
Engineering Tripos Part IIB FOURTH YEAR

Module 4F10: STATISTICAL PATTERN RECOGNITION

Examples Paper 1

Straightforward questions are marked †
Tripos standard (but not necessarily Tripos length) questions are marked ∗

Bayes Risk

1. In many pattern classification problems, one has the option either to assign the
pattern to one of the c classes, or to reject it as being unrecognizable. If the cost to
reject is not too high, rejection may be a desirable action. Let the cost of classification
be defined as

λ(ωi|ωj) =
0 ωi = ωj (i.e. (Correct classification)
λr ωi = ω0 (i.e. Rejection)
λs Otherwise (i.e. Substitution Error)

Show that for minimum risk classification, the decision rule should associate a test
vector x with class ωi, if P (ωi|x) ≥ P (ωj|x) for all j and P (ωi|x) ≥ 1− λr/λs, and
reject otherwise.

EM and Mixture Models

2. † For d-dimensional data compare the computational cost of calculating the log-
likelihood with a diagonal covariance matrix Gaussian distribution, a full covariance
matrix Gaussian distribution and an M -component diagonal covariance matrix Gaus-
sian mixture models. Clearly state any assumptions made.

3. A 1-dimensional 2-component mixture distribution has a common fixed known vari-
ance = 1 and initial mean values µ1 = 0 µ2 = 2 and mixture weights c1 = c2 = 0.5.

There is a data set of 9 training data points provided

−1.5, −0.5, 0.1, 0.3, 0.9, 1.3, 1.9, 2.3, 3.0

(a) Calculate the log likelihood of the training data for the mixture distribution with
the initial parameters.

(b) Calculate updated values for the mean and mixture weights for 1 iteration of the
E-M algorithm.

4. A series of n independent, noisy, measurements are taken, x1, . . . , xn. The noise is
known to be Gaussian distributed with zero mean and unit variance. The “true”
data is also known to be Gaussian distributed.
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(a) Find the maximum likelihood estimates of the mean, µ, and variance, σ2, of the
“true” data by equating the gradient to zero.

(b) A latent variable zi is introduced. It is the value of the noise for observation xi.
Show that the posterior probability of zi given the current model parameters is

p(zi|xi, θ) = N
(
zi;

(xi − µ)

(1 + σ2)
,

σ2

(1 + σ2)

)

Using the expectation-maximisation algorithm derive re-estimation formulae for
the mean, µ, and variance, σ2. Show that the iterative estimation scheme for
the mean converges to the correct answer, you may assume that the variance is
of the true data is known and fixed at σ2.

Discuss the merits of the two optimisation schemes for this task and for optimisation
tasks in general.

5. Consider an M component mixture model of d-dimensional binary data x of the form

p(x) =
M∑

m=1

P (ωm)p(x|ωm)

where the jth component PDF has parameters λj1, . . . , λjd and

p(x|ωj) =
d∏

i=1

λxi
ji (1− λji)

1−xi

A set of training samples x1, . . . ,xn are used to train the mixture model. Using
the standard form of EM with mixture models show that the maximum likelihood
estimate for the “new” parameters, λ̂ji, is given by

λ̂ji =

∑n
k=1 P (ωj|xk)xki∑n

k=1 P (ωj|xk)

where P (ωj|xk) is obtained using the “old” model parameters.

Single Layer Perceptrons

6. The standard single layer perceptron is used to discriminate between two classes.
There are two simple techniques for generalising this to a K class problem. The
first is to build a set of pairwise classifiers i.e. ωi versus ωj, j 6= i. The second
is to build a set of classifiers of each class versus all other classes i.e. ωi versus
{ω1, . . . , ωi−1, ωi+1, ωK}. Compare the two forms of classifier in terms of training and
testing computational cost. By drawing a specific example with K = 3 show that
both forms of classifier can result in an “ambiguous” region i.e. no decision can be
made. Describe how multiple binaries classifiers may be trained so that no ambigu-
ous regions exist.
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Multi-Layer Perceptrons

7. † A multi-layer perceptron consists of d inputs, L hidden layers with M hidden
units in each hidden layer, and K output nodes. Write down an expression for the
total number of weights (including biases) in the network. Describe the factors that
influence the number of hidden layers, the activation functions on the output layer,
and the number of hidden units.

8. † For the logistic regression function, φ(z), show that

∂

∂z
φ(z) = φ(z)(1− φ(z))

How does the nature of the activation function affect the computational cost of the
error-back propagation algorithm?

9. Consider the optimisation of a set of weights where the gradient of the error function
with respect to the weight space is approximately constant. The following update
rule is used

w[τ + 1] = w[τ ] + ∆w[τ ]

where

∆w[τ ] = −η ∇E(w)|w[τ ] + α∆w[τ − 1]

Show that the effect of the momentum term is to increase the effective learning rate
from η to η

1−α
.

What is the effective learning rate for a region where the gradient descent scheme is
oscillating about the real solution?

10. ∗ The Hessian is a useful matrix for use in the optimisation of the weights of multi-
layer perceptrons.

(a) Describe how the Hessian may be used for optimising the weights of a multi-
layer perceptron. Discuss the limitations for the practical implementation of
such schemes.

(b) For the least squares error function

E =
1

2

n∑
p=1

(y(xp)− t(xp))
2

show that the elements of the Hessian matrix can be expressed as

∂2E

∂wij∂wlk

=
n∑

p=1

∂y(xp)

∂wij

∂y(xp)

∂wlk

+
n∑

p=1

(y(xp)− t(xp))
∂2y(xp)

∂wij∂wlk

For the case of well trained, sufficiently powerful, network, with an infinitely
large training set, show that at the minimum the second term may be ignored.
This is called the outer-product approximation.
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(c) The Hessian after the N th data point is approximated by

HN =
N∑

p=1

g(p)(g(p))′

where

g(p) = ∇E|w[τ ]

By using the equality

(A + BC)−1 = A−1 −A−1B(I + CA−1B)−1CA−1

where I is the identity matrix, show that

H−1
N+1 = H−1

N − H−1
N g(N+1)(g(N+1))′H−1

N

1 + (g(N+1))′H−1
N g(N+1)

Why is this a useful approximation to estimate the inverse Hessian during multi-
layer perceptron training.

Answers

3. (a) total likelihood of data = 2.262e-07; (b) µ̂1 = −0.0426 ; µ̂2 = 1.878 ; ĉ1 = 0.5266;
ĉ2 = 0.4734

M.J.F. Gales
P.C. Woodland
Oct 2003 - Jan 2007
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