
Word-Based Dialog State Tracking
with Recurrent Neural Networks

Matthew Henderson, Blaise Thomson and Steve Young
Department of Engineering,

University of Cambridge, U.K.
{mh521, brmt2, sjy}@eng.cam.ac.uk

Abstract

Recently discriminative methods for track-
ing the state of a spoken dialog have been
shown to outperform traditional generative
models. This paper presents a new word-
based tracking method which maps di-
rectly from the speech recognition results
to the dialog state without using an explicit
semantic decoder. The method is based on
a recurrent neural network structure which
is capable of generalising to unseen dialog
state hypotheses, and which requires very
little feature engineering. The method
is evaluated on the second Dialog State
Tracking Challenge (DSTC2) corpus and
the results demonstrate consistently high
performance across all of the metrics.

1 Introduction

While communicating with a user, statistical spo-
ken dialog systems must maintain a distribution
over possible dialog states in a process called di-
alog state tracking. This distribution, also called
the belief state, directly determines the system’s
decisions. In MDP-based systems, only the most
likely dialog state is considered and in this case
the primary metric is dialog state accuracy (Bo-
hus and Rudnicky, 2006). In POMDP-based sys-
tems, the full distribution is considered and then
the shape of the distribution as measured by an L2
norm is equally important (Young et al., 2009). In
both cases, good quality state tracking is essential
to maintaining good overall system performance.

Typically, state tracking has assumed the output
of a Spoken Language Understanding (SLU) com-
ponent in the form of a semantic decoder, which
maps the hypotheses from Automatic Speech
Recognition (ASR) to a list of semantic hypothe-
ses. This paper considers mapping directly from
ASR hypotheses to an updated belief state at each

turn in the dialog, omitting the intermediate SLU
processing step. This word-based state tracking
avoids the need for an explicit semantic represen-
tation and also avoids the possibility of informa-
tion loss at the SLU stage.

Recurrent neural networks (RNNs) provide a
natural model for state tracking in dialog, as
they are able to model and classify dynamic se-
quences with complex behaviours from step to
step. Whereas, most previous approaches to dis-
criminative state tracking have adapted station-
ary classifiers to the temporal process of dialog
(Bohus and Rudnicky, 2006; Lee and Eskenazi,
2013; Lee, 2013; Williams, 2013; Henderson et
al., 2013b). One notable exception is Ren et al.
(2013), which used conditional random fields to
model the sequence temporally.

Currently proposed methods of discriminative
state tracking require engineering of feature func-
tions to represent the turn in the dialog (Ren et
al., 2013; Lee and Eskenazi, 2013; Lee, 2013;
Williams, 2013; Henderson et al., 2013b). It is un-
clear whether differences in performance are due
to feature engineering or the underlying models.
This paper proposes a method of using simple n-
gram type features which avoid the need for fea-
ture engineering. Instead of using inputs with a se-
lect few very informative features, the approach is
to use high-dimensional inputs with all the infor-
mation to potentially reconstruct any such hand-
crafted feature. The impact of significantly in-
creasing the dimensionality of the inputs is man-
aged by careful initialisation of model parameters.

Accuracy on unseen or infrequent slot values
is an important concern, particularly for discrim-
inative classifiers which are prone to overfitting
training data. This is addressed by structuring
the recurrent neural network to include a compo-
nent which is independent of the actual slot value
in question. It thus learns general behaviours for
specifying slots enabling it to successfully decode



ASR output which includes previously unseen slot
values.

In summary, this paper presents a word-based
approach to dialog state tracking using recurrent
neural networks. The model is capable of gen-
eralising to unseen dialog state hypotheses, and
requires very little feature engineering. The ap-
proach is evaluated in the second Dialog State
Tracking Challenge (DSTC2) (Henderson et al.,
2014) where it is shown to be extremely competi-
tive, particularly in terms of the quality of its con-
fidence scores.

Following a brief outline of DSTC2 in section
2, the definition of the model is given in section
3. Section 4 then gives details on the initialisation
methods used for training. Finally results on the
DSTC2 evaluation are given in 5.

2 The Second Dialog State Tracking
Challenge

This section describes the domain and method-
ology of the second Dialog State Tracking Chal-
lenge (DSTC2). The challenge is based on a
large corpus collected using a variety of telephone-
based dialog systems in the domain of finding a
restaurant in Cambridge. In all cases, the subjects
were recruited using Amazon Mechanical Turk.

The data is split into a train, dev and test set.
The train and dev sets were supplied with labels,
and the test set was released unlabelled for a one
week period. At the end of the week, all partici-
pants were required to submit their trackers’ out-
put on the test set, and the labels were revealed. A
mis-match was ensured between training and test-
ing conditions by choosing dialogs for the eval-
uation collected using a separate dialog manager.
This emulates the mis-match a new tracker would
encounter if it were actually deployed in an end-
to-end system.

In summary, the datasets used are:

• dstc2 train - Labelled training consisting of
1612 dialogs with two dialog managers and
two acoustic conditions.

• dstc2 dev - Labelled dataset consisting
of 506 calls in the same conditions as
dstc2 train, but with no caller in common.

• dstc2 test - Evaluation dataset consisting of
1117 dialogs collected using a dialog man-
ager not seen in the labelled data.

In contrast with DSTC1, DSTC2 introduces dy-
namic user goals, tracking of requested slots and

tracking the restaurant search method. A DSTC2
tracker must therefore report:

• Goals: A distribution over the user’s goal for
each slot. This is a distribution over the possi-
ble values for that slot, plus the special value
None, which means no valid value has been
mentioned yet.

• Requested slots: A reported probability for
each requestable slot that has been requested
by the user, and should be informed by the
system.

• Method: A distribution over methods, which
encodes how the user is trying to use the di-
alog system. E.g. ‘by constraints’, when the
user is trying to constrain the search, and ‘fin-
ished’, when the user wants to end the dialog.

A tracker may report the goals as a joint over
all slots, but in this paper the joint is reported as a
product of the marginal distributions per slot.

Full details of the challenge are given in Hen-
derson et al. (2013a), Henderson et al. (2014). The
trackers presented in this paper are identified un-
der ‘team4’ in the reported results.

3 Recurrent Neural Network Model

This section defines the RNN structure used for
dialog state tracking. One such RNN is used per
slot, taking the most recent dialog turn (user input
plus last machine dialog act) as input, updating its
internal memory and calculating an updated belief
over the values for the slot. In what follows, the
notation a⊕b is used to denote the concatenation
of two vectors, a and b. The ith component of the
vector a is written a|i.

3.1 Feature Representation
Extracting n-grams from utterances and dialog
acts provides the feature representations needed
for input into the RNN. This process is very sim-
ilar to the feature extraction described in Hender-
son et al. (2012), and is outlined in figure 1.

For n-gram features extracted from the ASR
N -best list, unigram, bigram and trigram features
are calculated for each hypothesis. These are
then weighted by the N -best list probabilities and
summed to give a single vector.

Dialog acts in this domain consist of
a list of component acts of the form
acttype(slot=value) where the slot=value

pair is optional. The n-gram type features



extracted from each such component act are
‘acttype’, ‘slot’, ‘value’, ‘acttype

slot’, ‘slot value’ and ‘acttype slot

value’, or just ‘acttype’ for the act acttype().
Each feature is given weight 1, and the features
from individual component acts are summed.

To provide a contrast, trackers have also been
implemented using the user dialog acts output by
an SLU rather than directly from the ASR output.
In this case, the SLU N -best dialog act list is en-
coded in the same way except that the n-grams
from each hypothesis are weighted by the corre-
sponding probabilities, and summed to give a sin-
gle feature vector.

Consider a word-based tracker which takes an
ASR N -best list and the last machine act as input
for each turn, as shown in figure 1. A combined
feature representation of both the ASR N -best list
and the last machine act is obtained by concate-
nating the vectors. This means that in figure 1 the
food feature from the ASR and the food feature
from the machine act contribute to separate com-
ponents of the final vector f .

fv

ASR

food
jamaican

indian food

1.0
0.9

0.1

<value> food
<value>

0.9
0.9

Machine Act

confirm food

confirm food 
jamaican

food jamaican

1.0
1.0

1.0

e.g. v = jamaican
confirm food 
<value>

food <value>

1.0

1.0

for each value, v

jamaican food 0.9

<slot>
<value> 

1.0
1.0

<value> <slot> 1.0

confirm 1.0

<value> 1.0

confirm <slot> 
<value>

<slot> <value>

1.0
1.0

<value> 1.0

indian 0.1

<value> food 1.0
jamaican <slot> 0.9
indian <slot> 0.1

confirm food 
<value> 1.0
food <value> 1.0
confirm <slot> 
jamaican 1.0
<slot> 
jamaican

1.0

0.9jamaican food
0.1indian food confirm(food=jamaican)

food 1.0

<slot> 1.0

fs

f

5 non-zero 
elements

6 non-zero 
elements

2 non-zero 
elements

6 non-zero 
elements

8 non-zero 
elements

3 non-zero 
elements

11 non-zero 
elements

14 non-zero 
elements

5 non-zero 
elements

jamaican 1.0

Figure 1: Example of feature extraction for one
turn, giving f , fs and fv. Here s = food. For all
v /∈{indian, jamaican}, fv = 0.

Note that all the methods for tracking reported
in DSTC1 required designing feature functions.
For example, suggested feature functions included
the SLU score in the current turn, the probabil-

ity of an ‘affirm’ act when the value has been
confirmed by the system, the output from base-
line trackers etc. (e.g. Lee and Eskenazi (2013),
Williams (2013), Henderson et al. (2013b)). In
contrast, the approach described here is to present
the model with all the information it would need
to reconstruct any feature function that might be
useful.

3.2 Generalisation to Unseen States

One key issue in applying machine learning to the
task of dialog state tracking is being able to deal
with states which have not been seen in training.
For example, the system should be able to recog-
nise any obscure food type which appears in the
set of possible food types. A naı̈ve neural net-
work structure mapping n-gram features to an up-
dated distribution for the food slot, with no tying
of weights, would require separate examples of
each of the food types to learn what n-grams are
associated with each. In reality however n-grams
like ‘<value> food’ and ‘serving <value>’ are likely
to correspond to the hypothesis food=‘<value>’ for
any food-type replacing ‘<value>’.

The approach taken here is to embed a network
which learns a generic model of the updated belief
of a slot-value assignment as a function of ‘tagged’
features, i.e. features which ignore the specific
identity of a value. This can be considered as re-
placing all occurrences of a particular value with
a tag like ‘<value>’. Figure 1 shows the process of
creating the tagged feature vectors, fs and fv from
the untagged vector f .

3.3 Model Definition

In this section an RNN is described for tracking
the goal for a given slot, s, throughout the se-
quence of a dialog. The RNN holds an internal
memory, m ∈ RNmem which is updated at each
step. If there are N possible values for slot s, then
the probability distribution output p is in RN+1,
with the last component p|N giving the probabil-
ity of the None hypothesis. Figure 2 provides an
overview of how p and m are updated in one turn
to give the new belief and memory, p′ and m′.

One part of the neural network is used to learn
a mapping from the untagged inputs, full memory
and previous beliefs to a vector h ∈ RN which
goes directly into the calculation of p′:

h = NNet (f ⊕ p⊕m) ∈ RN



p m

h
N. Net.

g v

p v

N. Net.
for each value, v

h+g

p’
softmax

m’
logistic

for each slot,  s

f

fs

fv

pN

Figure 2: Calculation of p′ and m′ for one turn

where NNet(·) denotes a neural network function
of the input. In this paper all such networks have
one hidden layer with a sigmoidal activation func-
tion.

The sub-network for h requires examples of ev-
ery value in training, and is prone to poor general-
isation as explained in section 3.2. By including a
second sub-network for g which takes tagged fea-
tures as input, it is possible to exploit the obser-
vation that the string corresponding to a value in
various contexts is likely to be good evidence for
or against that value. For each value v, a compo-
nent of g is calculated using the neural network:

g|v = NNet

(
f⊕ fs ⊕ fv⊕
{p|v, p|N} ⊕m

)
∈ R

By using regularisation, the learning will pre-
fer where possible to use the sub-network for g
rather than learning the individual weights for
each value required in the sub-network for h. This
sub-network is able to deal with unseen or infre-
quently seen dialog states, so long as the state can
be tagged in the feature extraction. This model can
also be shared across slots since fs is included as
an input, see section 4.2.

The sub-networks applied to tagged and un-
tagged inputs are combined to give the new belief:

p′ = softmax ([h + g]⊕ {B}) ∈ RN+1

where B is a parameter of the RNN, contributing
to the None hypothesis. The contribution from g
may be seen as accounting for general behaviour
of tagged hypotheses, while h makes corrections
due to correlations with untagged features and

value specific behaviour e.g. special ways of ex-
pressing specific goals and fitting to specific ASR
confusions.

Finally, the memory is updated according to the
logistic regression:

m′ = σ (Wm0f +Wm1m) ∈ RNmem

where the Wmi are parameters of the RNN.

3.4 Requested Slots and Method

A similar RNN is used to track the requested slots.
Here the v runs over all the requestable slots, and
requestable slot names are tagged in the feature
vectors fv. This allows the neural network calcu-
lating g to learn general patterns across slots just
as in the case of goals. The equation for p′ is
changed to:

p′ = σ (h + g)

so each component of p′ represents the probability
(between 0 and 1) of a slot being requested.

For method classification, the same RNN struc-
ture as for a goal is used. No tagging of the feature
vectors is used in the case of methods.

4 Training

The RNNs are trained using Stochastic Gradient
Descent (SGD), maximizing the log probability of
the sequences of observed beliefs in the training
data (Bottou, 1991). Gradient clipping is used to
avoid the problem of exploding gradients (Pascanu
et al., 2012). A regularisation term is included,
which penalises the l2 norm of all the parameters.
It is found empirically to be beneficial to give more
weight in the regularisation to the parameters used
in the network calculating h.

When using the ASR N -best list, f is typi-
cally of dimensionality around 3500. With so
many weights to learn, it is important to initialise
the parameters well before starting the SGD algo-
rithm. Two initialisation techniques have been in-
vestigated, the denoising autoencoder and shared
initialisation. These were evaluated by training
trackers on the dstc2 train set, and evaluating on
dstc2 dev (see table 1).

4.1 Denoising Autoencoder

The denoising autoencoder (dA), which provides
an unsupervised method for learning meaningful



Joint Goals Method Requested
Shared
init.

dA
init. Acc L2 Acc L2 Acc L2

0.686 0.477 0.913 0.147 0.963 0.059
X 0.688 0.466 0.915 0.144 0.962 0.059

X 0.680 0.479 0.910 0.152 0.962 0.059
X X 0.696 0.463 0.915 0.144 0.965 0.057

Baseline: 0.612 0.632 0.830 0.266 0.894 0.174

Table 1: Performance on the dev set when varying initialisation techniques for word-based tracking. Acc
denotes the accuracy of the most likely belief at each turn, and L2 denotes the squared l2 norm between
the estimated belief distribution and correct (delta) distribution. For each row, 5 trackers are trained
and then combined using score averaging. The final row shows the results for the focus-based baseline
tracker (Henderson et al., 2014).

underlying representations of the input, has been
found effective as an initialisation technique in
deep learning (Vincent et al., 2008).

A dA is used to initialise the parameters of the
RNN which multiply the high-dimensional input
vector f . The dA learns a matrix WdA which re-
duces f to a lower dimensional vector such that
the original vector may be recovered with minimal
loss in the presence of noise.

For learning the dA, f is first mapped such that
feature values lie between 0 and 1. The dA takes as
input fnoisy, a noisy copy of f where each compo-
nent is set to 0 with probability p. This is mapped
to a lower dimensional hidden representation h:

h = σ (WdAfnoisy + b0)

A reconstructed vector, frec, is then calculated
as:

frec = σ
(
WT

dAh+ b1
)

The cross-entropy between f and frec is used as
the objective function in gradient descent, with an
added l1 regularisation term to ensure the learning
of sparse weights. As the ASR features are likely
to be very noisy, dense weights would be prone to
overfitting the examples. 1

When using WdA to initialise weights in the
RNN, training is observed to converge faster. Ta-
ble 1 shows that dA initialisation leads to better
solutions, particularly for tracking the goals.

4.2 Shared Initialisation
It is possible to train a slot-independent RNN, us-
ing training data from all slots, by not including h
in the model (the dimensionality of h is dependent

1The state-of-the-art in dialog act classification with very
similar data also uses sparse weights Chen et al. (2013).

on the slot). In shared initialisation, such an RNN
is trained for a few epochs, then the learnt param-
eters are used to initialise slot-dependent RNNs
for each slot. This follows the shared initialisation
procedure presented in Henderson et al. (2013b).

Table 1 suggests that shared initialisation when
combined with dA initialisation gives the best per-
formance.

4.3 Model Combination

In DSTC1, the most competitive results were
achieved with model combination whereby the
output of multiple trackers were combined to give
more accurate classifications (Lee and Eskenazi,
2013). The technique for model combination used
here is score averaging, where the final score for
each component of the dialog state is computed as
the mean of the scores output by all the trackers
being combined. This is one of the simplest meth-
ods for model combination, and requires no extra
training data. It is guaranteed to improve the accu-
racy if the outputs from the individual trackers are
not correlated, and the individual trackers operate
at an accuracy > 0.5.

Multiple runs of training the RNNs were found
to give results with high variability and model
combination provides a method to exploit this
variability. In order to demonstrate the effect,
10 trackers with varying regularisation parame-
ters were trained on dstc2 train and used to track
dstc2 dev. Figure 3 shows the effects of combin-
ing these trackers in larger groups. The mean ac-
curacy in the joint goals from combining m track-
ers is found to increase with m. The single output
from combining all 10 trackers outperforms any
single tracker in the group.

The approach taken for the DSTC2 challenge
was therefore to train multiple trackers with vary-



A
ccuracy

# trackers combined, m
1 2 3 4 5 6 7 8 9 10

0.64

0.65

0.66

0.67

0.68

0.69

0.70

0.71

0.72

Figure 3: Joint goal accuracy on dstc2 dev from system
combination. Ten total trackers are trained with varying reg-
ularisation parameters. For each m = 1 . . . 10, all subsets
of size m of the 10 trackers are used to generate 10Cm com-
bined results, which are plotted as a boxplot. Boxplots show
minimum, maximum, the interquartile range and the median.
The mean values are plotted as connected points.

ing model hyper-parameters (e.g. regularisation
parameters, memory size) and combine their out-
put using score averaging. Note that maintaining
around 10 RNNs for each dialog state components
is entirely feasible for a realtime system, as the
RNN operations are quick to compute. An un-
optimised Python implementation of the tracker
including an RNN for each dialog state compo-
nent is able to do state tracking at a rate of around
50 turns per second on an Intel® Core™ i7-970
3.2GHz processor.

5 Results

The strict blind evaluation procedure defined for
the DSTC2 challenge was used to investigate the
effect on performance of two contrasts. The first
contrast compares word-based tracking and con-
ventional tracking based on SLU output. The sec-
ond contrast investigates the effect of including
and omitting the sub-network for h in the RNN.
Recall h is the part of the model that allows learn-
ing special behaviours for particular dialog state
hypotheses, and correlations with untagged fea-
tures. These two binary contrasts resulted in a to-
tal of 4 system variants being entered in the chal-
lenge.

Each system is the score-averaged combined
output of 12 trackers trained with varying hyper-
parameters (see section 4.3). The performance of
the 4 entries on the featured metrics of the chal-
lenge are shown in table 2.

It should be noted that the live SLU used the
word confusion network, not made available in the
challenge. The word confusion network is known

to provide stronger features than theN -best list for
language understanding (Henderson et al., 2012;
Tür et al., 2013), so the word-based trackers us-
ing N -best ASR features were at a disadvantage
in that regard. Nevertheless, despite this hand-
icap, the best results were obtained from word-
based tracking directly on the ASR output, rather
than using the confusion network generated SLU
output. Including h always helps, though this is
far more pronounced for the word-based track-
ers. Note that trackers which do not include h are
value-independent and so are capable of handling
new values at runtime.

The RNN trackers performed very competi-
tively in the context of the challenge. Figure 4 vi-
sualises the performance of the four trackers rela-
tive to all the entries submitted to the challenge for
the featured metrics. For full details of the evalua-
tion metrics see Henderson et al. (2014). The box
in this figure gives the entry IDs under which the
results are reported in the DSTC (under the team
ID ‘team4’). The word-based tracker including
h (h-ASR), was top for joint goals L2 as well as
requested slots accuracy and L2. It was close to
the top for the other featured metrics, following
closely entries from team 2. The RNN trackers
performed particularly well on measures assessing
the quality of the scores such as L2.

There are hundreds of numbers reported in the
DSTC2 evaluation, and it was found that the h-
ASR tracker ranked top on many of them. Consid-
ering L2, accuracy, average probability, equal er-
ror rate, log probability and mean reciprocal rank
across all components of the the dialog state, these
give a total of 318 metrics. The h-ASR tracker
ranked top of all trackers in the challenge in 89 of
these metrics, more than any other tracker. The
ASR tracker omitting h came second, ranking top
in 33 of these metrics.

The trackers using SLU features ranked top
in all of the featured metrics among the trackers
which used only the SLU output.

6 Conclusions

The RNN framework presented in this paper pro-
vides very good performance in terms of both ac-
curacy and the quality of reported probability dis-
tributions. Word-based tracking is shown to be one
of the most competitive approaches submitted to
DSTC2. By mapping straight from the ASR out-
put to a belief update, it avoids any information



Tracker
Inputs Joint Goals Method Requested

entry Include
h

Live
ASR

Live
SLU Acc L2 ROC Acc L2 ROC Acc L2 ROC

0 X X 0.768 0.346 0.365 0.940 0.095 0.452 0.978 0.035 0.525
1 X 0.746 0.381 0.383 0.939 0.097 0.423 0.977 0.038 0.490
2 X X 0.742 0.387 0.345 0.922 0.124 0.447 0.957 0.069 0.340
3 X 0.737 0.406 0.321 0.922 0.125 0.406 0.957 0.073 0.385

Table 2: Featured metrics on the test set for the 4 RNN trackers entered to the challenge.

0.4

1.0

0.6

0.8

0.0

0.8

A
ccuracy

Joint Goals Method Requested All

0.2

0.4

0.6

L2

entry0

entry2

entry1

entry3

word-based

SLU input

full model no h

baseline

Figure 4: Relative performance of RNN trackers for fea-
tured metrics in DSTC2. Each dash is one of the 34 trackers
evaluated in the challenge. Note a lower L2 is better. ROC
metric is only comparable for systems of similar accuracies,
so is not plotted. The focus baseline system is shown as a
circle.

lost in the omitted SLU step.
In general, the RNN appears to be a promising

model, which deals naturally with sequential input
and outputs. High dimensional inputs are handled
well, with little feature engineering, particularly
when carefully initialised (e.g. as here using de-
noising autoencoders and shared initialisation).

Future work should include making joint pre-
dictions on components of the dialog state. In this
paper each component was tracked using its own
RNN. Though not presented in this paper, no im-
provement could be found by joining the RNNs.
However, this may not be the case for other do-
mains in which slot values are more highly cor-
related. The concept of tagging the feature func-
tions allows for generalisation to unseen values
and slots. This generalisation will be explored in
future work, particularly for dialogs in more open-
domains.

Acknowledgements

Matthew Henderson is a Google Doctoral Fellow.

References
Dan Bohus and Alex Rudnicky. 2006. A K-

hypotheses+ Other Belief Updating Model. Proc.
of the AAAI Workshop on Statistical and Empirical
Methods in Spoken Dialogue Systems.

Léon Bottou. 1991. Stochastic gradient learning in
neural networks. In Proceedings of Neuro-Nı̂mes
91, Nı̂mes, France. EC2.

Yun-Nung Chen, William Yang Wang, and Alexan-
der I Rudnicky. 2013. An empirical investigation of
sparse log-linear models for improved dialogue act
classification. In Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2013 IEEE International Confer-
ence on.

Matthew Henderson, Milica Gašić, Blaise Thom-
son, Pirros Tsiakoulis, Kai Yu, and Steve Young.
2012. Discriminative Spoken Language Under-
standing Using Word Confusion Networks. In Spo-
ken Language Technology Workshop, 2012. IEEE.



Matthew Henderson, Blaise Thomson, and Jason
Williams. 2013a. Dialog State Tracking Challenge
2 & 3 Handbook. camdial.org/˜mh521/dstc/.

Matthew Henderson, Blaise Thomson, and Steve
Young. 2013b. Deep Neural Network Approach for
the Dialog State Tracking Challenge. In Proceed-
ings of SIGdial, Metz, France, August.

Matthew Henderson, Blaise Thomson, and Jason
Williams. 2014. The second dialog state tracking
challenge. In Proceedings of the SIGdial 2014 Con-
ference, Baltimore, U.S.A., June.

Sungjin Lee and Maxine Eskenazi. 2013. Recipe for
building robust spoken dialog state trackers: Dialog
state tracking challenge system description. In Pro-
ceedings of the SIGDIAL 2013 Conference, Metz,
France, August.

Sungjin Lee. 2013. Structured discriminative model
for dialog state tracking. In Proceedings of the SIG-
DIAL 2013 Conference, Metz, France, August.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2012. Understanding the exploding gradient prob-
lem. CoRR.

Hang Ren, Weiqun Xu, Yan Zhang, and Yonghong Yan.
2013. Dialog state tracking using conditional ran-
dom fields. In Proceedings of the SIGDIAL 2013
Conference, Metz, France, August.

Gökhan Tür, Anoop Deoras, and Dilek Hakkani-Tür.
2013. Semantic parsing using word confusion net-
works with conditional random fields. In INTER-
SPEECH.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and
Pierre-Antoine Manzagol. 2008. Extracting and
composing robust features with denoising autoen-
coders. In Proceedings of the 25th International
Conference on Machine Learning, Helsinki, Fin-
land.

Jason Williams. 2013. Multi-domain learning and gen-
eralization in dialog state tracking. In Proceedings
of the SIGDIAL 2013 Conference, Metz, France, Au-
gust.

Steve Young, Milica Gašić, Simon Keizer, François
Mairesse, Jost Schatzmann, Blaise Thomson, and
Kai Yu. 2009. The Hidden Information State model:
A practical framework for POMDP-based spoken
dialogue management. Computer Speech & Lan-
guage.


