
University of Cambridge
Engineering Part IIB

Module 4F10: Statistical Pattern
Processing

Handout 6: Multi-Layer Perceptrons I

Inputs

First
Second

Output
layer

layer
layer

xd y (x)K

y (x)2

1

x2

x1 y (x)

Outputs

Phil Woodland
pcw@eng.cam.ac.uk

Lent 2007

6. Multi-Layer Perceptrons I 1

Introduction

In these lectures we will look at Multi-Layer Perceptrons
(MLPs) which are more powerful than the Single-Layer mod-
els which construct linear decision boundaries.

MLPs are classified as a type of Artificial Neural Network:
the computation is performed using a set of (many) simple
units with weighted connections between them. Furthermore
there are learning algorithms to set the values of the weights
and the same basic structure (with different weight values) is
able to perform many tasks.

In this and the following lecture we will consider

• Overall structure of multi-layer perceptrons

• Decision boundaries that they can form

• Training Criteria

• Networks as posterior probability estimators

• Basic Error back-propagation training algorithm

• Improved training methods

2 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Multi-Layer Perceptron

From the previous lecture we need a multi-layer perceptron
to handle the XOR problem. More generally multi-layer per-
ceptrons allow a neural network to perform arbitrary map-
pings.

Inputs

First
Second

Output
layer

layer
layer

xd y (x)K

y (x)2

1

x2

x1 y (x)

Outputs

A 2-hidden layer neural network is shown above. The aim is
to map an input vector x into an output y(x). The layers may
be described as:

• Input layer: accepts the data vector or pattern;

• Hidden layers: one or more layers. They accept the out-
put from the previous layer, weight them, and pass through
a, normally, non-linear activation function.

• Output layer: takes the output from the final hidden layer
weights them, and possibly pass through an output non-
linearity, to produce the target values.

6. Multi-Layer Perceptrons I 3

Possible Decision Boundaries
The nature of the decision boundaries that may be produced
varies with the network topology. Here only threshold (see
the single layer perceptron) activation functions are used.

(3)(2)(1)

There are three situations to consider

1. Single layer: this is able to position a hyperplane in the
input space.

2. Two layers (one hidden layer): this is able to describe a
decision boundary which surrounds a single convex re-
gion of the input space.

3. Three layers (two hidden layers): this is able to to gener-
ate arbitrary decision boundaries

Note: any decision boundary can be approximated arbitrar-
ily closely by a two layer network having sigmoidal activa-
tion functions if there are enough hidden units.

4 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Number of Hidden Units

From the previous slide we can see that the number of hid-
den layers determines the decision boundaries that can be
generated. In choosing the number of layers the following
considerations are made.

• Multi-layer networks are harder to train than single layer
networks.

• A two layer network (one hidden) with sigmoidal activa-
tion functions can model any decision boundary.

Two layer networks are most commonly used in pattern recog-
nition (the hidden layer having sigmoidal activation func-
tions).

How many units to have in each layer?

• The number of output units is determined by the number
of output classes.

• The number of inputs is determined by the number of
input dimensions

• The number of hidden units is a design issue. The prob-
lems are:

– too few, the network will not model complex decision
boundaries;

– too many, the network will have poor generalisation.

6. Multi-Layer Perceptrons I 5

Hidden Layer Perceptron
The form of the hidden, and the output, layer perceptron is
a generalisation of the single layer perceptron from the pre-
vious lecture. Now the weighted input is passed to a general
activation function, rather than a threshold function.

Consider a single perceptron. Assume that there are n units
at the previous level.

Σ

win

wi2

wi1

1

x

x

x

1

2

n

wi0

yi
zi

function
Activation

The output from the perceptron, yi may be written as

yi = φ(zi) = φ(wi0 +
d∑

j=1
wijxj)

where φ() is the activation function.

We have already seen one example of an activation function
the threshold function. Other forms are also used in multi-
layer perceptrons.

Note: the activation function is not necessarily non-linear.
However, if linear activation functions are used much of the
power of the network is lost.

6 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Activation Functions

There are a variety of non-linear activation functions that
may be used. Consider the general form

yj = φ(zj)

and there are n units, perceptrons, for the current level.

• Heaviside (or step) function:

yj =

 0, zj < 0

1, zj ≥ 0

These are sometimes used in threshold units, the output is
binary.

• Sigmoid (or logistic regression) function:

yj =
1

1 + exp(−zj)

The output is continuous, 0 ≤ yj ≤ 1.

• Softmax (or normalised exponential or generalised logis-
tic) function:

yj =
exp(zj)∑n

i=1 exp(zi)

The output is positive and the sum of all the outputs at
the current level is 1, 0 ≤ yj ≤ 1.

• Hyperbolic tan (or tanh) function:

yj =
exp(zj)− exp(−zj)

exp(zj) + exp(−zj)

The output is continuous, −1 ≤ yj ≤ 1.

6. Multi-Layer Perceptrons I 7

Notation Used

Consider a multi-layer perceptron with:

• d-dimensional input data;

• L hidden layers (L + 1 layer including the output layer);

• N (k) units in the kth level;

• K-dimensional output.

Σwi2

wi1

1

x

x

x

1

2

wi0

yi
zi

function
Activation

(k)

(k)

(k) (k)

(k)

(k)

(k)

(k)

(k)wiN(k−1)

N(k−1)

The following notation will be used

• x(k) is the input to the kth layer

• x̃(k) is the extended input to the kth layer

x̃(k) =

 1

x(k)

• W(k) is the weight matrix of the kth layer. By definition
this is a N (k) ×N (k−1) matrix.

8 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Notation (cont)

• W̃(k) is the weight matrix including the bias weight of the
kth layer. By definition this is a N (k)× (N (k−1) + 1) matrix.

W̃(k) =
[
w

(k)
0 W(k)

]

• z(k) is the N (k)-dimensional vector defined as

z(k) = W̃(k)x̃(k)

• y(k) is the output from the kth layer, so

y
(k)
j = φ(z

(k)
j)

All the hidden layer activation functions are assumed to be
the same φ(). Initially we shall also assume that the output
activation function is also φ().

The following matrix notation feed forward equations may
then used for a multi-layer perceptron with input x and out-
put y(x).

x(1) = x

x(k) = y(k−1)

z(k) = W̃(k)x̃(k)

y(k) = φ(z(k))

y(x) = y(L+1)

where 1 ≤ k ≤ L + 1.

The target values for the training of the networks will be de-
noted as t(x) for training example x.

6. Multi-Layer Perceptrons I 9

Training Criteria

A variety of training criteria may be used. Assuming we
have supervised training examples

{{x1, t(x1)} . . . , {xn, t(xn)}}

Some standard examples are:

• Least squares error: one of the most common training
criteria.

E =
1

2

n∑
p=1
||y(xp)− t(xp)||2

=
1

2

n∑
p=1

K∑
i=1

(yi(xp)− ti(xp))
2

This may be derived from considering the targets as be-
ing corrupted by zero-mean Gaussian distributed noise.

• Cross-Entropy for two classes: consider the case when
t(x) is binary (and softmax output). The expression is

E = −
n∑

p=1
(t(xp) log(y(xp)) + (1− t(xp)) log(1− y(xp)))

This expression goes to zero with the “perfect” mapping.

• Cross-Entropy for multiple classes: the above expres-
sion becomes (again softmax output)

E = −
n∑

p=1

K∑
i=1

ti(xp) log(yi(xp))

The minimum value is now non-zero, it represents the
entropy of the target values.

10 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Network Interpretation

We would like to be able to interpret the output of the net-
work. Consider the case where a least squares error criterion
is used. The training criterion is

E =
1

2

n∑
p=1

K∑
i=1

(yi(xp)− ti(xp))
2

In the case of an infinite amount of training data, n →∞,

E =
1

2

K∑
i=1

∫ ∫
(yi(x)− ti(x))2p(ti(x),x)dti(x)dx

=
1

2

K∑
i=1

∫ [∫
(yi(x)− ti(x))2p(ti(x)|x)dti(x)

]
p(x)dx

Examining the term inside the square braces∫
(yi(x)− ti(x))2p(ti(x)|x)dti(x)

=
∫
(yi(x)− E{ti(x)|x} + E{ti(x)|x} − ti(x))2p(ti(x)|x)dti(x)

=
∫
(yi(x)− E{ti(x)|x})2 + (E{ti(x)|x} − ti(x))2p(ti(x)|x)dti(x)

+
∫

2(yi(x)− E{ti(x)|x})(E{ti(x)|x} − ti(x))p(ti(x)|x)dti(x)

where

E{ti(x)|x} =
∫

ti(x)p(ti(x)|x)dti(x)

We can write the cost function as

E =
1

2

K∑
i=1

∫
(yi(x)− E{ti(x)|x})2p(x)dx

+
1

2

K∑
i=1

∫ (
E{ti(x)2|x} − (E{ti(x)|x})2

)
p(x)dx

The second term is not dependent on the weights, so is not
affected by the optimisation scheme.

6. Multi-Layer Perceptrons I 11

Network Interpretation (cont)
The first term in the previous expression is minimised when
it equates to zero. This occurs when

yi(x) = E{ti(x)|x}
The output of the network is the conditional average of the
target data. This is the regression of ti(x) conditioned on x.

y(x)i

xi x

y(x)t(x)

p(t(x))i

So the network models the regression of the targets inde-
pendent of the topology (& this can be the class posterior
probability, see next slides), but in practice require:
• an infinite amount of training data, or knowledge of cor-

rect distribution for x (i.e. p(x) is known or derivable
from the training data);

• the topology of the network is “complex” enough that
final error is small;

• the training algorithm used to optimise the network is
good - it finds the global maximum.

12 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Posterior Probabilities

Consider the multi-class classification training problem with

• d-dimensional feature vectors: x;

• K-dimensional output from network: y(x);

• K-dimensional target: t(x).

We would like the output of the network, y(x), to approxi-
mate the posterior distribution of the set of K classes. So

yi(x) ≈ P (ωi|x)

Consider training a network with:

• means squared error estimation;

• 1-out-ofK coding, i.e.

ti(x) =

 1 if x ∈ ωi

0 if x 6∈ ωi

The network will act as a d-dimensional to K-dimensional
mapping.

Can we interpret the output of the network?

6. Multi-Layer Perceptrons I 13

Posterior Probabilities (cont)

From the previous regression network interpretation we know
that

yi(x) = E{ti(x)|x}
=

∫
ti(x)p(ti(x)|x)dti(x)

As we are using the 1-out-of-K coding

p(ti(x)|x) =
K∑

j=1
δ(ti(x)− δij)P (ωj|x)

where

δij =

 1, (i = j)

0, otherwise

This results in

yi(x) = P (ωi|x)

as required.

The same limitations are placed on this proof as the interpre-
tation of the network for regression.

14 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Compensating for Different Priors

The standard approach to described at the start of the course
was to use Bayes’ law to obtain the posterior probability

P (ωj|x) =
p(x|ωj)P (ωj)

p(x)

where the priors class priors, P (ωj), and class conditional
densities, p(x|ωj), are estimated separately. For some tasks
the two use different training data (for example for speech
recognition, the language model and the acoustic model).

How can this difference in priors from the training and the
test conditions be built into the neural network framework
where the posterior probability is directly calculated? Again
using Bayes’ law

p(x|ωj) ∝
P (ωj|x)

P (ωj)

Thus if posterior is divided by the training data prior a value
proportional to the class-conditional probability can be ob-
tained. The standard form of Bayes’ rule may now be used
with the appropriate, different, prior.

