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ABSTRACT

As the use of found data increases, more systems are being built
using adaptive training. Here transforms are used to represent
unwanted acoustic variability, e.g. speaker and acoustic environ-
ment changes, allowing a canonical model that models only the
“pure” variability of speech to be trained. Adaptive training may
be described within a Bayesian framework. By using complexity
control approaches to ensure robust parameter estimates, the stan-
dard point estimate adaptive training can be justified within this
Bayesian framework. However during recognition there is usu-
ally no control over the amount of data available. It is therefore
preferable to be able to use a full Bayesian approach to applying
transforms during recognition rather than the standard point esti-
mates. This paper discusses various approximations to Bayesian
approaches including a new variational Bayes approximation. The
application of these approaches to state-of-the-art adaptively trained
systems using both CAT and MLLR transforms is then described
and evaluated on a large vocabulary speech recognition task.

1. INTRODUCTION

Adaptive training [1, 2] has become popular as the use of found
data, such as Broadcast News, has increased. In these approaches
two sets of model parameters are extracted from the training data.
The first set is the canonical model parameters, M, which repre-
sent the underlying acoustic data variability. The second set, the
transform model parameters, T , represent any unwanted variabil-
ity, such as speaker and acoustic condition changes. A separate
transform is used to represent each homogeneous block of data,
e.g. from a particular speaker/environment combination. Adap-
tive training is usually derived from a maximum likelihood per-
spective. However it is closely linked with Bayesian approaches
where the model and transform parameters are treated as random
variables and marginalised out. In common with many Bayesian
schemes this marginalisation is intractable with HMM-based speech
recognition systems, though for the model parameters a variational
approximation has been examined [3]. However by appropriately
controlling the complexity of the system during training, for ex-
ample using a minimum occupancy threshold when constructing
the decision tree and limiting the number of components and trans-
forms, the standard point estimates used in adaptive training can be
justified. However during recognition, it is not possible to control
the amount of available data, if any, to estimate the test adaptation
transform so full Bayesian approaches may be required.
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There have been a number of approaches investigated to al-
low robust estimates of transform parameters with limited train-
ing data. One standard approach is to use Maximum a Posteri-
ori (MAP) estimation [4]. Though these approaches yield more
robust estimates than Maximum Likelihood (ML) training, they
still only yield a point estimate of the transform. An alternative
approach, Bayesian predictive adaptation, employs a real distri-
bution rather than a point estimate[5, 6, 7]. However though a
distribution is estimated, to allow the integration to be computed
it is usual to assume that the transform can change from frame to
frame, the frame independent assumption discussed in [8]. An-
other approach to make the integration tractable is to use a sys-
tem to obtain the Viterbi state/component sequence [9]. Though
this allows the integral to be computed it may be sensitive to the
precise state/component alignments used. Recently, Variational
Bayes (VB) approaches [10] have become popular, for example
they have been applied to training standard HMM model param-
eters [3] and scaled mean bias in adaptation [11]. This approach
does not introduce crude assumption and has a solid mathematical
basis in the sense that it yields a strict lower bound on the like-
lihoods. This paper examines the application of a VB approach
to Bayesian adaptation, along with other approximate schemes.
Bayesian adaptation and adaptive training are described in a uni-
fied framework, motivating the use of adaptively trained systems
to find appropriate priors. The forms of approximation are then ap-
plied to the specific tasks of estimating transforms within a Cluster
Adaptive Training (CAT) [12] framework and Maximum Likeli-
hood Linear Regression (MLLR) [13] transforms.

2. BAYESIAN SCHEMES AND ADAPTIVE TRAINING

This section reviews the basic theory behind adaptive training within
a Bayesian framework, similar to that in [8]. Given a set of training
data O = {O(1), . . . ,O(S)} where O(s) represents a particular
homogeneous block, the aim of adaptive training is to estimate the
transform and model set parameter distributions that maximise

p(O|H) =

∫
M

S∏
s=1

(
p(O(s)|H,M)

)
p(M) dM (1)

where

p(O(s)|H,M) =

∫
T

p(O(s)|H,M, T )p(T ) dT (2)

p(M) and p(T ) are the distributions for the canonical model and
transform parameters1 respectively and H is the transcription for

1The distribution of the transform parameters is dependent on the model
set, for clarity of notation this dependence has been dropped.
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the training data. Normally HMMs, with Gaussian mixture model
(GMM) as the state output distributions, are used as the underlying
acoustic model. Letting Λ = {T ,M},

p(O(s)|H, Λ) =
∑
θ∈Θ

P (θ|M)
∏

t

b(ot|Λ, θt) (3)

where Θ is the set of all possible component sequences2 for H,
P (θ|M) is the distribution of a particular component sequence θ,
b(ot|Λ, θt) is the Gaussian distribution at component θt.

The direct optimisation of this expression is highly complex.
To overcome this problem, a joint distribution, q(θ, Λ), over the
component sequence, θ, and parameters, Λ, is introduced. Apply-
ing Jensen’s inequality yields

log p(O|H) ≥
〈

log
p(O, θ|Λ,H)p(Λ)

q(θ, Λ)

〉
q(θ,Λ)

(4)

where < f(x) >q(x) denotes the expectation of function f(x)
with respect to the distribution of q(x). The above becomes equal-
ity when

q(θ, Λ) = P (θ|O,H, Λ)p(Λ|O,H) (5)

Using equation 5 is impractical, so approximations are used, this is
the class of approaches known as variational Bayes [10, 3]. These
approximations mean that a lower bound rather than the actual
likelihood is optimised. The tightness of the bound is dependent
on the form used.

When building speech recognition systems it is possible to
control the complexity of the system being trained. For exam-
ple minimum occupancies may be applied during the construction
of the decision tree, and homogeneous blocks clustered together,
to ensure robust estimates of the parameters. Using these stan-
dard approaches it is usual to approximate the distributions over
the model parameters using point estimates, the distribution is a
delta function. Effectively the variances of the parameter estimates
is assumed to be sufficiently small that this approximation is rea-
sonable. With this approach it is possible to use the Expectation
Maximisation (EM) algorithm. The joint distribution at iteration
k + 1 is obtained using the previous iteration’s estimate, Λ̂k. The
lower bound in equation 4 is usually written as an auxiliary func-
tion, Q(Λk+1, Λ̂k). Thus

q(θ, Λ) = P (θ|O,H, Λ̂k) (6)

This allows the standard iterative adaptive training formulation to
be used [1], which interleaves estimating the model parameters
and the transform parameters. Each iteration is guaranteed to in-
crease the right-hand side of equation 4, hence decreasing the dif-
ference between the approximation and the likelihood using the
“true” point estimate. Eventually when the value of current esti-
mate of the parameters is the “true”, either ML or MAP, estimate,
the point form of the equality in equation 5 is obtained.

It is interesting to compare this lower bound approximation
for recognition to standard iterative approaches such as iterative
MLLR. In iterative MLLR, a transform is estimated using the 1-
best hypothesis. This transform is then used to re-recognise the
data and the process repeated if necessary. When used in recogni-
tion the lower bound in equation 4 requires that for each hypothe-
sis a transform is estimated and used to obtain an estimate of the

2Using the component sequence as the hidden variable sequence is for
deriving formulae for updating component parameters. This is a natural
extension to using the state sequence.

log-likelihood for that hypothesis. This should result in a tighter
lower bound for the hypothesis, other than the 1-best, than iterative
MLLR. This should reduce the inherent biases to the adaptation
transcription seen in iterative MLLR.

One effect of ensuring that there is sufficient data to obtain ro-
bust estimates is that the distribution over the model parameters,
p(Λ), is not normally required. The only aspect of the adaptively
trained system required for recognition is the estimated model pa-
rameters M̂. However for many situations there may be limited,
or even no, test adaptation data available. For these situations it
is useful to also extract the distribution of the transform param-
eters. From the training data, a point estimate of the transform
for each of the homogeneous blocks, {T̂ (1), . . . , T̂ (S)}, is found.
This data may be directly used to estimate the prior. The precise
form of this prior is important. It is preferable to use a conjugate
prior distribution as it commonly leads to tractable mathematical
forms [10]. For the form of bound in equation 4, this is often a
single Gaussian. Unfortunately a single component is not always
powerful, for example in the case of CAT [2], the distribution of
the interpolation weights may be highly bimodal. For these in-
stances it makes sense to use a GMM as the prior distribution for
the transform parameters. Using GMMs further complicates the
training. Consider the N -component prior distribution of the form

p(T ) =

N∑
n=1

cnN (T ; μ
(n)
T ,Σ

(n)
T ) (7)

where cn is the component prior. For MAP estimation it is no
longer possible to directly apply the prior, which is possible in the
case of a single component [14]. Instead Jensen’s inequality must
again be used. At iteration k + 1

log p(T ) ≥
〈

log cnp(Tk+1|n)

qk(n)

〉
qk(n)

(8)

where qk(n) = P (n|T̂k). Though this will decrease the tightness
of the bound, hence requiring additional iterations, it allows the
MAP estimates of the transform parameters to be simply obtained.
Substituting this into the transform estimation auxiliary function
yields (ignoring constants)

Q(Tk+1, T̂k) = 〈log p(O, θ|Tk+1,H)〉P (θ|O,H,T̂k)

+
∑

n

P (n|T̂k) log p(Tk+1|n) (9)

The precise effect of this on the MAP estimation is shown in detail
in section 4. It is worth noting that equation 9 is also the lower
bound used for inference or recognition.

3. BAYESIAN ADAPTATION APPROXIMATIONS

The previous section discussed adaptive training and estimation of
the prior transform distribution. This section examines how this
transform distribution may be used in situations where there is no
adaptation data available to estimate the transform. The aim is to
select the hypothesis that maximises

p(O|H) =

∫
T

p(O|H, T )p(T ) dT (10)

where O is assumed to belong to a single homogeneous block. In
the same fashion as adaptive training, this integral is intractable un-
less for example the point estimates from the previous section are
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used. Approximations to this integral are discussed in this section.
Though no test adaptation data is used, equation 10 results in a
very different recognition process to standard speaker-independent
(SI) recognition. For a homogeneous block, the transform, repre-
sentation of a speaker/acoustic condition, is constrained to remain
constant. In contrast, for SI recognition it can usually change from
frame to frame (the standard HMM assumption).

3.1. Sampling approximation

Sampling approaches are a standard method for approximating in-
tractable integrals. The basic idea is to draw samples from the
distribution and use the average integral function value to approx-
imate the real probabilistic expectation. Thus

p(O|H) ≈ 1

N

N∑
n=1

p(O|H, T̂n) (11)

where N is the total number of samples, T̂n, independently drawn
from p(T ). In the limit as N → ∞ this will tend to the true in-
tegral. There is a fundamental issue associated with this form of
approximation. As the number of transform parameters increases
the number of samples required to obtain good estimates dramati-
cally increases. As a separate decode is required for each sample
to find the final best hypothesis, this approach is only applicable to
systems with small numbers of adaptation parameters such as CAT.
It is worth noting that in contrast to using the ML or MAP point
estimates there is no iterative process required, the likelihoods are
simply estimated from the samples drawn from p(T ).

3.2. Frame-independent (FI) assumption

ot ot+1

t+1t θθ

TT

1(a) Strict Adaptation

ot ot+1

t t+1

t+1t θθ

TT

1(b) FI Assumption

Fig. 1. Dynamic Bayesian networks

Rather than approximating the integral, an alternative approach
is used to alter the dynamic Bayesian network (DBN) associated
with the recognition process. Figure 1(a) shows the DBN for de-
coding with adaptively trained systems. Here there is a first-order
Markov state/component process and the constraint that the trans-
form is the same for all frames of the same homogeneous block.
Mathematically this yields the integral in equation 10. If the con-
straint that the transform is the same for all observations is relaxed,
then the DBN in figure 1(b) will be obtained. This allows the trans-
form to vary from time instance to time instance and hence will be
referred to as the frame-independent assumption3, see for example
[8, 6]. Using this approximation yields

p(O|H) ≈
∑

θ

P (θ|M)
∏

t

∫
T

b(ot|T , θt)p(T ) dT (12)

3This resultant distribution is referred to as a predictive distribution [6].

With the appropriate form of p(T ), this frame-level integral is
tractable [8, 6]. In common with the sampling scheme, no iterative
estimation scheme is required and standard decoding may be used.
However for the no adaptation data case, this FI assumption is very
close to the standard SI system. Unless a multiple-component prior
is the used, the results with FI approximation will be similar to the
SI performance.

3.3. Variational Bayes (VB) approximation

For the FI approximation it is not possible to state how close the
approximation is to the actual likelihood. In contrast, if the varia-
tional Bayes approximation in equation 4 is used, it is guaranteed
to yield a lower bound on the actual likelihood. One simple vari-
ational approximation is to use a point estimate, as in equation 6.
However it would be preferable to use a distribution. In order to
make the calculation tractable, the distributions of the component
posterior and the transform posterior are assumed to be condition-
ally independent. Thus

q(θ, T ) = q(θ|O,H)q(T |O,H) (13)

For simplicity of notation these distributions will be denoted as
q(θ) and q(T ). The aim is to now obtain forms of q(θ) and q(T )
that maximise the RHS of equation 4, hence making the lower
bound as tight as possible. This is the Variational Bayesian EM
(VBEM) algorithm [10]. In the same fashion as EM, VBEM is
an iterative process. At each iteration the bound is guaranteed to
become tighter. The process is:

1) Initialise: q0(T ) = p(T ), k = 1.

2) VB expectation (VBE): the optimal variational posterior com-
ponent distribution can be shown to be

qk(θ) =
1

ZΘ(O,H)
exp

(
〈log p(O, θ|T ,H)〉qk−1(T )

)
(14)

where ZΘ(O,H) is the normalisation term to make qk(θ) a valid
distribution, qk(T ) is the variational transform distribution of the
kth iteration. As log p(O, θ|T ,H) can be factorised, the expecta-
tion with respect to qk(T ) can be done at frame-level in the log-
arithm domain. This allows qk(θ) to be viewed as a posterior
component sequence distribution of a model set with a modified
Gaussian component

b̃(ot|θt) = exp
(
< log b(ot|T , θt) >qk−1(T )

)
(15)

b̃(o|θ) is sometimes referred to as a pseudo-distribution because it
is not necessarily correctly normalised. ZΘ(O,H) can be simply
calculated using the standard forward algorithm with b̃(o|θ),

ZΘ(O,H) =
∑
θ∈Θ

P (θ|M)
∏

t

b̃(ot|θt) (16)

3) VB maximisation (VBM): find qk(T ) by maximising

Q (qk(θ), qk(T )) = 〈log p(O, θ|T ,H)〉qk(θ)qk(T )

+

∫
T

qk(T ) log
p(T )

qk(T )
dT (17)

unless converged goto (2), k = k + 1.
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In contrast to the point estimates where after convergence of
the EM algorithm the equality constraint for the point estimate ver-
sion of equation 4 applies, using the approximation of equation 13
means that the equality will not be achieved. Furthermore it is
still not possible to marginalise over the parameters with this vari-
ational approximation. Hence for decoding this VB lower bound,
Q (qk(T )), must be computed. This can be achieved using the
final estimate of the transform distribution (iteration k), qk(T ),

Q (qk(T )) = logZΘ(O,H) +

∫
T

qk(T ) log
p(T )

qk(T )
dT (18)

This lower bound is used for inference, under the assumption that
the ordering of log p(O|H) is similar to that of the VB lower
bound. This assumption is expected to be better when the VB
lower bound is close enough to the marginal likelihood. Hence the
importance of making the lower bound as tight as possible.

Similar to the MAP approach, if p(T ) is a mixture model,
the VB lower bound with p(T ) can not be directly optimised. A
posterior component weight has to be introduced. The logarithm
of the marginal likelihood is then approximated by

log p(O|H) ≥
〈
log

cn

qk(n)

∫
T

p(O|H, T )p(T |n) dT
〉

qk(n)

≥
〈
Q
(
qk−1(T |n)

)〉
qk(n)

+
〈
log

cn

qk(n)

〉
qk(n)

(19)

To simplify the calculation of q(n), the components of the prior are
assumed to be independent of each other. Hence the component
sequence θ in Q(q(T |n)) may alter from an prior component to
another. Thus qk(n) is calculated in the VBE step by

qk(n) =
cn exp (Q (qk−1(T |n)))∑
n cn exp (Q (qk−1(T |n)))

(20)

In the VBM step, the auxiliary function for q(T |n) is similar to
equation 17 except for using the nth component of p(T ) and q(T ).
Note that q(θ) here is calculated based on the complete q(T )
rather than a particular component.

4. APPLICATION TO MLLR AND CAT

Section 3 introduced the general form of various approximation
schemes. In this section, these schemes are applied to two spe-
cific types of transforms. Cluster Adaptive Training (CAT) [2] and
Maximum Likelihood Linear Regression (MLLR) [13].

4.1. Cluster Adaptive Training

In CAT the transform used to represent the unwanted variability
is a set of interpolation weights that operate on the means of a set
of clusters, or eigenvoices. The estimate of the adapted mean for
component m, μ̂(m), is given by

μ̂(m) =
P∑

p=1

λpμ(m)
p = M(m)λ (21)

where μ̂(m) is the adapted mean vector of Gaussian component m,
M(m) = [μ

(m)
1 , · · · , μ

(m)
P ] is the cluster mean vector for compo-

nent m, P is the number of clusters, and λ is a P × 1 interpola-
tion weight vector. As the number of interpolation weights used

is small, typically only 2 or 3, it is possible to use the sampling
approaches discussed in section 11.

Though the MAP estimate for the single component prior case
has already been derived for CAT [12], the multiple component
case has not been considered. Using the variational approximation
in equation 9, the MAP estimate of λ at iteration k is

λ̂k =

(
N∑

n=1

q(n)Σ
(n)−1
T + G

)−1( N∑
n=1

q(n)Σ
(n)−1
T μ

(n)
T + k

)
(22)

where the standard CAT sufficient statistics are used

G =
∑
m

∑
t

γm(t)M(m)T Σ(m)−1M(m) (23)

k =
∑
m

M(m)T Σ(m)−1

(∑
t

γm(t)ot

)
(24)

γm(t) is the component posterior derived from P (θ|O,H, λ̂k−1).
For the frame independent assumption it is necessary to obtain

the predictive distribution. For both the CAT case here and the
MLLR transform in the next section, if the original distribution
and prior are both GMMs, then the resultant predictive distribution
will also be a GMM. Thus for a particular Gaussian component m∫

T
b(o|T , m)p(T ) dT =

N∑
n=1

cnN (o; μ̃(mn), Σ̃(mn)) (25)

where the prior distribution is given in equation 7. For CAT the
parameters of this distribution can be shown to be

μ̃(mn) = M(m)μ
(n)
T

Σ̃(mn) = M(m)Σ
(n)
T M(m)T + Σ(m) (26)

It is interesting to note that even if the prior and original Gaussian
distribution both have diagonal covariance matrices, the resultant
predictive distribution has a full covariance matrix.

Using VB as the approximation it is necessary to find the pseudo-
distribution, b̃(o|θ) given in equation 15. For CAT the pseudo dis-
tribution for component m is 4

log b̃(o|m) =
N∑

n=1

q(n)
(

logN (o;M(m)μ̃
(n)
T ,Σ(m)) (27)

−1

2
tr(Σ̃(n)

T M(m)T Σ(m)−1M(m))
)

The final variational distribution required is q(T ). For both CAT
and MLLR this distribution can also be shown to be a GMM

q(T ) =

N∑
n=1

q(n)N (T ; μ̃
(n)
T , Σ̃

(n)
T ) (28)

where the component parameters are given by

Σ̃
(n)
T =

(
Σ

(n)−1
T + G

)−1

(29)

μ̃
(n)
T = Σ̃

(n)
T

(
Σ

(n)−1
T μ

(n)
T + k

)
(30)

where G and k are the standard sufficient statistics given in equa-
tions 23 and 24, except that γm(t) is calculated based on the pseudo-
distribution given in equation 27. The component weight of the
GMM, q(n), is updated using equation 20.

4Iteration index k is dropped for clarity of notation.
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4.2. Maximum Likelihood Linear Regression

In MLLR a linear transformation of the mean parameters of the
model set is used to represent the unwanted variability. Thus

μ̂(m) = Aμ(m) + b = Wξ(m) (31)

where ξ(m) = [μ(m)T 1]T is the extended mean vector, W =
[A b] is the extended linear transform. A GMM may be used
as the prior distribution, but now each row of the transform is as-
sumed to be independent given the prior component. Thus

p(T ) =

N∑
n=1

cn

D∏
d=1

N (wd; μ(n)
wd

,Σ(n)
wd

) (32)

where D is the size of the original mean vector, wT
d is the dth row

of W. This row-independent assumption is consistent with the di-
agonal covariance matrix used for HMM systems [8]. For MLLR
transforms, the parameters of the Gaussian component of the pre-
dictive distribution have already been derived in [6, 8] and are not
reproduced here. The single component prior form of MAP was
presented in [14]. The multiple component prior MAP estimate is
a straightforward extension, yielding forms similar to that for CAT
given in equation 22.

For the VB approximation, the pseudo distribution is first re-
quired. Again this can be shown to an unnormalised distribution,
where component m has the form

log b̃(o|m) =

N∑
n=1

q(n)
(

logN (o;W̃(n)
μ ξ(m),Σ(m))

−1

2

D∑
d=1

ξ(m)T Σ̃
(n)
wd

ξ(m)

σ
(m)
dd

)
(33)

where W̃
(n)
μ = [μ̃

(n)T
w1 , · · · , μ̃

(n)T
wD ]T is the mean of the nth trans-

form prior component. Given the pseudo-distribution, q(T ) can be
updated. This is similar to equation 28, but modified to reflect the
independence assumption between rows of the transform shown in
equation 32. The nth component’s mean and variance for row d
can be shown to be

Σ̃(n)
wd

=
(
Σ(n)−1

wd
+ G(d)

)−1

μ̃(n)
wd

= Σ̃(n)
wd

(
Σ(n)−1

wd
μ(n)

wd
+ k(d)

)
(34)

where μ
(n)
wd and Σ

(n)
wd are the parameters of the nth prior compo-

nent, G(d) and k(d) have the same form as the standard statistics
used in MLLR estimation

G(d) =
∑

t

∑
m

γm(t)

σ
(m)
dd

ξ(m)ξ(m)T (35)

k(d) =
∑

t

∑
m

γm(t)ot,d

σ
(m)
dd

ξ(m) (36)

but the component posterior, γm(t), is based on the pseudo-distribution
given in equation 33.

5. EXPERIMENTAL RESULTS

The performance of the various Bayesian adaptation approxima-
tions were evaluated on a large vocabulary speech recognition sys-
tem, conversational telephone speech task. The training data set

consists of 5446 speakers (2747 female, 2699 male), about 295
hours of data. The performance was evaluated on the 2003 evalua-
tion test dataset, eval03, consisting of 144 speakers (77 female,
67 male), about 6 hours of data. All systems used a 12-dimensional
PLP front-end with log energy and its first, second and third deriva-
tives with Cepstral mean and variance normalisation and VTLN.
An HLDA transform was then applied to reduce the feature di-
mension to 39. Though the use of normalisation techniques may
reduce the possible gain from adaptation, it gave a more realistic
baseline. A standard decision-tree state-clustered triphones with
an average of 16 Gaussian components per state was constructed
as the starting point for the adaptive training. This is the base-
line speaker-independent (SI) model. Two adaptively trained sys-
tems were then built. The first was a 2-cluster CAT system, ini-
tialised using gender information [12]. For this CAT system a 2-
component prior was estimated from the training transforms. The
second was a SAT system constructed using MLLR, where a sin-
gle component prior was estimated from the training data. For the
CAT system a global transform was used and for the SAT system
separate speech and silences transforms were used, the priors for
which were independently estimated.

As Viterbi decoding is not possible for the variational approx-
imation in equation 4, N-best rescoring is employed for recogni-
tion. A 150-best list was generated using the SI system. All results
shown are based on this N-best list. Though the use of N-best lists
can limit performance differences, using spot-checks on for exam-
ple the frame independent configuration this was not found to be
a major problem. To illustrate the effects of these Bayesian ap-
proaches to adaptation, the homogeneous blocks considered here
were based on a single utterance, not as in the standard case on a
side basis. For the eval03 test set the average utterance length
was 3.13 seconds, compared to the average side length of 153.75
seconds. This dramatically limits the available data for estimating
transforms.

Approx.
q(θ, T ) eval03

basis CAT SAT

Speaker Independent 32.83

ML
T̂ ML

0 32.83 33.44
T̂ ML

1 32.19 35.16

MAP
T̂ MAP

0 32.85 33.47
T̂ MAP

1 32.17 31.76

Sampling — 32.16 —
FI — 32.48 32.90

VB
q0(T ) 32.99 34.12
q1(T ) 32.14 31.50

Table 1. % WER 295hr CAT and SAT systems with 2-mixture and
1-mixture Gaussian prior transform distribution respectively

Table 1 shows the performance of both point estimate and
Bayesian approximation techniques. The baseline performance
for the SI model was 32.83% on this task. The first set of ex-
periments used the ML and MAP point estimates discussed in sec-
tion 2. If no prior information is used then the ML estimate of
the CAT [2] and MLLR [13] are obtained. However in contrast to
the standard approaches a transform is computed for every one of
the N-best hypothesis, as this corresponds to the point estimate of
the variational-approximation in equation 4. As the estimation of
the transform parameters relies on EM, the approximation q(θ, T )
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must be considered. Two sets of results were obtained. The zeroth
iteration used the SI model component posteriors for CAT and the
posteriors using an identity transformation for SAT. The first itera-
tion then used the transforms estimated from the zeroth stage, T̂1,
to obtain the posteriors. For CAT, where very little data is required
to estimate the transforms, the performance on the first iteration
was better than the SI model, in this case by about 0.7% absolute.
On the zeroth iteration the performance was about the same as the
SI system. This illustrates the sort of degradation that can result
when the bound is too loose. For SAT, where an MLLR transform
must be estimated, the performance at the first iteration was about
2.3% absolute worse than that of the SI system. this was expected
as the transform parameters were estimated using an average of
only 300 frames. This problem is partially solved using MAP es-
timation. For SAT this gave about 1.1% absolute gain over the
SI system, showing the importance of the use of prior information
when estimating transforms with little data.

For CAT the simple sample approximation to the Bayesian in-
tegral could be used. Here, 200 samples were drawn from the CAT
prior distribution and used to rescore the N-best lists. This may be
viewed as a bound on the performance. This gave an error rate
the same as the MAP system, about 0.7% absolute better than the
SI system. The frame-independent approximation could be used
for both the CAT and the SAT systems. For the CAT system as
a 2-component prior was used the decoding involved an average
of 32-components per-state, in addition to each component having
a full-covariance matrix. The performance of the FI system was
slightly disappointing. For the CAT system the gain over the SI
system was only 0.35% and for the SAT system the performance
was marginally worse. This shows the effect of not constraining
the transform to be consistent for each homogeneous block.

The final approximation considered was the VB approxima-
tion. This should yield more robust estimates as a distribution
over the transform parameters is used rather than a point estimate.
Again, as a VBEM approach is used, the form of the variational ap-
proximation must be considered. Here the zeroth iteration, q0(T ),
where the transform prior was used, and the first iteration, q1(T ),
using the distribution from the zeroth iteration, were examined.
Again the importance of the tight bound was illustrated. For the
looser bound of the zeroth iteration the performance was actu-
ally worse than that of the SI system. On the first iteration, using
q1(T ), the performance for CAT was about the same as that of the
sampling and MAP approaches. For the SAT system the VB ap-
proximation was 0.3% absolute better than the MAP system, this
is statistically significant using the pair-wise significance test.

6. CONCLUSION

This paper has described adaptive training within a Bayesian frame-
work. This motivates the use of adaptive training to give both
the canonical model set to be adapted during recognition and the
prior distribution for the transform parameters. As the complex-
ity can be simply controlled during training to reflect the amount
of data, the use of Bayesian schemes for training are not consid-
ered. Instead this paper examines the application of Bayesian ap-
proaches to applying a transform distribution during recognition.
Three non-point estimate approaches are described, sampling, the
frame-independent predictive distribution, and a variational Bayes
approximation. These are compared to point estimate schemes
based on both ML and MAP estimation. These approaches are
examined on a conversational telephone speech task. In order to

restrict the amount of data, the homogeneous blocks for this task
were considered at the utterance, rather than the side, basis. Using
this set-up the use of transform distributions estimated and applied
using a variational Bayes approach significantly outperformed all
other approaches. Though the task considered is slightly artificial
in the sense that the homogeneous blocks are only considered at
the utterance level, this is equivalent to the start of any adaptive
recognition process. Furthermore the framework described can be
simply extended to employing a posterior transform distribution if
adaptation data is available, which is referred to as posterior adap-
tation [15].
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