
EFFICIENT LATTICE RESCORING USING
RECURRENT NEURAL NETWORK LANGUAGE MODELS

X. Liu, Y. Wang, X. Chen, M. J. F. Gales & P. C. Woodland

Cambridge University Engineering Dept,
Trumpington St., Cambridge, CB2 1PZ U.K.

Email: {xl207,yw293,xc257,mjfg,pcw}@eng.cam.ac.uk

ABSTRACT

Recurrent neural network language models (RNNLM) have become
an increasingly popular choice for state-of-the-art speech recogni-
tion systems due to their inherently strong generalization perfor-
mance. As these models use a vector representation of complete
history contexts, RNNLMs are normally used to rescore N-best lists.
Motivated by their intrinsic characteristics, two novel lattice rescor-
ing methods for RNNLMs are investigated in this paper. The first
uses an n-gram style clustering of history contexts. The second ap-
proach directly exploits the distance measure between hidden history
vectors. Both methods produced 1-best performance comparable
with a 10k-best rescoring baseline RNNLM system on a large vocab-
ulary conversational telephone speech recognition task. Significant
lattice size compression of over 70% and consistent improvements
after confusion network (CN) decoding were also obtained over the
N-best rescoring approach.
Index Terms: recurrent neural network, language model, speech
recognition

1. INTRODUCTION

In order to handle the data sparsity problem associated with conven-
tional back-off n-gram language models (LM), language modelling
techniques that represent preceding history contexts in a continu-
ous and lower dimensional vector space, such as neural network lan-
guage models (NNLM) [2, 23, 21, 13, 26, 10], can be used. NNLMs
are widely used in state-of-the-art speech recognition systems due
to their inherently strong generalization performance. Depending
on the network architecture being used, they can be categorised into
two major categories: feedforward NNLMs [2, 23, 21, 10], which
use a vector representation of preceding contexts of a finite num-
ber of words; recurrent NNLMs (RNNLM) [13, 14, 26], which use
a recurrent vector representation of longer and potentially variable
length histories. In recent years RNNLMs have been shown to give
significant improvements over convectional back-off n-gram LMs
and feedforward NNLMs, thus gaining increasing research inter-
est [13, 14, 4, 9, 26, 5, 27, 24].

One important practical issue associated with RNNLMs is the
suitable decoding method to use. As RNNLMs use a complex vec-
tor space representation of full history contexts, it is generally not

The research leading to these results was supported by EPSRC grant
EP/I031022/1 (Natural Speech Technology) and DARPA under the Broad
Operational Language Translation (BOLT) and RATS programs. The paper
does not necessarily reflect the position or the policy of US Government and
no official endorsement should be inferred. Xie Chen is supported by Toshiba
Research Europe Ltd, Cambridge Research Lab.

possible to apply these models in the early stage of speech recog-
nition systems, or to directly rescore the word lattices produced by
them. Instead, only a subset of the hypotheses encoded in an previ-
ously generated word lattice are used and converted into a linear, or
prefix tree structured [24], N-best list. This practical constraint lim-
its the possible improvements that can be obtained from RNNLMs
for downstream applications that favor a more compact lattice repre-
sentation, for example, when confusion network (CN) based decod-
ing techniques [7] are used [27]. Several recent attempts have been
made to address this issue [4, 9, 5]. A sampling based approach
was used to generate text data from an RNNLM to train a back-off
n-gram LM as an approximation [4, 5]. A discrete quantization of
RNNLMs into a weighted finite state transducer (WFST) [17] rep-
resentation was proposed in [9]. Unfortunately neither of these two
schemes were able to produce error rates that are comparable with
the conventional N-best rescoring approach.

This paper aims to derive alternative decoding methods for
RNNLMs that are more closely related to their modelling char-
acteristics. First, the recursion through the full history produces
a gradually diminishing effect of the information represented by
the most distant contexts on the RNNLM probabilities. This al-
lows complete histories that are partially overlapped or similar in
the more recent contexts to share a similar distribution. It is thus
possible to approximate RNNLMs based on truncated histories of
sufficient length, similar to feedforward NNLMs. Second, in a
more general case, RNNLMs internally cluster different histories
encoded by the most recent word and hidden vector representing the
remaining context via the similarity measure between them. Hence,
it is also possible to explicitly use a history context vector distance
measure to determine the sharing of RNNLM probabilities.

Motivated by the above hypotheses, two novel RNNLM lattice
rescoring methods are investigated in this paper. The first uses an n-
gram style approximation of history contexts. The second approach
explicitly exploits the distance measure between hidden history vec-
tors. The rest of the paper is organized as follows. Recurrent neural
network LMs are reviewed in section 2. Two history contexts cluster-
ing schemes for RNNLMs are proposed in section 3. A generalized
lattice rescoring algorithm for RNNLMs is presented in section 4.
In section 5 the proposed RNNLM lattice rescoring techniques are
evaluated on a state-of-the-art conversational telephone speech tran-
scription task. Section 6 is the conclusion and future work.

2. RECURRENT NEURAL NETWORK LMS

In contrast to feedforward NNLMs, recurrent NNLMs [13] represent
the full, non-truncated history hi−1

1 =<wi−1, . . ., w1> for word
wi using the 1-of-k encoding of the most recent preceding word

wi−1 and a continuous vector si−2 for the remaining context. For
an empty history, this is initialized, for example, to a vector of all
ones. The topology of the recurrent neural network used to compute
LM probabilities PRNN(wi|wi−1, si−2) consists of three layers, as
is shown in figure 1. The full history vector, obtained by concatenat-
ing the those of wi−1 and si−2, is fed into the input layer. The
hidden layer compresses the information of these two inputs and
computes a new representation si−1 using a sigmoid activation to
achieve non-linearity. This is then passed to the output layer to pro-
duce normalized RNNLM probabilities using a softmax activation,
as well as recursively fed back into the input layer as the “future”
remaining history to compute the LM probability for the following
word PRNN(wi+1|wi, si−1).

Input layer

...

Class node for
 OOS word

Output layer

...
... ...

...

Hidden layer

OOV input node

sigmoid

softmax

softmax

wi−1

si−2

si−1

si−1

P (wi|ci, si−1)

×

P (ci|si−1)

PRNN(wi|wi−1, si−2)

Fig. 1. An RNNLM with an OOS output node.

To reduce computational cost, a shortlist based output layer vo-
cabulary limited to the most frequent words only can be used. This
was previously used for feedforward NNLMs [23, 6]. A similar ap-
proach may also be used at the input layer when a large vocabulary is
used. In order to reduce the bias to in-shortlist words during NNLM
training, two alternative network architectures that model a full vo-
cabulary at the output layer can be considered. The first uses a class
based factorized output layer structure [16]. Each word in the output
layer vocabulary is attributed to a unique class based on frequency
counts. The LM probability assigned to a word is factorized into two
individual terms, for example, for the RNNLM shown in figure 1, as

PRNN(wi|wi−1, si−2) = P (wi|ci, si−1)P (ci|si−1). (1)

As the number of classes are normally significantly smaller than
the output layer vocabulary size, training time speed-ups can be
achieved for both feedforward NNLMs [16] and RNNLMs [14].
The second explicitly models the probability mass of out-of-shortlist
(OOS) words using an additional output node [21, 10]. This ensures
that all training data are used in training, and the probabilities of in-
shortlist words are smoothed by the OOS probability mass to obtain
a more robust parameter estimation. Drawing from both, this pa-
per considers an RNNLM architecture that uses a factorized output
layer for in-shortlist words and a separate output node to represent
the probability mass of OOS words, as is shown in figure 1. This
form of RNNLMs is used in the rest of this paper.

RNNLMs can be trained using an extended form of the standard
back propagation algorithm, back propagation through time [22],
where the error is propagated through recurrent connections back

in time for a specific number of time steps. This allows the recurrent
network to record information for several time steps in the hidden
layer. A modified version of the RNNLM toolkit [15] supporting the
above modified architecture with an output layer OOS node is used.

In state-of-the-art speech recognition systems, NNLMs are often
linearly interpolated with n-gram LMs to obtain both a good cover-
age of contexts and strong generalisation ability [23, 6, 21, 13, 26,
10]. The interpolated LM probability is given by

P (wi|hi−1
1) = λPNG(wi|hi−1

1) + (1− λ)PRNN(wi|hi−1
1) (2)

λ is the weight assigned to the back-off n-gram LM distribution
PNG(·), and kept fixed as 0.5 in all experiments of this paper. In the
above interpolation, the probability mass of OOS words assigned by
the RNNLM component needs to be re-distributed among all OOS
words [21, 10].

3. HISTORY CONTEXT CLUSTERING FOR RNNLMS

Efficient use of language models in speech recognizers [20, 19, 17]
requires that the context dependent states representing different his-
tories during search can be appropriately shared among multiple
paths. This applies to both conventional back-off n-gram and feed-
forward NNLMs. For these models, the underlying LM context state
used to predict the current word is represented by a truncated, fixed
length history of a maximum N − 1 preceding words,

ΨNG(h
i−1
1) = hi−1

i−N+1 = <wi−1, . . ., wi−N+1> . (3)

The resulting n-gram LM distribution shared among multiple paths
is thus PNG(·|ΨNG(h

i−1
1)) ≡ P(·|wi−1, . . ., wi−N+1).

In contrast, the context state of an RNNLM to predict a given
word is represented by an ordered pair that encodes the full, com-
plete history hi−1

1 =<wi−1, . . ., w1>.

ΨRNN(h
i−1
1) = hi−1

1 ≡ <wi−1, si−2> (4)

For this reason, the number of distinct RNNLM context states can
grow exponentially as the search space is widened. Hence, it is
generally non-trivial to apply RNNLMs in the early stage of speech
recognition systems, or to directly rescore word lattices previously
generated using these systems. Instead, previous research has been
focused on using N-best list rescoring for RNNLM performance
evaluation [13, 14, 26, 27, 24].

A general solution to the above problem is to derive appropriate
history clusteringmethods for RNNLMs to allow a compact sharing
of context states. Once a suitable form of equivalence between
different complete histories is established, a discrete, finite state rep-
resentation of RNNLMs becomes possible. Inspired by the entropy
based pruning of back-off n-gram LMs [25], an optimal clustering
method that merges two full histories, hi−1

1 =<wi−1, . . ., w1>
and h̃j−1

1 =<w̃j−1, . . ., w̃1> together, is expected to minimize
the KL divergence between the associated RNNLM distributions
PRNN(·|hi−1

1) and PRNN(·|h̃j−1
1).

As discussed in section 1, both the decaying effect from the
most distant history contexts and the similarity between hidden his-
tory vectors are exploited by RNNLMs during model estimation to
achieve good generalization. These underlying modelling character-
istics allow statistics to be distributed among different sequences that
are “similar” or “related” by either their surface form or hidden vec-
tor representations. Both useful features can be also be exploited to
derive suitable history clustering schemes for RNNLMs in decoding.

3.1. n-gram Based History Clustering

This intuitive clustering method is motivated by the fact that the re-
cursion through the full preceding history can gradually diminishes
the effect of the information represented by the most distant end of
the contexts on the RNNLM probabilities. It is thus possible to clus-
ter histories based on the common, most recent truncated contexts of
N − 1 words maximum. The approximated RNNLM state for the
complete history hi−1

1 is given by

Ψ̃RNN(h
i−1
1) =

ΨRNN(h̃
j−1
1) if ∃ h̃j−1

1 and
hi−1
1 ∩ h̃j−1

1 = ΨNG(h
i−1
1)

ΨRNN(h
i−1
1) otherwise

(5)

where the shared n-gram style truncated history based LM state
ΨNG(h

i−1
1) was previously defined in equation (3), and is equiv-

alent to the intersection between hi−1
1 and h̃j−1

1 . As the truncation
history length increases, the approximated RNNLM probabilities are
expected to be increasingly closer to the true ones.

The above history clustering algorithm in practice operates as
a LM state cache that stores the RNNLM probabilities associated
with distinct truncated n-gram histories derived from ΨNG(·). By
default, if a particular truncated history based stateΨNG(h

i−1
1) is not

found in the cache, the full history hi−1
1 that subsumes the truncated

context is used to create a new entry in the cache. As this algorithm
uses the surface form information, it can be easily adapted and used
by both beam search decoders [20, 19] where RNNLM probabilities
can be computed on-the-fly by request and accessed via the cache,
and WFST [17] style lattice rescoring where a previously generated
network can be used to extract and explicitly build all possible shared
RNNLM states into a WFST.

3.2. History Vector Based Clustering

For both feedforward and recurrent NNLMs, their strong generaliza-
tion power is rooted from a continuous vector representation of his-
tory contexts in these models. When clustering histories, it is thus
possible to directly exploit the similarity in their vector representa-
tion. The clustering method proposed here for RNNLMs aims to
find the equivalence between two complete histories hi−1

1 and h̃j−1
1

by comparing the identity of the most recent word wi−1 and w̃j−1,
and the distance measure D(si−2, s̃j−2) between their respective
hidden history vectors si−2 and s̃j−2. A related beam pruning ap-
proach was previously used for variable length category based n-
gram LMs [18]. The approximated RNNLM state for the complete
history hi−1

1 is

Ψ̃RNN(h
i−1
1) =

ΨRNN(h̃
j−1
1) if ∃ h̃j−1

1 , wi−1 = w̃j−1

and D(si−2, s̃j−2) ≤ γ
ΨRNN(h

i−1
1) otherwise

(6)

where γ is a distance measure beam and can be tuned. When shar-
ing the common most recent word, full histories that has a mini-
mum vector difference below the beam are considered equivalent.
The trade-off between modelling precision and the compactness of
RNNLM state representation can be flexibly adjusted by the tun-
ing of γ. In common with the n-gram history based scheme, this
clustering method can also be implemented as a cache, and can be
integrated into beam search based decoders [20, 19]. However, due
to the introduction of the distance beam γ, it is non-trivial to be used
in generic WFST [17] based decoding approaches.

A range of distance measures may be considered for the dis-
tance measure D(si−2, s̃j−2). As discussed above, the selection

of the appropriate metric to use in general can be determined based
on the correlation between the underlying candidate metric and the
KL divergence between the two RNNLM distributions to be merged.
As the use of sigmoid activation at the hidden layer provides a well
bounded dynamic range for the hidden history vector representation,
the distance measure used is based on the Euclidean distance be-
tween si−2 and s̃j−2. This is given by

D(si−2, s̃j−2) =

∑
k

√
(si−2,k − s̃j−2,k)2

d
(7)

where d is the dimensionality of the hidden history vectors.

4. LATTICE RESCORING USING RNNLMS

All the lattice rescoring experiments in this paper used an on-the-fly
lattice expansion algorithm [12] suitable for a wide range of lan-
guage models including back-off n-grams, feedforward NNLMs, re-
current NNLMs and their interpolated form [11]. A central part of
the algorithm requires the LM state representation for the underly-
ing model being used. For example, for back-off n-gram and feed-
forward NNLMs, this was given in equation (3). For approximated
RNNLMs, this was based on equation (5) or (6) depending on the
history clustering technique being used. The interpolated LM’s state
representation is derived from a union of those of component LMs.
The corresponding pseudo-code algorithm for is given below.

1: for every node ni in the network do
2: initialize its expanded node list N ′

i = {};
3: initialize its expanded outbound arc list A′

i = {};
4: end for
5: add n0 to its expanded node list, N ′

0 = {n0};
6: add all n0’s outbound arcs to its expanded arc list, A′

0 = A0;
7: Start depth first network traversal from the initial node n0;
8: for every node ni being visited do
9: for every expanded node n′

j ∈ N ′
i of node ni do

10: for every outbound arc ak from ni do
11: find the destination node nk of arc ak;
12: find the LM stateΨ(h

n′
j

n0) of expanded node n′
j ;

13: compute LM probability P (nk|Ψ(h
n′
j

n0));
14: find a new LM stateΨ(hnk

n0) for node nk;
15: if ∃ node n′

l ∈ N ′
k representing stateΨ(hnk

n0) then
16: return the found node n′

l;
17: else
18: add a new node n′

l to N ′
k to represent stateΨ(hnk

n0);
19: end if
20: create a new arc a′

l from n′
j to n′

l;

21: assign score lnP (nk|Ψ(h
n′
j

n0)) to a′
l;

22: add arc a′
l to the expanded outbound arc list A′

i.
23: end for
24: end for
25: end for
26: Rebuild new network using {N ′

i} and {A′
i}.

The above on-the-fly lattice expansion algorithm was imple-
mented as an extension to the CU-HTK lattice processing tools.

5. EXPERIMENTS AND RESULTS

In this section performance of RNNLM lattice rescoring methods are
evaluated on the CU-HTK LVCSR system for conversational tele-
phone speech (CTS) used in the 2004 DARPA EARS evaluation.

The acoustic models were trained on approximately 2000 hours of
Fisher conversational speech released by the LDC. A 59k recogni-
tion word list was used in decoding. The system uses a multi-pass
recognition framework. A detailed description of the baseline sys-
tem can be found in [8]. The 3 hour dev04 data, which includes 72
Fisher conversations and contains on average 10.8 words per seg-
ment, was used as a test set.

The baseline 4-gram back-off LM “w4g” was trained using a to-
tal of 545 million words from 2 text sources: the LDC Fisher acous-
tic transcriptions, Fisher, of 20 million words (weight 0.75), and
the University Washington conversational web data [3], UWWeb,
of 525 million words (weight 0.25). The Fisher data of 20M words
and contains on average 12.7 words per sentence, was used to train a
feedforward 4-gram NNLM “nnw4g” using on the OOS architecture
proposed in [21], and an RNNLM “rnn” using the modified architec-
ture described in section 2 with 500 output layer classes. The same
38k word input layer vocabulary and 20k word output layer short-
list were used for both feedforward and recurrent NNLMs both with
500 hidden layer nodes. A total of 1 billion words of text data was
generated from this RNNLM “rnn” using the sampling technique de-
scribed in [4] to train a 4-gram back-off LM “rnn.sample.4g” as an
approximation to the original RNNLM. These three LMs were then
interpolated with the baseline 4-gram LM “w4g”.

dev04 LatDensity
LM 1-best CN (Arcs/Sec)
w4g 16.7 16.1 421
w4g+nnw4g 16.3 15.8 555
w4g+rnn.50best 15.4 15.4 188(97)
w4g+rnn.100best 15.3 15.3 365(175)
w4g+rnn.1000best 15.3 15.1 3416(1298)
w4g+rnn.10000best 15.3 15.0 32277(10212)
w4g+rnn.sample.4g 16.2 15.9 462
w4g+rnn.approx3g 15.8 15.4 428
w4g+rnn.approx4g 15.7 15.2 555
w4g+rnn.approx5g 15.6 15.1 1266
w4g+rnn.approx6g 15.4 15.0 3025
w4g+rnn.approx7g 15.4 15.0 7140
w4g+rnn.hvd0.00450 15.8 15.4 465
w4g+rnn.hvd0.00300 15.6 15.2 539
w4g+rnn.hvd0.00200 15.6 15.1 699
w4g+rnn.hvd0.00100 15.6 15.1 1345
w4g+rnn.hvd0.00075 15.5 15.1 1842
w4g+rnn.hvd0.00050 15.4 15.0 2818
w4g+rnn.hvd0.00025 15.4 15.0 4725
w4g+rnn.hvd0.00001 15.4 15.0 6836

Table 1. 1-best, CN performance and HTK lattice density mea-
sured in arcs per second obtained using LMs on dev04. “w4g”
is a 4-gram back-off LM and “w4g+nnw4g” an interpolated LM
combining “w4g” with a 4-gram feedforward NNLM. “w4g+rnn”
interpolates “w4g” with an RNNLM “rnn”. “w4g+rnn.∗best”
used N-best rescoring. “w4g+rnn.sample.4g” combines “w4g”
with a 4-gram back-off LM trained on texts sampled from “rnn”.
“w4g+rnn.approx∗g” and “w4g+rnn.hvd∗” used n-gram and hid-
den vector distance based RNNLM history clustering respectively.

In table 1, the 1-best and CN word error rates (WER) of the
baseline back-off 4-gram LM “w4g”, the feedforward NNLM sys-
tem “w4g+nnw4g”, the RNNLM system “w4g+rnn.∗best” evaluated

by re-ranking N-best lists of various depth from top 50 up to 10k
entries, and the RNNLM sampled data trained 4-gram LM baseline
“w4g+rnn.sample.4g” are shown in the 1st line, 2nd line, 3rd to
6th line and the 7th line respectively. The RNNLM re-ranking N-
best lists were then converted to prefix tree structured lattices [24]
and used for CN decoding. The HTK formatted lattice density
(Arcs/Sec) measure for all the above baseline systems are also
shown in the last column of table 1. For the RNNLM N-best rescor-
ing baseline systems, the lattice density measure before and after
prefix tree structuring of N-bests lists are both given. As expected,
prefix tree structuring of N-bests lists significantly reduced the size
of the converted lattices (shown in brackets in the same column). As
discussed in section 1, CN decoding favors a more efficient lattice
representation that encodes rich alternative hypotheses. To achieve
the same improvements from CN decoding, RNNLM rescored N-
best list need to be as deep as 10k. This 10k-best RNNLM rescoring
baseline gave the lowest 1-best and CN WER of 15.3% and 15.0%
respectively, with a density of 10.2k arcs/sec measured on the lattices
converted from the prefix tree structured N-bests lists.

The performance of using the n-gram approximation based
RNNLM lattice rescoring methods presented in section 3 are shown
in the 5th section of table 1 from line 8 to 12. When the truncated
history is increased to 5 words, the resulting 6-gram approximated
RNNLM system produced 1-best and CN error rates of 15.4% and
15.0%, both comparable with the standard RNNLM 10k-best rescor-
ing baseline, and a significant 70% reduction in lattice size from 10k
to 3k arcs/sec. Further increasing the truncated history length to
6 words via a 7-gram approximation gave no further improvement
while only increased the size of the resulting lattices. This confirms
the hypothesis raised in sections 1 and 3 over the decaying effect
from remote history contexts on RNNLM probabilities.

The performance of using the hidden history vector distance
based RNNLM lattice rescoring method proposed in section 3 are
shown in the bottom section of table 1. By adjusting the hid-
den vector distance beam γ in equation (6), a range of approxi-
mated RNNLM comparable in error rates with the truncated history
based approach but more compact lattices were produced. For
example, setting γ = 0.002 produced equivalent 1-best and CN
error rates of 15.6% and 15.1% as the 5-gram history approxi-
mated “w4g+rnn.approx5g” system, and a 45% reduction in lattice
size from 1266 down to 699 arcs/sec. The best performance was
obtained by setting γ = 0.00050 (3rd line from bottom in ta-
ble 1), which gave 1-best and CN error rates of 15.4% and 15.0%,
with a 72.4% and 7% reduction in lattice size over the 10k-best
rescoring baseline, and the best n-gram history clustering rescor-
ing system “w4g+rnn.approx6g” respectively. In practice, this
“w4g+rnn.hvd0.00050” system can be used to rescore more heavily
pruned lattices at 0.9 time real time (RT) while producing compara-
ble 1best and CN error rates of 15.4% and 15.1%. In contrast, the
1k-best and 10k-best rescoring systems used 1.8 and 17 times RT.

6. CONCLUSION AND RELATION TO PRIOR WORK

Two efficient lattice rescoring methods for RNNLMs were investi-
gated in this paper. Both methods produced 1-best and CN decoding
performance comparable with a 10k-best rescoring RNNLM base-
line as well as over 70% compression in lattice size. In contrast,
previously research on approximation of NNLMs in decoding [4, 9]
were not able to either produce comparable error rate as the N-best
rescoring, or produce lattices that are suitable for CN decoding [27].
Future research will focus on improving history clustering methods
and efficiency in lattice rescoring using NNLMs.

7. REFERENCES

[1] E. Arisoy, S. F. Chen, B. Ramabhadran, and A. Sethy (2013),
“Converting neural network language models into back-off
language models for efficient decoding in automatic speech
recognition,” in Proc. ICASSP, Vancouver, Canada, 2013, pp.
8242–8246.

[2] Y. Bengio and R. Ducharme (2003), “A neural probabilistic
language model,” Journal of Machine Learning Research,
vol. 3, pp. 1137–1155, 2003.

[3] I. Bulyko, M. Ostendorf, and A. Stolcke (2003), “Get-
ting more mileage from web text sources for conversational
speech language modeling using class-dependent mixtures,”
in Proc. HLT, Edmonton, Canada, 2003.

[4] A. Deoras, T. Mikolov, S. Kombrink, M. Karafiat, and S. Khu-
danpur (2011), “Variational approximation of long-span lan-
guage models for LVCSR,” in Proc. ICASSP, Prague, Czech
Republic, 2011, pp. 5532–5535.

[5] A. Deoras, T. Mikolov, S. Kombrink, and K. Church (2013),
“Approximate inference: A sampling based modeling tech-
nique to capture complex dependencies in a language model,”
Speech Communication, vol. 55, no. 1, pp. 162–177, January
2013.

[6] A. Emami and L. Mangu (2007), “Empirical study of neural
network language models for Arabic speech recognition,” in
Proc. ASRU, Kyoto, Japan, 2007, pp. 147–152.

[7] G. Evermann and P. C. Woodland (2000), “Posterior proba-
bility decoding, confidence estimation and system combina-
tion,” in Proc. Speech Transcription Workshop, College Park,
MD, 2000.

[8] G. Evermann, H. Y. Chan, M. J. F. Gales, B. Jia, D. Mrva,
P. C. Woodland, and K. Yu (2005), “Training LVCSR systems
on thousands of hours of data,” in Proc. ICASSP, Philadel-
phia, PA, 2005, vol. 1, pp. 209–212.

[9] G. Lecorvé and P. Motlicek (2012), “Conversion of recur-
rent neural network language models to weighted finite state
transducers for automatic speech recognition,” in Proc. ISCA
Interspeech, Portland, OR, 2012.

[10] H.-S. Le, I. Oparin, A. Allauzen, J. Gauvain, and F. Yvon
(2013), “Structured output layer neural network language
models for speech recognition,” IEEE Transactions on Audio,
Speech and Language Processing, vol. 21, no. 1, pp. 197–206,
2013.

[11] X. Liu, M. J. F. Gales, J. L. Hieronymus, and P. C. Woodland
(2010), “Language model combination and adaptation using
weighted finite state transducers,” in Proc. ICASSP, Dallas,
TX, 2010, pp. 5390–5393.

[12] X. Liu, M. J. F. Gales, and P. C. Woodland (2013), “Use
of contexts in language model interpolation and adaptation,”
Computer Speech & Language, vol. 27, no. 1, pp. 301–321,
January 2013.

[13] T. Mikolov, M. Karafiat, L. Burget, J. Cernocky, and S. Khu-
danpur (2010), “Recurrent neural network based language
model,” in Proc. ISCA Interspeech, Makuhari, Japan, 2010,
pp. 1045–1048.

[14] T. Mikolov, S. Kombrink, L. Burget, J. H. Cernocky, and
S. Khudanpur (2011), “Extensions of recurrent neural net-
work language model,” in Proc. ICASSP, Prague, Czech Re-
public, 2011, pp. 5528–5531.

[15] T. Mikolov, S. Kombrink, L. Burget, J. H. Cernocky and
S. Khudanpur (2011), “RNNLM - Recurrent neural net-
work language modeling toolkit”, in demo session of IEEE
ASRU2011, Hawaii.

[16] F. Morin and Y. Bengio (2005), “Hierarchical probabilistic
neural network language model,” in Proc. International work-
shop on artificial intelligence and statistics, Barbados, 2005,
pp. 246–252.

[17] M. Mohri (1997), “Finite-state transducers in language and
speech processing,” Computational linguistics, vol. 23, no. 2,
pp. 269–311, 1997.

[18] T. R. Niesler and P. C. Woodland (1996), “A variable-length
category-based n-gram language model,” in Proc. ICASSP,
Atlanta, GA, 1996, vol. 1, pp. 164–167.

[19] H. Ney and S. Ortmanns (1999), “Dynamic programming
search for continuous speech recognition,” IEEE Signal Pro-
cessing Magazine, vol. 16, no. 5, pp. 64–83, 1999.

[20] J. J. Odell, V. Valtchev, P. C. Woodland, and S. J. Young
(1994), “A one pass decoder design for large vocabulary
recognition,” in Proc. HLT, Stroudsburg, PA, 1994, pp. 405–
410.

[21] J. Park, X. Liu, M. J. F. Gales, and P. C. Woodland (2010),
“Improved neural network based language modelling and
adaptation,” in Proc. ISCA Interspeech, Makuhari, Japan,
2010, pp. 1041–1044.

[22] D. E. Rumelhart, G. E. Hintont, and R. J. Williams (1986),
“Learning representations by back-propagating errors,” Na-
ture, vol. 323, no. 6088, pp. 533–536, 1986.

[23] H. Schwenk (2007) , “Continuous space language models,”
Computer Speech & Language, vol. 21, no. 3, pp. 492–518,
2007.

[24] Y. Si, Q. Zhang, T. Li, J. Pan, and Y. Yan (2013), “Prefix
tree based n-best list re-scoring for recurrent neural network
language model used in speech recognition system,” in Proc.
ISCA Interspeech, Lyon, France, 2013, pp. 3419–3423.

[25] A. Stolcke (1998), “Entropy-based pruning of backoff lan-
guage models,” in Proc. DARPA Broadcast News Transcrip-
tion and Understanding Workshop, Landsdowne, VA, 1998,
pp. 270–274.

[26] M. Sundermeyer, R. Schlüter, and H. Ney (2012), “LSTM
neural networks for language modeling,” in Proc. ISCA In-
terspeech, Portland, OR, 2012.

[27] M. Sundermeyer, I. Oparin, J. L. Gauvain, B. Freiberg,
R. Schluter, and H. Ney (2013), “Comparison of feedfor-
ward and recurrent neural network language models,” in Proc.
ICASSP, Vancouver, Canada, 2013, pp. 8430–8434.

