
University of Cambridge
Engineering Part IIB

Module 4F10: Statistical Pattern
Processing

Handout 7: Multi-Layer Perceptrons II

Inputs

First
Second

Output
layer

layer
layer

xd y (x)K

y (x)2

1

x2

x1 y (x)

Outputs

Phil Woodland
pcw@eng.cam.ac.uk

Lent 2007

7. Multi-Layer Perceptrons II 1

Error Back Propagation

Interest in multi-layer perceptrons (MLPs) resurfaced with
the development of the error back propagation algorithm. This
allows multi-layer perceptons to be simply trained.

Inputs

xd

x2

x1

Hidden
layer

Output
layer

y (x)K

y (x)2

1y (x)

Outputs

A single hidden layer network is shown above. As previ-
ously mentioned with sigmoidal activation functions arbi-
trary decision boundaries may be obtained with this network
topology.

The error back propagation algorithm is based on gradient
descent. Hence the activation function must be differentiable.
Thus threshold and step units will not be considered. We need
to be able to compute the derivative of the error function with
respect to the weights of all layers.

All gradients in the next few slides are evaluated at the cur-
rent model parameters.

2 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Single Layer Perceptron
Rather than examine the multi-layer case instantly, consider
the following single layer perceptron.

Σ

wd

w2

w1

1

x

x

x

1

2

d

0

y(x)z

function
Activation

w

We would like to minimise (for example) the square error be-
tween the target of the output, t(xp), and the current output
value y(xp). Assume that the activation function is known to
be a sigmoid function. The cost function may be written as

E =
1

2

n∑
p=1

(y(xp) − t(xp)
′(y(xp) − t(xp)) =

n∑
p=1

E(p)

To simplify notation, we will only consider a single observa-
tion x with associated target values t(x) and current output
from the network y(x). The error with this single observation
is denoted E.

The first question is how does the error change as we alter
y(x).

∂E

∂y(x)
= y(x) − t(x)

But we are not interested in y(x) - how do we find the effect
of varying the weights?

7. Multi-Layer Perceptrons II 3

SLP Training (cont)
Calculate effect of changing z on the error using the chain
rule

∂E

∂z
=

 ∂E

∂y(x)

∂y(x)

∂z

However what we really want is the change of the error with
respect to the weights (the parameters that we want to learn).

∂E

∂wi
=

∂E

∂z

 ∂z

∂wi

The error function therefore depends on the weight as

∂E

∂wi
=

 ∂E

∂y(x)

∂y(x)

∂z

 ∂z

∂wi

Noting that

∂y(x)

∂z
= y(x)(1 − y(x))

∂E

∂wi
= (y(x) − t(x))y(x)(1 − y(x))xi

This has been computed for a single observation. We are in-
terested in terms of the complete training set. We know that
the total errors is the sum of the individual errors, so

∇E =
n∑

p=1
(y(xp) − t(xp))y(xp)(1 − y(xp))x̃p

So for a single layer we can use gradient descent schemes to
find the “best” weight values. We can also apply the above to
compute the derivatives wrt the weights for the final hidden
to output layer for an MLP.

4 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Error Back Propagation Algorithm
Now consider a particular node, i, of hidden layer k. Using
the previously defined notation, the input to the node is x̃(k)

and the output y
(k)
i .

Σwi2

wi1

1

x

x

x

1

2

wi0

yi
zi

function
Activation

(k)

(k)

(k) (k)

(k)

(k)

(k)

(k)

(k)wiN(k−1)

N(k−1)

From the previous section we can simply derive the rate of
change of the error function with the weights of the output
layer. We need to now examine the rate of change with the
kth hidden layer weights.

A general error criterion, E, will be used, although it is also
assumed that the output nodes can be treated independently
(not true for softmax ...) We will assume that a sigmoid acti-
vation function is used (as above). In terms of the derivations
given the output layer will be considered as the L + 1th layer.

The training observations are assumed independent and so

E =
n∑

p=1
E(p)

where E(p) is the error cost for the p observation and the ob-
servations are x1, . . . ,xn.

7. Multi-Layer Perceptrons II 5

Error Back Propagation Algorithm (cont)

We are required to calculate ∂E

∂w̃
(k)
ij

for all layers, k, and all rows

and columns of W̃(k). Applying the chain rule

∂E

∂w̃
(k)
ij

=
∂E

∂z
(k)
i

∂z
(k)
i

∂w̃
(k)
ij

= δ
(k)
i x̃

(k)
j

where
∂E

∂z
(k)
i

= δ
(k)
i

and the δ’s are sometimes known as the indiviual “errors”
(that are back-propagated).

For the output nodes the evaluation of δi is straightforward
as we saw for the single layer perceptron.

To evaluate the δi’s for hidden layers

δ
(k)
i =

∑
m

 ∂E

∂z
(k+1)
m

∂z(k+1)
m

∂z
(k)
i

where it is assumed that only the units in layer k + 1 are con-
nected to units in layer k, or

δ
(k)
i = y

(k)
i (1 − y

(k)
i)

∑
m

w̃
(k+1)
mi δ(k+1)

m

Note that all that is being done here is evaluating the dif-
ferentials of the error at the output with respect to the weights
throughout the network by using the chain rule for partial
derivatives.

6 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Error Back Propagation

To calculate ∇E(p)
∣∣∣∣θ[τ]

(θ[τ] is the set of “current” (training
epoch τ) values of the weights) we use the following algo-
rithm.

1. Apply the input vector xp to the network and use the feed
forward matrix equations to propagate the input forward
through the network. For all layers this yields y(k) and
z(k).

2. Compute ∂E
∂y(x)

∣∣∣∣θ[τ]
(the gradient at the output layer).

3. Using the back-propagation formulae back-propagate the
δs back through the network, layer by layer and hence
the partial derivatives for each weight.

Having obtained the derivatives of the error function with
respect to the weights of the network, we need a scheme to
optimise the value of the weights.

The obvious choice is gradient descent

7. Multi-Layer Perceptrons II 7

Gradient Descent

Having found an expression for the gradient, gradient de-
scent may be used to find the values of the weights.

Initially consider a batch update rule. Here

w̃
(k)
i [τ + 1] = w̃

(k)
i [τ] − η

∂E

∂w̃
(k)
i

∣∣∣∣∣∣∣θ[τ]

where θ[τ] = {W̃(1)[τ], . . . ,W̃(L+1)[τ]}, w̃(k)
i [τ] is the ith row of

W̃(k) at training epoch τ and

∂E

∂w̃
(k)
i

∣∣∣∣∣∣∣θ[τ]

=
n∑

p=1

∂E(p)

∂w̃
(k)
i

∣∣∣∣∣∣∣θ[τ]

If the total number of weights in the system is N then all N

derivatives may be calculated in O(N) operations with mem-
ory requirements O(N).

However in common with other gradient descent schemes
there are problems as:

• we need a value of η that achieves a stable, fast descent;

• the error surface may have local minima, maxima and sad-
dle points.

This has lead to refinements of gradient descent.

8 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Training Schemes

On the previous slide the weights were updated after all n

training examples have been seen. This is not the only scheme
that may be used.

• Batch update: the weights are updated after all the train-
ing examples have been seen. Thus

w̃
(k)
i [τ + 1] = w̃

(k)
i [τ] − η

 n∑
p=1

∂E(p)

∂w̃
(k)
i

∣∣∣∣∣∣∣θ[τ]

• Sequential update: the weights are updated after every
sample. Now

w̃
(k)
i [τ + 1] = w̃

(k)
i [τ] − η

∂E(p)

∂w̃
(k)
i

∣∣∣∣∣∣∣θ[τ]

and we cycle around the training vectors.
There are some advantages of this form of update.

– It is not necessary to store the whole training database.
Samples may be used only once if desired.

– They may be used for online learning

– In dynamic systems the values of the weights can be
updated to “track” the system.

In practice forms of batch training or an intermediate be-
tween batch and sequential training are often used.

7. Multi-Layer Perceptrons II 9

Refining Gradient Descent

There are some simple techniques to refine standard gradient
descent. First consider the learning rate η. We can make this
vary with each iteration. One of the simplest rules is to use

η[τ + 1] =

 1.1η[τ]; if E(θ[τ]) < E(θ[τ − 1])

0.5η[τ]; if E(θ[τ]) > E(θ[τ − 1])

In words: if the previous value of η[τ] decreased the value of
the cost function, then increase η[τ]. If the previous value of
η[τ] increased the cost function (η[τ] too large) then decrease
η[τ].

It is also possible to add a momentum term to the optimisa-
tion (common in MLP estimation). The update formula is

w̃
(k)
i [τ + 1] = w̃

(k)
i [τ] + ∆w̃

(k)
i [τ]

where

∆w̃
(k)
i [τ] = −η[τ + 1]

∂E

∂w̃
(k)
i

∣∣∣∣∣∣∣θ[τ]

+ α[τ]∆w̃
(k)
i [τ − 1]

The use of the momentum term, α[τ]:

• smooths successive updates;

• helps avoid small local minima.

Unfortunately it introduces an additional tunable parameter
to set. Also if we are lucky and hit the minimum solution we
will overshoot.

10 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Quadratic Approximation

Gradient descent makes use of first-order derivatives of the
error function. What about higher order techniques?

Consider the vector form of the Taylor series

E(θ) = E(θ[τ]) + (θ − θ[τ])′g

+
1

2
(θ − θ[τ])′H(θ − θ[τ]) + O(3)

where

g = ∇E(θ)|θ[τ]

and

(H)ij = hij =
∂2E(θ)

∂wi∂wj

∣∣∣∣∣∣∣θ[τ]

Ignoring higher order terms we find

∇E(θ) = g + H(θ − θ[τ])

Equating this to zero we find that the value of θ at this point
θ[τ + 1] is

θ[τ + 1] = θ[τ] −H−1g

This gives us a simple update rule. The direction H−1g is
known as the Newton direction.

7. Multi-Layer Perceptrons II 11

Problems with the Hessian

In practice the use of the Hessian is limited.

1. The evaluation of the Hessian may be computationally
expensive as O(N 2) parameters must be accumulated for
each of the n training samples.

2. The Hessian must be inverted to find the direction, O(N 3).
This gets very expensive as N gets large.

3. The direction given need not head towards a minimum
- it could head towards a maximum or saddle point. This
occurs if the Hessian is not positive-definite i.e.

v′Hv > 0

for all v.

4. If the surface is highly non-quadratic the step sizes may
be too large and the optimisation becomes unstable.

Approximations to the Hessian are commonly used.

The simplest approximation is to assume that the Hessian is
diagonal. This ensures that the Hessian is invertible and only
requires N parameters.

The Hessian may be made positive definite using

H̃ = H + λI

If λ is large enough then H̃ is positive definite.

12 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Improved Learning Rates

Rather than having a single learning rate for all weights in
the system, weight specific rates may be used without using
the Hessian. All schemes will make use of

g
(k)
ij [τ] =

∂E

∂w̃
(k)
ij

∣∣∣∣∣∣∣∣θ[τ]

• Delta-delta: we might want to increase the learning rate
when two consecutive gradients have the same sign. This
may be implemented as

∆η
(k)
ij [τ] = γg

(k)
ij [τ]g

(k)
ij [τ − 1]

where γ > 0. Unfortunately this can take the learning
rate negative (depending on the value of γ)!

• Delta-bar-delta: refines delta-delta so that

∆η
(k)
ij [τ] =

κ, if g

(k)
ij [τ − 1]g

(k)
ij [τ] > 0

−γη
(k)
ij [τ − 1], if g

(k)
ij [τ − 1]g

(k)
ij [τ] < 0

where

g
(k)
ij [τ] = (1 − β)g

(k)
ij [τ] + βg

(k)
ij [τ − 1]

One of the drawbacks with this scheme is that three pa-
rameters, γ,κ and β must be selected.

• Quickprop. Here

∆w̃
(k)
ij [τ + 1] =

g
(k)
ij [τ]

g
(k)
ij [τ − 1] − g

(k)
ij [τ]

∆w̃
(k)
ij [τ]

7. Multi-Layer Perceptrons II 13

Line Search

Rather than determining the direction and the step size to-
gether as suggested above, another approach is to determine
these separately.

Hence, if the direction of an update is given then we can
explicitly find how far to move in that direction by a process
of line search.

Assume found a direction for the update d[τ]. Now need
to find the parameter λ such that we minimise

E(θ[τ + 1]) = E (θ[τ] + λd[τ])

The value of λ can be found approximately and efficiently
by a line-search procedure that assuming the error surface
is smooth and can be approximated by a quadratic function
takes several measurements of the error function E (each in-
volving a forward pass of the data) to bound the minimum
and refine the minimum estimate.

14 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Conjugate Directions
Assume that we have optimised in one direction, d[τ] i.e. we
have taken a step in this direction of the optimal size to min-
imise E.

What direction should we now optimise in?

We know that
∂

∂λ
E(θ[τ] + λd[τ]) = 0

If we work out the gradient at this new point θ[τ+1] we know
that

∇E(θ[τ + 1])′d[τ] = 0

Is this the best direction? No.

What we really want is that as we move off in the new direc-
tion , d[τ + 1], we would like to maintain the gradient in the
previous direction, d[τ], being zero. In other words

∇E(θ[τ + 1] + λd[τ + 1])′d[τ] = 0

Using a first order Taylor series expansion

∇ (E(θ[τ + 1]) + λd[τ + 1]′∇E(θ[τ + 1]))
′
d[τ] = 0

Hence the following constraint is satisfied for a conjugate
gradient

d[τ + 1]′Hd[τ] = 0

7. Multi-Layer Perceptrons II 15

Conjugate Gradient (cont)

d

d

θ

θ

[τ]

[τ+1]

[τ]

[τ+1]

Fortunately the conjugate direction can be calculated without
explicitly computing the Hessian. This leads to the conjugate
gradient descent algorithm: see Bishop (1995) pp. 274-276 for
details in which a sequence of steps are taken which are in
conjugate directions to all previous steps.

16 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Input Transformations

If the input to the network are not normalised the training
time may become very large. It is advantageous to normalise
the input data by applying a transformation:

xpi =
xpi − µi

σi

where

µi =
1

n

n∑
p=1

xpi

and

σ2
i =

1

n

n∑
p=1

(xpi − µi)
2

The transformed data has zero mean and variance 1.

This transformation may be generalised to whitening. Here
the covariance matrix of the original data is calculated. The
data is then decorrelated and the mean subtracted. This results
in data with zero mean and an identity matrix covariance
matrix.

7. Multi-Layer Perceptrons II 17

Regularisation

One of the major issues with training neural networks is how
to ensure generalisation. One commonly used technique is
weight decay. A regulariser is used. Here

Ω =
1

2

N∑
i=1

w2
i

where N is the total number of weights in the network. A
new error function is defined

Ẽ = E + νΩ

Using gradient descent on this gives

∇Ẽ = ∇E + νw

The effect of this regularisation term Ω penalises very large
weight terms. From empirical results this has resulted in im-
proved performance.

Rather than using an explicit regularisation term, the “com-
plexity” of the network can be controlled by training with
noise.

For batch training we replicate each of the samples multiple
times and add a different noise vector to each of the sam-
ples. If we use least squares training with a zero mean noise
source (equal variance ν in all the dimensions) the error func-
tion may be shown to have the form

Ẽ = E + νΩ

This is a another form of regularisation.

