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ABSTRACT

Tracking the user’s intention throughout the course of a dia-
log, called dialog state tracking, is an important component
of any dialog system. Most existing spoken dialog systems
are designed to work in a static, well-defined domain, and are
not well suited to tasks in which the domain may change or
be extended over time. This paper shows how recurrent neu-
ral networks can be effectively applied to tracking in an ex-
tended domain with new slots and values not present in train-
ing data. The method is evaluated in the third Dialog State
Tracking Challenge, where it significantly outperforms other
approaches in the task of tracking the user’s goal. A method
for online unsupervised adaptation to new domains is also
presented. Unsupervised adaptation is shown to be helpful in
improving word-based recurrent neural networks, which work
directly from the speech recognition results. Word-based di-
alog state tracking is attractive as it does not require engi-
neering a spoken language understanding system for use in
the new domain and it avoids the need for a general purpose
intermediate semantic representation.

Index Terms— Dialog state tracking, dialog systems,
spoken language understanding.

1. INTRODUCTION

Spoken dialog systems allow a user to achieve a task, such as
finding a restaurant, using natural language. Before being de-
ployed, most dialog systems are trained for well-defined and
static domains such as this. However applications where the
domain may grow and change over time are of particular in-
terest, especially considering the desire for machines which
can speak on any topic at web-scale. One key issue in allow-
ing for expanding domains is designing systems which can
estimate the state of the conversation, as the set of possible
states grows with the domain.

This paper presents how recurrent neural networks (RNNs)
can be effectively applied to the task of dialog state tracking in
expanding domains. Dialog state tracking has been brought
into focus recently with the first and second Dialog State
Tracking Challenges (DSTCs) [1, 2]. The approach presented

in this paper is evaluated in the third DSTC, which focussed
on the problem of state tracking in an extended domain, and
is outperforms other approaches in tracking the user’s goal.

Models which can adapt and improve with minimal la-
belling once they are deployed and exposed to dialogs in new
domains are of particular interest. This is possible in dialog,
as a system may be able to make inferences over sequences of
observations, such as learning from user’s clarifications. As
a step in this direction, experiments are presented in adapting
the neural network parameters online with no labels.

Several successful approaches for dialog state tracking
have been entered and evaluated in the first two DSTCs, in-
cluding maximum entropy models [3], web-style ranking [4],
neural networks [5], robust hand-crafted rules [6], and condi-
tional random fields [7, 8, 9]. The RNN framework presented
here and originally in [10] provides a natural model for dis-
criminatively learning over dialog sequences. The model is
able to deal with simple but high-dimensional representations
of dialog turns, requiring very little feature engineering. In
particular the RNN framework allows for word-based state
tracking, omitting the need for any intermediate semantic rep-
resentation, which could be a further barrier to dialog in ex-
panding domains.

2. RECURRENT NEURAL NETWORKS FOR
DIALOG STATE TRACKING

A key component of the state of a dialog as it is formulated in
the Dialog State Tracking Challenge is the user’s goal. This is
a mapping of slots to values and represents what constraints
the user has given in the conversation so far. This section
presents how the goal is tracked throughout the course of a
dialog, using the recurrent neural network (RNN) framework
described in [10].

2.1. Feature Representation of the Dialog Sequence

The first stage of the RNN approach consists of converting the
input information into the features used by the model. The in-
put components of each dialog turn are the system action and
the user input (from a speech recogniser and/or a spoken lan-



guage understanding system). System actions and any spoken
language hypotheses typically use some kind of meaning rep-
resentation, which will be called a dialog act.

In the dialog state tracking challenge the dialog acts
consist of a list of sub acts- each with an act-type and an
optional slot, value assignment. An example is hello()

| inform(area=centre) (Hi I’m looking for something
central.), where the act-types are hello and inform. The
dialog act features are obtained as a vector by expanding
into n-grams. This example generates the n-grams hello,
inform, area, center, inform+area, area+centre,
and inform+area+centre.

Hypotheses from the automatic speech recognition (ASR)
are converted to n-gram features for n = 1, 2, 3, following
[11]. The set of hypotheses from the speech recogniser for a
turn is represented as one vector by summing the individual
vectors for each hypothesis, weighted by their probabilities.
The set of spoken language understanding hypotheses is rep-
resented in the same way.

2.2. Delexicalised Features

Concatenating the vectors for the machine action and the user
input gives a vector f which represents the turn. The RNN
takes this f as input at each turn, and outputs a sequence of
distributions over values for each slot. In order to allow for
generalization to values and slots which are not seen in the
training data, the approach taken here is to factor the neural
network structure so that it operates on delexicalised features.

Delexicalised features are n-gram features where refer-
ences to a particular slot or value have been replaced with a
generic symbol. The procedure for creating the delexicalised
vectors fs and fv is illustrated in figure 1. For example
the delexicalised vector representations of the utterance “Ja-
maican food” for s=food and v=jamaican are very similar to
those of “The Girton area” for s=area and v=girton. There-
fore using these features as input allows the model to transfer
learning from one case to the other, and achieve applicability
to new slots and values.

To start tracking a new slot, it is only necessary to pro-
vide text forms for the slot name and its possible values for
delexicalisation. The RNN structure described in the follow-
ing section, after being trained on slots for which we have
data, can then be applied to the new slot.

2.3. Network Structure

One RNN is used to track each slot, outputting a distribution
p over all possible values, including a probability that the slot
has not been mentioned yet. The memory state m and out-
put p are updated to m′ and p′ respectively according to the
recurrent structure shown in figure 2.

For each value v a scalar gv is given by:

gv = NNet (f ⊕ fs ⊕ fv ⊕ {pv, pN} ⊕m)
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Fig. 1. Example of feature extraction for one turn, giving f , fs and
fv . Here s=food. For all v /∈{indian, jamaican}, fv = 0

where N is the number of values for the slot s, and ⊕ de-
notes vector concatenation. pN is the probability assigned
to the hypothesis that no value has been mentioned for s.
The NNet() notation denotes a neural network with one hid-
den layer, which is then expanded in the final RNN structure.
These scalars are then passed into a softmax to give the output
distribution p′:

p′ = softmax (g ⊕ {B})

where B is a parameter of the RNN.
Here we do not include the component h described in [10]

which adjusts g and is computed directly from f ⊕ p ⊕m.
Since the parameters which h introduces are dependent on the
number of possible values for the slot, N , omitting h reduces
the dependence of the model on the ontology, and allows the
model to be applied to any slot. In fact, as no particular as-
sumption is made about the number of the possible values for
the slot, the set of possible values can be dynamic by assum-
ing pv = 0 for values v with fv = 0.

Finally the memory m evolves in a standard manner,
m′ = NNet (f ⊕m)

For training, the entire RNN is unravelled across all turns
in a dialog sequence, expanding the NNet() components.
Back-propagation is then used to minimise the log-probability
of the training sequences in stochastic gradient descent.

3. ONLINE UNSUPERVISED ADAPTATION

This section presents an approach to adapt the RNN param-
eters in a live dialog system, without explicit labels, when
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Fig. 2. Calculation of p′ and m′ for one turn and slot s.

deployed in a new domain. This is applied to trackers which
work directly on the words from the speech recognition, with
the hope that they might adapt to the language used to express
constraints on the slots in the new domain.

Relevant fields in machine learning include semi-supervised
learning [12], which attempts to learn from unlabelled in-
domain data, and transfer learning [13], which tries to exploit
labelled out-of-domain examples. The techniques presented
in those fields are typically designed for static classification
tasks. The approach defined here however exploits specific
patterns of dialog sequences and is formulated specifically
for use in live dialog state tracking.

In this context, models are initialised with a set of param-
eters W init, and adaptation is the process of updating the pa-
rameters W ? having observed dialogs in the new domain. In
online adaptation, W ? may be updated after each dialog, but
the parameters may not be updated using any data from any
dialog before the RNN has output its distributions for that di-
alog.

Let ft denote the input features to the RNN at turn t,
and define F as the sequence of inputs for a dialog: F =
(f0, . . . , fT−1) where T is the length of the dialog. An RNN
of a given topology can be considered as a function which
takes a set of values for the weight and bias parameters, W ,
and maps F to a sequence of distributions over the labels,
Y = (y0, . . . , yT−1). In particular, for the set of initial pa-
rameters W init,

Yinit = RNN
(
W init, F

)
Unsupervised adaptation is facilitated by defining a scor-

ing criterion which evaluates the adapted parameters W ?

without requiring any labels.

3.1. Criterion for Unsupervised Adaptation

The proposed criterion C (W ?) used to score a set of param-
eters W ?, without requiring labels is defined as follows:

C (W ?) =

(
T−1∑
t=0

H(yinit
t )H(y?

t , y
init
t+1)

)
+ λ‖W ? −W init‖ (1)

whereH(y) is the entropy of the distribution y andH(y,y′) =
−
∑

i yi log(y
′
i) is the cross-entropy between y and y′. ‖W‖

is the norm of the the parameters W , e.g. the l2 or l1 norm.
The regularisation term multiplying λ > 0 enforces that

W ? should stay close to W init. In the sum, the only terms
that change with W ? are the cross-entropies H(y?

t , y
init
t+1).

As yinit is fixed, the cost is minimised if yinit
t+1 = y?

t at each
t. Therefore in minimising C the parameters W ? receive a
learning signal to adapt y?t towards yinit

t+1 which is weighted
by H(yinit

t ).
When minimising C, at turns where the initial model is

uncertain (high entropy), learning will attempt to find param-
eters that can predict the next turn’s label according to the
output of the initial model.

Figure 3 demonstrates an example dialog sequence where
this leads to improved parameters, W ?. In general the min-
imisation ofC works to propagate a learning signal from later
turns in the dialog, where an initial model should be more
sure about the user’s goal, to earlier turns. The term H(yinit

t+1)
ensures that this signal should stop at turns where the initial
model is confident about its prediction.

Dialog Turn yinit Notes

System: What
type of food
would you like?

User: Chinese
food.

Chinese Here an initial model is likely to
output a confident low entropy dis-
tribution correctly identifying the
food goal as ‘Chinese’.

System: There
are no matching
Chinese
restaurants.

User: Any
serving pizza?

The system has requested the food
slot, and the user’s response in-
cluded the term ‘serving’. This
gives evidence that the user has in-
formed the food slot, but the sys-
tem cannot recognise which food
type is correct. Therefore it is
likely that an initial model would
output a high entropy distribution
for the food slot.

System: Sorry,
what type of
food would you
like?

User: Um,
Italian food.

Italian If the user explicitly says ‘Italian’,
which the system is able to match
in its ontology, then an initial
model can predict with high con-
fidence the correct value is food.

Fig. 3. Example dialog where user guidance can be exploited in
unsupervised learning. The entropy of the food slot is high in the
second turn, and low in the third peaking at ‘Italian’. Therefore min-
imising C (equation 1) leads to a learning signal which correlates
the n-grams in the second turn (‘Something serving pizza’) with the
‘Italian’ hypothesis for food. The low entropy of the slot in the first
turn causes the corresponding term in C to diminish, so the signal
does not lead to a correlation with the n-grams in the first turn.

3.2. Schedule for Online Adaptation

The following procedure performs online adaptation of the
parameters while classifying a set of dialogs. This is used for



Cardinality

Slot Train Test

type* 1 3
Old
slots

area 5 15
food 91 28
name 113 163
pricerange 3 4

near — 52
New
slots

hastv — 2
hasinternet — 2
children-allowed — 2

Table 1. Summary of the smaller training set domain and the ex-
tended domain used for testing in DSTC3. The ‘near’, ‘hastv’, ‘has-
internet’ and ‘children-allowed’ slots are not found in the training
data. (*)The ‘type’ slot denotes the type of venue the user is inter-
ested in, and is only ever ‘restaurant’ in the training set. In testing,
type can also be ‘coffee shop’ or ‘pub’.

tracking dialogs in the DSTC, and could also be used in a live
system. It works by collecting dialogs in batches of size N ,
and updating the parameters using these batches.

1. Set W ? =W init and D = ∅.
2. Track the next dialog using parameters W ?. Append

the dialog (represented by the input feature sequence
F) to the batch, D → D∪{F}. If |D| = N , then enter
step 3, otherwise return to step 2.

3. Update W ? using stochastic gradient descent to min-
imise C(W ?) over the dialogs in D. Reset D to ∅, and
return to step 2.

4. RESULTS IN THE THIRD DIALOG STATE
TRACKING CHALLENGE

The third Dialog State Tracking Challenge (DSTC3) stud-
ied the ability of trackers to adapt to an extended domain
[14]. Training data was available in a smaller domain con-
cerning restaurant information, while the test data included
coffee shops and pubs as well as restaurants. The set of possi-
ble values for each slot was different in the test set, which also
included extra slots. A summary of the difference between the
smaller training domain and extended test domain of DSTC3
is given in table 1. Full details of the data and evaluation are
given in [14].

The unlabelled test set for the DSTC3 was released over
a one week period, at the end of which 7 different research
groups submitted their tracker output for evaluation. This
section explains how delexicalised recurrent neural networks
were trained for this blind evaluation, and the results are pre-
sented. Following the evaluation, the use of unsupervised
adaptation was investigated and the results of this subsequent
study are presented in section 5.

Two trackers were submitted to DSTC3, one using speech
recognition features (ASR) and another using both speech

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0

0.2

0.4

0.6

0.8

A
ccuracy

Joint Goals Method Requested All

L2

ASR+SLU
ASR

baseline

Fig. 4. Relative performance for featured metrics in DSTC3. Re-
sults from other teams are plotted as dashes. Note a lower L2 is
better. The most competitive baseline system is shown as a circle.

recognition and spoken language understanding features
(ASR+SLU). In both cases slot-independent RNNs were
trained on the labelled data for all slots in the training set.
The slot-independent models were used to track the new slots
in the extended test domain. For slots which existed in the
training set, slot-dependent models were trained by start-
ing from the slot-independent model and continuing training
using only the labelled data for that slot.

For each of the two trackers, an ensemble of six separate
RNNs were trained with varying hyper-parameters1, and then
combined using score averaging.

Note that systems using only ASR features, also known
as word-based trackers, are attractive as they do not require a
spoken language understanding system for the new domain.
A tracker which uses SLU features leaves open the question
of how to design SLU systems for expanding domains, while
word-based trackers avoid the need for this and require no
intermediate semantic representations.

The challenge also required tracking requested slots and
the search method, for which the approach in [10] was used.
The performance in the DSTC3 evaluation is presented in ta-
ble 2, and figure 4 plots the performance relative to the other
teams’ trackers. These results are identified under ‘team3’ in
the DSTC3 overview paper [14].

The delexicalised RNNs performed consistently well
across all tasks. The ASR+SLU tracker obtained the top
accuracies and L2 scores for tracking the joint goal in the
challenge. Among the trackers which did not use the SLU,
the word-based ASR tracker obtained the top joint goal accu-
racy.

1The size of the memory m and the hidden layer in the neural network
for gv were varied for the ensemble.



Joint Goals Method Requested
Acc. L2 Acc. L2 Acc. L2

SLU+ASR 0.646 0.538 0.966 0.061 0.943 0.091
Top competing1 0.630 0.556 0.970 0.065 0.939 0.101

ASR 0.616 0.565 0.966 0.061 0.939 0.100
Top competing2 0.610 0.556 0.968 0.063 0.949 0.090

Table 2. Featured metrics in the third Dialog State Tracking Challenge (DSTC3). The L2 score is the square of the L2 distance between the
tracker distribution and the true label (delta distribution), and so a lower score is better. The SLU+ASR and ASR trackers are identified as
team3entry0 and team3entry2 respectively in the DSTC3 blind evaluation. The two rows labelled Top competing give the best results from
the 6 other teams in the challenge (23 total entries) among trackers which 1did and 2did not use SLU features.

5. EVALUATION OF UNSUPERVISED ADAPTATION

This section evaluates the proposed method for online and
unsupervised adaptation to extended domains in dialog state
tracking. The method is initially validated using data from the
second Dialog State Tracking Challenge (DSTC2) [2], em-
ulating an extended domain by removing the labels for the
‘food’ slot during training. Results on testing in an extended
domain are then presented on the DSTC3 data.

5.1. Adaptation with Missing Labels

Here adaptation is evaluated using data from a single domain.
A set of initial trackers is trained without the labels for slot
s, which are then adapted to the task of tracking the slot s.
Though this is a fairly artificial setup, it may give us some
confidence that adaptation will be beneficial during actual de-
ployment in an extended domain (see next section). It is also
conceivable that only partially labelled data may be available
in some cases during training.

This study investigates training RNNs for the ‘food’ slot
using only labels for ‘area’ and ‘pricerange’ in the DSTC2
training sets. Though the RNNs are never exposed to labels
for food, they are used to classify the food goal in the DSTC2
test set. The food slot is chosen as it is an outlier in the ontol-
ogy; while area and pricerange have cardinalities 5 and 3 re-
spectively, there are 91 possible food types. This contributes
to the food slot being the hardest to track – in the DSTC2
evaluation, trackers consistently scored lowest on food of all
slots.

An ensemble of six RNNs, with varying hyper-parameters
as described in section 4, were trained using ASR features and
the labels for area and pricerange. Each of these can immedi-
ately be used to track the food slot without any unsupervised
adaptation, which is called the Unadapted condition. Each of
the six RNNs can also be adapted online during the classifica-
tion of the test set using the procedure described in section 3,
which is called the Adapted condition.

Figure 5 illustrates the performance of the six trackers
with and without online unsupervised adaptation at test time.
In all cases, adaptation improved accuracy on the test set. On
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Fig. 5. Accuracy and L2 scores on the food slot for trackers trained
using only labels for area and pricerange. Note lower L2 scores
are better. The results for individual RNNs are shown as outlined
shapes. Squares show the performance for initial RNN trackers (Un-
adapted) connected to circles showing the performance using unsu-
pervised adaptation (Adapted). The performance for combining the
groups using score averaging are also shown. The focus baseline was
the strongest baseline in DSTC2. This baseline assumes a semantic
decoder for the food slot, which the other trackers are not given.

average the accuracy improved by 1.4% and in the best case
by 3.0%. The L2 score, which measures the quality of the
probability scores was on average improved but in certain in-
dividual cases the L2 score deteriorated slightly.

The two groups of six were combined using score averag-
ing. The combined results also demonstrate a slight improve-
ment using adaptation, with the combined Adapted group giv-
ing the best tracking performance. The performance is com-
parable with many of the entries in DSTC2 including the fo-
cus baseline (the strongest baseline), and is achieved without
any training labels for the slot.

5.2. Adaptation to New Domains

This section shows results in applying unsupervised adapta-
tion to the word-based ASR tracker described in section 4.

Table 3 summarises the results on the DSTC3 test set. Un-
supervised adaptation is shown to give an improvement in the
mean accuracy for the old slots (those in the training data)



New slots Old slots Joint

mean
Unadapted 0.866 0.877 0.552

Adapted 0.869 0.890 0.566

combined
Unadapted 0.893 0.900 0.616

Adapted 0.892 0.900 0.623

Table 3. Goal tracking accuracies on the DSTC3 test set for word-
based RNN trackers, with and without unsupervised adaptation. Ac-
curacy is reported on the Old slots and New slots, i.e. slots found and
not found in the training set respectively. The joint goal accuracy is
also given. In each condition, a group of six RNNs are trained. Mean
accuracies for the group are reported, as well as the accuracies of the
groups combined using model averaging. For mean results, bold de-
notes a difference of over 2 standard errors.

and the joint. After combination using score averaging, the
top joint goal accuracy of 0.623 among the word-based ASR
trackers is obtained by the combined adapted tracker. The
resulting L2 score however is 0.587 – comparing this to ta-
ble 2 it seems there is some trade-off between accuracy and
the quality of the scores as probabilities, as measured by the
L2 score, when using the unsupervised adaptation.

6. CONCLUSIONS

The RNN framework, when combined with delexicalised fea-
ture representations, provides a robust method for dialog state
tracking which is able to generalise to unseen slots and val-
ues. The RNN tracker built using this approach was found to
be one of the most competitive submitted to DSTC3, in par-
ticular, it outperformed all of the other systems in the task of
tracking the user’s goal.

The results of the study performed after the evaluation us-
ing unsupervised adaptation suggest that it is possible to ex-
ploit unlabelled dialog data to further improve RNN-based
models online during deployment.

The methods presented here, when coupled with recent
results in policy adaptation [15], suggest a technique for de-
ploying dialog systems in expanding domains. Future work
will evaluate these techniques in a live system, rather than in
corpus tasks such as the DSTCs.
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[15] Milica Gašić, Catherine Breslin, Matthew Henderson,
Dongho Kim, Martin Szummer, Blaise Thomson, Pirros
Tsiakoulis, and Steve Young, “POMDP-based dialogue
manager adaptation to extended domains,” in Proceed-
ings of SIGDIAL, 2013.


