Paper 3F6: Software Engineering and Design
UI Design and Software Management

Examples Paper 4

Straightforward questions are marked †
Tripos standard (but not necessarily Tripos length) questions are marked *

User Interface Design

1. You are a member of a team designing a web interface for an internet banking service where each client has two accounts: a current account and a savings account. Assuming that the user has logged-in and passed all security checks, write a specification for each of the following use cases:
 (a) transfer £100 from the current account to the savings account
 (b) pay a bill of £36.50 to BT plc, customer number EA3482828
 (c) close all accounts and transfer any outstanding balance to an account at another bank.

2. A prototype of the internet banking system described in Q1 has been implemented:
 (a) describe how you would conduct a usability test?
 (b) what metrics would you use and how would you measure them?

Software Management

3. * As a member of a code review team you are supplied with the information shown in Fig. 1.
 (a) What is the difference between a code inspection and a walk-through?
 (b) List four distinct cases that should be considered when reviewing the operation of the insert function.
 (c) Perform a walk-through of the insert function and write a brief report describing your findings.
 (d) If the integer numbers i were known to lie in the range $0 < i < N$, suggest how the insert function could be simplified?
“The supplied C code fragment is intended to implement a linked list of integers stored in ascending order. Each element of the list is a struct of type Item holding the integer value, a pointer pred to the previous element, if any, and a pointer succ to the succeeding element, if any. The variable head points to the first element in the list, and tail points to the last element. Initially, both head and tail are NULL. The function insert is intended to insert its argument x into the list. If x is already in the list, insert should do nothing.”

```c
struct Item {
    int value;     // the integer value
    Item *succ;    // succeeding value
    Item *pred;    // preceding value
};
Item *head, *tail;     // Head and Tail of List

// Create a new item and return a pointer to it
Item*NewItem(int value, Item *succ, Item *pred);

// Insert x into linked list
void insert(int x)
{
    Item *p = head, *q;
    if(!p) {
        head = tail =NewItem(x,NULL,NULL);
    }else if (x>tail->value){
        tail->succ =NewItem(x,tail,NULL);
        tail = tail->succ;
    }else{
        while (x > p->value) p++;
        if (x==p->value) return;
        q =NewItem(x,p,p->pred);
        p->pred = q;
    }
}
```

Figure 1: The insert function
4. The C++ function below claims to efficiently locate a specific integer value in a large array of integers, provided that the array elements are stored in ascending order.

```cpp
// Binary search routine:
// the elements of a[i] i=1..N are stored in sort order.
// return index i of array element a[i] == x
// return 0 if not found
int binary_search(int *a, int x, int N)
{
    int mid, low = 1, high = N;
    a[0] = x;
    do {
        mid = (low+high) / 2;
        if (low>high)
            mid = 0;
        else if (a[mid]<x)
            low = mid + 1;
        else
            high = mid - 1;
    } while (a[mid] != x);
    return mid;
}
```

Assuming that N=100000, list the specific cases that should be covered when testing this routine and design a test harness suitable for use as a regression test.