
University of Cambridge
Engineering Part IIB

Module 4F10: Statistical Pattern
Processing

Handout 2: Bayes’ Classifier with
Gaussians

−4 −2 0 2 4 6 8 10
−4

−2

0

2

4

6

8

10

Phil Woodland
pcw@eng.cam.ac.uk

Lent 2007



2 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Bayes’ Decision Rule with Gaussian
densities

Bayes’ minimum error decision rule can be written in terms
of Discriminant Functions for each class i as a function of the
features so that the decision rule is

choose ωj where gj(x) = max
i

gi(x)

where
gi(x) = ln p(x|ωi) + ln P (ωi)

Note that taking the log does not affect the decision bound-
aries between the classes since log is a monotonic function.

We will use discriminant functions to investigate the Gaus-
sian classifier. The class-conditional pdf’s of the classes are
Gaussian which we will abbreviate as p(x|ωi) = N (µi, Σi).
Substituting the full multivariate Gaussian formula, noting
there is no need to include a constant term d

2 log(2π) for the
discriminant functions, in general we have

gi(x) = −1

2
(x− µi)

′
Σ−1

i (x− µi)

− 1

2
ln(|Σi|) + ln P (ωi)

For the two class case, consider a single discriminant func-
tion g1(x) − g2(x) and the value compared to a threshold for
decision:

−(x− µ1)
′
Σ−1

1 (x− µ1) + (x− µ2)
′
Σ−1

2 (x− µ2)

+ ln
|Σ2|
|Σ1|

+ 2 ln
P1

P2

ω1
>
<
ω2

0
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This decision rule specifies a quadratic classifier and the
decision boundaries are quadratic functions of the input fea-
tures. Note that this point is also when the class posteriors
are both equal to 1/2. The decision boundaries occur when
the left hand side of the above equation is equal to zero.

i.e.

(x− µ1)
′
Σ−1

1 (x− µ1)− (x− µ2)
′
Σ−1

2 (x− µ2)

− ln
|Σ2|
|Σ1|

− 2 ln
P1

P2
= 0

x
′
(Σ−1

1 −Σ−1
2 )x + 2(Σ−1

2 µ2 −Σ−1
1 µ1)

′
x

+µ
′
1Σ

−1
1 µ1 − µ

′
2Σ

−1
2 µ2 − ln

|Σ2|
|Σ1|

− 2 ln
P1

P2
= 0

i.e. of the form
x
′
Ax + b

′
x + c = 0

which gives the equation of the decision surface.
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Special Case: Σi = σ2I

For this case the covariance matrices are common, diago-
nal with all dimensions having equal variance, and so again
dropping terms independent of class and using the expres-
sion for a Gaussian with d uncorrelated features leads to

gi(x) = ln
d∏

j=1
exp(−(xi − µij)

2

2σ2
) + ln P (ωi)

gi(x) = −
d∑

j=1

(xj − µij)
2

2σ2
+ ln P (ωi)

or alternatively

gi(x) = −||x− µi||2

2σ2
+ ln P (ωi)

where ||y|| denotes the Euclidean Norm i.e.

||x− µi||2 = (x− µi)
′(x− µi)

Note that the discriminants can also be simply derived
from the general Gaussian case by noting that here

Σ−1 =
1

σ2
I

and the class-conditional pdfs are circular.
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• The quadratic term in the general Gaussian classifier de-
cision boundary disappears since the covariance matri-
ces are equal for all classes.

• The decision boundary is linear and orthogonal to the
line joining the means i.e. this is a linear classifier, and
the boundary is a hyperplane in d− 1 dimensions.

• In the case of equal class priors i.e. P (ω1) = P (ω2), the
decision boundary passes half-way between the means.
The form of the boundary can be simply found from the
general case as:

(µ2 − µ1)
′
[x− 1/2 (µ1 + µ2)] = 0

• In the case of equal priors then the classifier is equivalent
to computing the minimum Euclidean distance from the
class mean.
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Special Case: Σi = Σ

Here the covariance matrices are common but full.

gi(x) = (x− µi)
′
Σ−1(x− µi) + 2 ln P (ωi)
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• Here the classifier computes a weighted distance called
the Mahalanobis distance from the input data x to the
mean.

• The squared Mahalanobis distance (x − µ)
′
Σ−1(x − µ)

both weights the effect of individual features (by their
inverse variance) and accounts for inter-feature correla-
tions.
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• For equal class priors this is a “nearest-the-mean” classi-
fier with distance calculated using the Mahalanobis dis-
tance.

• Common covariance matrices, and therefore linear deci-
sion boundaries.

• In the case of common covariances a classifier can be more
simply constructed by transforming the input space so
that the features are decorrelated. This means that a full
covariance calculation need not be performed for every
class and has the advantage of reducing computation also
allows the classes to be represented by Gaussians with
diagonal covariance matrices.
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Examples of General Case

Arbitrary Gaussian distributions can lead to general hyper-
quadratic boundaries. The following figures (from DHS) in-
dicate this. Note that the boundaries can of course be straight
lines and the regions may not be simply connected.
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Example Decision Boundary

Assume two classes with

µ1 =

 3

6

 ; Σ1 =

 1/2 0

0 2

 µ2 =

 3

−2

 Σ2 =

 2 0

0 2



The inverse covariance matrices are then

Σ1
−1 =

 2 0

0 1/2

 Σ2
−1 =

 1/2 0

0 1/2



Substituting into the general expression for Gaussian bound-
aries yields:

[
x1 x2

]  3/2 0

0 0


 x1

x2



+2
[
−9/2 −4

]  x1

x2

 +36− 6.5− ln 4 = 0

1.5x2
1 − 9x1 − 8x2 + 28.11 = 0

x2 = 3.514− 1.125x1 + 0.1875x2
1

which is a parabola with a minimum at (3,1.83). This is illus-
trated (from DHS) below. The graph shows 4 sample points
from each class, the means and the decision boundary. Note
that the boundary does not pass through the mid-point be-
tween the means.
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Maximum Likelihood Estimation
We need to estimate the vector parameters of the class condi-
tional pdfs θ from training data. The underlying assumption
for ML estimates is that the parameter values are fixed but
unknown. Assume that the parameters are to be estimated
from a training/design data set, D, with n example patterns

D = {x1, · · · , xn}
and note θ depends on D.

If these training vectors are drawn independently i.e. are
independent and indentically distributed or IID, the joint prob-
ability density of the training set is given by

p(D|θ) =
n∏

k=1
p(xk|θ)

p(D|θ) viewed as a function of θ is called the likelihood of θ

given D.
In ML estimation, the value of θ is chosen which is most

likely to give rise to the observed training data.
Often the log likelihood function, l(θ), is maximised in-

stead for convenience i.e.

l(θ) = ln p(D|θ) =
n∑

k=1
ln p(xk|θ)

This value can either be maximised by iterative techniques
(e.g. gradient descent and expectation-maximisation algo-
rithms : see later in the course) or in some cases by a direct
closed form solution exists. Either way we need to differen-
tiate the log likelihood function with respect to the unknown
parameters and equate to zero.
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Maximising the Likelihood

θ θ

Lo
g−

Li
ke

lih
oo

d

To find the maximum likelihood value we need to find the
point where

∇θl(θ) =
n∑

i=1
∇θ log(p(xi|θ)) = 0

i.e. the gradient with respect to θ is zero. Note

∇θl(θ) =



∂l(θ)
∂θ1...

∂l(θ)
∂θP


if there are P model parameters to estimate. The gradient
will be zero at maxima (desired), minima and saddle-points.

The dependence of the grad on the model parameters, θ,
will be assumed. It will now be simply written as ∇ for clar-
ity.
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Log-Likelihood Functions

As an example consider estimating the parameters of a uni-
variate Gaussian distribution with data generated from a Gaus-
sian distribution with mean=2.0 and variance=0.6.
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The variation of log-likelihood with the mean is shown
above (assuming that the correct variance is known).
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Similarly the variation with the variance (assuming that
the correct mean is known).
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Mean of a Gaussian distribution

Now we would like to obtain an analytical expression for the
estimate of the mean of a Gaussian distribution. Consider a
single dimensional observation (d = 1). Consider estimating
the mean, so

θ = µ

First the log-likelihood may be written as

l(µ) =
n∑

i=1
log(p(xi|µ)) =

n∑
i=1

−1

2
log(2πσ2)− (xi − µ)2

2σ2


Differentiating this gives

∇l(µ) =
∂

∂µ
l(µ) =

n∑
i=1

(xi − µ)

σ2

We now want to find the value of the model parameters that
the gradient is 0. Thus

n∑
i=1

(xi − µ)

σ2
= 0

So (much as expected!) the ML estimate of the mean µ̂ is

µ̂ =
1

n

n∑
i=1

xi

Similarly the ML estimate of the variance can be derived.
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Multivariate Gaussian Case

For the general case the set of model parameters associated
with a Gaussian distribution are

θ =

 µ

vec(Σ)


We will not go into the details of the derivation here (do this
as an exercise), but it can be shown that the ML solutions for
the mean (µ̂) and the covariance matrix (Σ̂) are

µ̂ =
1

n

n∑
i=1

xi

and

Σ̂ =
1

n

n∑
i=1

(xi − µ̂)(xi − µ̂)′

Note that when deriving ML estimates for multivariate
distributions, the following matrix calculus equalities are use-
ful:

∂

∂A
(b′Ac) = bc′

∂

∂a
(a′Ba) = 2Ba

∂

∂a
(a′Bc) = Bc

∂

∂A
(log(|A|)) = A−1
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Biased Estimators

You will previously have found that the unbiased estimate
of the covariance matrix, Σ̂, with an unknown value of the
mean is

Σ̂ =
1

n− 1

n∑
i=1

(xi − µ̂)(xi − µ̂)′

There is a difference between this and the ML solution ( 1
n and

1
n−1). In the limit as n → ∞ the two values are the same. So
which is correct/wrong? Neither - they’re just different.

There are two important statistical properties illustrated
here.

1. Unbiased estimators: the expected value over a large
number of estimates of the parameters is the “true” pa-
rameter.

2. Consistent estimators: in the limit as the number of points
tends to infinity the estimate is the “true” estimate.

It can be shown that the ML estimate of the mean is unbi-
ased, the variance is only consistent.
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Cost of Mis-Classification

We have assumed that the goal is to minimise the average
probability of classification error. Recall that for the two-class
problem, the Bayes minimum average error decision rule can
be written as:

P (ω1 | x)

P (ω2 | x)

ω1
>
<
ω2

1

or using the likelihood ratio:

p(x|ω1)

p(x|ω2)

ω1
>
<
ω2

P (ω2)

P (ω1)

Sometimes, the cost (or loss) for misclassification is speci-
fied (or can be estimated) and different types of classification
error may not have equal cost.

C12 Cost of choosing ω1|x from ω2

C21 Cost of choosing ω2|x from ω1

and Cii is the cost of correct classification.
The aim now is to minimise the Bayes’ Risk which is the

expected value of the classification cost.
Let the decision region associated with class ωj be denoted

Ωj. Consider all the patterns that belong to class ω1. The
expected cost (or risk) for these patterns R1 is given by

R1 =
2∑

i=1
Ci1

∫
Ωi

p(x|ω1)dx
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The overall cost R is found as

R =
2∑

j=1
RjP (ωj)

=
2∑

j=1

2∑
i=1

Cij

∫
Ωi

p(x|ωi)dxP (ωj)

=
2∑

i=1

∫
Ωi

2∑
j=1

Cijp(x|ωj)P (ωj)dx

Minimise integrand at all points, choose Ω1 so

2∑
j=1

C1jp(x|ωj)P (ωj) <
2∑

j=1
C2jp(x|ωj)P (ωj)

In the case that C11 = C22 = 0 we obtain

C21P (ω1 | x)

C12P (ω2 | x)

ω1
>
<
ω2

1

or using the likelihood ratio

p(x|ω1)

p(x|ω2)

ω1
>
<
ω2

P (ω2)C12

P (ω1)C21

Note that decision rule to minimise the Bayes’ Risk is the
minimum error rule when C12 = C21 = 1 and correct clas-
sification has zero cost.
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ROC curves

In some problems, such as in medical diagnostics, there is
is a “target” class that you want to separate from the rest of
the population (i.e. it is a detection problem). Four types of
outcomes can be identified:

• True Positive (Hit)

• True Negative

• False Positive (False Alarm)

• False Negative

As the decision threshold is changed the ratio of True Posi-
tive to False Positive changes. This tradeoff is often plotted in
a Receiver Operating Characteristic or ROC curve (originally
applied to problems such as radar signal detection).

Changes to the threshold from the point for minimum clas-
sification error may improve detection hits significantly (at a
cost of more false alarms).

• The example below shows a 1-d example with classes
with equal variances and equal priors: the threshold for
minimum error would be (µ1 + µ2)/2.
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