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Abstract

The Hidden Vector State (HVS) model is an extension of the basic discrete Markov

model in which context is encoded as a stack-oriented state vector. State transitions

are factored into a stack shift operation similar to those of a push-down automaton

followed by the push of a new preterminal category label. When used as a semantic

parser, the model can capture hierarchical structure without the use of treebank data

for training and it can be trained automatically using Expectation-Maximization

(EM) from only-lightly annotated training data. When deployed in a system, the

model can be continually refined as more data becomes available.

In this paper, the practical application of the model in a spoken language un-

derstanding system (SLU) is described. Through a sequence of experiments, the

issues of robustness to noise and portability to similar and extended domains are

investigated. The end-to-end performance obtained from experiments in the ATIS

domain show that the system is comparable to existing SLU systems which rely on

either hand-crafted semantic grammar rules or statistical models trained on fully-

annotated training corpora. Experiments using data which has been artificially cor-

rupted with varying levels of additive noise show that the HVS-based parser is

relatively robust, and experiments using data sets from other domains indicate that

the overall framework allows adaptation to related domains, and scaling to cover

enlarged domains.

In summary, it is argued that constrained statistical parsers such as the HVS

model allow robust spoken dialogue systems to be built at relatively low cost, and

which can be automatically adapted as new data is acquired both to improve per-

formance and extend coverage.

Keywords: spoken language understanding, spoken dialogue systems, statistical se-

mantic parsing, hidden vector state model
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1 Introduction

Robust spoken language understanding (SLU) is a key requirement of spoken di-

alogue systems. The role of SLU is to robustly interpret the meanings of users’

utterances in the face of disturbing effects such as user disfluency and recognition

errors. SLU implementation normally comprises three main components: a speech

recognizer, a semantic parser to extract the information carrying concepts from

the recognized utterance and a dialogue act decoder to determine the overall goal

expressed by the utterance. This paper is concerned primarily with the semantic

parser.

In most deployed spoken language understanding systems, the semantic parser is

based on hand-crafted application-dependent rules. These typically use context-free

semantic rules to extract keywords or phrases to fill slots in semantic frames (tem-

plate matching), examples are MIT’s TINA (Seneff, 1992), CMU’s PHOENIX (Ward

and Issar, 1996), and SRI’s Gemini (Dowding et al., 1994). Whilst these hand-crafted

approaches can yield good performance, they are expensive to build and they are

specific to the application that they were designed for. Furthermore, they can lack

robustness when error rates rise or unexpected syntactic forms are used.

In contrast, fully statistical approaches to semantic parsing offer the potential of

reduced deployment cost, increased robustness, portability and on-line adaptation

to improve and extend domain coverage. Realizing this potential, however, is not

straightforward. The primary difficulty is that to construct a model with the ex-

pressive power of context-free parsing rules such as in the hierarchical Hidden Un-

derstanding Model (Miller et al., 1995; Schwartz et al., 1997) or the hierarchical

HMM (Fine et al., 1998) requires in practice fully-annotated tree-bank style train-
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ing data and this is expensive to generate. Relaxing the requirement for all training

data to be fully observed implies that the exact parse state for every word is no

longer known. In effect the parse state becomes a hidden variable which must be

estimated along with the model parameters using Expectation-Maximization (EM)

style iterative training, for example, in the form of the Inside-Outside algorithm

(Lari and Young, 1990; Schabes, 1991). Unfortunately, however, context-free models

provide too many degrees of freedom and in practice, models trained in this way do

not seem to converge on useful solutions (Lari and Young, 1991). One can of course

use finite-state parsing models such as that used in AT&T’s Markov model-based

CHRONUS (Levin and Pieraccini, 1995) but this results in essentially a HMM-based

semantic tagger which although capable of being robustly trained, is not capable of

representing hierarchical structure in the data.

Recently the authors have proposed a hidden vector state (HVS) model which is

essentially a stochastic push-down automaton. The HVS model extends the basic

discrete Markov model by expanding each state to encode the stack of a push-

down automaton. This allows the model to efficiently encode hierarchical context,

but because stack operations are highly constrained it avoids the tractability issues

associated with full context-free stochastic models such as the hierarchical HMM.

This model is capable of representing right-branching context-free grammars and can

be robustly trained using EM (He and Young, 2003b). The model has been tested in

an ATIS-based spoken language system and shown to be comparable in performance

to hand-crafted systems but without any hand-crafted rules or application dependent

tuning (He and Young, 2003a).

This paper explores the performance of the HVS model when used in a spoken

language understanding system (He and Young, 2004). Following a brief description

of the system a series of experiments are presented which explore the robustness of
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the model to noise and the portability of the model to similar and extended domains.

The structure of the paper is as follows. In section 2 the overall system architecture

is described. Then in section 3 the “end-to-end” performance is measured using the

ATIS evaluation framework. These results demonstrate that the system is compara-

ble to the original DARPA ATIS SLU systems without using any hand-crafted rules

or system tuning. In section 4, noise robustness is investigated by testing the system

on data from the ATIS domain which has been artificially corrupted with varying

levels of additive noise. Then in section 5, portability issues are explored by adapting

an HVS model originally trained on the ATIS corpus to the DARPA Communicator

task which covers broadly similar concepts, but comprises rather different speaking

styles. Extension of the ATIS-trained HVS model to an enlarged domain which in-

cludes Tourist Information queries is also presented where in this case many unseen

semantic concepts have been introduced. Finally, Section 6 concludes the paper.

2 The HVS-based Statistical SLU System

The SLU system architecture is shown in Fig. 1. It consists of a speech recognizer, a

semantic parser, and a dialog act decoder. The speech recognizer processes each input

acoustic signal A to produce the N-best word string hypotheses Wn. The semantic

parser then determines a parse for each Wn, extracts a set of semantic concepts C

and computes the associated probability P (C|Wn). The most likely interpretation

is then given by the joint optimization over C and Wn

Ĉ = argmax
C

{
max

Wn; n∈1:N
P (C|Wn)P (Wn|A)

}
(1)

This joint optimization avoids the error incurred by sequentially decoding Ŵ and

then Ĉ (Young, 2002).
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Dialog Act
Decoder

Semantic
Parser

Speech
Recognizer

Acoustic Signal Words Concepts User’s Dialog Acts

A Wn C Gu

Fig. 1. Typical structure of a spoken language understanding system.

Given the set of semantic concepts Ĉ the dialogue act decoder infers the user’s dialog

acts or goals by solving 1

Ĝu = argmax
Gu

P (Gu|Ĉ) (2)

In the system described in this paper, each of these stages is modeled separately.

We use a standard HTK-based Hidden Markov Model (HMM) recognizer for speech

recognition (Young et al., 2004). The recognizer comprises 14 mixture Gaussian

HMM state-clustered cross-word triphones augmented by using heteroscedastic lin-

ear discriminant analysis (HLDA) (Kumar, 1997). During decoding, incremental

speaker adaptation based on maximum likelihood linear regression (MLLR) (Gales

and Woodland, 1996) is performed with updating being performed every five input

utterances.

The core of the system is the semantic parser which computes a hierarchical parse

tree for each word string W , and then extracts semantic concepts C from this tree.

Each semantic concept consists of a name-value pair where the name is a dotted list

of primitive semantic concept labels. For example, the top part of figure 2 shows

a typical semantic parse tree and the semantic concepts extracted from this parse

1 It is also possible to retain the N -best parse results from the semantic parser and

leave the selection of the best hypothesis until the dialog act decoding stage. However, in

practice, no gain was found for this and hence we do not pursue it further here.
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would be

RETURN.TOLOC.CITY=Dallas

RETURN.ON.DATE=Thursday

(3)

The semantic parser is based on the Hidden Vector State (HVS) model (He and

Young, 2003b, 2005) which is a discrete Hidden Markov Model (HMM) in which

each HMM state represents the state of a push-down automaton with a finite stack

size. This is illustrated in figure 2 which shows the sequence of HVS stack states

corresponding to the given parse tree. State transitions are factored into separate

stack pop and push operations constrained to give a tractable search space. The

result is a model which is complex enough to capture hierarchical structure but

which can be trained automatically from only lightly annotated data.

CITY DATE

SS
SE

TOLOC ON

RETURN

SS

DUMMY

SS DUMMY
SS SS

Dallassent_start I want to return to
RETURN

SS
RETURN
TOLOC
CITY

SS
RETURN
TOLOC

RETURN
RETURN

SS

ON
DATE

Thursday sent_end

SE

SS

ON

on

Fig. 2. Example of a parse tree and its vector state equivalent.

In the HVS-based semantic parser, conventional rules are replaced by three proba-

bility tables. Let each state at time t be denoted by a vector of Dt semantic concept

labels (tags) ct = [ct[1], ct[2], ..ct[Dt]] where ct[1] is the preterminal concept label and

ct[Dt] is the root concept label (SS in Figure 2). Given a word sequence W , concept

vector sequence C and a sequence of stack pop operations N , the joint probability

7



of P (W,C, N) can be decomposed as

P (W,C, N) =
T∏

t=1

P (nt|ct−1)P (ct[1]|ct[2 · · ·Dt])P (wt|ct) (4)

where nt is the vector stack shift operation and takes values in the range 0, · · · , Dt−1,

and ct[1] = cwt is the new pre-terminal semantic label assigned to word wt at word

position t.

Thus, the HVS model consists of three types of probabilistic move, each move being

determined by a discrete probability table:

(1) popping semantic labels off the stack - P (n|c);

(2) pushing a pre-terminal semantic label onto the stack - P (c[1]|c[2 · · ·D]);

(3) generating the next word - P (w|c).

Each of these tables are estimated in training using EM and then used to compute

parse trees at run-time using Viterbi decoding. In training, each word string W is

marked with the set of semantic concepts C that it contains. For example, if the

sentence shown in figure 2 was in the training set, then it would be marked with

the two semantic concepts given in 3. For each word wk of each training utterance

W , EM training uses the forward-backward algorithm to compute the probability of

the model being in stack state c when wk is processed. Without any constraints, the

set of possible stack states would be intractably large. However, in the HVS model

this problem can be avoided by pruning out all states which are inconsistent with

the semantic concepts associated with W . The details of how this is done are given

in (He and Young, 2005).

The dialog act decoder uses the Bayesian Network approach proposed in (Meng

et al., 2000) extended to use Tree-Augmented Naive Bayes (TAN) networks (Fried-

man et al., 1997) in order to model between-concept dependencies. One TAN net-
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work is used for each dialogue act or goal Gu, the set of semantic concept labels {ci}
which serve as input to its corresponding network were selected based on the mutual

information (MI) between the goal and each concept label. Naive Bayes networks

assume all the concept labels are conditionally independent given the value of the

goal. TAN networks relax this independence assumption by adding dependencies

between concept labels based on the conditional mutual information (CMI) between

concepts given the goal. The goal prior probability P (Gu) and the conditional prob-

ability of each semantic concept label ci given the goal Gu, P (ci|Gu) are learned

from the training data. Dialogue act detection is done by selecting the goal with the

highest posterior probability of Gu given the particular instance of concepts c1 · · · cn,

P (Gu|c1 · · · cn).

3 End-to-End Performance

The end-to-end performance of the HVS-based SLU system was measured using

the Air Travel Information Services (ATIS) corpus (Dahl et al., 1994). ATIS was

developed in the DARPA sponsored spoken language understanding programme

conducted from 1990 to 1995 and it provides a convenient and well-documented

standard for measuring the end-to-end performance of an SLU system.

3.1 Experimental Setup

The three components of the SLU system, the speech recognizer, the semantic parser,

and the dialogue act decoder were trained separately. For the HTK-based speech

recognizer, 22316 spontaneous utterances recorded using a Sennheiser microphone

from ATIS-2 and ATIS-3 were used for acoustic model training. This includes the
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ATIS-2 FEB92 and NOV92 test sets in addition to the ATIS-2 and ATIS-3 training

sets. The statistical language model was trained on 23096 ATIS spontaneous utter-

ances with a vocabulary size of 1644 words. It consists of a word trigram interpolated

with a class-based trigram. The latter has 60 classes derived automatically using the

Kneser-Ney clustering procedure (Kneser and Ney, 1993). The perplexity tested on

the joint ATIS-3 NOV93 and DEC94 test sets is 15.5. If the word trigram is used

alone, the perplexity increases to 16.5.

As explained in section 2, the N -best word hypotheses Wn generated by the speech

recognizer are processed by the semantic parser in order to perform a joint optimiza-

tion over words W and concepts C. In practice, equation 1 is modified to allow the

relative likelihoods computed by the recognizer’s statistical language model and the

parser’s semantic model to be balanced:

Ĉ = argmax
C

{
max

Wn; n∈1:N
P (C|Wn)P (Wn)P (A|Wn)

}

≈ argmax
C

{
max

Wn; n∈1:N
P (C|Wn)αP (Wn)γP (A|Wn)

}
(5)

where P (A|Wn) is the acoustic probability computed by the recognizer, P (Wn) is

the language model likelihood, and P (C|Wn) is the semantic parse likelihood. The

weighting factors α and γ were set empirically to optimize performance. In the case

of the DEC94 test, a development set was used and values of α = 10 and γ = 17

were found to optimize performance. In the case of the NOV93, no development set

was available and values of α = 10 and γ = 15 were determined directly using the

test set. Although this biased the NOV93 results, later analysis showed that the

overall results were not in fact sensitive to the exact setting of these values.

The HVS semantic parser was trained on 4978 utterances selected from the Class A

training data in ATIS-2 and ATIS-3. Each utterance was marked with the concepts
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it contains as described in section 2. These were derived automatically from the SQL

queries accompanying the ATIS training utterances. The semantic class labels were

also derived automatically from the domain-specific lexical class information in the

ATIS database to give 30 semantic classes in all. Further semantic classes were then

derived from the ATIS SQL query set such as FROMLOC, TOLOC, ARRIVE DATE,

DEPART DATE etc. In total, 85 semantic concepts were defined.

For the dialog act decoder, 16 dialog acts or goals were defined in the ATIS domain

by enumerating the key attribute to be fetched from each SQL query with each goal

corresponding to one TAN. Examples of the dialogue acts defined are abbreviation,

airfare, flight etc. The top 15 semantic concepts ranked by a mutual information

metric were used as input to each TAN.

In order to test performance within the ATIS framework, the output of the dialog

act decoder must be combined with the extracted semantic concepts to form an SQL

query. The SQL query generator module was tested on the reference parse results of

ATIS-3 NOV93 and DEC94 test sets. 5 out of 448 utterances from NOV93 test set

and 3 out of 445 utterances from DEC94 test set did not return the correct answers,

which gives the utterance understanding error rate 1.1% and 0.7% respectively. The

analysis of the results shows that one context-dependent utterance has been mis-

classified as category A (context-independent) in each of these two test sets and the

rest are too complicated for the SQL query generator to handle properly.

3.2 Experimental Results

The end-to-end performance evaluation results on both natural language under-

standing (NL) and spoken language understanding (SLS) evaluations are shown in
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Table I. F-measure evaluates the extraction of concept/value pairs in terms of recall

and precision (Goel and Byrne, 1999), while answer error rate measures the mini-

mum/maximum answers from the ATIS database using the NIST scoring package.

The latter is the standard scoring metric used by DARPA ATIS SLU systems. For

the NL test, the reference transcription is used as input to the semantic parser in-

stead of the recognized output. The SLS(1) results were obtained by using only the

best hypothesis from the speech recognizer, while the SLS(10) results were obtained

by jointly optimizing over the top 10 hypotheses output by the recognizer.

It can be observed from Table I that the joint optimization reduces the WER by

7.3% and 10.0% relatively for the NOV93 and DEC94 test set respectively. The

relative reduction in answer error rate is 12.0% and 9.4%.

Table I

NOV93 and DEC94 NL and SLS test results.

NOV93 DEC94

Answer Answer

WER F-measure Error WER F-measure Error

NL - 90.3% 12.3% - 91.9% 8.5%

SLS(1) 4.1 89.0% 18.3% 3.0 90.5% 13.9%

SLS(10) 3.8 89.3% 16.1% 2.7 90.6% 12.6%

Figure 3 compares the performance of the system built here (denoted as CU in y-

axis) with the systems developed by the DARPA ATIS programme participants. The

bar chart shows the performance of other systems and the solid line across the bar

chart illustrates our system’s performance. The upper portion of Figure 3 gives the
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Fig. 3. SLU Systems Performance Comparison.

NL answer error rates of various systems on the NOV93 and DEC94 test sets, while

the lower portion of the figure gives the SLS answer error rates on the same test sets.

It can be observed that the statistical SLU system described here is comparable to

the original DARPA ATIS SLU systems despite having no hand-crafted rules and

no tuning. 2

2 Note also that a number of the DARPA ATIS systems used other corpora to augment

their training sets.
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4 Noise Robustness

Spoken language understanding components should be robust to speech recognition

errors. Ideally, they should be capable of generating the correct meaning of an ut-

terance even if it is recognized wrongly by a speech recognizer. At minimum, the

performance of the understanding components should degrade gracefully as recog-

nition accuracy degrades.

To test the robustness of the HVS-based system, varying levels of car noise from

the NOISEX-92 (Varga et al., 1992) database was added to the ATIS-3 NOV93 and

DEC94 test sets. The resulting noisy speech utterances had signal-to-noise ratios

(SNRs) varying from “clean” down to 10dB.

Performance was measured at both the component and the system level. For the

former, the recognizer was evaluated by word error rate, the parser by concept slot

retrieval rate using an F-measure metric, and the dialog act decoder by detection

rate. The overall system performance was measured using the standard NIST “query

answer” rate.

4.1 Experimental Results

Figure 4 gives the system performance on the corrupted test data with additive

noise ranging from 25dB to 10dB SNR. The label “clean” in the X-axis denotes the

original clean speech data without additive noise. Note that the recognition results

on the corrupted test data were obtained directly using the original clean speech

HMM models without retraining for the noisy conditions or other forms of noise

compensation. The upper portion of Figure 4 shows the end-to-end performance

14



in terms of query answer error rate for the NOV93 and DEC94 test sets. For easy

reference, WER is also shown. The individual component performance, F-measure

for the HVS semantic parser and dialogue act (DA) detection accuracy for the DA

decoder, are illustrated in the lower portion of Figure 4. For each test set, the

performance is given for the single-best recognizer output (i.e. N = 1 in equation 5)

and for the jointly optimized case (N = 10 in equation 5). The latter are designated

as “10-best” in the figures.

It can be observed that the system gives fairly stable performance at high SNRs and

then the recognition accuracy degrades rapidly in the presence of increasing noise. At

20dB SNR, the WER for the NOV93 test set increases by 1.6 times relative to clean

whilst the query answer error rate increases by only 1.3 times. On decreasing the

SNR to 15dB, the system performance degrades significantly. The WER increases

by 3.1 times relative to clean but the query answer error rate increases by only 1.7

times. Similar figures were obtained for the DEC94 test set.

The above suggests that the end-to-end performance measured in terms of answer

error rate degrades more slowly compared to the recognizer WER as the noise level

increases. This demonstrates that the statistically-based understanding components

of the SLU system, the semantic parser and the dialogue act decoder, are relatively

robust to degrading recognition performance.

Regarding the individual component performance, the dialogue act detection accu-

racy appears to be less sensitive to decreasing SNR. This is probably a consequence

of the fact that the Bayesian networks are set up to respond to only the presence

or absence of semantic concepts or slots, regardless of the actual values assigned to

them. In another words, the performance of the dialogue act decoder is not affected

by the mis-recognition of individual words, but only by a failure to detect the pres-
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ence of a semantic concept. It can also be observed from Figure 4 that the overall

answer error rate increases steeply below 15dB from which it can be inferred that,

as a very rough guide, the concept slot F-measure needs to be better than around

85% in order to achieve acceptable end-to-end performance.
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Fig. 4. SLU system performance vs SNR.

5 Portability and Extensibility

To test the portability and extensibility of the statistical parser, two sets of ex-

periments have been conducted based on two different scenarios. In scenario one,
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the ATIS-trained HVS model was tested in a domain which covers broadly similar

concepts, but comprises rather different speaking styles. To this end, the flight in-

formation subset of the DARPA Communicator Travel task was used as the target

domain (CUData, 2004). In scenario two, the ability to extend domain coverage to

include queries relating to tourist information was studied. Data for this extended

domain were obtained from the SACTI corpus (Williams and Young, 2004; Stuttle

et al., 2004) and in this case, a large number of new semantic concepts are needed.

For reference, some statistics of the ATIS, DARPA Communicator, and SACTI

corpora are given in Table II.

Table II

Corpus statistics for the HVS semantic parser.

ATIS DARPA Communicator SACTI

Training Set (No. of Utt.) 4978 10682 1621

Test Set (No. of Utt.) 993 1017 157

Vocabulary Size 611 505 786

Semantic Concept Labels 85 99 80

Note that the semantic concept labels needed for ATIS form a subset of those needed

for Communicator. For SACTI, only 14 of the 80 semantic concept labels appear in

the ATIS set.
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5.1 Adaptation to Changing Domains

Statistical model adaptation techniques are widely used to reduce the mismatch

between training and test or to adapt a well-trained model to a novel domain. Com-

monly used techniques can be classified into two categories, Bayesian adaptation

which uses a maximum a posteriori (MAP) probability criteria (Gauvain and Lee,

1994) and transformation-based approaches such as maximum likelihood linear re-

gression (MLLR) (Gales and Woodland, 1996), which uses a maximum likelihood

(ML) criteria. In recent years, MAP adaptation has been successfully applied to

n-gram language models (Bacchiani and Roark, 2003) and lexicalized PCFG mod-

els (Roark and Bacchiani, 2003). Luo et al. have proposed transformation-based

approaches based on the Markov transform (Luo et al., 1999) and the House-

holder transform (Luo, 2000), to adapt statistical parsers. However, the optimization

processes for the latter are complex and it is not clear how general they are.

Since MAP adaptation is straightforward and has been applied successfully to PCFG

parsers, it has been selected for investigation in this paper. Since one of the special

forms of MAP adaptation is interpolation between the in-domain and out-of-domain

models, it is natural to also consider the use of non-linear interpolation and hence

this has been studied as well 3 .

5.1.1 MAP Adaptation

Bayesian adaptation re-estimates model parameters directly using adaptation data.

It can be implemented via maximum a posteriori (MAP) estimation. Assuming that

3 Experiments using linear interpolation have also been conducted but it was found that

the results are worse than those obtained using MAP adaptation or log-linear interpolation.
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model parameters are denoted by Θ, then given observation samples Y , the MAP

estimate is obtained as

ΘMAP = argmax
Θ

P (Θ|Y ) = argmax
Θ

P (Y |Θ)P (Θ) (6)

where P (Y |Θ) is the likelihood of the adaptation data Y and model parameters Θ

are random vectors described by their probabilistic mass function (pmf) P (Θ), also

called the prior distribution.

In the case of HVS model adaptation, the objective is to estimate probabilities of

discrete distributions over vector state stack shift operations and output word gener-

ation. Assuming that they can be modeled as multinomial distributions, the Dirichlet

density can be used as conjugate prior. Then given a parser model P (W,C) for a

word sequence W and semantic concept sequence C with J component distributions

Pj each of dimension K, and given some adaptation data Wl, the MAP estimate of

the kth component of Pj, P̂j(k), is

P̂j(k) =
σj

σj + τ
P̃j(k) +

τ

σj + τ
Pj(k) (7)

where σj =
∑K

k=1 σj(k) in which σj(k) is defined as the total count of the events

associated with the kth component of Pj summed across the decoding of all adap-

tation utterances Wl, Pj(k) is the probability of the original unadapted model, and

P̃j(k) is the empirical distribution of the adaptation data, which is defined as

P̃j(k) =
σj(k)∑K
i=1 σj(i)

(8)

τ is the prior weighting parameter and this was optimized empirically on a held-out

set.

As discussed in section 2, the HVS model consists of three types of probabilistic

move. The MAP adaptation technique can be applied to the HVS model by adapting
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each of these three component distributions individually.

5.1.2 Log-Linear Interpolation

Log-linear interpolation has been applied to language model adaptation and has

been shown to be equivalent to a constrained minimum Kullback-Leibler distance

optimization problem (Klakow, 1998).

Using the same notation as in section 5.1.1, the log-linear form of adaptation can

be written as

P̂j(k) =
1

Zλ

Pj(k)λ1P̃j(k)λ2 (9)

The parameters λ1 and λ2 were determined by optimizing the log-likelihood on the

held-out data using the simplex method. The computation of Zλ is very expensive

and can usually be dropped without significant loss in performance (Martin et al.,

2000).

5.1.3 Experiments

The HVS-parser model trained on the ATIS data was adapted using utterances

relating to flight reservation from the DARPA Communicator data. To compare the

adapted ATIS parser with an in-domain Communicator parser, a HVS model was

trained from scratch using 10682 Communicator training utterances. For all tests, a

set of 1017 Communicator test utterances was used.

Table III lists the recall, precision, and F-measure results obtained when tested on

the DARPA Communicator test set. The baseline is the unadapted HVS parser

trained on the ATIS corpus only. The in-domain results are obtained using the HVS

parser trained solely on the 10682 DARPA training data. The other rows of the
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table give the parser performance using MAP and log-linear interpolation based

adaptation of the baseline model using 50 randomly selected adaptation utterances.

Table III

Performance comparison of adaptation to DARPA Communicator Data using MAP or

log-linear interpolation.

System Recall Precision F-measure

Baseline 79.8% 87.1% 83.3%

In-domain 87.2% 91.9% 89.5%

MAP 86.7% 91.1% 88.9%

Log-Linear 86.3% 92.4% 89.2%

Since a reference database for the DARPA Communicator task was not available, it

was not possible to conduct an end-to-end performance evaluation as in section 3.

However, the experimental results in section 4.1 suggested that the F-measure needs

to exceed 85% to give acceptable end-to-end performance (see Figure 4). Therefore,

it can be inferred from Table III that the unadapted ATIS parser model would

perform rather badly in the new Communicator application whereas the adapted

models would give performance close to that of a fully trained in-domain model.

Figure 5 shows the parser performance versus the number of adaptation utterances

used. It can be observed that when there are only a few adaptation utterances, MAP

adaptation performs significantly better than log-linear interpolation. However above

25 adaptation utterances, the converse is true. The parser performance saturates

when the number of adaptation utterances reaches 50 for both techniques and the

best performance overall is given by the parser adapted using log-linear interpolation.
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Fig. 5. F-measure vs amount of adaptation training data.

5.2 Extension to Expanded Domains

In this section, preliminary results are reported using the first phase of a new dialogue

dataset called the Simulated ASR Channel Tourist Information (SACTI) corpus

(Williams and Young, 2004; Stuttle et al., 2004). The SACTI corpus consists of task-

oriented dialogues between two people in a simulated ASR channel. This channel

uses a phonetic confusion model and a language model to simulate recognition errors

in the range 0% WER to 60% WER. The corpus contains a total of 144 dialogues,

within which, 132 dialogues (1621 utterances) were chosen as the training set and

the remaining 12 dialogues (157 utterances) formed the test set. Since the error

rates in some of the dialogues are very high, the user utterances include a mixture

of queries, repairs and clarifications. For the work described here, the error-free user

utterances prior to scrambling are used. Nevertheless, this remains a very demanding

understanding task.

The focus of the experiments was to investigate how effectively the HVS model could

be extended to cover an enlarged domain, in this case the union of the ATIS and
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SACTI domains. Two approaches have been tested: training a combined model on

the pooled ATIS and SACTI training data, and interpolating individual ATIS and

SACTI domain models.

Of the 85 concept labels needed to cover the ATIS domain, only 14 are shared with

the 80 concepts needed to cover the SACTI domain. Thus, a combined model si-

multaneously covering both domains requires 151 distinct concept labels. Examples

of the new semantic concept labels in the SACTI corpus include FILM, BAR NAME,

BUS NUMBER, etc. The shared concept labels include COST, DAY NAME, DIS-

TANCE, FROMLOC, TOLOC, QUANTITY, TIME, etc.

A HVS model trained only on the SACTI data results in an F-measure of 73.3% on

the SACTI test set. This relatively poor figure is a consequence of the small training

set and the difficulty of the task.

The results of training a combined model are shown in Figure 6 which shows the

F-measure obtained on both the ATIS and SACTI test sets. The horizontal axis

shows the effect of adding varying amounts of SACTI data to the 4978 utterance

ATIS training set. Figure 6 (a) depicts the results without boosting the SACTI data

(i.e. the model was trained on 1 x ATIS data + 1 x SACTI data) while Figure 6

(b) shows the results by boosting the SACTI data (i.e. the model was trained on

1 x ATIS data + 3 x SACTI data). It can be observed from this figure that the

original ATIS model gives very poor performance on the SACTI test set, only 41.3%

F-measure was obtained. However, by incorporating increasing amounts of SACTI

training data, the F-measure increased gradually to 69.5% without boosting or 70.6%

with boosting. At this point, the combined model is simultaneously covering both

domains but with a reduction of approximately 2% F-measure on the ATIS test sets

and 4% on the SACTI test set. By boosting the SACTI data, the reduction on the
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SACTI test set is decreased to 3%.
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(a) Without Boosting.
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Fig. 6. F-measure vs amount of SACTI training data added.

For interpolating individual domain models, the log-linear scheme used in section 5.1.3

is not appropriate since one domain cannot be regarded as a prior for the other. In-

stead, simple linear interpolation of the individual domain models was used and the

results are illustrated in Figure 7. In this case, a mixture weight of between 0.6 and

0.7 gives a similar approximate 2% performance drop-off on the ATIS test set how-

ever the drop-off on the SACTI test set is reduced to less than 2%. This suggests

that model interpolation schemes may be the better approach towards expanding

parser coverage, especially where there is an imbalance in the amount of available

training data.

Finally it is interesting to explore whether concepts from different domains play

sufficiently similar roles, that they can be tied into equivalence classes for the pur-

poses of parameter estimation. As a very preliminary test, a number of equivalence

sets were constructed manually by pairing concept labels which appeared in similar

contexts in SACTI and ATIS. The effect of tying each pair was then determined
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Fig. 7. F-measure vs mixture weight setting (mixture of the ATIS Model and the SACTI

model).

individually by retraining the model with the corresponding model parameters tied.

The tying of AIRPORT from the ATIS domain with RESTAURANT from the SACTI

domain yielded a small increase in F-measure of 1.5% but all other tyings resulted

in a small decrease in performance. This remains a topic for future work.

6 Conclusions

The Hidden Vector State (HVS) model is an extension of the basic discrete Markov

model in which each state represents the stack of a push-down automaton. State

transitions are factored into a stack shift operation followed by the push of a new

pre-terminal semantic category label. When used as a semantic parser, the model

can be trained directly from only-lightly annotated data whilst at the same time

being able to capture hierarchical structure in the data. The use of the HVS model in

semantic parsing has been presented previously (He and Young, 2003b, 2005). In this

paper, the practical application of a HVS-based parser within a speech understanding
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system (SLU) has been described and studied experimentally in terms of system

integration issues, robustness to noise, and portability to new and extended domains.

The integrated SLU system presented here is entirely data-driven. The system is

trained from data and there are no heuristic rules. Experiments have been conducted

on the ATIS corpus and the results show that the system is comparable to existing

SLU systems which rely on either hand-crafted semantic grammar rules or statistical

models trained on fully-annotated training corpora but it has greatly reduced build

cost.

To investigate noise robustness, a set of experiments have been conducted where the

acoustic test data was corrupted with varying levels of additive car noise. The end-

to-end system performance was then measured along with the individual component

performances. It was found that although the addition of noise had a substantial

effect on the word error rate, its relative influence on both the semantic parser

concept retrieval rate and the dialogue act detection accuracy was somewhat less.

Overall, the end-to-end error rate degraded relatively more slowly than word error

rate and perhaps most importantly of all, there was no catastrophic failure point at

which the system effectively stopped working, a situation not uncommon in current

rule-based systems.

The flexibility of the HVS model to adapt to changing domains and extend to cover

wider domains has been explored experimentally via two sets of experiments. Firstly,

a model trained on ATIS data was adapted to the DARPA Communicator domain.

The latter entails a similar set of concepts but with different user speaking styles

and different syntactic forms. It was found that applying the ATIS-trained system

to Communicator resulted in a 6% absolute drop in F-measure on concept accuracy

(i.e. a 62% relative increase in parser error). However, when log-linear adaptation
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was applied using only 50 adaptation sentences, the loss in concept accuracy was

essentially restored. In the second set of experiments, a HVS model was required to

cover the union of two quite different domains. In this case, it was shown that linear

interpolation of individual domain models provided a simple but effective solution.

Overall, these results show that constrained statistical parsers such as the HVS model

allow robust spoken dialogue systems to be built at relatively low cost, and which

can be automatically adapted as new data is acquired both to improve performance

and extend coverage.
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