
University of Cambridge
Engineering Part IIB

Module 4F10: Statistical Pattern
Processing

Handout 5: Single Layer Perceptron &
Estimating Linear Classifiers

!
1

!1

!1

1

!1

1.5
NAND

!
1

!1

1

1

x1

1x2

!0.5
OR

!
1

!1

1

1

1

!1.5
AND

Phil Woodland
pcw@eng.cam.ac.uk

Lent 2007

5. Single Layer Perceptron & Estimating Linear Classifiers 1

Introduction

So far we have concentrated on classifier design by explicit
modelling of class-conditional probability density functions.

An alternative to modelling the class conditional probabil-
ity density functions is to decide on some functional form for
a discriminant function and attempt to construct a classifier
directly.

Here we will concentrate on the construction of linear clas-
sifiers: however it is also possible to construct quadratic or
other non-linear decision boundaries (this is how some types
of neural networks operate).

There are several methods of classifier construction for a
linear classifier. We will examine

• The single layer perceptron. Iterative solution for the
weights is via the perceptron algorithm which directly
minimises the number of misclassifications

• Least squares estimation (viewing classification as func-
tion interpolation)

• Fisher linear discriminant which aims directly to max-
imise a measure of class separability



2 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Single Layer Perceptron

A single layer perceptron is shown below. The typical form
examined uses a threshold activation function:

w0

!

wd

1

!1
w2

w1

1

x

x

x

1

2

d

y(x)z

The d-dimensional input vector x and scalar value z are
related by

z = w′x + w0

z is then fed to the activation function to yield y(x). The pa-
rameters of this system are

• weights: w =





w1
...

wd



 , selects the direction of the decision

boundary

• bias: w0, sets the position of the decision boundary.
These parameters are often combined into a single composite
vector, w̃, and the input vector extended, x̃.

w̃ =





w1
...

wd

w0




; x̃ =





x1
...

xd

1





5. Single Layer Perceptron & Estimating Linear Classifiers 3

Single Layer Perceptron (cont)
We can then write

z = w̃′x̃

The task is to train the set of model parameters w̃. For this
example a decision boundary is placed at z = 0. The decision
rule is

y(x) =






1, z ≥ 0
−1, z < 0

If the training data is linearly separable in the d-dimensional
space then using an appropriate training algorithm perfect
classification (on the training data at least!) can be achieved.

Is the solution unique?

Class 1

Class 2

The precise solution selected depends on the training al-
gorithm used.



4 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Parameter Optimisation

First a cost function of the set of the weights must be defined,
E(w̃). Some learning process which minimises the cost func-
tion is then used. One basic procedure is gradient descent:

1. Start with some initial estimate w̃[0], τ = 0.

2. Compute the gradient ∇E(w̃)|w̃[τ ]

3. Update weight by moving a small distance in the steepest
downhill direction, to give the estimate of the weights at
iteration τ + 1, w̃[τ + 1],

w̃[τ + 1] = w̃[τ ]− η∇E(w̃)|w̃[τ ]

This can be written for just the ith element

w̃i[τ + 1] = w̃i[τ ]− η
∂E(w̃)

∂w̃i

∣∣∣∣∣∣∣
w̃[τ ]

Set τ = τ + 1

4. Repeat steps (2) and (3) until convergence, or the optimi-
sation criterion is satisfied

One of the restrictions on using gradient descent is that the
cost function E(w̃) must be differentiable (and hence contin-
uous). This means mis-classification cannot be used as the cost
function for gradient descent schemes.

Gradient descent is not usually guaranteed to decrease the
cost function.

5. Single Layer Perceptron & Estimating Linear Classifiers 5

Choice of η

In the previous slide the learning rate term η was used in the
optimisation scheme.

Step size too large - divergence 

E

Desired minima

slow
descent

η is positive. When setting η we need to consider:

• if η is too small, convergence is slow;

• if η is too large, we may overshoot the solution and di-
verge.

Later in the course we will examine improvements for gra-
dient descent schemes for highly complex schemes. Some of
these give automated techniques for setting η.



6 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Perceptron Criterion

The decision boundary should be contructed to minimise
the number of misclassified training examples. For each train-
ing example x̃i

w̃
′
x̃i > 0 x̃i ∈ ω1

w̃
′
x̃i < 0 x̃i ∈ ω2

The problem is that we cannot simply sum the values of
w̃′x̃ as a cost function since the sign depends on the class.
For training, we replace all the observations of class ω2 by
their negative value. Thus

x =






x̃; belongs to ω1

−x̃; belongs to ω2

This means that for a correctly classified symbol

w̃′x > 0

and for mis-classified training examples

w̃′x < 0

We will refer to this as “normalising” the data.

5. Single Layer Perceptron & Estimating Linear Classifiers 7

Perceptron Solution Region

• Each sample x̃i places a constraint on the possible loca-
tion of a solution vector that classifies all samples cor-
rectly.

• w̃′x̃i = 0 defines a hyperplane through the origin on the
“weight-space” of w̃ vectors with x̃i as a normal vector.

• For normalised data, the solution vector must be on the
positive side of every such hyperplane.

• The solution vector, if it exists, is not unique and lies any-
where within the solution region

• Figure below (from DHS) shows 4 training points and the
solution region for both normalised data and un-normalised
data.

x1

x2

separating plane

solution 
region

x1

x2

"separating" plane

solution 
region

w
w



8 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Perceptron Criterion (cont)

The perceptron criterion may be expressed as

E(w̃) =
∑

x∈Y
(−w̃′x)

where Y is the set of miss-classified points. We now want to
minimise the perceptron criterion. We can use gradient de-
scent. It is simple to show that

∇E(w̃) =
∑

x∈Y
(−x)

Hence the GD update rule is

w̃[τ + 1] = w̃[τ ] + η
∑

x∈Y [τ ]
x

where Y [τ ] is the set of mis-classified points using w̃[τ ]. For
the case when the samples are linearly separable using a value
of η = 1 is guaranteed to converge. The basic algorithm is:

1. Take the extended observations x̃ for class ω2 and invert
the sign to give x.

2. Initialise the weight vector w̃[0], τ = 0.

3. Using w̃[τ ] produce the set of mis-classified samples Y [τ ].

4. Use update rule

w̃[τ + 1] = w̃[τ ] +
∑

x∈Y [τ ]
x

then set τ = τ + 1.

5. Repeat steps (3) and (4) until the convergence criterion is
satisfied.

5. Single Layer Perceptron & Estimating Linear Classifiers 9

A Simple Example

Consider a simple example:

Class 1 has points



1
0



 ,




1
1



 ,




0.6
0.6



 ,




0.7
0.4





Class 2 has points



0
0



 ,




0
1



 ,




0.25
1



 ,




0.3
0.4





Initial estimate: w̃[0] =





0
1

−0.5





This yields the following initial estimate of the decision bound-
ary.

!0.5 0 0.5 1 1.5
!0.5

0

0.5

1

1.5

Given this initial estimate we need to train the decision bound-
ary.



10 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Simple Example (cont)

The first part of the algorithm is to use the current decision
boundary to obtain the set of mis-classified points.

For the data from Class ω1

Class ω1 1 2 3 4
z -0.5 0.5 0.1 -0.1
Class 2 1 1 2

and for Class ω2

Class ω2 1 2 3 4
z -0.5 0.5 0.5 -0.1
Class 2 1 1 2

The set of mis-classified points, Y [0], is

Y [0] = {1ω1, 4ω1, 2ω2, 3ω2}

From the perceptron update rule this yields the updated vec-
tor

w̃[1] = w̃[0] +





1
0
1




+





0.7
0.4
1




+





0
−1
−1




+





−0.25
−1
−1




=





1.45
−0.6
−0.5





5. Single Layer Perceptron & Estimating Linear Classifiers 11

Simple Example (cont)

This yields the following decision boundary

!0.5 0 0.5 1 1.5
!0.5

0

0.5

1

1.5

Again applying the decision rule to the data we get for class
ω1

Class 1 1 2 3 4
z 0.95 0.35 0.01 0.275
Class 1 1 1 1

and for class ω2

Class 2 1 2 3 4
z -0.5 -1.1 -0.7375 -0.305
Class 2 2 2 2

All points correctly classified the algorithm has converged.
Is this a good decision boundary?



12 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

The LMS Algorithm

An alternative optimisation criterion is to use least mean squares
estimation. This uses the following cost function

E(w̃) =
1

2

∑

∀x
(g(x)− t(x))2

where t(x) is the target value for observation x and g(x) is a
function of the weights to be optimised. For the specific case
of a linear decision boundary

E(w̃) =
1

2

∑

∀x̃
(w̃′x̃− t(x̃))

2

where t(x̃) is the target value for observation x̃ (so t(x̃) =
t(x)). For LMS all observation contribute to the cost function
(contrast to the perceptron algorithm). Again using gradient
descent, we find

∇E(w̃) =
∑

∀x̃
(w̃′x̃− t(x̃)) x̃

and the update rule is

w̃[τ + 1] = w̃[τ ]− η
∑

∀x̃
(w̃[τ ]′x̃− t(x̃)) x̃

This algorithm does not need the training data to be recog-
nised.

Note, LMS is a general algorithm that is not restricted to es-
timating linear decision boundaries.

5. Single Layer Perceptron & Estimating Linear Classifiers 13

Least Mean Squares Estimate

For the case of the linear perceptron we can optimise the least
mean squares estimate using the pseudo-inverse. Label the ex-
tended training sample x̃1, . . . , x̃n. Rather than considering
the summation we can form composite matrices from the ob-
servation vectors, X, and target values, t. Let

X =





x̃′1...
x̃′n





and vector of target values

t =





t(x1)
...

t(xn)





Thus X is a n× (d + 1) matrix and t is n-dimensional vector.
The least squares criterion may also be written as

E(w̃) =
1

2
(Xw̃ − t)′(Xw̃ − t)

Differentiating gives

∇E(w̃) = X′(Xw̃ − t)

Equating to zero , the solution w̃[1] satisfies

X′Xw̃[1] = X′t



14 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Solutions to LMS

The exact solution obtained with LMS depends on the choice
of the target values. The simplest choice of target values is to
use

• t(xi) = 1 if observation xi belongs to class ω1.

• t(xi) = −1 if observation xi belongs to class ω2.

The standard classification rule may then used.

There are three situations to consider

1. n < (d + 1) Solution is under-specified, i.e. a set of pos-
sible solutions exist to perfectly yield the target values
(E(w̃) = 0).

2. n = (d + 1) Assuming that X is not singular, there is a
unique solution to exactly yield the target values (E(w̃) =
0).

3. n > (d + 1) The problem is over-specified, it is not possible
to exactly get the target values.

The case of most interest is (3) above. A common way of find-
ing the decision boundary is to use the pseudo-inverse. Here

w̃[1] = (X′X)−1X′t

5. Single Layer Perceptron & Estimating Linear Classifiers 15

Least Squares Example

Using points from previous perceptron example we can form
the following pair of matrices

X =





1 0 1
1 1 1

0.6 0.6 1
0.7 0.4 1
0 0 1
0 1 1

0.25 1 1
0.3 0.4 1





, t =





1
1
1
1
−1
−1
−1
−1





Using the pseudo inverse we obtain the following estimate

w̃[1] =





2.3813
−0.1143
−1.0831





Which gives the decision boundary

!0.5 0 0.5 1 1.5
!0.5

0

0.5

1

1.5



16 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Fisher’s Discriminant Analysis

A different approach to training the parameters of the per-
ceptron is to use Fisher’s discriminant analysis. The basic
aim here is to choose the projection that maximises the dis-
tance between the class means, whilst minimising the within
class variance. Note only the projection w is determined. The
following cost function is used

E(w) = −(µ1 − µ2)
2

s1 + s2

where sj and µj are the projected scatter matrix and mean for
class ωj. The projected scatter matrix is defined as

sj =
∑

xi∈ωj

(xi − µj)
2

The cost function may be expressed as

E(w) = −w′SBw

w′SWw

where

SB = (µ1 − µ2)(µ1 − µ2)
′

and

SW = S1 + S2

where

Sj =
∑

xi∈ωj

(xi − µj)(xi − µj)
′

the mean of the class µj is defined as usual.

5. Single Layer Perceptron & Estimating Linear Classifiers 17

Fisher’s Discriminant Analysis (cont)

Differerentiating E(w) with respect to the weights, we find
that it is minimised when

(ŵ′SBŵ)SW ŵ = (ŵ′SW ŵ)SBŵ

From the definition of SB

SBŵ = (µ1 − µ2)(µ1 − µ2)
′ŵ

= ((µ1 − µ2)
′ŵ) (µ1 − µ2)

We therefore know that

SW ŵ ∝ (µ1 − µ2)

Multiplying both sides by S−1
w yields

ŵ ∝ S−1
W (µ1 − µ2)

This has given the direction of the decision boundary. How-
ever we still need the bias value w0.

If the data is separable using the Fisher’s discriminant it makes
sense to select the value of w0 that maximises the margin. Sim-
ply put this means that, given no additional information, the
boundary should be equidistant from the two points either
side of the decision boundary.



18 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Example

Using the previously described data

µ1 =




0.825
0.500



 ; µ2 =




0.1375
0.600





and

SW =




0.2044 0.0300
0.0300 1.2400





So solving this yields

ŵ =




3.3878
−0.1626





!0.5 0 0.5 1 1.5 2 2.5 3 3.5
!1.5

!1

!0.5

0

0.5

1

1.5

This projection is shown above (with offsets in the y-axis to
aid visualisation!).

5. Single Layer Perceptron & Estimating Linear Classifiers 19

Example (cont)

It is now necessary to generate a decision boundary. For this
separable case the (negative value of the) midpoint between
the boundary observations was used.

w̃[1] =





3.3878
−0.1626
−1.4432





!0.5 0 0.5 1 1.5
!0.5

0

0.5

1

1.5

The decision boundary is shown above. Confirm that you
understand the direction of the decision boundary compared
to the w.



20 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Kesler’s Construct

So far we have only examined binary clasifiers. The direct
use of multiple binary classifiers can results in “no-decision”
regions (see examples paper).

The multi-class problem can be converted to a 2-class prob-
lem. Consider an extended observation x̃ which belongs to
class ω1. Then to be correctly classified

w̃′
1x̃− w̃′

jx̃ > 0, j = 2, . . . , K

There are therefore K−1 inequalities requiring that the K(d+
1)-dimensional vector

α =





w̃1
...

w̃K





correctly classifies all K − 1 set of K(d + 1)-dimensional sam-
ples

γ12 =





x̃
−x̃
0
...
0





, γ13 =





x̃
0
−x̃

...
0





, . . . , γ1K =





x̃
0
0
...
−x̃





The multi-class problem has now been transformed to a two-
class problem at the expense of increasing the effective di-
mensionality of the data and increasing the number of train-
ing samples. We now simply optimise for α.

5. Single Layer Perceptron & Estimating Linear Classifiers 21

Limitations of Linear Decision
Boundaries

Perceptrons were very popular until the 1960’s when it was
realised that it couldn’t solve the XOR problem.

We can use perceptrons to solve the binary logic operators
AND, OR, NAND, NOR.

!
1

!1

1

1

x1

1x2

!1.5
AND

(a) AND operator

!
1

!1

1

1

x1

1x2

!0.5
OR

(b) OR operator

!
1

!1

!1

1

x1

!1x2

1.5
NAND

(c) NAND operator

!
1

!1

!1

1

x1

!1x2

0.5
NOR

(d) NOR operator



22 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

XOR (cont)

But XOR may be written in terms of AND, NAND and OR
gates

!
1

!1

!1

1

!1

1.5
NAND

!
1

!1

1

1

x1

1x2

!0.5
OR

!
1

!1

1

1

1

!1.5
AND

This yields the decision boundaries

So XOR can be solved using a two-layer network. The prob-
lem is how to train multi-layer perceptrons. In the 1980’s
an algorithm for training such networks was proposed, error
back propagation.


