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ABSTRACT
Discriminative models, like support vector machines (SVM),
have been successfully applied to speech recognition, and per-
formance has been improved. By introducing the Bayesian
non-parametric version of the SVM, namely infinite SVM
(iSVM), further improvement can be achieved. Since the
iSVM does not consider the structure of the label, this model
only can be applied to the small vocabulary recognition
task. However, speech recognition is a structured classifica-
tion task, where the labels are sentences and different labels
may share the same structures, for example words. In order
to adopt the iSVM to medium to large continuous speech
recognition task, this paper studies the incorporation of the
structures into the model, which is called infinite structured
SVM (iSSVM), and the experiments are conducted on the
noise-corrupted continuous digit task: AURORA 2.

Index Terms— Bayesian non-parametric, Dirichlet pro-
cess, mixture of experts, infinite structured SVM

1. INTRODUCTION

By introducing the generative feature space [1], discrimina-
tive models, like SVM [2], have been successfully used in
speech recognition. Since the features are obtained from the
generative models, like hidden Markov models (HMM) [3],
one main advantage of this framework is that the state-of-art
speaker adaptation and noise robustness techniques [4] can be
used in generating the features.

Rather than using a single classifier, the mixture-of-
experts model [5, 6] deploys multiple classifiers in classi-
fication, but normally the number of experts is unknown. In
order to sidestep the problem of setting experts’ number, the
Bayesian non-parametric framework can be used. In previ-
ous work [7], a model called infinite SVM (iSVM) has been
applied to small vocabulary continuous speech recognition
(CSR): Segmenting the continuous speech into segments,
then each segment is classified by the iSVM similar to acous-
tic code breaking [8]. By using the iSVM, better performance
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is achieved compared with using the SVM, given that the
iSVM applies all the experts in classification with different
weights, which depends on the location of the data in the
feature space, to make an ensemble decision.

The SVM and iSVM are un-structured models, and they
only can be implemented in the small vocabulary CSR. In the
medium to large vocabulary CSR task, each label corresponds
to a sentence, and the possible number of labels is unlim-
ited, but different labels may share the common structure, like
words or phones. However, the un-structured models do not
consider the structures of the labels, so it is impractical to use
the un-structured models to model the whole utterance, for
example, the possible number of classes for a 6-digit length
utterance is 106. The structured SVM (SSVM) [9] was intro-
duced to classify the data with structured labels. In work [10],
the SSVM has been successfully used in medium to large vo-
cabulary CSR tasks. In order to apply the mixture-of-experts
framework to large vocabulary CSR, the structures must be
incorporated into the model.

In this paper, a type of structured Bayesian non-parametric
model called infinite structured SVM (iSSVM) is studied.
Rather than using a kernel trick in the SSVM [11], which
might be a problem to define the type of the kernel, the
iSSVM deploys multiple SSVMs to yield a non-linear bound-
ary. Moreover, the feature vectors used by iSSVM are given
from a kernel function, this means the kernel trick can be
incorporated into the kernel function. If it is necessary, the
the kernel trick also can be used by each expert in the iSSVM,
but the kernel trick is not considered in this paper.

This paper is organised as follows. The mixture of experts
and its infinite version are discussed in Section 2. The SSVM
are detailed in Section 3, and the iSSVM are introduced in
Section 4. The classification and corresponding issues are
discussed in Section 5. Finally, the experiments results and
conclusions are given in Section 6.

2. MIXTURE OF EXPERTS

The mixture of experts applies multiple models focusing on
different regions of the feature space, and the probabilities of
choosing the models are input dependent. The framework of
the mixture of experts with M experts is illustrated in Fig 1.
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Fig. 1. The framework of mixture-of-experts model

The model also can be described as follows:

P (w|x,Θ, H) =
∑
z∈Z

P (z|x,Θ)P (w|x,ηm) (1)

where Z is the indicator set: Z = {1, . . . ,M}, and the term
P (z = m|x,Θ) is called gating network, which gives the
probabilities of choosing different experts according to the
input x. z is the indicator variable which denotes the input x
associated with which expert, and Θ is the parameter set of
the gating network. The second term P (w|x,ηm) is the mth

expert with parameter ηm. H is the parameter set for all the
experts, and w is the class label.

When the number of experts in the mixture of expert goes
to infinite, namely M → ∞, and the gating network is given
from a Dirichlet process (DP) mixture model [12, 13], the
DP mixture of experts [7] can be derived, and it has the same
form as equation (1), but the indicator set Z consists of infinite
values: Z = {1, 2, . . . ,∞}.

3. STRUCTURED SVM

According to [10], the SSVM can be considered as a log-
linear model with large-margin training. The log-linear model
can be described as follows:

P (W, ρ|O,λ,η) =
exp

(
ηTΦ(O,W;λ, ρ)

)∑
W′,ρ′ exp

(
ηTΦ(O,W ′;λ, ρ′)

) (2)

where η is the model parameter of log-linear model. W
is the word sequence corresponding to the utterance O
given the segmentation ρ. Giving the segmentation ρ, the
utterance and word sequence can be further described as
W = {w1, . . . , wIρ} and O = {O1, . . . ,OIρ}, where wi
is a word, Oi is a segment and Iρ is the number of seg-
ments. Φ(O,W;λ, ρ) is the joint feature space, which can
be described as follows [14]:

Φ(O,W;λ, ρ) =
1

T


∑Iρ
i=1 δ(wi, w̃1)ϕ(Oi;λ)

...∑Iρ
i=1 δ(wi, w̃L)ϕ(Oi;λ)

log
(
P (W)

)

 (3)

where {w̃1, . . . , w̃L} are all the unique segment labels, P (W)
is given by language model, T is the number of frame in ut-
terance O, it is utilised to normalise the feature space corre-
sponding the utterances with various length, and ϕ(Oi;λ) is

the log-likelihood feature vector, which can be described as
follows:

ϕ(Oi;λ) =

 log
(
p(Oi|λw̃1)

)
...

log
(
p(Oi|λw̃L)

)

L×1

(4)

In equation (4), p(Oi|λw̃l) is the likelihood of the HMM cor-
responding to label w̃l given the segmentOi.

In terms of the large-margin training of the log-linear
model, the margin is defined as the log-posterior ratio be-
tween the reference Wi and the most competing hypothesis
W . By introducing the prior P (η) as a regularization term,
the training criterion can be described as minimising:
N∑
i=1

[
max

W,ρ 6=Wi,ρi

{
L(W,Wi)− log

(P (Wi, ρi|Oi,η,λ)

P (W, ρ|Oi,η,λ)

)}]
+

− logP (η) (5)

When the prior P (η) is given a Gaussian distribution P (η) =
N (η;µη,Ση) with mean µη and scaled identity covariance
matrixΣη = CI , and substituting equation (2) into equation
(5), then the large-margin training criterion can be further de-
scribed as follows [10]:

1

2
||η − µη||

2 + C

N∑
i=1

[
max

W,ρ 6=Wi,ρi

{
ηTΦ(Oi,W;λ, ρ)

+ L(W,Wi)
}
− ηTΦ(Oi,Wi;λ, ρi)

]
+

(6)

4. INFINITE STRUCTURED SVM

The equation for the DP mixture of experts are given in equa-
tion (1). In order to apply this type of model to large vo-
cabulary CSR, the structures need to be incorporated in the
model. The direct way to introduce structure is incorporat-
ing the structures into the experts. If each expert is given a
SSVM described in equation (2), then the DP mixture of ex-
perts given in equation (1) becomes:

P (W, ρ|O,λ,Θ,H) =∑
z∈Z

P (z|O,λ,Θ)P (W, ρ|O,λ,ηm) (7)

Here, the indicator variable z corresponds to the utterance O,
and the indicator set Z is infinitely sized. In the gating net-
work, if the utterance is treated as a whole, the utterance in-
dicator z is a scalar. The resulted model consists of infinite
number of SSVMs, which is called infinite structured SVM
(iSSVM); If the utterance is considered as being comprised of
various segments, the utterance indicator z becomes a vector.
The resulted model becomes a SSVM with infinite structures,
which is called structured infinite SVM (SiSVM). In the fol-
lowing paper, the iSSVM will be detailedly discussed.

Suppose the training data are D = {O1, . . . ,ON ;W1, . . . ,
WN ; ρ1, . . . , ρN}, as a Bayesian model, the classification of
the iSSVM can be described as follows:

P (W, ρ|O,λ,D) =

∫
P (W, ρ|O,λ,A)p(A|D)dA (8)



Since the integral in equation (8) is not intractable, the Monte
Carlo Markov chain (MCMC) method is applied to approx-
imate this integral, then the classification can be further de-
scribed as follows:

P (W,ρ|O,λ,D) ≈ 1

K

K∑
k=1

P (W, ρ|O,λ,A(k)) (9)

=
1

K

K∑
k=1

Mk∑
m=1

P (z = m|O,λ,Θ(k))P (W, ρ|O,λ,η(k)
m )

where A = {Θ, H} are all the parameters of the iSSVM,
and A(k) are sampled from the model posterior distribution
p(A|D). Here, K samples are used to approximate this in-
tractable integral. Since A is the whole parameter set of the
iSSVM, the joint posterior distribution p(A|D) do not have
a closed form. Thus, Gibbs sampling [15] is used to obtain
samples from this joint posterior distribution. In the sam-
pling, the auxiliary variables z = {z1, . . . , zN} (which are
indicators of the training data) are introduced. The samples
A(k) are obtained by sampling from p(A, z|λ,D) yielding
{A(k), z(k)} ignoring the samples z(k), and A(k) can be con-
sidered as being sampled from p(A|λ,D) [16]. Mk is the
number of unique values of the sampled indicators z(k).

Θ is the parameter set of the gating network which is a DP
mixture model here. The conditional posterior distribution of
the parameter set can be described as follows:

p(Θ|H(k),z(k),λ,D) = p(Θ|{φ(On;λ)}Nn=1,z
(k)) (10)

where φ(On,λ) is the feature space for the utterance On,
which maps the observation On to a space with fixed dimen-
sion. The feature would be the log-likelihood feature of the
whole utterance. Here, the normalised features based on seg-
ments are used: φ(On,λ) = 1/Tn

∑
i ϕ(Oi,λ), where Tn is

number of frames in utterance On, and ϕ(Oi,λ) is the log-
likelihood feature described in equation (4). Given the fea-
tures {φ(On;λ)}Nn=1and corresponding indicators z(k), Θ(k)

can be sampled through the methods described in [12, 13].
In terms of the parameters of the experts H , each expert

is given a log-linear model with large margin training, so the
parameter of the mth expert ηm is obtained through equa-
tion (6) with the data associated with expert m. Similar to
the method used in [7], the mean of the prior µη is obtained
from the SSVM trained on the whole training set. In the train-
ing of the iSSVM, if there are very few data associated with
a expert, the trained expert might lack generalisation. Thus,
each expert uses an informative prior with mean trained on
the whole training set. By introducing this non-zero mean,
the iSSVM should retrieve the performance of the SSVM, if
C is small enough. Better performance could be achieved by
gradually increasing C. 1-slack cutting plane algorithm [17]
is utilised to train the SSVM, the constraint set for training
the current SSVM parameter η(k)

m can be cached and propa-
gate to the next iteration of obtaining η(k+1)

m . This caching
method can make the training more efficient, especially when
applying the iSSVM to the large vocabulary CSR.

The indicator variable zn is sampled according to the fol-
lowing posterior distribution:

P (zn = m|A(k),z−n,λ,D) ∝ (11)

P (zn = m|z−n, α)p
(
φ(On,λ)|θ(k)m

)
P (Wn, ρn|On,λ,η(k)

m )

where z−n are all the indicators except zn. The first term
P (zn = m|z−n, α) is given from the Chinese Restaurant
Process (CRP) with concentration parameter α [18]. The
term P (Wn, ρn|On,λ,η

(k)
m ) is the posterior distribution

given from the log-linear model described in equation (2),
and term p

(
φ(On,λ)|θ(k)m

)
is the component likelihood.

When zi indicates an existing expert, it is straightforward to
calculate the conditional posterior distribution of zn. When
zn denotes a new expert, following the method introduced in
[12], in calculating the likelihood p

(
φ(On,λ)|θ

)
, the param-

eter θ is sampled from its prior distribution as an auxiliary
parameter, then the likelihood can be easily obtained. In order
to make the newly generated expert having good generalisa-
tion, in calculating the third term, the parameter for the expert
η is given as the the mean of its prior, namely the optimised
parameter of the SSVM trained on the whole training set.

5. CLASSIFICATION

The equation used to classification has been given in equation
(9), by substituting the log-linear model given in equation (2)
into (9), the equation can be further described as follows:

P (W, ρ|O,λ,D) (12)

≈ 1

K

K∑
k=1

Mk∑
m=1

P (zk = m|O,λ,Θ(k))
exp

(
η(k)T
m Φ(O,W;λ, ρ)

)
Skm

where Skm is the normalisation term:

Skm =
∑
W′,ρ′

exp
(
η(k)T
m Φ(O,W ′;λ, ρ′)

)
(13)

In the SSVM, this normalising constant can be ignored, since
no posterior need to be calculated and the normalisation term
stays the same for all the possible labels. In the iSVM, the
posterior given by the log-linear model need to be calculated.
Thus, this term cannot be ignored, but it is trivial to calcu-
late, since the possible number of labels are small for each
segment. In the iSSVM, the calculation of this term Skm is
nontrivial, since the possible number of labels are exponen-
tially large for the utterance O.

Given that the possible number of labels are extremely
large, the summation in equation (13) is quite inefficient.
The forward algorithm can be adopted to calculate this sum-
mation efficiently on the lattice. According to the defini-
tion of the joint feature space given in equation (3), and
supposing the parameter of the SSVM can be described as
η = {ηT

w̃1
, . . . ,ηT

w̃L
, ηW}T, the normalisation term in equa-



System Features
Test Set WER(%)

Avg
testa testb testc

HMM — 9.83 9.11 9.53 9.48
SVM

Log-Like
8.29 7.90 8.61 8.20

iSVM 8.25 7.87 8.53 8.15
SSVM

Joint Feat
7.78 7.29 7.98 7.63

iSSVM 7.60 7.25 7.77 7.49

Table 1. The results on Aurora 2 database

tion (13) can be further described as follows:

Skm =
∑
W′,ρ′

exp
( 1

T

[ Iρ′∑
i=1

η(k)T
m,wi

ϕ(Oi;λ) + ηm,W logP (W)
])

=
∑
W′,ρ′

[
P (W)

η
m,W
T

Iρ′∏
i=1

exp
( 1

T
η(k)T
m,wi

ϕ(Oi;λ)
)]

(14)

Again, T is number of frames in utterisance O, and Iρ′ is
the number of segments given the segmentation ρ′, which is
one path in the lattice. P (W) is the probability of the word
sequence. If the bigram language model is used here, the
probability can be described as P (W) =

∏Iρ′
i=1 P (wi|wi−1),

and here P (w1|w0) is defined as P (w1|w0) = P (w1). Then,
equation (14) can be further described as follows:

Skm =
∑
W′,ρ′

{ Iρ′∏
i=1

[
P (wi|wi−1)

η
m,W
T exp

( 1

T
η(k)T
m,wi

ϕ(Oi;λ)
)]}
(15)

Then the forward algorithm can be applied to calculate
this summation on the lattice. At each node in the lattice,
the scores are merged. The detail of the forward algorithm is
discussed in [19].

By introducing the forward algorithm on the lattice, Skm
can be calculated efficiently. The computational complexity
becomes O(NarcL), where Narc is number of arcs in the lat-
tice, and L is the unique number of segment labels. Normally,
the arcs in a lattice are reasonably sized. For Aurora 2 data
set, there are around several hundred arcs in a lattice.

In the classification, the best alignment ρ and correspond-
ing word sequence W need to be found through equation (12).
But, how to find the path ρ and corresponding W , which
maximise the posterior P (W, ρ|O,λ,D), might be a prob-
lem here. In the structured SVM, the Viterbi algorithm is ap-
plied to solve this problem [10]. However, in the iSSVM, the
parameter η(k)

m varies with experts m and samples k. Only
when the m and k are given, the Viterbi algorithm can be
applied, but the best alignment ρ and corresponding word
sequence W might change with different η(k)

m . Thus, the
Viterbi algorithm cannot be directly applied, and an approx-
imation is made here. Rather than calculating the posterior
P (W, ρ|O,λ,D) by enumerating all the possible ρ and W
which could be exponentially large, the Viterbi algorithm is
implemented to keep the N-best alignments 1 ρ and corre-
sponding labels W in set P for all k and m. After the set P is

1In this paper, only the 1-best alignment is considered.
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Fig. 2. The iSSVM performance on set A with different C

obtained, the classification can be described as follows:

{W, ρ} ≈ arg max
W,ρ

P (W, ρ|O,λ,D) ∀ {W, ρ} ∈ P (16)

6. EXPERIMENTS AND CONCLUSIONS

The performance of the proposed iSSVM is evaluated on the
Aurora 2 database [20]. The utterances in this database are
continuous digit strings with vocabulary size 12 (one to nine,
plus zero, oh and silence). The generative models (HMMs)
are trained on the clean data with 8840 utterances. The noise
model for VTS compensation [21] is estimated on each utter-
ance, and the performance of the VTS compensated HMM is
listed in Table 1. The SVM, iSVM , SSVM a nd iS SVM are
trained on a subset of the multi-style training data containing
4 noise conditions (N2, N3 and N4) and 3 SNRs (20dB, 15dB
and 10dB). All three test database, A, B and C, are used in the
evaluation.

In the experiments, the log-likelihood features described
in equation (4) are used by the SVM and iSVM, and the joint
features described in equation (3) are used by the SSVM and
iSSVM. The results are listed in Table 1. On test set A and B,
the iSSVM get around 3% relative improvement in all SNRs,
but quite small improvement is achieved on test set B. The
large margin training criterion described in equation (6) is
adopted to train the experts (SSVM) of the iSSVM, and dif-
ferent experts share the same C. The parameter C is tuned
on the test set A illustrated in Fig 2. Since the prior mean µη

in equation (6) is given the optimised parameter of the SSVM
trained on the whole training set, when C is small, the SSVM
performance is retrieved, and the optimised C can be found
by increasing C.

This paper has studied the iSSVM which is a direct ex-
tension of the iSVM described in previous paper [7]. Tak-
ing advantage of the mixture of experts and structured model,
the iSSVM outperforms the iSVM and SSVM. As being dis-
cussed in Section 4, the utterance indicator of the iSSVM is
a scalar, which means all the segments in an utterance share
the same indicator. This might limit the flexibility of the gat-
ing network. Moreover, the distribution of the utterances are
explored by the gating network, and it is hard to model the ut-
terance distribution compared with segments. This may limit
system performance. Thus, future work will study the model
called structured infinite SVM (SiSVM) which is a structured
model and deploys a more flexible and reasonable gating net-
work.
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