Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright


http://www.elsevier.com/copyright

Available online at www.sciencedirect.com

ScienceDirect

SPEECH

s COMMUNICATION
ELSEVIER Speech Communication 51 (2009) 268-283
www.elsevier.com/locate/specom
Data-driven emotion conversion in spoken English
Zeynep Inanoglu, Steve Young ™
University of Cambridge, Department of Engineering, Trumpington Street, Cambridge CB2 1PZ, UK
Received 29 May 2008; received in revised form 9 September 2008; accepted 9 September 2008
Abstract

This paper describes an emotion conversion system that combines independent parameter transformation techniques to endow a
neutral utterance with a desired target emotion. A set of prosody conversion methods have been developed which utilise a small amount
of expressive training data (~15 min) and which have been evaluated for three target emotions: anger, surprise and sadness. The system
performs FO conversion at the syllable level while duration conversion takes place at the phone level using a set of linguistic regression
trees. Two alternative methods are presented as a means to predict FO contours for unseen utterances. Firstly, an HMM-based approach
uses syllables as linguistic building blocks to model and generate FO contours. Secondly, an FO segment selection approach expresses FO
conversion as a search problem, where syllable-based FO contour segments from a target speech corpus are spliced together under con-
textual constraints. To complement the prosody modules, a GMM-based spectral conversion function is used to transform the voice
quality. Each independent module and the combined emotion conversion framework were evaluated through a perceptual study. Pref-
erence tests demonstrated that each module contributes a measurable improvement in the perception of the target emotion. Furthermore,
an emotion classification test showed that converted utterances with either FO generation technique were able to convey the desired emo-
tion above chance level. However, FO segment selection outperforms the HMM-based FO generation method both in terms of emotion
recognition rates as well as intonation quality scores, particularly in the case of anger and surprise. Using segment selection, the emotion
recognition rates for the converted neutral utterances were comparable to the same utterances spoken directly in the target emotion.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction expression of any target speaking style is a significant chal-

lenge and although various rule-based transformation

The ability to output expressive speech via a Text-to-
Speech Synthesiser (TTS) will make possible a new genera-
tion of conversational human—computer systems which can
use affect to increase naturalness and improve the user
experience. Typical examples include call centre automa-
tion, computer games, and personal assistants.

To avoid building a separate voice for each required
emotion, a transformation can be applied to modify the
acoustic parameters of neutral speech such that the modi-
fied utterance conveys the desired target emotion. How-
ever, learning the complex rules that govern the
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attempts exist in the literature (see Schroder, 1999 for a
review), designing good rules for each expressive style
requires tedious manual analysis and even then, only a very
limited set of acoustic-prosodic divergences can be
captured.

In this paper we explore a set of data-driven emotion
conversion modules which require only a small amount
of speech data to learn context-dependent emotion trans-
formation rules automatically. The data-driven conversion
of acoustic parameters in speech has been widely-studied in
the field of voice conversion. Whilst conceptually emotion
conversion can be thought of as a form of voice conver-
sion, in practice, voice conversion techniques have focused
on the transformation of the vocal tract spectra, and rela-
tively little attention has been paid to adapting long-term
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FO and duration patterns (see Stylianou et al., 1998; Ye,
2005; Kain and Macon, 1998). For example, a popular
FO transformation technique employed in conventional
voice conversion is Gaussian normalization, which scales
every pitch point in the source speaker’s FO contour to
match the mean, g, and standard deviation, o, of the target:

F(s) =15+ p, — 2, (1)
where p, and o, are the mean and standard deviation of the
source.

More complex F0O conversion functions have been pro-
posed for voice conversion: Inanoglu (2003) investigated
GMM based FO transformation, Gillett and King (2003)
performed piecewise linear transformation based on salient
points in the contour and Helander and Nurminen (2007)
used a codebook-based approach to predict entire FO seg-
ments using linguistic information. However, these meth-
ods have mainly been designed and evaluated within the
context of speaker conversion where the focus is on trans-
forming the prosodic characteristics of one speaker to
sound like another. In this scenario, the speech is typically
neutral and exhibits minimal prosodic variability.

Due to the dominant role of FO and duration patterns in
distinguishing emotional expressions (Yildirim et al., 2004;
Barra et al., 2007; Vroomen et al., 1993), the focus of this
paper will be on the transformation and evaluation of pros-
ody within an emotion conversion framework. Scherer and
Banziger (2004) demonstrates that emotions can have a sig-
nificant effect on global FO statistics such as mean and
range as well as FO contour shapes. In an effort to capture
both kinds of effects within a single framework, we adopt a
linguistically motivated approach to emotion conversion,
by making explicit use of text-based linguistic details as
predictors in our transformation methods. A recent study
by Bulut et al. (2007) which attempts to analyze the inter-
action between part of speech tags, sentence position and
emotional FO contours support this modeling approach.

Various methods of emotion conversion have been
reported in the literature. In (Kawanami et al., 1999),
GMM-based spectral conversion techniques were applied
to emotion conversion but it was found that spectral trans-
formation alone is not sufficient for conveying the required
target emotion. Wu et al. (2006) proposed a unified conver-
sion system using duration embedded Bi-HMMs to convert
neutral spectra and decision trees to transform syllable FO
segments. In (Tao et al., 2006), the use of GMM and
CART-based FO conversion methods were explored for
mapping neutral prosody to emotional prosody in Manda-
rin speech. Data-driven emotion conversion methods spe-
cifically for use in an HMM-based speech synthesis
framework have also been implemented by Tsuzuki et al.
(2004) and Yamagishi et al. (2003).

In this paper we describe an emotion conversion system
for English which can be used to add an additional layer of
expressiveness to an existing speech synthesizer without
sacrificing quality. In such a scenario, the waveform output

of any synthesis system, regardless of the underlying syn-
thesis technique, can be the input for emotion conversion.
An overview of the conversion system is illustrated in Fig. 1
and its modules can be summarized as follows:

— Spectral Conversion: As the first step, spectral conver-
sion is performed at the level of pitch-synchronous
speech frames. LPC-based analysis steps are used to
extract a train of vocal tract features for conversion. A
GMDM-based linear transformation method is applied
to this feature sequence to change the neutral voice qual-
ity to that of a target emotion. This method is based on
the earlier technique of (Ye, 2005), which was used for
speaker identity conversion. Finally, Overlap and Add
(OLA) synthesis is then used to resynthesise a waveform
with the desired emotional voice quality combined with
the original neutral prosody.

— Duration Conversion: The input to duration conversion
consists of neutral phone durations for a given utterance
as well as the linguistic context of each phone. A set of
regression trees specific to each broad phone class are
then used to transform neutral phone durations for a
given target emotion, resulting in a duration tier. The
duration tier, which is simply a sequence of duration
scaling factors for an input utterance, is then used by
the Time Domain Pitch Synchronous Overlap Add
(TD-PSOLA) implementation provided by the Praat
software' (Boersma and Weenink, 2005) to scale phone
durations in the waveform.

— F0 Conversion: Two alternative methods for FO genera-
tion are compared within the full-conversion system.
Both methods require syllable boundaries as input as
well as the linguistic context of the syllable. If duration
conversion is performed in the previous step, the new
syllable boundaries are computed and input into the
selected FO generation module. The transformed FO
contour for an utterance is transplanted onto the wave-
form using TD-PSOLA.

e HMM-based FO Generation: Context-sensitive sylla-
ble HMMs are used to model and generate expressive
FO contours. Syllable representation is based on a
small pool of linguistic features which are acquired
from the text-based representation of the utterance.

e FO0 Segment Selection: As in unit-based speech syn-
thesis, this method is based on a concatenative
framework where syllable FO segments from an
expressive corpus are combined to form new utter-
ance contours in a way that minimizes a cost func-
tion. In this context, a syllable FO segment refers
to that part of an utterance FO contour which falls
within the boundaries of a given syllable. The
unvoiced regions within the syllable do not contrib-
ute to the FO segment definition. Given a sequence
of such syllable FO segments for a neutral utterance

! http://www.fon.hum.uva.nl/praat/.
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Fig. 1. Overview of emotion conversion system.

and their corresponding syllable contexts, the goal
of segment selection is to replace these segments
with emotional counterparts by performing a
dynamic search through a trellis of available candi-
dates in the target corpus.

In this paper we first describe a set of preference tests to
individually evaluate each module in terms of its contribu-
tion to emotion perception. Some care is needed in interpret-
ing these results since the modules may have complex
interactions when they are combined. Barra et al. (2007),
for instance, found that angry prosody resulted in sad
sounding speech when combined with neutral spectra.
When combined with angry spectra, however, angry pros-
ody was able to enhance the perception of anger compared
to case where only the angry spectra were evaluated. This
motivates our decision to always include spectral conversion
when contrasting the performance of the different FO con-
version modules. Finally, a further emotion classification
test was conducted on the complete system to evaluate the
overall success in conveying the desired emotions.

The rest of the paper is organized as follows: in Section
2, details of emotional speech data collection are reported.
Section 3 describes the HMM-based FO generation method
and Section 4 presents FO segment selection as an alterna-
tive. In Section 5, duration conversion is explained, while
Section 6 provides an overview of the spectral conversion
module. Finally, in Section 7, the results of the perceptual
listening tests are reported.

2. Emotional speech data

The emotional speech data used in this work was
recorded as part of a wider data collection effort organized

by the Speech Technology Group, Toshiba Research Eur-
ope. A professional female voice talent recorded parallel
speech data in three expressive styles (angry, surprised,
sad) as well as a neutral style. While only three emotions
were used as case studies, the methods proposed in this
paper could be applied to any other target expressive style
which shows consistent acoustic behavior. Our choice of
three target emotions is motivated by the diversity of their
acoustic profiles: anger is known to have a dominant spec-
tral component, while surprise is mainly conveyed through
prosody and sadness is thought to be conveyed by both (see
Barra et al., 2007).

In expressing the emotions, the voice talent was asked to
assume a natural, conversational style rather than a dra-
matic intensity. A total of 300 utterances were recorded
for each emotion using prompt scripts extracted from the
standard unit-selection corpus used to train a commercial
TTS system. The sentences in this subset were chosen to
preserve phonetic coverage. Of the 300 utterances, 272 were
used for training and 28 were reserved for testing. This
training set size is comparable to that used in other voice
conversion studies. For example, it is similar to the emo-
tion conversion experiments in (Wu et al., 2006) and smal-
ler than the emotional prosody conversion experiments
described in (Tao et al., 2006). The numbers of words,
phones and syllables in the training and test sets are given
in Table 1. The mean word count per sentence is 7.9. The
total duration of speech data used for training was around
15 min for each emotion.

Table 1
Number of linguistic constituents in training and test sets

Utterances Words Syllables Phones
Training corpus 272 2170 3590 10,754
Test corpus 28 215 367 1115
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For each data file in the corpus and its word level tran-
scription, a set of corresponding annotation files were auto-
matically generated. Phone and state boundaries were
extracted using HTK-based forced alignment (Young
et al., 2006). The Cambridge English Pronunciation dictio-
nary was used to identify syllable constituents for each
word, as well as lexical stress positions (Jones, 1996). A
proprietary part-of-speech tagger was used to mark each
word with one of 16 part-of-speech tags. Based on these
extracted linguistic features and the boundary information,
a hierarchical computational map of each utterance was
built in preparation for processing by the conversion mod-
ules. Pitch contours and pitch marks were also extracted
directly from the waveform using Praat software'
(Boersma and Weenink, 2005) and manually corrected
for mistakes.

3. FO generation from syllable HMMs

HMMs have been used for the recognition of FO related
features such as accent and tone for some time (see Fallside
and Ljolje, 1987; Jensen et al., 1994). However, the use of
HMMs as generators is more recent, and is mostly due to
the development of HMM-based synthesis technology.
The most popular HMM-based speech synthesis system,
HTS, proposed by Tokuda et al. (2002), allows simulta-
neous modeling and generation of FO and speech spectra
for full-spectrum speech synthesis as long as a significant
amount of data is available to train the phone models.
The appropriateness of phone models for modeling FO con-
tours in isolation, however, is arguable, since most pro-
sodic labeling systems such as Tones and Breaks Indices
(TOBI) consider the syllable to be the fundamental build-
ing block of intonation (Silverman et al., 1992. The method
described here adheres to this convention by modelling FO
at the syllable level based on features derived from syllable
and word level transcriptions. Of specific interest is the
interaction between syllable and word level linguistic iden-
tifiers and emotional FO contour shapes, an area ‘“‘largely
unexplored” according to a study published by Banziger
and Scherer (2005).

3.1. Model framework

The starting point of our models is the association of
syllables with their corresponding FO movements. Unlike
phonetic symbols, syllables do not have a widely-accepted
symbol or label which provides a link to FO movements.
Pitch accent classification schemes such as TOBI have been
used to model syllable-based FO in neutral speech (see
Inanoglu and Young, 2005; Ross and Ostendorf, 1994).
However, TOBI-derived units are far from ideal, since they
require manual labeling of training data by expert humans
and even then they manifest high inter-labeler
disagreement.

In this paper, we explore a set of text-based syllable and
word-level linguistic features that are common to all emo-

tional renderings of a given utterance. The choice of fea-
tures used here resulted from a literature review and
informal listening tests. Priority was given to features that
are readily available in a TTS context.” The features we
used are position in sentence (spos), lexical stress (lex),
position in word (wpos), part of speech of current word
(pofs), part of speech of previous word (ppofs), onset type
(onset) and coda type (coda). Table 2 illustrates an example
sentence and the syllable labels for the last word “sloppy”.
Word position is identified explicitly for the first three
words and the last three words in the sentence. All words
in between these sentence-initial and sentence-final word
groups are identified with a single tag (spos = 4), resulting
in a total of seven position values. For example, both syl-
lables of ““sloppy” take the position value 7 (spos = 7) indi-
cating that they belong to the last word of the utterance,
while all syllables in the words “a”, “forage” and “cap”
would take the position value 4 (spos =4). Lexical stress
is either set as 1 for stressed or 0 for unstressed. Syllable
position in the word can have four values: beginning of
word (wpos = 1), middle of word (wpos = 2), end of word
(wpos =3) or a value indicating a single-syllable word
(wpos = 0). Thirteen part-of-speech tags were used based
on a proprietary part-of-speech tagger. In the example of
“sloppy”, part of speech is set to 6 to identify an adjective
and previous part-of-speech is set to 2 to identify a verb.
Finally, two additional intra-syllable features, onset and
coda, were used in order to provide clues about the basic
phonetic structure of the syllable. We define onset as the
consonant that precedes the syllable nucleus. This phone
can be non-existent (onset =0), unvoiced (onset =1) or
sonorant (onset =2). The same categorical distinctions
are also be made for the syllable coda, the consonant
sounds that follow the nucleus.

The training data contains 2086 unique combinations of
features. Table 3 summarizes the percentage of feature
combinations in the test data which have not been observed
in the training data. Although 42.3% of the combinations
in the test set are unseen, matching only 6 of the 7 features
reduces the unseen combinations to 2.8%, indicating that
for almost all the test data, a very similar if not exact con-
text has been observed in the training data. This motivates
the use of decision-tree based parameter tying where
unseen contexts can be modeled using similar alternatives.

3.2. Model training

In order to model the mix of voiced and unvoiced speech
in the FO stream, Multi-Space Probability Distribution
HMMs (MSD-HMMs) were adopted as described in (Tok-
uda et al., 2002). The voiced region within each syllable was
aligned with the context-dependent syllable labels deter-
mined by the corresponding linguistic features. The

2 A detailed search for an optimal feature set which maximizes emotion
perception for a given emotion is an interesting area but beyond the scope
of this paper.
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Table 2

Syllable labels for a two-syllable word ““sloppy” which appears in the sentence “A soldier in a forage cap always looks sloppy.” Contextual key-value pairs

are separated by a colon

A soldier in a forage cap always looks SLOPPY

Syllable Phones Context Labels

1 s:l:aa spos = 7:lex = l:wpos = 1:pofs = 6: ppofs = 2:onset = 2:coda =0
2 pii spos = 7:lex = 0:wpos = 3:pofs = 6: ppofs = 2:onset = l:coda =0
Table 3 reduced to 801, 779 and 529 clusters for surprise, anger

Percent of unseen contexts in the test data

Number of matching features

7 features 6 features 5 features

Unseen contexts (%) 423 2.8 0

unvoiced regions in the training utterances were modeled
using a separate uv model. Fig. 2 illustrates an example
of label alignments for a short speech segment. It is impor-
tant to note that the actual syllable boundaries shown in
Fig. 2a and b are modified to include only the syllable
voiced segments in Fig. 2c, where the unvoiced uv labels
have been inserted.

The FO model training follows a conventional recipe
analogous to that provided by the HTS system.® Three
state left-to-right HMMs are used with three mixture com-
ponents where two of the mixtures represent the continu-
ous voiced space and the third represents the discrete
“unvoiced” space. The input feature stream consists of
FO values as well as their first and second order differen-
tials. A separate set of syllable models were built for each
of the three emotions: surprised, sad and angry.

In speech recognition and HMM-based speech synthe-
sis, context-independent monophones are traditionally
used for initialization and then, once trained, they are
cloned to form the required context-dependent model set.
However, in the case of syllable FO models, a core set of
labels analogous to phones does not exist. Hence, in this
case, each model is initialised using a subset of the features
chosen to ensure a relatively balanced coverage per model.
This subset comprised word position in sentence (spos),
syllable position in word (wpos) and lexical stress (lex).
This feature subset resulted in 56 base models plus a uv
model for unvoiced regions. The average number of train-
ing samples per syllable model was 64. Full-context models
were then built by replicating the base models and using
further iterations of embedded training. Due to sparsity
of data and the fact that a wide range of feature combina-
tions are unseen, decision-tree based clustering was per-
formed based on a log-likelihood criterion. Trees were
built for each position in the sentence, and the initial, mid-
dle and final states were clustered separately. The initial set
of 6258 states (2086 models x 3 states) were thereby

3 HTS Version 2.1 alpha was used.

and sadness, respectively.

3.3. Generation from syllable HM M

To generate an FO contour, the required syllable label
sequence for a test utterance is derived from its ortho-
graphic transcription and syllable boundaries are either
copied from the neutral utterance or derived from the neu-
tral utterance using the duration conversion module
described below. The parameter generation framework of
the HTS system was used in the mode where the state
and mixture sequences are known (see Tokuda et al.,
2000), the former being determined from the syllable
boundaries and the duration models as described in
(Yoshimura et al.,, 1998). The mixture component with
the highest weight is used for generation. Once generated,
the FO stream can then be transplanted onto the neutral
utterance for perceptual evaluation.

The generative capacity of the trained FO models is illus-
trated in Fig. 3, which displays FO contours generated by
the different emotion models for the same syllable label
sequence. The full-context label sequence was extracted
from the test sentence “Earwax affects koala bears terribly”
which consists of 12 syllable labels. The contours clearly
display the inherent characteristics of the three emotions:
sadness follows a slightly monotone shape with a tight var-
iance; surprise and anger share some characteristics in the
beginning of the sentence while at the final voiced segment,
a sharp fall is generated for anger, and rising tone for sur-
prise, signaling a question-like intonation which is a com-
mon indicator of disbelief.

Finally, over-smoothing of the feature space is a known
shortcoming of HMM-based parameter generation. A
method has been proposed by Toda and Tokuda (2005)
to generate parameters based not only on the log likelihood
of the observation sequence given the models but also on
the likelihood of the utterance variance which is referred
to as global variance (GV). A single mixture Gaussian dis-
tribution is used to model the mean and variance of utter-
ance variances. This model is trained separately for each
emotion and then integrated into the parameter generation
framework. When applied to our syllable FO models, GV
made a perceptual improvement in the case of surprise by
increasing the global variance of the generated FO contour
while keeping the contour shape intact. An example of this
effect is illustrated in Fig. 4. In the case of anger and sad-
ness, however, the addition of global variance to the
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Fig. 2. Example syllable alignment for the phrase “over churchyards”. Labels L1, L2, L3, and L4 represent linguistic feature combinations. (a) Speech
waveform and corresponding syllable boundaries; (b) FO contour and the syllable boundaries and (c) syllable label boundaries after MSD-HMM training.
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Fig. 3. HMM-generated contours for three emotions using the same
utterance “‘Earwax affects koala bears terribly”.

parameter generation framework made no perceptual dif-
ference. This may be due to the fact that HMM parameters
for surprise result in over-smoothing of FO contours, while
for anger and sadness the models themselves are sufficient
in producing the appropriate variance for the utterance.
Hence, in the perceptual evaluations of HMM-based F0
contours described below, GV-based parameter generation
is only used in the case of surprise.

500
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450 |
400+
\IN, 350+
Q 300+
250 =

200

150 I I I I I I
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Fig. 4. Surprised FO contour generated by the syllable models for the
utterance “Dry black-thorn is grim stuff” with and without Global
Variance (GV) based parameter generation.

4. FO segment selection

FO segment selection makes use of a concatenative
framework similar to unit selection. A sequence of syllable
FO segments are selected directly from a small expressive
corpus, using target and concatenation costs. A similar
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idea has been explored by Tian et al. (2007) to predict FO
contours in a non-expressive TTS framework from a large
corpus of Mandarin speech. The goal of the method
described here, however, is to generate expressive prosody
from limited data in a conversion framework. Parallel neu-
tral and emotional utterances are chopped into their corre-
sponding syllables and the voiced FO segments within these
parallel syllables are extracted and stored as part of the
unit definition as well as their common linguistic context
features. We define a syllable target cost 7' and an inter-syl-
lable concatenation cost J such that the total cost over S
syllables for a given unit sequence U and input specification
sequence / is defined as

N

s

CUI) = T(ugiy) + Y J (g1, uy). (2)
s=1 s=2

The target cost T'is a weighted Manhattan distance consist-

ing of P subcosts

T(uf7 iS) = ZWPTP(M_/[pLiS@])' (3)

Eight target subcosts (P = 8) are used. The first seven are
binary subcosts indicating whether the individual context
features (e.g. lexical stress) in the specification match the
corresponding syllable context in the unit. A matching fea-
ture results in zero cost whereas a mismatch results in a
unit cost of 1. The context features in this section are the
same as the ones we have introduced in Section 3 in order
to provide a fair comparison of the two methods given the
feature set. The final subcost, Ty, is the Root Mean
Squared (RMS) distance between the contour F0' of the in-
put syllable being converted and the neutral contour, F0",
which is stored as part of the unit definition

L

Tjo =\ |7 SF0() — FOQ), @

=1

where L is the length after interpolating the two segments
to have equal duration. It is important to note that alterna-
tive formulations of this subcost (e.g. perceptually corre-
lated distance measures) are possible within this
framework. In this paper we evaluate the use of RMS error
to provide a baseline for future experiments.

The weights for each subcost serve two functions: firstly
they normalize the different ranges of categorical and con-
tinuous subcosts and secondly they rank features according
to their importance for each target emotion.

The concatenation cost, J, is nonzero if and only if con-
secutive syllables in the input specification are “attached”,
i.e. within the same continuous voiced region. If the voiced
syllable segment for the input specification i,_; ends at time
t; and the input specification i, begins at time ¢,, the concat-
enation cost for two candidate segments in the target cor-
pus with lengths, L, | and Ly, is defined as the difference
between the last FO point in segment F0,_; and first FO
point in segment FO; iff #; is equal to ¢,:

WJ(FOS_] [Ls—l] — FOS[ID
0 otherwise.

if 1, = 1,

(g1, uy) = {

The concatenation cost is included to avoid sudden seg-
ment discontinuities within voiced regions. A concatena-
tion weight, w, is used to prioritize this cost relative to
the target subcosts when selecting segments.

Once all the costs are defined, segment selection
becomes a problem of finding the path, &, with the smallest
cost through a trellis of possible FO segments given an
utterance specification. Viterbi search is used to find the
minimum-cost path, by tracing back locally optimal candi-
dates. Note that the concatenation cost is zero for all sylla-
ble voiced segments that are detached from the preceding
voiced segments due an intervening unvoiced region or a
pause. Therefore if an input utterance consists of only
detached syllables, the concatenation cost plays no role in
segment selection and the optimal path will simply be the
sequence of units which minimize target costs locally at
each syllable time step.

Weights for the subcosts are estimated separately for
attached and detached syllables. This distinction is moti-
vated by the fact that all weights for target subcosts are
likely to change when a concatenation cost exists (i.e. the
syllable is attached to its left context). Therefore, two sets
of weights are estimated on held-out utterances using the
least squares linear regression method described below.

4.1. Weight estimation for detached syllables

For the detached syllable case, a set of P weights, w}f , are
estimated for each target subcost. For each held out
syllable FO segment in the target emotion, the N-best and
N-worst candidates in the corpus are identified in terms
of their RMS distance to the held-out segment. This choice
emphasizes the units we most want our cost function to
select and the units we most want it to avoid. The cost
functions for these syllable segments are then set equal to
their RMS distances, which results in a system of linear
equations which can be solved to yield the required
weights. In this framework, the N-worst candidates are use-
ful for capturing the context mismatches that are fre-
quently associated with high RMS errors and which
should therefore be given high weights. The N-best candi-
dates, on the other hand, allow us to identify mismatches
that are associated with low RMS values and which are
probably not important perceptually and hence deserve a
low weight. Combining the equations for each of the M
held-out syllables and 2N candidates yields the following
system of 2NM equations which can be solved using least
squares:

CW =D, (6)

where C is the 2NM x P matrix of subcosts which have
been computed. W is the P x 1 vector of unknown weights
and D is the 2NM x 1 vector of RMS distances. In our sys-
tem N was set to 5 and leave-one out cross-validation was
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performed on all training utterances to obtain the final sys-
tem of equations. Informal listening tests with values of N
larger than 5 did not show any perceptual improvement.
However, more formal tests with a range of values for N
should be carried out to confirm these findings. The
weights obtained for detached syllables are listed in Table
4. The different contextual weights indicate which features
are most relevant for each target emotion. Lexical stress
(lex) and syllable position in word (wpos) result in the high-
est categorical weights across all emotions, indicating that
a mismatch in these categories should be strongly penal-
ized. Position in sentence (spos), on the other hand, seems
to be one of the least important categorical features for an-
ger and sadness, whereas for surprise it ranks higher. For
anger, part of speech (pofs) and previous part of speech
(ppofs) seem to be the most important features after lexical
stress and word position. The similarity of the input seg-
ment to a neutral segment in the corpus also has a domi-
nant effect on segment selection for this emotion
(wro = 1.00). This implies a more linear and regular rela-
tionship between neutral and angry segment pairs than is
the case with surprise or sadness. Note that the low values
for the weights wyy is due to the higher mean of the sub-
costs Ty compared to the categorical subcosts.

4.2. Weight estimation for attached syllables

As noted above, a different set of target weights, WI’,, are
applied to segments that are attached to their left-context,
along with an additional weight for the concatenation cost,
wy. From (2) and (3), the local cost of attaching a unit u; to
a preceding unit u; during selection is

P

Clugis) = Y wy (T, (islpl, ua[p])) + wid (uy, ). (7)

p=1

For the joint estimation of target and concatenation cost
weights, we use only pairs of attached syllables (s,s+ 1)
in the held out data for which the first syllable s is detached
from any preceding syllable. While searching for the N-best
and N-worst candidates in the segment database, we now
look for segment pairs which minimize the combined dis-
tance to the consecutive held-out syllables, s and s+ 1.
The sum of RMS distances for the pair of syllable segments
are then set equal to the sum of the target costs of both syl-

Table 4
Estimated weights for detached syllables across three target emotions
Surprised Sad Angry

Wiex 13.67 12.30 18.74
Wypos 24.52 11.29 18.47
Wspos 11.33 491 3.31
Wpofs 1.13 4.82 8.82
Wppofs 24.27 6.49 10.54
Wonset 15.08 0.33 5.54
Weoda 8.23 6.09 6.36
WEo 0.47 0.69 1.00

lables plus the concatenation cost between the syllables,
resulting in a system of linear equations. Note that because
syllable s of the held-out pair is always detached, its target
cost uses the independent weights, w; , while syllable s + 1
uses the weights w[’, and w; which we are trying to estimate.
In practice, we estimate w) first using detached held-out
segments as described in the previous section. These
weights can then be plugged into the system of equations
for the attached syllables, allowing the P+ 1 unknown
weights for attached syllables to be estimated using least-
squares.

The weights for attached syllables are listed in Table 5.
Most categorical features other than lexical stress are
assigned zero weight due to the general dominance of the
concatenation cost w;. This is reasonable since, physiolog-
ically, segments within the same intonation phrase can not
manifest sudden divergences from their continuous path.
The attached syllable cost, therefore, becomes a trade-off
between input FO cost, T, concatenation cost, J, and a
lexical stress match, T,,. For surprise and sadness, higher
values of concatenation cost weight indicate the impor-
tance of voiced segment continuity in these emotions.
Interestingly, for anger the subcost 7'y still plays an impor-
tant role, as evidenced by its higher weight relative to the
other emotions (0.68). For angry segments with similar
costs, the segment with a more similar neutral counterpart
in the corpus will be chosen at the expense of introducing
small discontinuities.

4.3. Pruning

Even though Viterbi search is relatively efficient, the
number of potential candidate units for each syllable is
equal to the entire syllable corpus. Computation can be
reduced significantly by pruning FO segments that are unli-
kely given the input specification. To achieve this, we use a
syllable duration criterion to eliminate contour segments
with durations significantly different from the duration of
the input. To do this we set a duration pruning range which
is one tenth of the length of the input FO segment. Hence,
for example, if an FO segment is 300 ms, the range is
430 ms, which results in pruning of all contours shorter
than 270 ms and longer than 330 ms. Note that these
thresholds assume that duration conversion is applied

Table 5
Estimated weights for attached syllables across three target emotions
Surprised Sad Angry
Wiex 17.89 6.43 15.98
Wapos 0.0 0.0 0.0
Wspos 0.0 0.0 0.0
Wpofs 0.0 0.0 0.0
Wppofs 0.0 0.0 0.0
Wonset 3.23 0.0 0.0
Weoda 0.0 0.0 8.74
WEQ 0.27 0.37 0.68

Wy 0.74 0.70 0.48
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before FO segment selection so that the duration pruning
does not cause search errors when an emotion is character-
ized by markedly different durations compared to the neu-
tral case.

5. Duration conversion

Neutral phone durations for vowels, nasals, glides and
fricatives are transformed using a set of regression trees.
The durations of all other broad classes are left unmodi-
fied. In building the regression trees, phone, syllable and
word level contextual factors are used as categorical predic-
tors as well as the continuous input duration (dur). The leaf
nodes of the trees are trained to predict scaling factors
rather than absolute durations, i.e. deviations relative to
neutral speech are modeled rather than the absolute dura-
tions of the target emotion. In addition to the syllable and
word level features listed in Section 2 (lexical stress, posi-
tion in word, position in sentence, part of speech), features
relating to the basic phonetic context including phone iden-
tity (ph), identity of the previous phone (prev) and identity
of the next phone (next), are also included in the pool of
regression tree features. The phone set consists of 16 vow-
els, 2 nasals, 4 glides and 9 fricatives which make up the
phone identity values. Neighboring phone identity is
expressed in terms of broad classes. The Matlab Statistics
Toolbox implementation of classification and regression
trees was used to build the trees. A minimum leaf occu-
pancy count of 10 samples was set as a stopping condition
while growing the trees. Trees were then pruned using 10-
fold-cross-validation on the training data. The pruning
level which minimized the prediction cost on the entire held
out set was chosen for the final tree.*

During conversion, the sequence of phones in the test
utterance and their durations are extracted along with the
relevant contextual factors. For the experiments described
below, the input durations are taken directly from the neu-
tral utterances of the speaker. Each phone duration and
context are then input into the appropriate broad class
regression tree to generate a duration tier for the utterance.
This duration tier is thus essentially a sequence of scaling
factors which determine how much each phone in the utter-
ance is going to be stretched or collapsed.

Trees were built using different features groups in order
to select the best feature combination for each emotion and
broad class based on RMS error (RMSE) between the pre-
dicted and target durations in the test data. RMS error is
frequently used in the speech synthesis literature to evalu-
ate duration prediction methods (see Goubanova and
King, 2003; Iida et al., 2003). The contextual feature pool
was grown by adding one or two new features at a time.
The feature groups (FG) are listed in Table 6 and the best
feature groups per emotion and broad class are listed in
Table 7.

4 Cross validation to find the best pruning level is a method recom-
mended in the Matlab 7.0 Statistics Toolbox.

Table 6
The feature Groups tested for relative duration prediction

Feature Group 0 (FGO)

Input duration

Feature Group 1 (FG1) FGO + phonelD
Feature Group 2 (FG2) FGI + leftID, rightID
Feature Group 3 (FG3) FG2 + lex

Feature Group 4 (FG4) FG3 + spos

Feature Group 5 (FGS) FG4 + wpos

Feature Group 6 (FG6) FGS5 + pofs

In general the RMSE values did not improve beyond the
0.025-0.035 s range. For glides and nasals the same feature
combination, consisting of phone-level context and input
duration, produced the minimum error across all emotions.
Addition of higher level context did not improve the pre-
diction of nasal and glide durations. For sadness, vowel
and fricative durations also followed this pattern, where
higher level context did not improve the RMS values. Vow-
els for anger also relied heavily on the neutral input dura-
tions, while fricative durations were best approximated
using lexical stress in addition to input duration and pho-
netic context. For surprise, on the other hand, target vowel
durations were better approximated using the higher level
features lexical stress, position in word and position in sen-
tence. Fig. 5 illustrates the tree used to convert neutral
vowels to surprise. It is clear, for instance, that the vowel
scaling factors are heavily dependent on whether the vowel
is at the end of the sentence (i.e. in the last word) since this
is the question at the root of the tree. Fricative durations
for surprise also improved with the addition of lexical
stress and position in sentence. This suggests that the dura-
tion effects of surprise are less constant and more context-
sensitive than that of anger and sadness. Such a result is
analogous to our findings in the FO segment selection sec-
tion, where position in sentence also gained a higher weight
for surprise compared to other emotions.

6. Spectral conversion

A GMM-based spectral conversion method based on
(Ye, 2005) is used to map each neutral spectrum to that
of a desired target emotion. Line spectral frequencies
(LSF) were used as the acoustic features to be converted.
To train the conversion function, LSF parameter vectors
of order 30 were computed for parallel pairs of neutral-
emotional utterances. These were then time-aligned using
the state-based phonetic alignments computed using
HTK. The number of mixture components was set to 16.
An Overlap and Add (OLA) synthesis scheme was used
to combine the converted spectral envelope with the neu-
tral (unmodified) residual. Fig. 6 illustrates the average
spectra of all instances of vowel /ae/ in neutral, emotional,
and converted test utterances in the case of sadness and
anger. The average spectra of the vowel in converted utter-
ances approximate the target emotion much better than the
input neutral spectra. In general, the spectral conversion
module produced a breathy voice quality for sadness as
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Table 7
Feature Groups (FG) which resulted in minimum RMS errors (RMSE) for all broad phone classes. RMSE is given in seconds

Vowels Glides Nasals Fricatives

RMSE FG RMSE FG RMSE FG RMSE FG
Surprised 0.0345 FG5 0.0289 FG2 0.0285 FG2 0.0345 FG4
Sad 0.0297 FG2 0.0295 FG2 0.0211 FG2 0.0287 FG2
Angry 0.0370 FG1 0.0298 FG2 0.0275 FG2 0.0328 FG3

Aspose(1 23456
£dur < 0.0500001 zwpos € (1 2)
&phe(2 3 891011 1B) A dur <0.13 1. 561 £\ dur < 0.055
&Xnext e (5 B) £y dur < 003 Zsph=10 0.ofe? Lphe(2 510) 28 dur <017
e - Rspose(2 34 5) Knexte(d 59 Alex=0 08%80 MNpreve(1 234689 & ph e (5 10) 71433 1b3s 1 M5y
1347 A WR0s € (2 3)) dhag 3 Mag 1. Je Rdur<0045 4 My 1 g 12528 A dur < 0.0288989
18892 Zinexte (3 7) A next e (@ 3%) 6.8 gunext e (3 5)
1.6505 4 16141 3375 2.5833 4.6333

Fig. 5. Regression tree for converting vowel durations from neutral to surprised: spos refers to position in sentence, wpos, to position in word, dur, to input
neutral duration in seconds, ph to phone identity, prev and next, to the broad class identities of the left and right context.

evidenced by a sharp spectral tilt in Fig. 6a and a tense
voice quality for anger. The converted spectra for surprise
also sounded slightly tense compared to the neutral input,
although this tension did not necessarily make the utter-
ance more surprised.

7. Perceptual evaluation

In order to evaluate each conversion module in isolation
and integrated as a complete system, a series of perceptual
listening tests were conducted using paid subjects who were
asked to judge various properties of the converted
utterances.’

7.1. Evaluation of spectral conversion

A preference test was conducted to evaluate the effect of
spectral conversion on emotion perception. Subjects were
asked to listen to versions of the same utterance and decide
which one conveyed a given emotion more clearly. One ver-

5 Speech samples output by the conversion system are available online at
http://mi.eng.cam.ac.uk/~zi201/conversions.html.

sion had spectral conversion applied while the other had
the unmodified neutral spectrum. FO contours for both
utterances were identical and were generated for the target
emotion by using the FO segment selection method. No
duration modification was applied for this test.

Twenty subjects participated in the evaluation. Each
subject performed 15 comparisons, 5 in each emotion,
resulting in 100 comparisons per emotion. The layout of
the test for one emotion is illustrated in Fig. 7. The sample
test utterances in each emotion were changed after the first
ten subjects, in order to evaluate a wider range of utter-
ances. Fig. 8 displays the percentage preference rates. As
can be seen, spectral conversions were consistently pre-
ferred for anger and sadness (-test, p < 0.01), while for
surprise most people preferred unmodified spectra since
the conversion did not seem to add a notable surprise ele-
ment to the utterance and the original had a slightly crisper
quality due to the lack of spectral processing.

7.2. Evaluation of HM M-based FO generation

The syllable-based HMM FO0 generation was first com-
pared with the baseline Gaussian normalization scheme
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Fig. 6. Long-term average magnitude spectra of vowel /ae/ taken from
neutral, emotional and converted test utterances in the case of sadness and
anger. (a) Average spectra of vowel /ae/ for neutral, sad and converted
utterances. (b) Average spectra of vowel /ae/ for neutral, sad and
converted utterances.

Which one sounds more surprised?

) Al.way Bl.way
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Fig. 7. The layout of the preference test. Users are requested to choose the
example in each pair which is most able to express the target emotion.
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Fig. 8. Preference scores for GMM-based spectral conversion.

defined by Eq. (1) of Section 1. This baseline only takes
advantage of the means and variances of the source and
target expressive styles and hence relies heavily on the
shape of the input neutral FO contour. In order to show
that the HMM-models driven by linguistic features outper-
form contours generated by this baseline, a preference test
was conducted asking subjects to compare two utterances
which were identical except for their pitch contours: in
one of the utterances, the original pitch contour was con-
verted using Gaussian normalization, and in the other it
was generated by the syllable HMMs. The original neutral
durations were left unmodified. For both utterances, spec-
tral conversion to the target emotion was applied. As we
have noted in the introduction, it is important to evaluate
FO generation jointly with spectral conversion since our
informal tests showed that the FO contours convey the
emotion more strongly when combined with the appropri-
ate voice quality.

Thirty subjects (15 male and 15 female) participated in
this test. Twenty-one of the subjects were native speakers
and of the remaining nine, English was a second language.
Once again, they were asked to choose which one of the
utterances they thought was angrier/more surprised/sad-
der. For each pair, the different FO conversion methods
appeared in random order. Five comparisons per emotion
were presented to all subjects, resulting in 150 comparisons
per emotion. The utterances were changed for every ten
subjects to cover a wider range of sentences and contexts
in the test set. This resulted in the evaluation of 15 unique
sentences per emotion, each of which were evaluated by 10
subjects (Fig. 9). Overall, the subjects strongly preferred
the HMM-generated contours for surprise (z-test,
p < 0.01). This confirms that simply scaling neutral FO seg-
ments does not really help convey the emotion and that
actual segment shapes are better modeled using the
HMMs. For anger, on the other hand, the overall prefer-
ence scores did not point as strongly to one or the other
method but the result was still significant (p = 0.027). In
the case of sadness, HMM-based contours were preferred
67.3% of the time (p < 0.01). After completing the listen-
ing test, subjects were asked to write down the emotion
they found easiest to choose between the options and the
one they thought was the hardest. The surveys revealed
that subjects were divided evenly between anger and sad-
ness as the emotion for which they had most difficulty mak-
ing a choice.

= baseline
[CIHVM
Sad 327% ‘ 67.3%
Surprised 173% 827%
Angry 427% ‘ 573%
\ , \ \ \ , \ , \
0 10 20 30 40 50 60 70 80 90 100

Percent Preference Scores

Fig. 9. Percent preference scores for syllable HMMs and Gaussian
normalization (baseline).
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7.3. Evaluation of segment selection

A three-way preference test was conducted in order to
compare the FO segment selection approach with the two
methods evaluated in the previous section. Subjects were
asked to compare three utterances which were identical
except for the method used to convert the FO contours:
utterances converted using segment selection, syllable
HMMs and Gaussian normalization were presented in ran-
dom order. Spectral conversion was applied to all utter-
ances but neutral durations were left unmodified. Thirty
subjects participated in the test and each subject performed
10 comparisons per emotion. A total of 900 (30 x 10 x 3)
comparisons were performed. The percentage preference
scores per emotion are displayed as a stacked bar graph
in Fig. 10 and the p-values resulting from ¢-tests for each
pair of methods are shown in Table 8. As can be seen,
for anger, segment selection was preferred significantly
more frequently compared to the other methods. Unlike
the previous test, however, the difference between the base-
line and HMM-based contours was not significant
(p = 0.083) in the case of anger. Segment selection was also
significantly more popular when compared with the other
two methods in the case of surprise (p < 0.01 in both
cases). HMM-based contours were also still significantly
more popular than those favoring the baseline. For sad-
ness, HMM-based FO generation was preferred half the
time and the other half of subject preferences were split
between the baseline and segment selection. There was
however a significant tendency for segment selection when
compared with the baseline (p = 0.02). The overall shift in
preferences from HMM-based contours to those generated
by segment selection, can be explained by the fact that the
stored contour segments capture more realistic FO move-
ments in contrast to the HMM-generated contours which
may be over-smoothed. Additionally, the incorporation
of the input contour into the target cost function for seg-
ment selection may help select more appropriate segments
(this argument is also supported by the high weight
attached to this subcost for anger). Further information
on this experiment including raw preference counts per
speaker and per utterance can be found in (Inanoglu,
2008).

The distribution of preferences across each of the ten
comparisons are illustrated in Fig. 1la—c. The segment
selection method was strongly preferred for all conversions
to anger except utterance 2 and utterance 4. In the utter-
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Fig. 10. Preference scores for each method and emotion.

Table 8

The p-values resulting from z-tests performed on preferences for each pair
of methods in the three-way preference test. Baseline, HMM and SegSel
are used as abbreviations for Gaussian normalization, HMM-based FO0
generation and segment selection respectively

Baseline, HMM Baseline, SegSel HMM, SegSel
Angry 0.083 9.4 %1071 4.8 x 1071
Surprised 1.8 x 107" 13x107% 48 %1078
Sad 23 %1077 0.02 6.1 x 107
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Fig. 11. Utterance specific analysis of preferences across three methods of
FO conversion.

ance-specific analysis of surprise (Fig. 11b), it may be
observed that the segment selection method is not consis-
tently preferred as in the case of anger. In fact, there are
some utterances where subjects strongly prefer the
HMM-based method and there are others where seg-
ment-selection is clearly preferred, which suggests that both
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methods can be effective for surprise. The analysis of sad-
ness across utterances is not as straightforward, since all
methods generate convincingly sad sounding contours par-
ticularly when combined with the breathy voice quality
which results from spectral conversion. Overall, the
HMM-based method was selected most frequently but
otherwise there was little consistency in the results. These
scores suggest that most subjects were able to reduce their
choices down to two and then had to guess which one of
the remaining two is sadder. In fact, when subjects were
asked explicitly which emotion they had most difficulty
choosing, 70% recorded a difficulty with sadness compared
to 40% reported in the two-way test of the previous section
(Table 9). With the introduction of the segment selection
approach, the difficulty with anger seems to have been
resolved since only 13% of the subjects listed it as the emo-
tion they had difficulty with compared with 43.3% from the
previous section. Surprise continued to be an easy emotion
to identify even with the two competing methods of HMMs
and segment selection.

7.4. Evaluation of duration conversion

In the previous two tests, the focus was on evaluating FO
contours generated by different methods leaving the neutral
durations unmodified. In this section, the contribution of
duration conversion to the perception of a target emotion
is evaluated. The test organization was similar to that
shown in Fig. 7. Each subject had to listen to two utter-
ances and decide which one sounded angrier/sadder/more
surprised. Both utterances had their spectra converted. In
one utterance, neutral phone durations were modified
using the scaling factors predicted by the relative regression
trees. In the other, they were left unmodified. Additionally,
segment selection was applied to both utterances to replace
the neutral pitch contours. Note that the FO segments
selected by this method actually depend on the input dura-
tions. Therefore, for some utterance pairs, the FO contours
were not identical, i.e. the contours that are appropriate for
the modified durations may be different from those selected
for the neutral syllable durations. The preference test there-
fore evaluated the joint effects of duration conversion and
segment selection relative to the no duration conversion
case.

The same 30 subjects participated in the test, where each
subject performed 10 comparisons per emotion (Fig. 12).
The results of the tests showed that converted durations

Table 9

Percent of subjects who identify a given emotion as “hardest to choose” in
the two-way test described in Section 8.2 and the three-way test described
in this section

Two-way test (%) Three-way test (%)

Angry 433 13.3
Surprised 16.7 16.7
Sad 40 70

T
[ neutral durations
[__Jconverted durations

Sad 63%

Surprised 66%

Angry 63.3%

.
0 50 100
Percent Preference Scores

Fig. 12. Preference scores for duration conversion in each emotion.

were preferred more frequently than unmodified durations.
This is was very significant for all emotions (p < 0.01). The
preferences for converted durations were slightly stronger
for the case of surprise. In fact, none of the subjects listed
“surprise” as an emotion they had difficulty with.

Fig. 13a illustrates an example of a surprised utterance
where duration conversion was preferred strongly. Both
FO contours resulting from the different phone durations
were plotted for comparison. The corresponding duration
tier is also included in Fig. 13b, where the scaling factors
for each neutral phone are identified explicitly. The hori-
zontal line indicates a scaling factor of 1 i.e. no change.
Even though the overall contour shape does not change
very dramatically for the two cases, the durations and into-
nation of the final word “information” conveys surprise
much more effectively with the scaled durations. All nasals
and vowels are stretched in this final word, which results in
the selection of a lower pitch movement in the lexically
stressed syllable “/m/—/ei/”. Furthermore, the duration of
the vowel /@)/ in the final unstressed syllable is almost dou-
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Fig. 13. Results of FO segment selection for utterance “Fingers smudge
vital information” before and after duration conversion (a) and the
corresponding duration tier (b).
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bled providing the time necessary for the final rise to reach
a higher target. The combination of a very low stressed syl-
lable with a gradual high rise, results in a question-like
intonation that sounds amazed/surprised. The durations
themselves provide room for this expression, and indirectly
control the FO movements selected by the search algorithm.
Contrary to this example, there were two of the ten
utterances where subjects did not consistently prefer dura-
tion conversion. This is thought to occur when the
sequence of neutral durations are already quite likely in
the target emotion. In such cases, further modification of
durations can be ineffective. Overall, however, duration
conversion will often improve emotion conversion and
rarely impair it. We therefore conclude that it is better to
include it consistently in a conversion system framework.

7.5. Overall emotion classification performance

A final evaluation of the full conversion system was per-
formed using a multiple-choice emotion classification test,
where subjects were asked to identify the emotion in an
utterance. To avoid forcing the subjects to choose an emo-
tion when they were unsure, a “Can’t decide” option was
included in the available choices.

To provide a basis for comparison, we first report the
results of this test using the original natural utterances of
the voice talent used to record the database. In practice,
this test was conducted after the test on converted utter-
ances in order to avoid a bias towards the original speech.
Five utterances per emotion were presented to 30 subjects
and the confusion matrix for listener preferences is summa-
rized in Table 10. The results show that anger and sadness
were communicated very clearly by the speaker, while there
was some confusion with anger in the perception of
surprise.

The results of the emotion classification test using con-
verted neutral utterances generated by our conversion sys-
tem are reported in Tables 11 and 12. Ten utterances per
emotion were classified by 30 subjects in random order.
Duration conversion and spectral conversion were applied
to all outputs. Additionally, there were two hidden groups
within each emotion: five of the conversions were synthe-
sized using HMM-based contours and the other five were
synthesized using segment selection. Confusions between
emotions were analyzed separately for the two FO conver-
sion methods.

The conversion outputs using HMM-based FO contours
conveyed sadness as well as the original sad speech, while

Table 10
Percent confusion scores for the emotion classification task of original
emotional utterances spoken by the female speaker

Angry (%)  Surprised (%) Sad (%) Cannot decide (%)
Angry 99.3 0.7 0 0
Surprised  20.0 66.0 0 14.0
Sad 0.7 0 96.0 33

Table 11
Percent confusion scores for the emotion classification task for utterances
where HMM-based contours are used

Angry (%)  Surprised (%) Sad (%) Cannot decide (%)
Angry 64.7 8.0 4.7 22.6
Surprised  10.0 60.7 0 29.3
Sad 0.7 0.7 96.0 2.6

Table 12
Confusion scores for the emotion classification task for utterances where
FO segment selection is used

Angry (%)  Surprised (%) Sad (%) Cannot decide (%)
Angry 86.7 0.7 0 12.6
Surprised 8.7 76.7 0 14.7
Sad 0.7 0 87.3 12

the recognition rate for surprise (60.7%) was slightly lower
than that of the naturally spoken surprised speech (66%)
and the rate for anger (64.7%) was much lower than that
of the naturally spoken anger (99.3%). There was consider-
able indecision amongst subjects when classifying surprise
and anger. Overall there was moderate inter-rater agree-
ment as given by Fleiss’ kappa statistic (x = 0.506).

With segment selection, the classification rate for anger
increased significantly up to 86.7%. This indicates that
appropriate FO prediction is a critical component of anger
despite the fact that it is normally considered to be an emo-
tion with dominant spectral characteristics. Surprise is also
recognized better using segment selection (76.7%), indeed,
the converted surprise utterances were identified more
accurately than the naturally spoken surprised utterances.
This may be explained by the spectral conversion module
which tends to over-smooth the converted spectra slightly.
In the naturally spoken utterances, there is a tension in
some of the surprised speech which may have created con-
fusion between anger and surprise. This tension is reduced
and more consistent in the converted surprised speech. The
same effect, however, may have slightly reduced the recog-
nition rates for anger, since the smoothing in that case
resulted in conversions which did not sound as harsh as
the naturally spoken angry utterances. Overall, the effect
of FO prediction method on emotion recognition rates
was significant for all emotions. Segment selection resulted
in better recognition in the case of anger (p = 0.0006) and
surprise (p = 0.004), while HMM-based contours resulted
in higher recognition scores for sadness (p = 0.018) The
inter-rater agreement was also much higher with segment
selection (k = 0.635).

Finally, as part of the emotion classification test, we also
asked subjects to categorize each utterance in terms of into-
nation quality using the options “Sounds OK” or “Sounds
Strange.” The intonation quality ratings are illustrated in
bar charts for each method (Figs. 14 and 15). The effect
of FO prediction method on quality was significant only
in the case of surprise (p = 0.0006). For both methods,
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[__Isounds strange
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Surprised 47.3% 52.7%
Angry 75.3% | 24.7%
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Fig. 14. Categorical quality ratings for spectral conversion + duration
conversion + HMM-based contour generation.
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[__Jsounds strange

Sad 90% | 10%
Surprised 73.3% | 26.7
Angry 77.3% | 22.7%
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Fig. 15. Categorical quality ratings for spectral conversion + duration
conversion + F0 segment selection.

the percentage quality ratings for sadness are identical and
generally very high (90%“sounds OK”). Subjects also
thought that both methods attempted to convey anger nat-
urally most of the time, even though the actual emotion
recognition rates are very different between the methods.
For surprise, on the other hand, quality perception
improved significantly with segment selection, where
73.3% of conversions sounded OK compared with only
47.3% when HMM-based contours were used. Therefore,
unlike anger, the recognition rates and quality ratings for
surprise were somewhat correlated.

8. Conclusions

A system for emotion conversion in English has been
described which consists of a cascade of modules for trans-
forming F0, durations and short-term spectra. The system
was evaluated using three target emotions for which emo-
tional speech data was collected. In principle, the system
should be scalable to any emotion which modifies the
acoustic-prosodic characteristics of speech. Two different
syllable-based FO conversion techniques were implemented
and evaluated as well as a duration conversion method
which performs transformation on the segmental level.
Subjective preference tests confirmed that each module
augments emotional intensity when combined with the oth-
ers. The full conversion system with either FO prediction
method was able convey the target emotions above chance
level. However, FO segment selection produced more natu-
ral and convincing expressive intonation compared to syl-
lable HMMSs, particularly in the case of surprise and anger.

The different modules also indirectly reveal interesting
characteristics of the target emotions. For example, exam-
ining the weights in the case of segment selection highlight

the contextual factors which have a more dominant role in
the expression of each target emotion. In general, surprise
was found to be an emotion which is highly dependent on
syllable and word-level linguistic factors. On the other
hand, the FO and duration characteristics of angry speech
relied heavily on the information in the input FO contours
and durations and less so on the contextual factors.

Finally, using only a modest amount of training data,
the perceptual accuracy achieved by the complete conver-
sion system was shown to be comparable to that obtained
by a professional voice talent. Hence it may be concluded
that the conversion modules which have been described
in this paper provide an effective and efficient means of
extending a single emotion TTS system to exhibit a range
of expressive styles. Furthermore, the conversion system
provides a flexible framework for investigating alternative
cost functions for segment selection or alternative dissimi-
larity measures for duration and FO prediction. Such future
investigations can be compared to the current system to
quantify perceptual improvements.
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