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Abstract
Speech signals are usually affected by multiple acoustic

factors, such as speaker characteristics and environment differ-
ences. Usually, the combined effect of these factors is modelled
by a single transform. Acoustic factorisation splits the trans-
form into several factor transforms, each modelling only one
factor. This allows, for example, estimating a speaker transform
in a noise condition and applying the same speaker transform
in a different noise condition. To achieve this factorisation, it
is crucial to keep factor transforms independent of each other.
Previous work on acoustic factorisation relies on using differ-
ent forms of factor transforms and/or the attribute of the data
to enforce this independence. In this work, the independence
is formulated in mathematically, and an explicit constraint is
derived to enforce the independence. Using factorised cluster
adaptive training (fCAT) as an application, experimental results
demonstrates that the proposed explicit independence constraint
helps factorisation when imbalanced adaptation data is used.
Index Terms: speaker adaption, robust speech recognition,
acoustic factorisation

1. Introduction
For real-life applications, speech recognition systems must be
able to handle complex acoustic environments where there may
be multiple acoustic factors simultaneously affecting the speech
signal. For example, a typical speech recogniser is often re-
quired to operate in a wide range of environments for a large
number of possible users. Hence it must have the ability to
adapt to the target speaker and environment condition rapidly.
The conventional approach is to build a model transform for
the combined speaker and noise, target condition. This requires
adaptation data for all possible operating conditions. An alter-
native approach, acoustic factorisation first proposed in 2001
[1], has been adopted by a number of sites very recently e.g.,
[2, 3, 4, 5, 6]. In parallel with the factorisation approach in
speech recognition, there is also work along this line in speech
synthesis, e.g., [7, 8], where the goal is to synthesis the effect
of multiple factors, such as speaker, language and emotion. The
idea underlining acoustic factorisation is to divide the model
transform into a set of factor transforms, each associated with
only one distinct acoustic factor. This is illustrated in Figure
1, using speaker and environment adaptation as an example.
Assuming that the impact of speaker and environment on the
acoustic model can be represented by model transforms whose
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Figure 1: Factorised adaptation to the target speaker and envi-
ronment: transforms independence.

parameters are λs and λn respectively, two ellipses in figure
1 illustrate the speaker and environment coverage in the adap-
tation data, where point b and c represent two observed con-
ditions. To adapt the model to the target condition a, only the
speaker transform λ(b)

s and the noise transform λ(c)
n are needed,

which can be estimated from adaptation data. This factorised
adaptation is possible due to the independence between two
factor transforms, as explained in the magnifier: when the op-
erating condition is moved from point b towards point a, λn get
a small update ∆λn to reflect the environment transition; due
to the independence between λs and λn, speaker transform will
not be affect by ∆λn.

Previous work on acoustic factorisation relies on two
schemes to achieve the independence. In [2], two rather differ-
ent forms of factor transforms (vector Taylor series[9], a non-
linear transform, for the environment factor and maximum like-
lihood linear regression, MLLR [10], a linear transform, for the
speaker factor) were used. It is hoped that by using different
forms of factor transforms, each models the specific factor to
which it is tuned. It was demonstrated that this achieves the in-
dependence to some extent while the MLLR transform is still
modelling the noise effect. In [4], two constrained MLLR[11]
transforms were cascaded to represent the speaker and environ-
ment distortion respectively. As both factors are modelled by
linear transforms, there is no built-in mechanism to avoid a fac-
tor transform learning the effect of other factors. To achieve fac-
torisation, the speaker transform is estimated on one speaker’s
data with a range of environments in a balanced manner. In
this way, the speaker transform is hoped to be independent to
the environment, thus achieving the independence. However,
this requires data from the same speaker are distributed in an
environment-balanced manner. In practice, it is quite common
that the majority of a user’s data is collected from the same en-
vironment. In this case, as there is no independence guaran-



tee, the estimated “speaker” transform will tend to model both
speaker and the dominate environment. Work in [7, 8] also used
linear transform to represent various acoustic factors and relies
on balanced data to enforce the independence. The idea of fac-
torisation has been also used in speaker recognition, e.g., joint
factor analysis (JFA) [12] seeks to separate the speaker and the
session variability, where both factors are represented by bias
vectors in subspaces. However, there is no guarantee that the
two subspaces are orthogonal, thus JFA also relies on the data
balance to factor out the speaker variability. It is observed in
[13] the speaker factor obtained by JFA still contains the ses-
sion information.

In contrast to the implicit constraint approaches adopted in
previous work, in this paper the dependence is analysed mathe-
matically and an explicit constraint derived in section 2. As an
application of this constraint, the factorised CAT (fCAT) model
proposed in [8] is modified in section 3. Experiment results are
presented and discussed in section 4.

2. An Explicit Constraint for Transform
Independence

In this work, it is assumed there are two acoustic factors si-
multaneously affecting the speech signal: speaker characteris-
tics s and environment differences n. The proposed approach
sits in the model-based framework [14], in which the intrin-
sic, phoneme variability is represented by a canonical model
Mc while the extrinsic, speaker and environment variability is
represented by a set of transforms T . The canonical model is
adapted to the target i-th speaker and j-th noise condition by :

M(i,j) = F(Mc, T (i,j)) (1)

where T (i,j) is the model transform that adapts the canonical
modelMc toM(i,j), and F is the mapping function. To effec-
tively deal with the complex acoustic environments, the concept
of acoustic factorisation was proposed in [1], where the trans-
form T (i,j) is factorised into two components, each associated
with one distinct acoustic factor, i.e.,

T (i,j) = T (i)
s ⊗ T (j)

n (2)

where T (i)
s and T (j)

n are the factor transforms for i-th speaker
and j-th environment respectively. This provides additional
flexibility for using the model-based framework in complex en-
vironments [2].

To achieve the factorisation property in Eq. (2), it is crucial
that each factor transform models exactly the impact of its asso-
ciated acoustic factor, thus it will only change when the corre-
sponding acoustic factor changes. In practice, factor transforms
are normally maximum likelihood (ML) estimated on their cor-
responding data. For example, given a set of adaption utterances
{O(h)}which are produced by I speaker in J environment con-
ditions, the speaker and environment transforms are obtained by

T (i)
s = arg max

Ts

∑
h:sh=i

L(O(h);Mc, Ts, T (nh)
n ) (3a)

T (j)
n = arg max

Tn

∑
h:nh=j

L(O(h);Mc, T (sh)
s , Tn) (3b)

where sh ∈ {1 . . . I} and nh ∈ {1 . . . J} are the
speaker and environment indices of utterance h respectively,
L(O(h);Mc, Ts, Tn) is the log-likelihood function of the utter-
ance h, given the canonical model, the speaker and the environ-
ment transforms. As it is shown in Eqs. (3), an optimal speaker

transform is obtained by maximising a likelihood function with
the optimal environment transforms as its parameters, thus it
is a function of a set of optimal environment transforms, which
breaks down the factorisation property in Eq. (2). This becomes
more severe when the data distributed unevenly among acous-
tic factors. In an extreme, if there is only one noise source in a
particular speaker’s utterances, it is not possible to separate one
factor from the other.

To mitigate this problem, it is necessary to keep the inde-
pendence between factor transforms. This requires

∂T (i)
s

∂T (j)
n

= 0 ,
∂T (j)

n

∂T (i)
s

= 0 ∀i, j (4)

Note {T (i)
s } and {T (j)

n } are the ML estimators given in
Eqs. (3). The independence constraint in Eq. (4) en-
forces the optimal factor transform will not be affected by
other factor transforms, allowing it changes only when the
corresponding acoustic factor changes. The constraint in
Eq. (4) implies that for any observed utterance O, the op-
timal factor transforms T ∗s and T ∗n are independent of each
other, where T ∗s = arg maxTs L(O;Mc, Ts, Tn) and T ∗n =
arg maxTs L(O;Mc, Ts, Tn). This constraint can be formu-
lated as a more useful one as the following proposition demon-
strates:

Proposition 1. Let x∗(y) be the local maximiser of function
f(x,y) given y. Assuming the function f has its second order
derivatives ∂2f

∂x∂y
defined everywhere, the derivative of x∗ with

respect to y is

∂x∗(y)

∂y
= −

(
∂2f

∂x∂x

)−1
∂2f

∂x∂y

∣∣∣
x=x∗(y)

(5)

Thus a sufficient condition for ∂x∗(y)
∂y

= 0 is :

∂2f

∂x∂y
= 0 ∀x,y (6)

This condition also implies ∂y∗(x)
∂x

= 0 .

Proof. Define another function g(y) = ∂f(x,y)
∂x

|x=x∗(y). On
one hand,

∂g(y)

∂y
=

[
∂2f

∂x∂y
+

∂2f

∂x∂x

∂x

∂y

]
x=x∗(y)

On the other hand, as x∗(y) is a local maximiser of f(·,y),
thus ∂2f

∂x∂xT |x=x∗(y) � 0 and

g(y)
4
=
∂f(x,y)

∂x
|x=x∗(y) = 0

Therefore, ∂x∗(y)
∂y

= −
(

∂2f
∂x∂x

)−1
∂2f

∂x∂yT

∣∣∣
x=x∗(y)

and

∂2f
∂x∂y

= 0 implies ∂x∗(y)
∂y

= 0. A similar argument can be

made to establish ∂2f
∂y∂x

= 0 implies ∂y∗(x)
∂x

= 0.

Proposition 1 ensures if the second order derivatives of the
log-likelihood function with respect to the speaker transform
and noise transform is zero everywhere, the independence con-
straint in Eq. (2) is satisfied. The log-likelihood function is
usually maximised via EM using the auxliary function in the
following form:

Q =
∑
m,t

γ
(m)
t log p(ot;µ

(m)
c ,Σ(m)

c , Ts, Tn) (7)



where ot is the observation vector at time t, γ(m)
t is the pos-

terior of ot belonging to m-th component, µ(m)
c ,Σ

(m)
c are the

canonical mean and variance of component m. Assuming γ(m)
t

does not vary with respect to the change of Ts and Tn, the fol-
lowing constraint is used to enforce the independence:

∂2Q
∂Ts∂Tn

= 0 (8)

3. Factorised Cluster Adaptive Training

In this work, the fCAT model proposed in [8] was used to eval-
uate the effectiveness of the proposed independence constraint
for acoustic factorisation. fCAT is an extension of the standard
cluster adaptive training (CAT) [15] or eigenvoice[16], which
enables adapting the acoustic models to multiple factors. In
fCAT, to compensate the variability of speaker and environment
in h-th utterance, the m-th Gaussian component is adapted by:

p(o
(h)
t ;µ(m)

c ,Σ(m)
c ,m, sh, nh) = N (o

(h)
t ;µ(mh),Σ(m)

c ) (9)

where o(h)t ∈ RD is the t-th observation vector in h-th utter-
ance, µ(m)

c ,Σ
(m)
c are the canonical mean and variance, and

µ(mh) = µ(m)
c + M(m)

s λ(sh,qm)
s + M(m)

n λ(nh,rm)
n , (10)

M
(m)
s ∈ RD×ds , M

(m)
n ∈ RD×dn are the component m’s

speaker and environment cluster parameters, ds and dn are
the number of speaker and environment cluster respectively;
qm ∈ {1, . . . , Q} (rm ∈ {1, . . . , R}) maps the component
index m to the speaker (environment) regression class index;
λ

(i,q)
s is the speaker cluster weight vector associated with q-

th speaker base classs for i-th speaker; λ(j,r)
n is the environ-

ment cluster weight vector associated with r-th environment
base class for j-th environment. Among these parameters,
{µ(m)

c ,Σ
(m)
c ,M

(m)
s ,M

(m)
n } form the canonical model param-

etersMc, while {λ(i,q)
s |q = 1 . . . Q} and {λ(j,r)

n |r = 1 . . . R}
are the parameters of i-th speaker transform T (i)

s and j-th envi-
ronment transform T (j)

n respectively. Note this modelling form
is similar to the one used in JFA[12], whilst there is an addi-
tional diagonal residual term in JFA.

For the auxiliary functionQ in EM, it is easy to show that

∂2Q(O; Ts, Tn)
∂Ts∂Tn

=
∑
t,m

γ
(m)
t M(m)T

s Σ(m)−1
c M(m)

n . (11)

Hence a sufficient condition for the independence constraint in
Eq. (8) to hold for every possible observation sequence is

M(m)T
s Σ(m)−1

c M(m)
n = 0 ∀m. (12)

According to the above constraint, in a normed vector space
induced by the inner product function x · y = xTΣ−1y, the
speaker subspace, expanded by Ms, is orthogonal to the en-
vironment subspace which is expanded by Mn, where Σ =

diag(· · ·Σ(m)
c · · · ), Ms and Mn are obtained by stacking

M
(m)
s and M

(m)
n respectively. This orthogonality guaran-

tees that for a given data point, there is a unique speaker-
environment factorisation, thus it is possible to separate speaker
factor even if there is only one data point.

fCAT model is trained to maximise the likelihood of train-
ing data which consists of various speaker and environment
combinations. The parameter updates are the same as those in
[8]. The main difference is the constraint in Eq. (11) need to
be maintained, thus updating the m-th speaker cluster M

(m)
s

requires solving the following constrained optimisation1:

maxMs −
1

2
tr
(
MT

s Σ−1
c MsGs

)
+ tr

(
Σ−1

c MsKs

)
s. t. MT

s Σ−1
c Mn = 0 (13)

where

Gs =
∑
t,h

γ
(mh)
t λ(sh,qm)

s λ(sh,qm)T
s

Ks =
∑
t,h

γ
(mh)
t λ(sh,qm)

s (o
(h)
t − µ(m)

c −M(m)
n λ(nh,rm)

n )

and γ(mh)
t is the posterior probability of o(h)t in component m.

Using the method of Lagrange multipliers [17], it can be shown
that the solution is given by:

M =

[
I−Mn

(
MT

n Σ−1
c Mn

)−1

MT
n Σ−1

c

]
KsG

−1
s (14)

Note M = KsG
−1
s if the constraint is removed. Similar equa-

tion is adopted for re-estimating for the environment cluster pa-
rameter M

(m)
n .

There are three main stages involved to train a fCAT model.
In the first stage, speaker and environment transforms were ini-
tialised. In this work, the eigen-decomposition[16] approach
was used for speaker transforms initialisation, while the envi-
ronment transforms were initialised as one-hot vectors, with the
corresponding environment weighted as 1. In the second, stan-
dard CAT training stage, the speaker transforms, the speaker
cluster parameters and the canonical mean/variance were iter-
atively updated, while in the third training stage, 5 sets of pa-
rameters: the speaker transforms, speaker cluster parameters,
environment transforms, environment cluster parameters and
the canonical mean/variances were re-estimated iteratively. The
overall fCAT training procedure, starting from a well-trained
CAT model, is summarised in the following:
1 Initialise the environment transforms by setting the current

environment weight as 1, all the other weights as 0; initialise
the speaker transforms using the transforms obtained during
standard CAT training.

2 Given the current speaker clusters, and the
speaker/environment transforms the environment clus-
ters are estimated to maximise the log-likelihood function
while maintaining the independence constraint in Eq. (12).

3 The environment transforms are updated while keeping all
the other parameters fixed.

4 The speaker clusters are updated while keeping all the other
parameter fixed. Again, the independence constraint in Eq.
(12) needs to be maintained.

5 Update speaker transforms while keeping all the other pa-
rameters fixed.

6 Goto step 2 N1(∼ 2) times.
7 The canonical mean and variances are updated given the cur-

rent speaker/environment transforms and clusters.
8 Goto step 2 N2(∼ 5) times.

4. Experiments
The effectiveness of the proposed explicit independence con-
straint for factorised adaptation was evaluated on a noise cor-
rupted wall street journal (WSJ) task. Both WSJ0 and WJS1

1For notation simplicity, the index m in superscripts is omitted in
Eq. (13) and Eq. (14).



training data were used. There are in total 36,515 utterances
in the training set, produced by 284 speakers. To simulated
the background noise, 6 types of noise (similar as those used
in AURORA4 task) were added to the SI-284 training set to
form a multi-conditional training set with 7 environment con-
ditions (including clean condition). As an initial investigation,
the training set was created in a speaker-environment balanced
manner, i.e., utterances from each speaker were exposed to 7
environment conditions with equal probability. The SNRs in
training data ranged from 20dB to 10dB. 3 evaluation sets were
defined to simulate different scenarios in which factorised adap-
tation can be used. The first one, based on the original WSJ1 de-
velopment set (wsj1 dt), had 10 speakers, each comprising 40
adaptation read utterances and roughly 50 test utterances. These
utterances were distorted in the same way as training utterances,
except only 6 noisy environment conditions were created with
the SNR ranging from 15dB to 5dB. The second one, based
on the WSJ0 development set (wsj0 dt), simulated a more
realistic operation scenario, where a majority (75%) of adap-
tion utterances (400 in total) were distorted by the same noise
source (“restaurant noise”), while the 410 test utterances were
distorted by the 6 noise sources with a uniform distribution. The
third set, based on the WJS0 evaluation set (wsj0 et) simu-
lated the practical enrollment scenario: all the 321 adaptation
utterances were distorted by a single noise source (“restaurant
noise”), while the environment conditions of the 330 test ut-
terances were uniformly distributed. The SNRs for the adapta-
tion and test utterances in the three evaluation sets were ranging
from 15dB to 5dB. Adaptation for the first two sets (wsj1 dt
and wsj0 dt) ran in a unsupervised adaptation mode, while
wsj0 et set ran in a supervised mode. It was assumed all the
speaker and environment identities were known in advance.

A 39 dimensional front-end feature vector was used for the
experiments, consisting of 12 MFCCs appended with the ze-
roth cepstrum, delta and delta-delta coefficients. Cepstral mean
normalisation was performed for each utterance. A cross-word
triphone acoustic model with 3955 tied states, 16 components
per state was trained on the multi-conditional training set. This
is known as the multi-styled trained model (MST). Initialised
by this MST model, a standard CAT model with 8 clusters were
also trained, where a 32-node regression tree was used for CAT
adaptation on the speaker level. On top of this CAT model,
fCAT model was trained to take the environment variability into
account, in which the environment space is consisted of 7 clus-
ters. A 256-node environment regression tree was used. As
a contrast, another fCAT model was also trained without the
implicit independence constraint. In decoding, A bi-gram lan-
guage model was used throughout the experiments.

Unadapted decoding was first performed using the MST
model on the test data. The first row of table 1 shows the perfor-
mance on three test sets. The MST model was also used in de-
coding the adaptation utterances in set wsj0 dt and wsj1 dt
to provide the supervision hypothesis for the following adap-
tation run. For supervised adaptation set wsj0 et, the MST
model was used to generate the phone alignment against the
reference hypothesis. To run adapted decoding using CAT,
speaker transforms were first estimated on the adaptation ut-
terances, and then applied on the test sets. The second row of
table 1 shows the performance of adapted decoding using the
CAT model. As expected, speaker adaptation improved the per-
formance. To perform factorised adaptation, speaker and en-
vironment transforms were iteratively estimated on the adapta-
tion data. In the very first iteration, environment weight vectors
were set as the one-of-N vector according to the known envi-

System wsj1 dt wsj0 dt wsj0 et

MST 23.3 15.7 14.9
CAT 20.3 13.3 13.0

fCAT(w/o constr.) 19.5 13.6 14.4
fCAT 19.7 12.9 12.3

Table 1: Performances (in WER%) of MST,CAT and fCAT sys-
tems.

ronment type, and the speaker transforms were estimated while
the component posterior was calculated using the MST model.
Given the set of speaker transforms, a set of environment trans-
forms were estimated for each environment condition appeared
in the adaptation data. A few(∼ 5) iterations 2 were performed.
Then the speaker transform estimated from adaptation data in
conjunction with the environment transforms obtained during
training were used in decoding. This enables the comparison of
speaker transforms estimated by different fCAT systems.

fCAT systems trained with and without the independence
constraint are compared in the second block of table 1. On
the first set, wsj1 dt, which is speaker-environment balanced,
both systems achieved gains over the speaker-adapted CAT sys-
tem (19.5% and 19.7% vs 20.3%). This illustrates the bene-
fit of adapting acoustic models to both speaker and environ-
ment. However, when used in more realistic scenarios where
the speaker-environment distribution of adaptation data is im-
balanced, i.e., on the wsj0 dt and wsj1 et sets, factorised
adaptation using fCAT model trained without independence
constraint degraded performance, compared with the perfor-
mance of speaker adaptation using CAT (13.6% vs 13.3% and
14.4% vs 13.0%). This demonstrates that the speaker transform
which was estimated on imbalanced data modeled not only the
speaker but also the environment variability. In contrast, fac-
torised adaptation using fCAT trained with the independence
constraint achieved gains over speaker adaptation on both sets
(12.9% vs 13.3% and 12.3% vs 13.0%). The gain of this fCAT
system on wsj0 et set is more interesting, as there is only
one environment condition in the adaptation data. Other adap-
tation schemes using linear transforms on this set can only learn
the combination effect of speaker and noise factor, not able to
distinguish one factor from the other. With fCAT, as the sub-
space expanded by the speaker cluster is orthogonal to the sub-
space expanded by the environment cluster, speaker transforms
learned on adaptation data can only explain the speaker distor-
tion, which allows it can be factorised out.

5. Conclusion
This paper investigated an independent constraint for factorised
adaptation. This constraint enforced the factor transforms to
be independent of each other, which is the crucial condition
for factorisation. Unlike previous work, which mostly relies on
data balance to implicitly achieve the independence, this work
derived an explicit constraint. Using fCAT as an application,
experimental results demonstrated that with this explicit inde-
pendence constraint, it is possible to perform factorised adapta-
tion on highly imbalanced data. Future work will examine the
application of this constraint to other models, such as JFA.

2It is possible to only estimate the speaker transform while borrow-
ing the environment transforms obtained during training as in [4]. In
this work, iterative estimation of both transforms was used to investi-
gate what a fCAT model can learn on each factor.
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