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Syllabus

1. Introduction & Bayes’ Decision Theory (1L)
• Statistical pattern processing
• Bayesian decision theory
• Generalisation

2. Multivariate Gaussian Distributors & Decision Bound-
aries (1L)

• Decision boundaries for Mulitvariate Gaussians
• Maximum likelihood estimation
• Classification cost
• ROC curves

3. Gaussian Mixture Models (1L)

• Mixture models
• Parameter estimation
• EM for discrete random variables

4. Expectation Maximisation (1L)

• Latent variables both continuous and discrete
• Proof of EM
• Factor analysis

5. Linear Classifiers (1L)

• Single layer perceptron
• Perceptron learning algorithm
• Fisher’s linear discriminant analysis
• Limitations
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6. Multi-Layer Perceptrons (2L)

• Basic structure
• Posterior distribution modelling
• Regression
• Error back propagation learning
• Second order optimisation methods

7. Support Vector Machines (2L)

• Maximum margin classifiers
• Handling non-separable data
• Training SVMs
• Non-linear SVMs
• Kernel functions

8.Gaussian Processes (2L)

• Gaussian processes
• Covariance functions
• Non-linear regression
• Gaussian processes for classification

9. Classification and Regression Trees (1L)

• Decision trees
• Query selection
• Multivariate decision trees

10. Non-Parametric Techniques (1L)

• Parzen windows
• Nearest neighbour rule
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• K-nearest neighbours
11. Application: Speaker Verification and Identification
(1L)

• Speaker recognition/verification task
• GMMs and MAP adaptation
• SVM-based verification

Total of 14L + 2 Examples Classes

Lecturers: Prof. Phil Woodland & Dr. Mark Gales

Assessment by exam (1.5h): 3 questions from 5.

A number of books cover parts of the course material.

• C.M.Bishop, Pattern Recognition and Neural Networks
OUP, 1995, CUED: NOF 55

• R.O.Duda, P.E.Hart & D.G. Stork Pattern Classification,
Wiley, 2001, CUED: NOF 64

• D.J.C. Mackay, Information Theory, Inference and Learn-
ing Algorithms, CUP, 2004. (Also available online) CUED:
NO 277

• C.M. Bishop, Pattern Recognition and Machine Learning,
Springer 2006.
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What is Statistical Pattern Processing?

The main area of Statistical Pattern Processing discussed in
this course is classification of patterns into different classes.
The patterns can represent many different types of object.

Typical areas of application include

• Object recognition /classification (e.g. face recognition)

• Speech recognition / speaker identification

• Medical diagnosis

• Financial analysis

A key issue in all pattern recognition systems is variabil-
ity. Patterns arise (often from natural sources) that contain
variations. Key issue: are the variations systematic (and can
be used to distinguish between classes) or are they noise.

The variability of classes will be approached by using prob-
abilistic modelling of pattern variations.

The standard model for pattern recognition divides the
problem into two parts: feature extraction and classification.

We will also discuss regression problems in which the aim
is to predict a vector of output values from vector of input
values.
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Basic Model

Feature

Extraction

Feature Vector
e.g. Spectral Components

e.g. Speech Signal

Pattern

Classification
Symbol

e.g. Word

• Initial feature extraction produces a vector of features
that contain all the information for subsequent process-
ing (such as classification).

• Ideally, for classification, only the features that contain
discriminatory information are used.

• Often features to measure are determined by an “expert”,
although techniques exist for choosing suitable features.

• The classifier processes the vector of features and chooses
a particular class.

• Normally the classifier is “trained” using a set of data for
which there are labelled pairs of feature vectors / class
identifiers available. It should be noted that test perfor-
mance on the classifier training data is biased and dis-
tinct training/test sets are needed.
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A Speech Classification Example:
Features
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• Features for vowel classification may be the spectral shape
or frequencies of peaks (formants)
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Vowel Distributions Using Formants
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• Vowel classes are reasonably separated (but some over-
lap!) using these features: could draw decision bound-
aries

• It will be important to be able to calculate the probability
of a particular class ωi given a feature vector x i.e. P (ωi|x)
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Simple Classifiers

• Min Distance to Class Mean
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• Linear Discriminant.
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The min distance to class mean constructs a linear deci-
sion boundary. There are many other ways to also con-
struct linear boundaries.
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• If the distribution of the features (for continuous valued
features the probability density function) can be mod-
elled these types of classifiers (and other more complex
types) can be constructed.
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Some Basic Probability (Revision!!)

• Discrete random variable x takes one value from the set

X = ω1, . . . , ωK

We can compute a set of probabilities

pj = Pr(x = ωj), j = 1, . . . , K

We use a probability mass function P (x), to describe the
set of probabilities. The PMF satisfies

∑
x∈X

P (x) = 1, P (x) ≥ 0

• Continuous random variable: scalar x or a vector x. De-
scribed by its probability density function (PDF), p(x).
The PDF satisfies∫ ∞

−∞ p(x)dx = 1, p(x) ≥ 0

• For random variables x, y, z need

conditional distribution: p (x|y) = p(x, y)
p(y)

joint distribution p (x, y)

marginal distribution p (x) =
∫∞
−∞ p(x, y)dy

chain rule p(x, y, z) = p(x|y, z) p(y|z) p(z)
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Bayes’ Rule

Since p(x, y) = p(y, x) the formula for conditional probability
leads to

p (x|y) p (y) = p (y|x) p (x)

p (y|x) =
p (x|y) p (y)

p (x)

This last form is known as Bayes’ Rule. It will also be partic-
ularly useful to us in the form

P (ωj|x) =
p(x|ωj)P (ωj)

p(x)

Bayes’ rule here computes the posterior probability of a
particular class, P (ωj|x)) using the likelihood of the data
computed from the class conditional density p(x|ωj).

The term P (ωj) is known as the the prior probability of the
class ωj. This is the probability of the class before any data is
observed.

The denominator of this form of Bayes’ Rule can be com-
puted as

p(x) =
∑
j

p(x|ωj)P (ωj)

This is sometimes termed the evidence and is the probability
density of the data independent of class.

Bayes’ Rule is sometimes remembered as

posterior ∝ likelihood× prior
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The figures below (from DHS) give hypothetical class-conditional
pdfs for two classes, and with P (ω1) = 2/3 and P (ω2) = 1/3,
the posterior distribution.

pdfs:

posteriors:
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Bayesian Decision Theory

Our goal in creating a decision rule here is to minimise
an average probability of error which is calculated by inte-
grating the joint probability of error and the feature over the
space of x.

P (error) =
∫

P (error, x)dx

=
∫

P (error|x)p(x)dx

For a two class problem, the conditional probability of error,
(i.e. the error probability, given a value for the feature vec-
tor), can be written as

P (error|x) =

 P (ω1|x) if we decide ω2

P (ω2|x) if we decide ω1

A decision rule that can minimise this conditional proba-
bility of error and apply it to every example, then we will
be minimising the average probability of error. This leads to
Bayes’ decision rule, which for a two class problem is

Decide

 Classω1 if P (ω1 |x) > P (ω2 |x);

Classω2 Otherwise

Note that to find the overall probability of error for the
two-class problem, there are two regions defined by the de-
cision rule, decide for class ω1 in R1 and ω2 in R2 and

P (error) = P (x ∈ R2, ω1) + P (x ∈ R1, ω2)
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= P (x ∈ R2|ω1)P (ω1) + P (x ∈ R1|ω2)P (ω2)

=
∫
R2

p(x|ω1)P (ω1)dx +
∫
R1

p(x|ω2)P (ω2)dx

It is impossible to find a closed form solution for P (error)

except in some fairly simple cases (which includes the im-
portant one Gaussian distributions with equal priors).

The error regions for a two-class problem are shown be-
low (from DHS). The decision boundary x∗ is set to xB for
minimum error.

For the two-class case the Bayes’ minimum average error
decision rule could be written as a ratio of posterior proba-
bilities:

P (ω1 | x)

P (ω2 | x)

ω1
>
<
ω2

1

or alternatively the likelihood ratio used & included the class
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priors in the threshold comparison

p(x|ω1)

p(x|ω2)

ω1
>
<
ω2

P (ω2)

P (ω1)

For multi-class problems, we calculate all the C posterior
probabilities

P (ω1|x), P (ω2|x), ..., P (ωC|x),

find the maximum of these and assign the vector x to the
corresponding class.

Applying Bayes’ Rule to this formula we need to find the
class ωj which gives

max
j

p(x|ωj)P (ωj)

since the rhs denominator of Bayes’ rule is independent of
class and this is a frequent statement of Bayes’ decision rule
for minimum error.
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Gaussian (Normal) Distribution

• Univariate Gaussian Distribution

p (x) =
1

σ
√

2π
exp

−(x − µ)2

2 σ2


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• The Gaussian is the most important distribution that we
will work with, and in many important cases class con-
ditional densities are approximately Gaussian

• Samples drawn from a Gaussian density tend to be clus-
tered around the mean µ, the spread of the samples is
proportional to σ.

• Unimodal and symmetric about the mean
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• Defined fully by the mean and standard deviation (or the
variance)

• One simple way to estimate the parameters of a Gaussian
distribution is to set the parameters the sample mean
and standard deviation from a training set.

µ = E [x]

=
∫

x p(x) dx

σ2 = E [(x− µ)2]

=
∫
(x− µ)2 p(x) dx

• Usually the feature representations we work with are d-
dimensional vectors. It is possible to model these using a
univariate Gaussian in each dimension as

p (x) =
d∏

i=1

1

σi

√
2π

exp

−(xi − µi)
2

2 σ2
i


However in this case we are assuming that the different
feature vector elements are uncorrelated. The full multi-
variate distribution can take this into account.
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Multivariate Gaussian

p (x) =
1

(2π)d/2 |Σ|1/2
exp

−1

2
(x− µ)

′
Σ−1 (x− µ)



Σ =

 3 1
1 0.5

 Σ =

 1 0
0 1


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• The distribution is characterised by the mean vector and
the covariance matrix Σ
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• The mean and covariance matrix are defined as

µ = E [x]

Σ = E [(x− µ)(x− µ)′]

The matrix is clearly symmetric and for d dimensions is
described by d(d + 1)/2 parameters.

• The diagonal elements of the covariance matrix Σii are
the variances in the individual dimesionsions σ2

i , the off-
diagonal elements determine the correlation. If all off-
diagonal elements are zero, the covariance matrix is un-
correlated, this is equivalent to a univariate Gaussian in
each dimension.

• For a full covariance matrix correlations cause the con-
tours of equal probability density, which are ellipses, to
be angled to the axes of the feature space (we will look at
this in more detail later).

• An important property that we will return to is the ef-
fect of a linear transformation on a Gaussian distribution.
Given that the distribution of vectors x is Gaussian and
that

y = A
′
x + b

(and A is non-singular) then p(y) is Gaussian with

µy = A
′
µx + b

Σy = A
′
ΣxA
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Training Classifiers & Generalisation

It should be noted that, in practice, there are a number of
stages in constructing a good claassifier using the Bayes for-
mulation

1. Decide on the features

2. Have a training or design set of labelled examples

3. Assume a form of class-conditional pdf (e.g. Gaussian)

4. Estimate the parameters of the pdfs from the (limited)
training data

5. Estimate the class priors

6. Estimate the error performance on new test data

Note that due to the assumptions and estimates above the
classifier may not be the best possible
Note that the aim is normally to get good performance on
some previously unseen test data.
Typically as we increase the number of parameters in the
class-conditional pdfs (e.g. using full-covariance model rather
than diagonal) the training data classification error rate usu-
ally decreases. However the test (future) set performance has
a minimum.
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The graph may be split into three regions:

1. Too Simple: The models used are relatively simple. The
performance on the training and test data is about the
same as the models are “well” trained.

2. Just Right: This is where the error rate on the test data is
at a minimum. This is where we want to be.

3. Too Complex: The models perform very well on the train-
ing data. However the models perform badly on the test
data.

The objective in any pattern classification task is to have the
minimum test set (future data) error rate.

Often, when designing classifiers, it is convenient to have
set of held-out training data that can be used to determine the
appropriate complexity of the classifier. This is often called a
holdout or validation set.


