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Introduction

It has so-far been assumed that the class-conditional pdfs can
be adequately modelled by using a Gaussian distribution.
We have also noted that we need to limit the number of pa-
rameters used to describe the distribution since these must
be estimated from a limited training set.
The Gaussian form cannot adequately be used if the actual
data is not close to Gaussian. For instance, multi-modal dis-
tributions can occur when the actual class could be decom-
posed into a number of identifiable sub-classes. This can
happen for a number of causes. For instance in a speech
recognition context because of

• grouping speech data from different speakers or accent
groups

• analysing sounds independent from their immediate con-
text which cause systematic variations

• modelling a larger group containing several sub-sounds
such as the the set of front-vowels

These same type of effects often occur in other areas in which
pattern recognition techniques are applied.
Furthermore if the distribution is non-symmetric or the data
dimensions are correlated when we assume they are not (di-
agonal covariance assumption) then again the Gaussian as-
sumption may be poor.
Mixtures of Gaussian distributions can help solve this prob-
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lem in which the class conditional pdf is formed from a weighted
sum of individual Gaussians. Given enough mixture compo-
nents, it can be shown that Gaussian mixtures can model ar-
bitrary distributions (but note the number of parameters that
may be needed).
For a Gaussian mixture we have

p(x) =
M∑

m=1

cmN (x; µm,Σm)

where cm is the component prior or mixture weight of each
Gaussian component. For this to be a probability density
function it is necessary that

M∑

m=1

cm = 1 and cm ≥ 0

Some simple examples of modelling using a Gaussian mix-
ture model include:

1. Modelling of multi-modal distributions.

2. Improved correlation-modelling when using diagonal co-
variance matrices.
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3. Non-symmetric distributions.

Comparison of number of parameters:

Single Gaussian diagonal d mean + d variance = 2d

Single Gaussian full d mean + d(d + 1)/2 cov = d(d + 3)/2

M diagonal Gaussian mixture Md means + Md variances +
M − 1 (comp priors) = M(2d + 1)− 1

As d increases it can be advantageous to use a Gaussian mix-
ture of diagonal distributions instead of a full covariance ma-
trix, and can give more flexible modelling. (In general a mix-
ture of full covariance Gaussians can also be used if enough
training data is available).
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Simple Example
Noise is generated by one of two sources. 60% of the time it is
generated by a Gaussian distribution of mean -1 and variance
1. 40% of the time it is generate by a Gaussian distribution
of mean 1 and variance 1. What is the overall distribution of
the noise observed?
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If a single Gaussian is used as a model, there is a poor fit.
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Two components fit the data “perfectly”. What we are in-
terested in is how to automatically train parameters of this
mixture model from the observed data.
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Likelihood Function for Mixture Models

We will estimate the parameters of a Gaussian mixture model
using maximum likelihood (note mixtures of other distribu-
tions could also be considered). Note that if it was known
with which mixture component each training data vector was
associated then it would be a fairly straightforward task since
we could estimate M separate Gaussians and the component
priors could be determined from the relative frequency of
each mixture component in the training data.

To do maximum likelihood estimation, first we need the log
likelihood function for the data

l(θ) =
n∑

k=1

ln p(xk) =
n∑

k=1

ln

[
M∑

m=1

p(xk|m)cm

]

where the dependence on the pdf for mixture component m
is explicit.

For ease of presentation, we will consider Gaussian distribu-
tions of the form Σm = σ2

mI, although the principles can be
easily extended to more general covariance matrices.

Therefore

l(θ) =
n∑

k=1

ln

[
M∑

m=1

cm
1

(2πσ2
m)d/2

exp

{
−

∥∥xk − µm

∥∥2

2σ2
m

}]

Now, it is necessary to find the partial derivative of l(θ) with
respect to the parameters of the mixture distribution.
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Due to the form of the log likelihood we will (during the
derivation below) use the substitution (from Bayes’ noting
that the cm is a prior probability)

P (m|xk) =
p(xk|m)cm

p(xk)

where P (m|xk) is the posterior probability of mixture compo-
nent m being associated with vector xk and the denominator
here is given by the probability density of the vector from the
entire mixture distribution i.e.

p(xk) =
M∑

m=1

cmp(xk|m)

Considering a particular parameter θm that is associated with
(only) the mth mixture component. Since

l(θ) =
n∑

k=1

ln

[
M∑

m=1

p(xk|m)cm

]

then
∂l(θ)

∂θm
=

n∑

k=1

1

p(xk)

∂ [p(xk|m)cm]

∂θm

Now using

∂ [ln (p(xk|m)cm)]

∂θm
=

1

p(xk|m)cm

∂ [p(xk|m)cm]

∂θm

yields
∂l(θ)

∂θm
=

n∑

k=1

P (m|xk)
∂ [ln (p(xk|m)cm)]

∂θm
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Now since

∂ [ln (p(xk|m)cm)]

∂θm
=

∂

∂θm

[
ln cm − d

2
ln(2π)− d

2
ln(σ2

m)−
∥∥xk − µm

∥∥2

2σ2
m

]

Then, for the mean of the mth mixture component

∂l(θ)

∂µm
=

n∑

k=1

P (m|xk)
(xk − µm)

σ2
m

and
∂l(θ)

∂σm
=

n∑

k=1

P (m|xk)

[∥∥xk − µm

∥∥2

σ3
m

− d

σm

]

At the maximum of the likelihood function these derivatives
must equal zero, and hence at that point

µ̂m =

∑n
k=1 P (m|xk)xk∑n

k=1 P (m|xk)

and

σ̂2
m =

1

d

∑n
k=1 P (m|xk)

∥∥xk − µ̂m

∥∥2

∑n
k=1 P (m|xk)

Note that these equations are coupled non-linear equations
for the Gaussian parameters since the values of P (m|xk) are
functions of the Gaussian mixture parameters!

For a general covariance matrix, the covariance matrix esti-
mate should satisfy:

Σ̂m =

∑n
k=1 P (m|xk)(xk − µ̂m)(xk − µ̂m)

′

∑n
k=1 P (m|xk)
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To estimate the component priors from the maximum of the
log likelihood function, we note the constraint that the com-
ponent priors must sum to one and be positive. This can be
done using the method of Lagrange multipliers1. Add to the
log likelihood a function that is equal to zero when the con-
straints are satisfied and maximise this new function.

In this case add λ(
∑M

m=1 cm − 1) so

∂
(
l(θ) + λ(

∑M
m=1 cm − 1)

)

∂cm
=

n∑

k=1

P (m|xk)

cm
− λ

This implies that at the required maximum (equating to zero)

ĉm =
1

λ

n∑

k=1

P (m|xk)

The constraint that
∑M

m=1 cm = 1 gives

M∑

m=1

1

λ

n∑

k=1

P (m|xk) = 1

λ =
n∑

k=1

M∑

m=1

P (m|xk)

= n

so

ĉm =
1

n

n∑

k=1

P (m|xk)

1see Bishop (1995) p.64 for an alternative method
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Lagrange Optimisation

• Assume a extremum (maximum/minimum) of a scalar
valued function f (x) is required subject to a constraint.

• If the constraint can be expressed as g(x) = c then we can
transform the constrained optimisation into an uncon-
strained one by finding the extremum of the Lagrangian
function

L(x, λ) = f (x) + λ [g(x)− c]

• λ is called the Lagrange multiplier

• Find for extremum
∂L(x, λ)

∂x
=

∂f (x)

∂x
+ λ

∂ [g(x)− c]

∂x
= 0

Solve to give the required value of x and λ and hence
extremum of f (x) subject to the constraint g(x) = c.

• Note also that
∂L(x, λ)

∂λ
= 0

when the constraint is satisfied.

• We will use this method in several places in this course.
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Parameter Estimation for Gaussian
Mixtures

The previous development gave relationships that must be
satisfied at the maximum of the likelihood function but be-
cause the right-hand side depends on P (m|xk), it doesn’t
give a closed form solution. However it implies that an it-
erative solution may be appropriate.

Given the differentials of the log likelihood function, a num-
ber of different optimisation schemes could be used (includ-
ing gradient descent). The method here is based on the very
general iterative Expectation-Maximisation algorithm.

Each iteration of the E-M algorithm for Gaussian Mixtures
operates in two stages:

1. Find the posterior probability of mixture component oc-
cupation using the current parameter values.

2. Update the parameters of the Gaussian mixture as though
the posterior probabilities were the true values.

Thus using the superscipt old for the parameters from the
previous iteration and new for the updated parameters, the
re-estimation equations for parameter estimation for a Gaus-
sian mixture model can be expressed as:

µnew
m =

∑
k

P old(m|xk)xk

∑
k

P old(m|xk)
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(σnew
m )2 =

1

d

∑
k

P old(m|xk)
∥∥xk − µnew

m

∥∥2

∑
k

P old(m|xk)

cnew
m =

1

n

∑

k

P old (m|xk)

The application of these equations is guaranteed to provide
an increase in the likelihood function unless the likelihood
function is at a local maximum (proof of E-M next lecture ...).

Therefore the overall procedure is

1. Initialise the parameters of the mixture (e.g. set all com-
ponent priors to be equal, all variances to be equal, and
use different values for the mean vectors)

2. Compute P old (m|xk) for every data point and accumu-
late the statistics for the numerators and denominators
of the re-estimation formulae. Also compute the log like-
lihood of the data set

3. Update the parameters as necessary.

4. If the log likelihood increase is less than a threshold stop,
else goto 2.

Note that only a local maximum of the likelihood fuction is
found by this procedure so the initialisation of the scheme is
important, and can have problems (e.g. a variance can tend
to zero and likelihood become infinite!)
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Simple Worked Example

Consider some data from 2 classes:

Class 1 has points
[

1
0

]
,

[
1
1

]
,

[
0.6
0.6

]
,

[
0.7
0.4

]

Class 2 has points
[

0
0

]
,

[
0
1

]
,

[
0.25
1

]
,

[
0.3
0.4

]

The aim is to build a mixture model on the composite data.
The variances of both components are fixed at the identity
matrix. Initial values of the means are

µ1 =

[
0.25
0.25

]
, µ2 =

[
0.75
0.75

]

First the posteriors for the two model sets are required.
Class 1 has posteriors :

Comp1 0.5 0.3775 0.4750 0.4875
Comp2 0.5 0.6225 0.5250 0.5125

Class 2 has posteriors:

Comp1 0.6225 0.5 0.4688 0.5374
Comp2 0.3775 0.5 0.5312 0.4626

This gives updated means of:

µ1 =

[
0.4491
0.5143

]
, µ2 =

[
0.5129
0.5851

]

This model has an increased likelihood of generating the data.
Further iterations will increase the likelihood further.
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Further Example

The E-M algorithm was applied to the problem of estimating
the parameters of a mixture model (mixture weights all set
equal and not updated) as shown below. There are 5 Gaus-
sian components in the mixture and the covariance matrices
are diagonal (though not constrained to be equal in each di-
mension). The figures shows the evaloution of training on
intialisation, 1 iteration, 3 iterations and 16 iterations.
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