Adaptation A B C D Avg.
Scheme| Spk. Est.ff 01| 02 03 04 05 06 O07|Avg.| 08 09 10 11 12 13 14| Avg.

— — 8.8|| 13.1 159 20.0 184 15.1 17)416.7| 19.1|| 24.1 27.8 31.1 30.9 28.6 29(428.6| 21.4

AFE bat 70|l 89 131 16.6 153 12.2 14}413.4| 10.5(| 14.6 19.8 23.0 21.9 185 21{419.9| 155

MLLR 01 7.0 185 206 258 24.1 20.7 21{521.9| 21.0{|28.1 329 37.7 356 32.0 33|133.2| 25.6

04 8.7|/10.5 14.3 16.6 16.2 13.0 15(114.3| 16.3|| 19.2 24.7 26.4 27.0 23.4 26/524.5| 184

VTS — 85| 9.8 132 16.0 14.6 12.0 164413.7| 11.8|| 12.4 19.6 23.1 23.2 18.8 23|820.1| 15.9

VAT - bat 56| 6.7 105 134 121 95 13/811.0 8.8 || 10.3 17.8 20.7 20.8 16.5 20{817.8| 13.4

Joint 01 56| 76 129 17.7 142 11.7 16J013.4| 11.1|| 115 19.6 248 22.6 19.7 23{920.3| 15.6

04 69| 74 11.2 134 126 10.3 14/111.5| 10.4|| 11.0 18.2 21.2 204 179 22{2185| 14.1

TABLE IV
FACTORISED SPEAKER AND NOISE ADAPTATION ORVAT AND AFE MODELS.

| Scheme| Spk.Est| A B C D [ Avg | conditions. This suggests that for feature normalisatiytes

[ vis [ — [ 69 151 118 233 178 trained acoustic models, the linear transform estimatech fr
VTS- 01 5.0 202 165 280 222 one noise data can be applied to other noise conditions for
MLLR 04 102 197 197 28.0) 225 the same speaker. However examining the results in more
Joint 8‘11 38 igé 1‘1’-3 ;é-i ig-z detail shows that this factorisation using AFE is limited. A

: : : : : 19% relative degradation ( 18.4% of the factorisation mode
TABLE 1l vs 15.5% of the batch-mode ) was observed. This compares

FACTORISED SPEAKER AND NOISE ADAPTATION OF CLEANTRAINED

0 - H “ H i1l H
ACOUSTIC MODELS USING*JOINT” AND “VTS-MLLR". to only 5% relative degradation for the “Joint” scheme. It is

worth noting that batch-mode AFE with MLLR (15.5%) is still

significantly worse that the “Joint” scheme run in a factedis

mode on thed4 data (14.1%)
was run. VAT acoustic models were adapted by “Joint”, in both
batch and factorisation modes. For the latfer,and04 were VI. CONCLUSION
again used for speaker transform estimation. Results diall This paper has examined approaches to handling speaker
subsets are presented in Table IV. Since the acoustic modeigl noise differences simultaneously. A new adaptation
are adaptively trained, improved performances are exgectescheme, “Joint”, is proposed, where the clean acoustic mode
compared with those in Table Ill. Note that factorisationd®o is first adapted to the target speaker via an MLLR transform,
adaptation orD1(04) using the speaker transform estimatednd then compensated for the effect of noise via VTS-based
from 01(04) is equivalent to the batch-mode adaptation, thuaodel compensation. Adapting the underlying clean speech
gives identical results tbbat on 01(04). The same trends model, rather than the noise compensated model, enables the
as those observed in the previous experiments can be seespeaker transform and the noise compensation to be kept
batch-mode “Joint” adaptation yielded large gains over VTdistinct from one another. This “orthogonality” thus supso
adaptation only ( 13.4% vs. 15.9%, average on all 4 setakoustic factorisation, which allows flexible use of thei-est
while using the speaker transform estimatedO@hachieved mated transforms. For example, as the one examined in this
a very close performance, 14.1%. The advantages of uspaper, the same speaker transform can be used in a range of
“Joint” scheme were fairly maintained with the adaptivelyery different noise conditions.
trained acoustic models. This scheme is compared with two alternatives for handling

It is also of interest to look at the experiments of thbéoth speaker and noise differences. The first one, “VTS-

speaker and noise adaptation with the AFE acoustic modéf.LR", is a more standard combination of VTS and MLLR
Speaker adaptation for AFE model was done via an MLLRhere the MLLR transform is applied after VTS compen-
mean transform with the same block diagonal structure nagaiation. Note this form of scheme is extended in this paper
estimated at the speaker level. The AFE model was first useddosupport inter-leaved estimation of the noise and speaker
generate the supervision hypothesis, following the MLLR-adtransforms, rather than estimating them sequentially. The
ptation, and then the final hypothesis was generated. Thowggtond scheme “AFE-MLLR” uses AFE to obtain de-noised
multiple iterations of hypothesis generation and tramafoe- observations prior to adaptation to the speaker.
estimation could be used, it was found in the experimentsThe AURORA4 data was used for evaluation. Experimental
the gain was minimal. In the batch-mode adaptation, speakesults demonstrate that if operated in a batch mode, both
transforms were estimated for every single set, while fer tHVTS-MLLR” and “Joint” give gains over noise adaptation
factorisation mode, speaker transforms were estimatan fralone. However, only “Joint” supports the factorisationdeo
01 or 04. Results of these experiments are summarised adaptation, which allows a very rapid speaker and noise
the first block of Table IV. It can be seen that the speakadaptation. “Joint” scheme was also compared with the sehem
transform estimated frori1 did not generalise well to otherthat use feature-based approach to noise compensation, the
noisy sets (WER increased from 21.4% to 25.6%), whiltAFE-MLLR". Results show “AFE-MLLR” does not achieve
the one estimated fron@4 can generalise to other noisethe same level of performance as “Joint”.
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This paper has proposed the “Joint” scheme for speaker @eaj Y. Gong, “A method of joint compensation of additive acdnvolutive

noise adaptation. As speaker and noise factors are modelle

separately, it also enables speaker adaptation using a broa

range of noisy data. Throughout the paper, it is assumed tieat

the speaker characteristics does not change over the tide, a
the speaker adaptation is carried out in a static mode. lbail |54
interesting to apply “Joint” in an incremental mode in figur
work to domains where the adaptation data has large vargtio

in background noise, for example in-car applications.
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