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Introduction

In the last lecture we looked at Gaussian mixture models and
found that an iterative procedure could be used to estimate
the parameters of the Gaussian mixture model.

The iterative procedure for Gaussian Mixtures was a spe-
cific instance of the Expectation-Maximisation (EM) Algo-
rithm which can be applied in many cases when direct max-
imum likelihood parameter estimation is not possible with-
out knowledge of the values of hidden or latent variables. In
the case of the Gaussian mixture model the latent variable
determines which of the Gaussian mixture components is as-
sociated with each vector in the training set for the model.

In this lecture we will examine the

• mathematical basis of E-M for Gaussian mixtures

• auxiliary functions

• an alternative general formulation of E-M

• application of E-M to continuous and discrete latent vari-
ables
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Deriving the E-M Mixture Updates

First consider a mixture distribution in which the parameter
values (means, covariances, component priors) are changed
from θ(k) on the kth iteration to θ(k+1) on the k + 1th iteration,
with changes in PDF from p(x|θ(k)) to p(x|θ(k+1)). The in-
crease in log likelihood is

l(θ(k+1))− l(θ(k) =

n∑
i=1

log

(
p(xi|θ(k+1))

p(xi|θ(k))

)
For a mixture distribution, denoting the mth mixture compo-
nent as ωm,

l(θ(k+1))− l(θ(k))

=

n∑
i=1

log

(
1

p(xi|θ(k))

M∑
m=1

(
p(xi, ωm|θ(k+1))

))

=

n∑
i=1

log

(
1

p(xi|θ(k))

M∑
m=1

(
p(xi, ωm|θ(k+1))P (ωm|xi, θ

(k))

P (ωm|xi, θ
(k))

))
Since log() is strictly concave we can use Jensen’s Inequality
which states that for λm ≥ 0 and

∑
m λm = 1

log

(
M∑

m=1

λmxm

)
≥

M∑
m=1

λm log (xm)

Now using the numerator P (ωm|xi, θ
(k)) as λm gives

l(θ(k+1))− l(θ(k)) ≥
n∑

i=1

M∑
m=1

P (ωm|xi, θ
(k)) log

(
p(xi, ωm|θ(k+1))

p(xi|θ(k))P (ωm|xi, θ
(k))

)
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which can be written as

l(θ(k+1))− l(θ(k)) ≥ Q(θ(k), θ(k+1))−Q(θ(k), θ(k))

where

Q(θ(k), θ(k+1)) =

n∑
i=1

M∑
m=1

P (ωm|xi, θ
(k)) log

(
p(xi, ωm|θ(k+1))

)
which is known as the auxiliary function (more on this later).

So in other words, the difference

Q(θ(k), θ(k+1))−Q(θ(k), θ(k))

gives a lower bound on the increase in the log likelihood.
Given that Q(θ(k), θ(k)) depends only on the old parameters,
then if we maximise the value of Q(θ(k), θ(k+1)) the value of
the log likelihood lower bound will also be maximised.

To maximise, find the derivatives of Q(θ(k), θ(k+1)) with re-
spect to the new parameters and equate to zero, noting that
for the case of the component priors (mixture weights) again
a Lagrange multiplier solution is needed. It can also be shown
that the maximum that is found here is a global maximum of
the auxiliary function.

This leads to the update equations for the mixture parame-
ters presented earlier
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Jensen’s Inequality

One useful inequality, commonly used in the derivation of
the update formulae for mixture models, is Jensen’s inequality.
It states that

f

(
M∑

m=1

λmxm

)
≥

M∑
m=1

λmf (xm)

where f () is any concave function and

M∑
m=1

λm = 1, λm ≥ 0 m = 1, . . . ,M

As shown above, this can be used in the derivation of the EM
algorithm for Gaussian mixture distributions.

f(x)

xa bc

A simple example is given above. Let c = (1 − λ)a + λb.
From the diagram

f (c) = f ((1− λ)a + λb) ≥ (1− λ)f (a) + λf (b)
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Kullback-Leibler Distance
A related derivation uses properties of the Kullback-Leibler

distance between two PDFs. Consider two PDFs, p(x) and
q(x). Looking at the relative entropy, or Kullback-Leibler dis-
tance, D(p(x), q(x)),

D(p(x), q(x)) =

∫
p(x) log

(
p(x)

q(x)

)
dx

= −
∫

p(x) log

(
q(x)

p(x)

)
dx

Using log(y) ≤ y − 1, we can write∫
p(x) log

(
q(x)

p(x)

)
dx ≤

∫
p(x)

(
q(x)

p(x)
− 1

)
dx

=

∫
(q(x)− p(x)) dx

= 0

This gives the following inequality∫
p(x) log (p(x)) dx ≥

∫
p(x) log (q(x)) dx

Similarly for the discrete version∑
∀x

P (x) log (P (x)) ≥
∑
∀x

P (x) log (Q(x)) dx

where Q(x) and P (x) are valid PMFs. It directly follows from
these inequalities that

D(p(x), q(x)) ≥ 0
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KL Distance for Gaussians

For the case of two Gaussian distributions the KL distance
has a simple closed form solution. Consider

p(x) = N (x; µ1,Σ1)

q(x) = N (x; µ2,Σ2)

Then the KL distance between the two is given by

D(p(x), q(x)) =
1

2

(
tr(Σ−1

2 Σ1 − I) + (µ1 − µ2)
TΣ−1

2 (µ1 − µ2)

+ log

(
|Σ2|
|Σ1|

))
For a simple example where

p(x) = N (x; 0, 1)

q(x) = N (x; µ, 1)

Then the plot as we vary µ is given by
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Expectation Maximisation

EM is a general iterative optimisation technique. We would
like a new estimate so that for the parameters at the k + 1th

iteration

l(θ(k+1)) ≥ l(θ(k))

Alternatively we aim to ensure that

l(θ(k+1))− l(θ(k)) ≥ 0

We introduce a new set of discrete random variables Z which
are dependent on the observations X and model parameters
θ(k). From the definition of a PMF we can write

log(p(X|θ(k+1)))− log(p(X|θ(k))) =∑
∀Z

P (Z|X, θ(k))
(
log(p(X|θ(k+1)))− log(p(X|θ(k)))

)
since∑
∀Z

P (Z|X, θ(k)) log(p(X|θ(k+1))) = log(p(X|θ(k+1)))
∑
∀Z

P (Z|X, θ(k))

= log(p(X|θ(k+1)))

From the definition of conditional probability

p(X|θ(k+1)) =
p(Z,X|θ(k+1))

P (Z|X, θ(k+1))
so∑
∀Z

P (Z|X, θ(k)) log(p(X|θ(k+1))) =
∑
∀Z

P (Z|X, θ(k)) log

(
p(X,Z|θ(k+1))

P (Z|X, θ(k+1))

)
and similarly for the second term.
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EM (cont)

We can now write

l(θ(k+1))− l(θ(k)) =
∑
∀Z

P (Z|X, θ(k)) log
(
p(X,Z|θ(k+1))

)
−
∑
∀Z

P (Z|X, θ(k)) log
(
P (Z|X, θ(k+1))

)
−
∑
∀Z

P (Z|X, θ(k)) log
(
p(X,Z|θ(k))

)
+
∑
∀Z

P (Z|X, θ(k)) log
(
P (Z|X, θ(k))

)
From the previous inequality∑
∀Z

P (Z|X, θ(k)) log
(
P (Z|X, θ(k))

)
≥
∑
∀Z

P (Z|X, θ(k)) log
(
P (Z|X, θ(k+1))

)
So it follows that

l(θ(k+1))− l(θ(k)) ≥
∑
∀Z

P (Z|X, θ(k)) log
(
p(X,Z|θ(k+1))

)
−
∑
∀Z

P (Z|X, θ(k)) log
(
p(X,Z|θ(k))

)
If we can ensure that the right-hand size is positive then the
left-hand side must also be positive. So EM states that if∑
∀Z

P (Z|X, θ(k)) log
(
p(X,Z|θ(k+1))

)
≥
∑
∀Z

P (Z|X, θ(k)) log
(
p(X,Z|θ(k))

)
then

l(θ(k+1)) ≥ l(θ(k))
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EM (cont)

It is common to define the auxiliary function as

Q(θ(k), θ(k+1)) =
∑
∀Z

P (Z|X, θ(k)) log
(
p(X,Z|θ(k+1))

)
and for the continuous version

Q(θ(k), θ(k+1)) =

∫
p(Z|X, θ(k)) log

(
p(X,Z|θ(k+1))

)
dZ

Thus the auxiliary function is the expected value of the log
likelihood of the joint distribution of Z and X.

Note that if the auxiliary function increases then the likeli-
hood is guaranteed increase, i.e. if

Q(θ(k), θ(k+1)) ≥ Q(θ(k), θ(k))

then

l(θ(k+1)) ≥ l(θ(k))
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EM (cont)

θ(k+1)

Q − Q12

l − l2 1

θ(k) θ θQ l

The diagram above illustrates the optimisation. The graph
shows two lines,

Q(θ(k), θ(k+1))−Q(θ(k), θ(k))

and

l(θ(k+1))− l(θ(k))

The maxima of the two lines occur at θQ and θl

Using the value at θQ does yield an increase in the log-likelihood,
but has not hit the maximum value. It is necessary to iterate
to find a local maximum of the likelihood. In common with
gradient descent schemes EM is only guaranteed to find a
local, not global, maximum of the likelihood function.
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Hidden Variables

The set of variables Z are called hidden or latent variables.
They may be discrete variable (for example in mixture mod-
els), or continuous (for example in Factor Analysis).

The set of data {Z,X} is sometimes referred to as the complete
dataset. It consists of the observed data X (the feature vectors)
and unobserved data Z (the hidden variables).

The nature of the latent variable is highly important. It must
be selected so that:

• given the complete dataset {Z,X} it is simple to optimise
Q(θ(k), θ(k+1)) with respect to θ(k+1);

• the difference between the likelihoods and auxiliary func-
tions is small. The difference is given by(
l(θ(k+1))− l(θ(k))

)
−
(
Q(θ(k), θ(k+1))−Q(θ(k), θ(k))

)
=∑

∀Z

P (Z|X, θ(k)) log

(
P (Z|X, θ(k))

P (Z|X, θ(k+1))

)
As the increase in the auxiliary function is a lower bound
on the increase in the log-likelihood, the tighter the bound
the better.

In practise the ability to optimise the auxiliary function is
more important. The second consideration affects the rate
of convergence of the algorithm.
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EM Optimisation

We have seen that simply maximising the auxiliary function
does not (in general) take us to the ML solution we need to
iterate. From the definition of the auxiliary function

Q(θ(k), θ(k+1)) =
∑
∀Z

P (Z|X, θ(k)) log
(
p(X,Z|θ(k+1))

)
EM can be seen to have two stages:

1. Expectation: given the current set of parameters θ(k) cal-
culate the posterior PMF of the latent variable, P (Z|X, θ(k)).
Given this distribution calculate the expected value of
log-likelihood of the complete dataset in terms of the new
model parameters, θ(k+1),

Q(θ(k), θ(k+1)) = E
{

log
(
p(X,Z|θ(k+1))

)
|X, θ(k)

}
where the expectation is over the distribution of the la-
tent variables given the current model parameters. The
auxiliary function is only a function of the new parame-
ters θ(k+1).

2. Maximisation: maximise the value of the auxiliary func-
tion, Q(θ(k), θ(k+1)), with respect to θ(k+1).

One major issue is that some initial set of model parameters
θ(0) are required. If there are many local maxima then EM
will only find a local, not global, maximum. Which maxima
is obtained depends on the choice of the initial parameters.
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Mixture Models & E-M
Mixture models of a particular family of distributions are
very well suited for estimation using EM (e.g. Gaussian,
Poisson etc). For mixture models the hidden variable is which
component of the mixture should be associated with each
training vector.

We will use a discrete hidden variable to indicate which of the
components of the mixture model generated an observation:

zij =

{
1 observation xi was generated by component ωj

0 otherwise
If we look at a single point xi and know that it was generated
by component ωj, then we can write

p(zi,xi|θ) = p(xi|ωj, θj)P (ωj)

=

M∏
m=1

[p(xi|ωm, θm)P (ωm))]zim

As all the data points are independent then the hidden vari-
ables associated with the data points will also be indepen-
dent of one another. So

p(Z,X|θ) =

n∏
i=1

p(zi,xi|θ)

Taking a log() we can write

log(p(Z,X|θ)) =

n∑
i=1

log(p(zi,xi|θ))

This is the basis of estimating mixture model parameters.
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Expectation

As mentioned in the expectation stage we need to compute
P (Z|X, θ(k)). As all the observations are independent we need
only consider P (zi|xi, θ

(k)), where

Z =

 z′1...
z′n


and

zi =

 zi1
...

ziM


Recall that we will need the probability that the observation
xi was generated by component ωj, which we saw before
may be simply written as

P (ωj|xi, θ
(k)) =

p(xi|ωj, θ
(k)
j )P (k)(ωj)∑M

m=1 p(xi|ωm, θ(k)
m )P (k)(ωm)

This will use the fact that
n∑

i=1

∑
∀zi

P (zi|xi)

M∑
m=1

zim log(p(xi|ωm)) =

M∑
m=1

[
n∑

i=1

P (ωm|xi) log(p(xi|ωm))

]
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Maximisation

Now we need to maximise the auxiliary function,Q(θ(k), θ(k+1)).
This may be written as

Q(θ(k), θ(k+1)) =
∑
∀Z

P (Z|X, θ(k)) log
(
p(X,Z|θ(k+1))

)
=

n∑
i=1

∑
∀zi

P (zi|xi, θ
(k)) log

(
p(xi, zi|θ(k+1))

)
=

n∑
i=1

∑
∀zi

P (zi|xi, θ
(k))

M∑
m=1

zim log
(
p(xi|ωm, θ(k+1)

m )
)

+

n∑
i=1

∑
∀zi

P (zi|xi, θ
(k))

M∑
m=1

zim log
(
P (k+1)(ωm)

)
=

M∑
m=1

[
n∑

i=1

P (ωm|xi, θ
(k)) log

(
p(xi|ωm, θ(k+1)

m )
)]

+

M∑
m=1

[
n∑

i=1

P (ωm|xi, θ
(k)) log

(
P (k+1)(ωm)

)]
Compare this to the ML estimation of the parameters of a
single Gaussian pdf

l(θ) =

n∑
i=1

log (p(xi|θ))

So, as we saw before, in EM we simply weight each of the ob-
servations log-likelihoods according to the hidden variable
PMF.
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Gaussian Mixture Models Revisited

For Gaussian Mixture Models (or mixtures of Gaussians), the
log likelihood for component ωm (d-dimensional data) is

log (p(x; µm,Σm)) = −1

2

(
log((2π)d|Σm|) + (x− µm)′Σ−1

m (x− µm)
)

The auxiliary function may be written as

Q(θ(k), θ(k+1))

=

M∑
m=1

[
n∑

i=1

P (ωm|xi, θ
(k))

(
−1

2
(xi − µ̂m)′Σ̂

−1

m (xi − µ̂m)

)]

+

M∑
m=1

[
n∑

i=1

P (ωm|xi, θ
(k))

(
−1

2
log((2π)d|Σ̂m|)

)]

+

M∑
m=1

[
n∑

i=1

P (ωm|xi, θ
(k)) log

(
P (k+1)(ωm)

)]
where µ̂m and Σ̂m are the mean and covariance matrix of
component ωm at iteration k + 1.
This yields the re-estimation formulae for the mean and co-
variance matrix of component ωj

µ̂j =

∑n
i=1 P (ωj|xi, θ

(k))xi∑n
i=1 P (ωj|xi, θ

(k))

Σ̂j =

∑n
i=1 P (ωj|xi, θ

(k))(xi − µ̂j)(xi − µ̂j)
′∑n

i=1 P (ωj|xi, θ
(k))
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Simple Continuous E-M Example
Given n noisy measurements x1, . . . , xn, with the noise known
to be zero mean and unit variance, and that the “true” data
is Gaussian distributed with variance σ2. What is the mean,
µ of the true data? From the question we know that

xi = ti + z, z ∼ N (0, 1)

ti is the true data at i. We therefore know that

p(xi|θ) = N (xi; µ, σ2 + 1)

Could directly find the ML estimate for the parameters, but
what about using EM? Let the “new” estimate of the param-
eters be θ̂ and the old estimate θ. Let the hidden variable be
the noise value for a particular observation, zi. So

p(xi|zi, θ) = N (xi; µ + zi, σ
2)

We first need to compute the posterior p(zi|xi, θ)

p(zi|xi, θ) =
p(xi|zi, θ)p(zi)

p(xi|θ)

= N
(

zi;
(xi − µ)

(1 + σ2)
,

σ2

(1 + σ2)

)
So writing down the auxiliary function

Q(θ, θ̂) =

n∑
i=1

∫
(p(zi|xi, θ) log(p(xi, zi|θ̂))dzi

=

n∑
i=1

∫
(p(zi|xi, θ) log(p(xi|zi, θ̂))dzi

+

n∑
i=1

∫
(p(zi|xi, θ) log(p(zi))dzi
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The second term is not dependent on the new model pa-
rameters, the distribution of zi is known. This leaves the first
term. From the previous definitions

Q̃(θ, θ̂) =

n∑
i=1

∫
p(zi|xi, θ) log(p(xi|zi, θ̂))dzi

=

n∑
i=1

∫
p(zi|xi, θ)

[
log

(
1√

2πσ2

)
− (xi − zi − µ̂)2

2σ2

]
dzi

=

n∑
i=1

[
log

(
1√

2πσ2

)
− (xi − µ̂)2 − 2(xi − µ̂)E{zi|θ, xi} + E{z2

i |θ, xi}
2σ2

]
We know that

E{zi|θ, xi} =
(xi − µ)

(1 + σ2)

E{z2
i |θ, xi} =

σ2

(1 + σ2)
+

(
(xi − µ)

(1 + σ2)

)2

Differentiating with respect to µ̂ gives

∂Q̃(θ, θ̂)

∂µ̂
=

n∑
i=1

1

σ2
(xi − µ̂− E{zi|θ, xi})

so

µ̂ =
1

n

n∑
i=1

(
xi −

(xi − µ)

(1 + σ2)

)
=

1

n

n∑
i=1

(σ2xi + µ)

(1 + σ2)

In this case the standard ML estimation for this problem is
trivial, but the above should illustrate the use of EM.
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Factor Analysis

E-M can also be used to generate the parameters of a factor
analysis model. In factor analysis, d-dimensional data, x, is
modelled using a p-dimensional vector of factors z and ob-
servations x are generated by

x = Az + v

where A is the d×p factor loading matrix (d > p). The factors
are Gaussian distributed with zero mean and identity covari-
ance matrix. v has a diagonal covariance matrix, Σ.The data
is zero mean.

According to this model, x is Gaussian distributed with zero
mean and covariance AA

′
+ Σ, and the goal is to find A and

Σ using E-M, that best models the covariance structure of x.

The hidden variables for factor analysis are the values of z

associated with each training sample.

Use of E-M involves setting up the auxiliary function and the
solution requires finding the expectations E(z|xi) and E(zz

′|xi).


