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ABSTRACT [5]. The other approach, usually referred to as probabilis-
) ) ) tic TANDEM approach, was first proposed in [6], combines
Adaptation to speaker and environment changes is an egse posterior obtained by MLPs with MFCC or PLP to form

sential part of current automatic speech recognition (ASRyne TANDEM feature, which is modelled by the conventional
systems. In recent years the use of multi-layer percpetrongm-based systems. An alternative form was proposed in
(MLPs) has become mcreasmgly common in ASR systemsz] where a bottleneck layer is introduced in which neural
A standard approach to handling speaker differences Whéfkts are constrained to have a very narrow hidden layer, the
using MLPs is to apply a global speaker-specific constrainegottieneck layer, in the middle and the linear output of that
MLLR (CMLLR) transform to the features prior to training |ayer is taken as output instead of posteriors. The advantag
or using the MLP. This paper considers the situation whert TANDEM approach is that almost all the techniques devel-
there are both speaker and channel, communication link, dit)ped for the GMM-based system can be equally applied, e.g.,
ferences in the data. A more powerful transform, front-enchgaptation, adaptive training and discriminative tragnifihis
CMLLR (FE-CMLLR), is applied to the inputs to the MLP to \york considering using the existing adaptation techrigoe

represent the channel differences. Though global, these Fignm-based systems for MLPs, thus sits in this TANDEM
CMLLR transforms vary from time-instance to time-instance fgmework.

Experiments on a channel distorted dialect Arabic conver- ; is well understood that speech signals are highly af-

sational speech recognition task indicates the usefuloEss o.teq by various factors. Thus the ability to adapt ASR
adapting MLP features using both CMLLR and FE-CMLLR gystems’to new operating conditions, unseen in the training
transforms. data, is important. One approach to adapting MLPs is to
Index Terms— MLP feature, acoustic model adaptation augment the neural nets with a linear transformation ne¢wor
connected to the input, e.g., the Linear Input Network (LIN)
adaptation [8]. The transform matrix is then estimated by
1. INTRODUCTION minimising the cross entropy between the supervision hy-
pothesis and the model prediction. Due to this discrimueati
In recent years, the use of multi-layer perceptions (MLBs) f criterion, the estimation is sensitive to the error in sujséon
automatic speech recognition (ASR) has received considekypothesis. An alternative approach is to apply a globat con
able research interests [1, 2, 3]. An MLP usually takes sevstrained maximum likelihood linear regression [9] (CMLLR)
eral frames of short-term spectral-based feature vectgr, (e transform to the features prior to training or using the MLP
MFCC or PLP) as input to predict the center phone (or phonete.g., [10, 11]). This removes the need to estimate paramete
state) identity. There are two broad approaches to usingsMLRijiscriminatively [12]. However the use of a single global
in the ASR systems. The first one, proposed in early 90’s, retransform, as the transform must be used for all classes, lim
places the Gaussian mixture model (GMM)-based emissiofs the ability to model the complexity of environment and
probabilities by the class posterior probabilities estedaby  channel distortions.
MLPs [4]. This approach, usually referred to as hybrid artifi ~ This work focuses extending adaptation approaches for
cial neural network-hidden Markov model (ANN-HMM), has MLPs by leveraging the existing adaptation techniques al-
recently become popular, since it is found training MLPs usready developed for GMM-based systems. In particular, this
ing context-dependent tied triphone state as target wittemo work considers designing ASR systems to recognise speech
than 3 layers is able to deliver extremely good performanceansmitted though different communication channelsé)n
- ” " ed by Good ) 4 In the previous work [13], a front-end CMLLR (FE-CMLLR)
DARPAsu\rlmvgér RWAa'I'S Sp;:gargm.su‘?ﬁgrpeaperydoe(;ogoet rrleecszeeésl;;rﬂ;v::f:e : [14] Fechmque was usgd to normalise the impact of th.e com-
position or the policy of US Government and no official endorsat should munication channel while CMLLR was used to normalise the
be inferred. speaker. In this work, these schemes are also applied to nor-




malise the input of a MLP with a bottleneck topology. FE-  To simultaneously model the effect of speaker and link,
CMLLR is suitable for this task as, though the transform isit is possible to combine FE-CMLLR with CMLLR. In [13],
applied globally, it varies from time-instance to timetarsce.  speaker transforiw (*) was applied in a link space defined
Effectively it yields a non-liner transform in the model spa by FE-CMLLR:

The rest of this paper is organised as follows. Section 2 () )
briefly reviews the CMLLR and FE-CMLLR techniques de- p(ye 58, m, M, Me) = [AN ][ Acy| (4)
\{eloped for the GMM-based system. Seption 3 discusses op- N(A(S)(Actygs) + bet) + b*): Nim), 2}({“1))
tions to adapt TANDEM systems. Experiment and results are

discussed in section 4 with the conclusions in section 5. BY transforming the feature using the speaker transform{CM
LLR) and the link transform (FE-CMLLR), a link and speaker

2. GMM-BASED SYSTEMS ADAPTATION adaptive trained (LSAT) model can be built in the normalised
feature space. The upper branch in Figure 1 shows the speaker
A popular choice of adapting GMM-based systems is to useand link adaptation of PLP feature.
linear transform-based schemes, for example MLLR and
CMLLR. One of the advantages of CMLLR is that it can
be viewed as a transform acting on feature when a global
class is used [9]. When this form of CMLLR is used for

speaker adaptation, each speakiarassociated with one line !N the TANDEM system, MLP is used for feature extrac-
transformw() — AL b(s)] and the distribution of each ton. Short-time spectral-based features (in this work, 13
componentn for speake;:s is: dimensional PLP) with dynamic features and context frames

are fed into MLP. Linear output of the bottleneck layer
P(U” | My, s,m)= [ADIN (AP Y 4bE); uM 3™ (1) s decorrelated by principle component analysis (PCA) or
s) SEMIT transform [15] and concatenated with PLP to form
where y; 'S) the speech feature produced by speaker the TANDEM PLP+MLP feature. To allow simple concate-
My = {H:(cm ,%{™} the canonical model parameters. As nation, both PLP and MLP-based features are extracted using
CMLLR in this form is acting on the feature, it is very effi- the same frame rate. The lower branch in Figure 1 shows the
cient to use in speaker adaptive training (SAT). The estomat g chitecture for generating TANDEM feature.
of the canonical modeM, and speaker transfor|W<S)_ IS There are two possible approaches to adapting a TAN-
done via iteratively maximising the likelihood functioning  pgp system. First, the MLP input can be transformed to a
EM. An efficient iterative row-by-row maximising method is normalised space. Usually the same linear transform is used
used to estimate the transform [9]. ~ for each context frame to reduce the number of adaptable pa-
To model complex acoustic conditions multiple linear ameters. The transform can be estimated by minimising a
transfqrms can be used._ In [13], an alternative f.eatur.es{ran frame-level cross-entropy based criterion, as in LIN aglapt
formation, FE-CMLLR, is used to model the distortion of i, 18], Alternatively, the feature transforms estimatethe
communication channel, in conjunction with the CMLLR g\M-based systems can be borrowed. This is shown in Fig-
used for modelling the speaker differences. For a communicg, e 1 when the switch is in position 2. Second, as the TAN-
tion channel (link) distorted speech vecigr, a FE-CMLLR  pE feature is again modeled by GMMs, the same adap-
is applied to yieldz;: tation techniques, such as CMLLR and FE-CMLLR, can be
c used. The dashed box in the lower branch in Figure 1 illus-
B =Y 1 (ALY, +b) = Ay, + by () trates this.
c=1 It is interesting to compare these two forms of TANDEM
system adaptation. Transforms which directly adapt the-TAN
. . DEM feature are estimé':\ttlad by maxihmising t?e Iikeflihoodhof
o) (e )y (e TANDEM acoustic model. Using the transforms from the
Act = ZVét)Aé " b= Z%(t)bé : 3) PLP system to modify the MLP input feature, which indi-
o=t o=t rectly adapts the TANDEM feature, does not guarantee the
Estimating the FE-CMLLR transformM, = {A§0)7 b{)},  increase in likelihood of TANDEM acoustic model or frame
and the canonical model1,, is also done via maximising accuracy of MLPs. On the other hand, linearly transforming
the likelihood function using EM. An approximated methodthe MLP input yields a nonlinear transform of TANDEM fea-
was used in [13] to perform the optimisation. It is obviousture, while directly adapts the TANDEM feature using CM-
that FE-CMLLR, similar as global CMLLR, operates in the LLR or FE-CMLLR is a linear (or piecewise linear) transform
feature space. Different from global CMLLR, using multiple of the TANDEM feature. Given the differences between two
component transforms allows FE-CMLLR to model complexapproaches, it may be useful to combine them. In addition,
distortions such as communication channels. FE-CMLLRhese forms of feature transformation can be further coatbin
also enables a consistent space for speaker adaptation [13]with model-based adaptation, e.g., MLLR.

3. TANDEM SYSTEMS ADAPTATION

Where'yE? is obtained from a front-end GMM and
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Fig. 1. Flowchart of PLP and TANDEM system adaptation.

4. EXPERIMENTS project the 52-dimension PLPs down to 39 dimensions, fol-
lowed by CMLLR and/or FE-CMLLR transforms. 9 context

Experiments were carried out on the training and test datftames were used. The inputs to MLP were also mean and
provided from Robust Automatic Transcription (RATS) pro- variance normalised on the side level. In the initial inisest
gram for Arabic keyword spotting. The data was collectedgation, a 4-layer MLP topology was used in which the first
by retransmitting Levantine Arabic conversational telapd  hidden layer has 3500 hidden nodes while the second layer,
speech data over eight communication channels (links)lwhicbottleneck layer, has 26 nodes. The neural net was traired us
are labelled as A to H. A wide range of distortion are assoing back-propagation in mini-batch (800 frames) mode. Ten
ciated with these links. The training data include data fronpercents of the training data (randomly chosen at side)level
all eight channels plus the original clean speech. Partef thwas used as the cross validation set.
retransmitted data was held-out to form a test set, devl. For For the Sl systems, a one-pass unadapted decoding was
each of the channels there was 2 to 2.5 hours test data, deerformed using the trigram language model. For SAT and
pending on how much of the retransmitting speech passedSAT, the PLP S| system was first used to generate the su-
quality assurance tests. The clean Levantine Arabic trgrsc pervision hypothesis, which was then used to estimate the
tions (excluding the devl test data), approximately 1.6onil  speaker transforms. In this work, a CMLLR and a MLLR
words, were used to train a trigram language model. mean transform were used, both were global and full trans-

The acoustic data was parameterised using 13-dimensioriaims. After the speaker adaptation, a second pass decoding
PLP, including CO. Delta, delta-deltas and triples were apwas performed using the adaptively trained models (SAT or
pended followed by an HLDA projection from 52 dimensionsLSAT). During the test, it was assumed the segmentation and
to 39. Speaker (side) based cepstral mean normalisation whsk identity of each utterance were known. Three represent
applied. Word-based graphemic systems, incorporating wortive links in terms of distortions were given in the first Tabl
boundary information were build. Cross-word decisioretre link A (high), C (medium); and G (low). All results are based
state-clustered triphone models were then trained using MPon confusion network (CN) decoding.
criterion. There are about 3K distinct states with an averag Initially, PLP acoustic models were built. As this task is
of 36 components per state. In addition to the above speak&nown to be very challenging, the overall performances are
(and link) independent (SI) system, SAT system was buildas expected, quite poor. Decoding using a PLP SI model gave
using global and full CMLLR transforms at the speaker levela WER (averaging on all links) of 68.4%. Using SAT/LSAT
For link representation, a 128-component FE-CMLLR wasfor PLP-based systems yields average WERs of 63.9% and
used for each link. A single front-end GMM was used for63.3% respectively, while most of the gains coming from the
all links. SAT was also built in the FE-CMLLR normalised high distortion link such as link A. The initial TANDEM sys-
space, yielding the LSAT system. tems were build without MLP input adaptation. Using TAN-

TANDEM SI, SAT and LSAT systems were built using DEM feature alone yield considerable gains over S| PLP sys-
the “fast” system build method detailed in [3]. The TAN- tems (64.2% vs 68.4%), while adaptively trained SAT/LSAT
DEM features for this work were 26-dimensional with decor-TANDEM systems gave further gains, as shown in the first
relating transform constructed in the same fashion as in [3fows of block 2 and block 3 in table 1. Preliminary investi-
Initially 52-dimensional PLPs (static, delta, delta-dsland gation on MLP input adaptation showed transforming PLPs
triples) were used for each frame. If MLP input adaptation isusing only HLDA does not give any significant gains, which
switched on, the HLDA estimated in PLP system was used toorrelates to the findings in [12] for a deep neural net used



#layers TANDEM | MLP input adapt. Link Avg
Systems | Speaker  Link A B C D E F G H

Sl - - 719 736 679 628 76.0 657 574 71.88.0

4 SAT v - 704 705 63.7 58,0 732 634 538 69.54.9

LSAT v v 70.2 70.7 63.6 572 723 625 529 67.94.2

SAT - - 68.8 69.6 634 572 717 61.1 53.0 67.43.6

5 SAT v v 69.2 694 624 557 711 614 517 671.463.1

LSAT v v 69.3 695 623 554 70.8 61.3 514 671.B52.9

7 SAT - - 68.8 69.0 634 571 716 613 530 67.%34

v v 694 694 615 552 714 614 517 671.52.9

Table 2. Performance contrast by adapting TANDEM system to speahafor link using different number of layers of bottle-
neck neural nets.

in the hybrid architecture. As the supervision hypotheaid h Finally, the effectiveness of these MLP adaptation tech-
such a high WER, it is suspected LIN adaptation, estimatediques were examined on two more complex neural nets: a
by the discriminative criterion, will not give any gains ei- 5-layer and a 7-layer bottleneck neural net. The 5-layer neu
ther. However, MLP input adaptation using CMLLR and FE-ral net had 2 hidden layer each with 2K nodes, while the
CMLLR does give gains, as shown in table 1. The first block7-layer neural net had 4 hidden layer each with 1K nodes.
of table 1 shows the contrast on S| systems. Compared witBther layers were kept the same. To get the best perform,
the performance of the TANDEM Sl system without inputthe 7-layer neural net were discriminatively pre-trained a
adaptation, 0.7% absolute gains can be achieved by link adathen fine-tuned as in [12]. Adding additional hidden layers
tation, while about 1.5% gains can be obtained by adaptingields gains, as shown in the second and third blocks of table
the MLP input to speaker or speaker/link. Note that adapt?2. The average WERs of TANDEM SAT system was 63.1%
ing the MLP input to link does not require a supervision,and 63.4% for the 5-layer and 7-layer neural nets respégtive
therefore can be used in the initial decoding. The second anshich compared to 64.9% WER of the system using 4-layer
third block of table 1 show the gains by combining MLP in- neural nets. On the other hand, it seems that linearly trans-
put adaptation with adaptively trained TANDEM models. Onforming the MLP input is still helpful when combining with
the most advanced systems (LSAT), using CMLLR and FESAT TANDEM system, achieving 0.5% gains. Future work
CMLLR as MLP input feature normalisation, there is aboutwill exam the trend of these gains when deeper MLPs and
0.6% performance gains (61.2% vs. 60.6%). The first blockontext-dependent targets are used.

of table 2 shows the overall adaptation gains on all links by
using speaker or speaker/link information. In total 3.1%838

gains can be obtained on this difficult task. This shows adap-
tation of TANDEM systems is helpful. This paper has discussed approaches to TANDEM system

adaptation in degraded communication channels. Multiple
Systemd MLP input adaptation Cink !inear transforms were constructed to normalise the MLP
Speaker Link A c G Avg m_put: a global CMLLR was used to normalise the speaker
differences, and a more powerful FE-CMLLR was employed
- B 719 67.9 57.464.2 for channel difference normalisation. Different from the
Sl CMLLR N 713 65.6 56'E 62.8 global CMLLR, which only allows a single transform for
- FE-CMLLR | 71.1 664 57.2635 50 speaker, FE-CMLLR varies from time-instance to time-
CMLLR FECMLLR| 711 656 56.062.7 instance. This gives FE-CMLLR a flexibility to normalise
- - 70.4 64.9 54.161.8| more complicated, channel, distortions. By combing these
sar | CMLLR - 70.4 63.7 53.861.1| |inear transforms, distortions caused by multiple aceusti
- FE-CMLLR || 70.8 63.5 53.361.0| factors (speaker and channel differences in this work) can
CMLLR FE-CMLLR | 70.4 63.4 52.960.6|] pe better normalised. These transforms were estimated in
- - 70.4 64.1 53.861.2| the GMM-based system using maximum likelihood criterion.
CMLLR - 70.6 63.6 53.460.9| Although used in a different system, they are shown to be
- FE-CMLLR || 70.9 63.2 53.160.7| useful. MLP input adaptation is also combined with adaptive
CMLLR FE-CMLLR || 70.2 63.6 52.960.6| trained TANDEM models. Experiments on the channel dis-
torted dialect Arabic conversational speech recognitask t
Table 1. MLP input speaker and/or link adaptation. The bot-demonstrated the benefits of TANDEM system adaptation
tleneck neural net had 4 layers. using multiple linear transforms.

5. CONCLUSIONS

LSAT
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