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ABSTRACT

Statistical dialogue systems offer the potential to reduce costs by
learning policies automatically on-line, but are not designed to
scale to large open-domains. This paper proposes a hierarchical
distributed dialogue architecture in which policies are organised in
a class hierarchy aligned to an underlying knowledge graph. This
allows a system to be deployed using a modest amount of data to
train a small set of generic policies. As further data is collected,
generic policies can be adapted to give in-domain performance. Us-
ing Gaussian process-based reinforcement learning, it is shown that
within this framework generic policies can be constructed which
provide acceptable user performance, and better performance than
can be obtained using under-trained domain specific policies. It is
also shown that as sufficient in-domain data becomes available, it
is possible to seamlessly improve performance, without subjecting
users to unacceptable behaviour during the adaptation period and
without limiting the final performance compared to policies trained
from scratch.

Index Terms— open-domain, multi-domain, dialogue systems,
POMDP, Gaussian process

1. INTRODUCTION
Statistical spoken dialogue systems allow policies to be learned di-
rectly from data thereby avoiding the need for hand-crafting dialogue
decisions [1, 2]. Furthermore, the recent introduction of sample-
efficient reinforcement learning algorithms has substantially reduced
the number of training dialogues required to train effective poli-
cies [3, 4] and this has enabled systems to be trained on-line in direct
interaction with human users [5].

Current approaches to statistical dialogue assume that all possi-
ble dialogue states can be encapsulated in a single real-valued vector
referred to as a belief state b and that dialogue decisions can be de-
fined by a policy which maps belief states into actions π(b) → a.
This model works well for applications in specific limited domains
and it is sufficiently flexible to allow a specific domain to be adapted
and extended on-the-fly in direct interaction with human users [6].
However, it does not readily scale to support multiple domains in
which the user wishes to move from one topic to another.

In order to support large and potentially open domains, tech-
niques that can reuse existing knowledge and adapt on-line are
needed. Such a system has extensive knowledge which could be
structured in the form of a hierarchical ontology populated with
instances of the various types of entity that it knows about. Fol-
lowing Google, such data structures are frequently referred to as
Knowledge Graphs (KGs) and they have already been explored in
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connection with spoken language understanding tasks [7, 8]. For
the purposes of this paper, we consider a KG to be a tree-structured
class hierarchy in which each class represents a domain or topic by
a set of properties (slot-value pairs), and derived classes represent
specialisations of that domain that inherit slots from their parent and
add additional slots specific to the specialisation. For example (see
Fig 1), a generic venue class might define the common properties
of a venue such as name, area, phone, etc. A derived class such
as restaurant will then inherit the common properties of a venue,
but add restaurant-specific slots such as type of food, whether kids-
allowed, etc. Actual entities are then class instances in which each
slot has a specific value. The goal of a typical dialogue might then
be to identify specific instances which match the user’s constraints
(e.g. “Find a restaurant nearby serving Italian food”).
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Fig. 1. Training a generic venue policy model MV on data pooled
from two subdomains DR +DH (left); and training specific policy
models MR and MH using the generic policy MV as a prior and
additional in-domain training data (right).

One way to build a dialogue manager which can operate across a
large knowledge graph is to decompose the dialogue policy into a set
of topic specific policies that are distributed across the class nodes
in the graph. Initially, there will be relatively little training data and
the system will need to rely on generic policies attached to high level
generic class nodes which have been trained on whatever examples
are available from across the pool of derived classes. As more data
is collected, specific policies can be trained for each derived class1.
An example of this is illustrated in Fig 1. On the left side is the
initial situation where conversations about hotels and restaurants are
conducted using a generic model MV trained on example dialogues
from both the hotel and restaurant domains. Once the system has
been deployed and more training data has been collected, specific
restaurant and hotel models MR and MH can be trained.2

1cf analogy with speech recognition adaptation using regression trees[9]
2Here a model M is assumed to include input mappings for speech un-

derstanding, a dialogue policy π and output mappings for generation. In this



This type of multi-domain model assumes an agile deployment
strategy which can be succinctly described as “deploy, collect data,
and refine”. Its viability depends on the following assumptions:

1. it is possible to construct generic policies which provide
acceptable user performance across a range of differing do-
mains;

2. as sufficient in-domain data becomes available, it is possi-
ble to seamlessly adapt the policy to improve performance,
without subjecting users to unacceptable disruptions in per-
formance during the adaptation period.

The aim of this paper is to investigate the validity of these assump-
tions.

The remainder of the paper is organised as follows. In Section 2,
the use of Gaussian process-based reinforcement learning (GPRL) is
briefly reviewed. The key advantage of GPRL in this context is that
in addition to being data efficient, it directly supports the use of an
existing model as a prior thereby facilitating incremental adaptation.
In Section 3, various strategies for building a generic policy are con-
sidered and evaluated. In Section 4, sub-domain policy adaptation
is examined using the associated generic policy as a prior. Results
are then presented for live on-line adaptation with human users in
Section 5. Finally, in Section 6, conclusions are presented.

2. GP-BASED REINFORCEMENT LEARNING
The input to a statistical dialogue manager is typically an N-best list
of scored hypotheses obtained from the spoken language understand-
ing unit. Based on this input, at every dialogue turn, a distribution
of possible dialogue states called the belief state, an element of be-
lief space b ∈ B, is estimated. The quality of a dialogue is defined
by a reward function r(b, a) and the role of a dialogue policy π is
to map the belief state b into a system action, an element of action
space a ∈ A, at each turn so as to maximise the expected cumulative
reward.

The expected cumulative reward for a given belief state b and
action a is defined by the Q-function:

Q(b, a) = Eπ

(
T∑

τ=t+1

γτ−t−1rτ |bt = b, at = a

)
(1)

where rτ is the immediate reward obtained at time τ , T is the dia-
logue length and γ is a discount factor, 0 < γ ≤ 1. Optimising the
Q-function is then equivalent to optimising the policy π.

GP-Sarsa is an on-line reinforcement learning algorithm that
models the Q-function as a Gaussian process [10]:

Q(b, a) ∼ GP (m(b, a), k((b, a), (b, a))) (2)

wherem(b, a) is the prior mean and the kernel k(·, ·) is factored into
separate kernels over belief and action spaces kB(b, b′)kA(a, a′).

For a training sequence of belief state-action pairs B =
[(b0, a0), . . . , (bt, at)]T and the corresponding observed imme-
diate rewards r = [r1, . . . , rt]T, the posterior of the Q-function for
any belief state-action pair (b, a) is given by:

Q(b, a)|r,B ∼ N (Q(b, a), cov((b, a), (b, a))) (3)

where the posterior mean and covariance take the form:

Q(b, a) = k(b, a)THT(HKHT + σ2HHT)−1(r −m),
cov((b, a), (b, a)) = k((b, a), (b, a))−
k(b, a)THT(HKHT + σ2HHT)−1Hk(b, a)

(4)

paper, we are only concerned with dialogue management and hence the dia-
logue policy component π of each model.

where k(b, a) = [k((b0, a0), (b, a)), . . . , k((bt, at), (b, a))]T, K
is the Gram matrix [11], H is a band matrix with diagonal [1,−γ],
m = [m(b0, a0), . . . ,m(bt, at)]T and σ2 is an additive noise fac-
tor which controls how much variability in the Q-function estimate
is expected during the learning process. Function m() is 0 for the
initial GP model estimation, and is subsequently set to the posterior
mean of the previous GP model during incremental adaptation (see
[5, 6] for details).

To use GPRL for dialogue, a kernel function must be defined on
both the belief state space B and the action space A. Here we use
the Bayesian Update of Dialogue State (BUDS) dialogue model [12]
and we use the same approach as in [13] for defining the kernel func-
tion. The action space consists of a set of slot-dependent and slot-
independent summary actions which are mapped to master actions
using a set of rules and the kernel is defined as:

kA(a, a
′) = δa(a

′) (5)

where δa(a′) = 1 iff a = a′, 0 otherwise. The belief state consists
of the probability distributions over the Bayesian network hidden
nodes that relate to the dialogue history for each slot and the value
of each user goal slot. The dialogue history nodes can take a fixed
number of values, whereas user goals range over the values defined
for that particular slot in the ontology and can have very high car-
dinalities. User goal distributions are therefore sorted according to
the probability assigned to each value since the choice of summary
action does not depend on the values but rather on the overall shape
of each distribution. The kernel function over both dialogue history
and user goal nodes is based on the expected likelihood kernel [14],
which is a simple linear inner product. The kernel function for belief
space is then the sum over all the individual hidden node kernels:

kB(b, b
′) =

∑
h

〈bh, b′h〉 (6)

where bh is the probability distribution encoded in the hth hidden
node. The dimensionality of the belief space grows with the number
of slots and the cardinality of each. The impact of the latter can be
mitigated by truncating the values to just the k most probable [12].
The impact of a large and growing number of slots requires some
form of partitioning of belief space. The distributed policy design
proposed in this paper is one approach to dealing with this.

3. DESIGNING A GENERIC POLICY
To investigate the distributed policy model described in Section 1,
dialogue policies were built for restaurants and hotels in San Fran-
cisco, USA, referred to as SFRestaurant and SFHotel respectively.
SFRestaurant contains 239 entities and SFHotel has 182 entites.
These subdomains are described by ontologies that were automati-
cally generated using information from the web [15]. A description
of slots and the values that they take is given in Table 1, where bold
identifies the goal slots that can be specified by the user and the
remaining slots are informational slots that the user can query.

In GPRL, the computation of Q(b, a) requires the kernel func-
tion to be evaluated between (b, a) and each of the belief-action
points in the training data. If the training data consists of dialogues
from subdomains (restaurants and hotels in this case) which have
domain-specific slots and actions, a strategy is needed for computing
the kernel function between domains. Here three different strategies
are considered.

The first and simplest is to consider only slots that are common
to both subdomainsR andH:

kB(b
H, bR) =

∑
h∈H∩R

〈bHh , bRh 〉, (7)



Table 1. Slots and their cardinalities for the two subdomains. Bold
indicates slots that can be specified by the user to constrain a search,
the remainder are informable slots. The stars indicate abstract slots
in the abstract and renorm styles of generic policy.

SFRestaurant SFHotel
Slot #Card Slot #Card
name 239 name 182
area 155 area 155
near 39 near 28
pricerange 3 pricerange 4

* food 59 dogsallowed 2
* goodformeal 4 hasinternet 2
* kids-allowed 2 acceptscards 2

price 96 phone 177
phone 240 addr 180
addr 238 postcode 19
postcode 21 - -

When goal nodes are paired with differing cardinalities (eg name in
Table 1), the shorter vector is padded with zeros. Similarly, the ker-
nel over actions only considers actions that are the same in both sub-
domains and in other cases returns 0. This strategy is referred to as
mutual. In the second strategy, non-matching slots are renamed as
slot-1, slot-2, etc and treated as abstract slots so that they are the same
in both subdomains, these are the starred rows in Table 1. Hence for
example, food is matched with dogs allowed, and so on. As with the
mutual case, when goal nodes are paired with differing cardinalities,
the shorter vector is padded with zeros. This strategy is referred to
as abstract. Finally, a variation of the abstract strategy is considered
where, instead of padding the shorter goal vectors with zeros, the
longer vectors are normalised to match the length of the shorter. We
refer to this strategy as renorm. Adaptation strategies based on [16]
are also possible but are reliant on increasing the dimensionality.

In order to investigate the effectiveness of these strategies,
generic policies were trained and then tested in both subdomains. In
all cases the training data consisted of an equal number of restaurant
and hotel dialogues. In addition, in-domain policies were trained
as a reference. Training and testing was performed on an agenda-
based simulated user operating on the dialogue act level [17, 18].
The reward function allocates −1 at each turn to encourage shorter
dialogues, plus 20 at the end of each successful dialogue. The user
simulator includes an error generator and this was set to generate
incorrect user inputs 15% of time. For each condition, 10 policies
were trained using different random seeds using differing numbers
of training dialogues. Each policy is then evaluated using 1000
dialogues on each subdomain. The overall average reward, success
rate and number of turns is given in Table 2. Bold values are statis-
tically significant compared to non-bold values in the same group
using an unpaired t-test with p < 0.01. The only exception are the
policies trained with 50000 dialogues which are compared to the
policies trained on 5000 dialogues. The most important measure is
the average reward, since the policies are trained to maximise this.

There are several important conclusions to be drawn from these
results. First, all generic policies perform better than the in-domain
policies trained only on the data available for that subdomain (i.e.
half of the training data available for the generic policy in this case).
Secondly, the policies using abstract slots provide the best overall
performance, especially when training data is very limited. Thirdly,
and somewhat surprisingly, the abstract generic policy yields bet-
ter results than the in-domain policy even when the total amount of
training data is the same. It may be that when limited data is avail-

Table 2. Comparison of strategies for training generic policies. In-
domain performance is measured in terms of reward, success rate
and the average number of turns per dialog. Results are given with
one standard error.

Strategy #Dialogs Reward Success #Turns
SFRestaurant

in-domain 250 3.40± 0.08 62.49± 0.49 9.01± 0.05
in-domain 500 4.20± 0.08 67.53± 0.47 9.23± 0.04
mutual 500 4.60± 0.11 68.08± 0.47 8.86± 0.04
abstract 500 5.62± 0.10 72.95± 0.45 8.81± 0.04
renorm 500 5.51± 0.11 72.49± 0.45 8.82± 0.04
in-domain 2500 7.76± 0.06 83.88± 0.37 8.93± 0.04
in-domain 5000 8.33± 0.06 86.41± 0.34 8.85± 0.03
mutual 5000 8.39± 0.08 85.54± 0.36 8.54± 0.03
abstract 5000 8.56± 0.08 86.53± 0.34 8.58± 0.03
renorm 5000 8.30± 0.08 85.87± 0.34 8.69± 0.03
abstract 50000 8.36± 0.08 85.93± 0.35 8.67± 0.03

SFHotel
in-domain 250 3.94± 0.08 64.34± 0.48 8.83± 0.04
in-domain 500 4.81± 0.08 70.05± 0.46 9.13± 0.04
mutual 500 5.36± 0.11 72.29± 0.45 8.98± 0.04
abstract 500 6.16± 0.10 76.21± 0.43 8.98± 0.04
renorm 500 5.78± 0.11 73.58± 0.44 8.79± 0.04
in-domain 2500 8.46± 0.06 85.85± 0.35 8.63± 0.04
in-domain 5000 8.54± 0.05 86.93± 0.34 8.73± 0.03
mutual 5000 8.45± 0.08 85.79± 0.35 8.56± 0.03
abstract 5000 8.78± 0.08 87.05± 0.34 8.47± 0.03
renorm 5000 8.82± 0.08 87.77± 0.33 8.55± 0.03
abstract 50000 8.92± 0.07 88.09± 0.32 8.57± 0.03

able, varying subdomains increases exploration, leading to better
performance. Finally, training generic policies on more than 5000
dialogues does not give a significant improvement in performance.

4. ADAPTATION OF IN-DOMAIN POLICIES USING A
GENERIC POLICY AS A PRIOR

We now investigate the effectiveness of a generic policy as a prior for
training an in-domain policy as in the right hand side of Fig. 1. Since
the strategy of using abstract slots provided the best overall generic
performance, only abstract generic policies are used from now on.
In order to examine the best and worst case, the abstract generic
priors (from the 10 randomly seeded examples) that gave the best
performance and the worst performance on each sub-domain trained
with 500 and 5000 dialogues were selected. This results in four prior
policies for each subdomain: abstract-500-worst, abstract-500-best,
abstract-5000-worst and abstract-5000-best. In addition, a policy
with no prior was also trained for each subdomain (i.e. the policy
was trained from scratch). After every 5000 training dialogues each
policy was evaluated with 1000 dialogues. The results are given in
Fig. 2 and 3 with one standard error. Performance at 0 training di-
alogues corresponds to using the generic policy as described in the
previous section, or using a random policy for the no prior case.

Table 3. Performance of best generic prior when adapted using 50K
additional dialogues. Results are given with one standard error.

SFRestaurant
Name Rew Suc Tur
best prior 8.55± 0.25 85.30± 1.12 8.40± 0.10
adapted 9.67± 0.20 92.20± 0.85 8.66± 0.10

SFHotel
best prior 9.57± 0.22 89.80± 0.96 8.29± 0.10
adapted 10.27± 0.21 92.80± 0.82 8.26± 0.11
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Fig. 3. Training policies with different priors – SFHotel

The results from Figs. 2 and 3 demonstrate that the performance
of the policy in the initial stages of learning are significantly im-
proved using the generic policy as a prior, even if that prior is trained
on a small number of dialogues and even if it was the worst perform-
ing prior from the batch of 10 training sessions. These results also
show that the use of a generic prior does not limit the optimality of
the final policy. In fact, the use of a prior can be seen as resetting the
variance of a GP which could lead to better sample efficiency [19].
This may be the reason why in some cases the no-prior policies do
not catch up with the adapted policies.

In Table 3, the performance of the best performing generic prior
is compared to the performance of the same policy adapted using
an additional 50K dialogues. The difference between bold values
and non-bold values is statistically significant using an unpaired t-
test where p < 0.02. This shows that additional in-domain adapta-
tion has the potential to improve the performance further. So when
enough training data is available, it is beneficial to create individual
in-domain policies rather than continuing to train the generic policy.
The reason behind this may be that the optimal performance can only
be reached when the training and the testing conditions match.

5. ADAPTATION IN INTERACTION WITH HUMAN USERS

In order to investigate how the use of a generic policy as a prior influ-
ences training in interaction with human users, a generic policy was
adapted on-line in a real-time spoken dialogue system using subjects
recruited via Amazon Mturk. Each user was assigned specific tasks
in the SFRestaurant subdomain and then asked to call the system in
a similar set-up to that described in [20, 21]. After each dialogue the
users were asked whether they judged the dialogue to be successful

or not. Based on that binary rating, the subjective success was cal-
culated as well as the average reward. An objective rating was also
computed by comparing the system outputs with the assigned task
specification. During training, only dialogues where both objective
and subjective score were the same were used.

Two training schedules were performed in the SFRestaurant sub-
domain – one training from scratch without a prior and the other per-
forming adaptation using the best generic prior obtained after 5000
training dialogues on the user simulator. For each training schedule
three sessions were performed and the results were averaged to re-
duce any random variation. Fig. 4 shows the moving average reward
as a function of the number of training dialogues. The moving win-
dow was set to 100 dialogues so that after the initial 100 dialogues
each point on the graph is an average of 300 dialogues. The shaded
area represents one standard error. The initial parts of the graph ex-
hibit more randomness in behaviour because the number of training
dialogues is small.
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Fig. 4. Training in interaction with human users on SFRestaurant –
moving average reward

The results show a clear upward trend in performance in both
cases. However, the performance obtained with the prior is signifi-
cantly better than without a prior both in terms of the reward and the
success rate. Equally importantly, unlike the system trained from
scratch with no prior, the users of the adapted system are not sub-
jected to poor performance during the early stages of training.

6. CONCLUSIONS
This paper has proposed a distributed multi-domain dialogue archi-
tecture in which dialogue policies are organised in a class hierarchy
aligned to an underlying knowledge graph. The class hierarchy al-
lows a system to be deployed by using a modest amount of data to
train a small set of generic policies. As further data is collected,
generic policies can be adapted to give in-domain performance. Us-
ing Gaussian process-base reinforcement learning, it has been shown
that it is possible to construct generic policies which provide accept-
able in-domain user performance, and better performance than can
be obtained using under-trained domain specific policies. To con-
struct a generic policy, a design consisting of all common slots plus
a number of abstract slots which can be mapped to domain-specific
slots works well. It has also been shown that as sufficient in-domain
data becomes available, it is possible to seamlessly adapt to improve
performance, without subjecting users to unacceptable disruptions in
performance during the adaptation period and without limiting the fi-
nal performance compared to policies trained from scratch. Future
work will investigate the problem of finding adequate mappings for
generic policies and training them with human users.
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