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Abstract
Existing spoken dialogue systems are typically not de-

signed to provide natural interaction since they impose a strict
turn-taking regime in which a dialogue consists of interleaved
system and user turns. To allow more responsive and natural
interaction, this paper describes a system in which turn-taking
decisions are taken at a more fine-grained micro-turn level. A
decision-theoretic approach is then applied to optimise turn-
taking control. Inverse reinforcement learning is used to cap-
ture the complex but natural behaviours from human-human di-
alogues and optimise interaction without specifying a reward
function manually. Using a corpus of human-human interac-
tion, experiments show that IRL is able to learn an effective
reward function which outperforms a comparable handcrafted
policy.
Index Terms: dialogue management, spoken dialogue systems,
inverse reinforcement learning, Markov decision processes

1. Introduction
A major shortcoming of traditional spoken dialogue systems is
that they are not able to provide natural interaction since they
impose a strict turn-taking regime in which a dialogue consists
of interleaved system and user turns. For example, when the
user speaks, the system must listen until a silence detector de-
termines that the user has finished. When the user stops speak-
ing, the system then takes the floor, responds, and hands the
floor back to the user. The only flexibility offered is that most
systems allow the user to barge in on the system. This rigid
turn-taking is not only unnatural, it is also difficult to implement
because silence detectors have difficulty distinguishing between
silence and background noise. It also introduces unwanted la-
tency since the system must wait to ensure that the silence really
does mark the end of the user turn and is not just a short pause
in the middle of the utterance.

To allow more responsive and natural interaction, a vari-
ety of decision-theoretic approaches have been proposed, which
provide a more principled way of optimising the control of turn-
taking [1, 2, 3, 4, 5]. Since any turn-taking decision may have
an effect on the future evolution of the dialogue, a general solu-
tion should view the problem as sequential decision making in
which the system has to optimise a series of turn-taking actions
over a dialogue, such as listening to the user, speaking, or in-
terrupting. Furthermore, by taking these actions at a more fine-
grained micro-turn level, e.g., every 100ms, micro-turn man-
agement can offer richer interaction which can incorporate nat-
ural discourse phenomena such as barge-in and backchannels.
This optimisation is guided by the computation of the expected
utilities of different micro-turn actions given a cost or reward
function.

Existing attempts to apply and optimise turn-taking, typ-
ically either use a handcrafted decision policy or a manually

specified reward function based on the simple assumption that
conversants attempt to minimise gaps and overlaps. However,
unlike higher level of dialogue management [6], it is unclear
how a reward function can be specified which is able to capture
the complex but natural behaviours required for natural conver-
sation.

In this paper, we present an application of Inverse Rein-
forcement Learning (IRL) [7] using the Markov Decision pro-
cess (MDP) formalism [8] applied to micro-turn interaction.
This allows the reward function used by human conversants to
be automatically recovered by observing human-human inter-
actions and thus flexibly model the many discourse phenomena
encountered in natural dialogues.

2. IRL for micro-turn management
Traditional approaches to learning decisions based on demon-
strations of the required behaviours by an expert typically use
general-purpose supervised learning methods, which directly
learn the policy as a mapping from states to actions [9]. How-
ever, such approaches fail to learn good policies in those parts of
the environment which the expert tends to avoid, since training
samples are then very sparse in these regions [10].

IRL is a more recent approach which frames the learnt poli-
cies as solutions of MDPs. The key assumption here is that
experts behave near-optimally to maximise rewards along the
sequential decision process, and we must find an unknown re-
ward function that makes their demonstrated behaviour appear
near-optimal. The experts’ policy can be recovered indirectly
by solving the MDP with the learnt reward function. Hence, the
problem is reduced to a task of recovering a reward function that
induces the demonstrated behaviour. This approach allows the
experts’ policy to be generalised to unobserved situations. In
addition, the learnt reward function is transferable to different
tasks.

2.1. IRL preliminaries

An MDP is defined as a tupleM = {S,A, T , r, γ}: S is the
set of states s;A is the set of actions a; T is the transition func-
tion where T sa

s′ denotes the probability P (s′|s, a) of reaching
state s′ from state s by taking action a; r is the reward function
where rsa denotes the immediate reward R(s, a) of executing
action a in state s; γ ∈ [0, 1) is the discount factor. The optimal
policy π∗ maximises the expected discounted sum of rewards
E[

∑∞
t=0 γ

trstat |π∗]. GivenM\r, IRL aims to find a reward
function r under which π∗ matches the demonstrated trajecto-
ries D = {ζ1, . . . , ζN} where ζi is a sequence of state-action
pairs ζi = {(si,0, ai,0), . . . , (si,Ti , ai,Ti)}.

We could assume that the examples D are drawn from
the optimal policy π∗. In practice, however, this assumption
must be relaxed since human demonstrations can be subopti-
mal and contain inherent stochasticity. Hence, recent IRL al-



gorithms [11, 12] assume that D is drawn from a maximum-
entropy randomised policy π, in which the probability of ex-
ecuting an action a in state s is proportional to the exponen-
tial of the expected total reward after taking the action, denoted
π(a|s) ∝ exp(Qr

sa), where Q-value Qr is defined as:

Qr = r+ γTVr . (1)

In the above equation, the value function Vr is defined as
Vr

s = log
∑

a expQ
r
sa, which uses a soft version of the Bell-

man backup operator V r
s = maxa Qsa. The IRL log-likelihood

of data given randomised policy π and reward function r can be
written as logP (D|r) =

∑
i

∑
t log π(ai,t|si,t). Note that this

randomised policy can be suboptimal compared to the optimal
deterministic policy resulting from the Bellman iteration, but
may produce more human-like behaviours in micro-turn inter-
action.

3. Experimental setup
The ultimate goal of this work is to develope an IRL-trained
micro-turn manager for a POMDP-based dialogue system pro-
viding restaurant information [13]. However, in order to learn
natural turn-taking behaviours from demonstrations, we need
human-human dialogues in which one speaker represents the
dialogue system and and the other represents the user. Since no
appropriate human-human data was available in the restaurant
domain, dialogue data from a related domain was used with the
ultimate aim of transferring the IRL results back to the target
domain. In this paper, however, we focus on assessing the ad-
vantages of IRL, and defer adaptation to our restaurant system
to future work.

3.1. Dataset

To assess the effectiveness of IRL for learning reward func-
tions at the micro turn level, dialogue data from the SpaceBook
project[14] was used. This corpus was collected to support the
development of a spoken dialogue-based information system
for pedestrian navigation and exploration. This data contains
human-human dialogues with natural turn-taking and many dis-
course phenomena including backchannels, barge-ins and over-
lap in a similar dialogue domain.

One dialogue consists of two audio streams and transcripts:
a tourist who plays the role of a user, and a wizard who plays
the dialogue system and gives direction to the tourist. These
dialogues were aligned to get the start and end times for both
words and pauses. Each dialogue was split into 100ms micro-
turns and each segment tagged with the corresponding values
of state variables which will be explained in the following sub-
section. The data set consisted of 11 dialogues of approximate
duration 2 hours with 33303 micro-turns in total. The length of
each dialogue varies from less than 1 minute to 30 minutes.

3.2. Model formulation

Although syntax, semantics and dialogue context can play a vi-
tal role in micro-turn interaction, we limit our attention to rel-
atively primitive features such as timing and prosody of utter-
ances and backchannels. In order to utilise higher-level infor-
mation about users’ intentions while keeping the model simple,
an end-of-utterance (EOU) classifier distinguishing within-turn
pauses from end-of-turn pauses is trained. This uses a set of fea-
tures including prosody and timing features as proposed in [2].
Three different classifiers were trained on all pauses, pauses
longer than 100ms, and pauses longer than 200ms. Hence, each

segment in the datasets is tagged with an EOU probability ac-
cording to the duration-so-far of its corresponding pause. The
segment is tagged with 0 probability if the user is not silent
throughout it.

We designed a micro-turn MDP which extends the 6-state
model proposed in [3]. Information which is intuitively likely
to correlate with the turn-taking behaviour can be encoded in
the state space S. In this paper, the micro-turn state is defined
as s = 〈m, u, l, b, e, c〉: m and u are the states which indicate
the current voice activity by the system and user, respectively.
Typical voice activity states are speaking, silence, or generating
backchannels; l denotes the identity of the last speaker which is
helpful in distinguishing pauses between switching from system
to user and pauses between switching from user to system; b
denotes the number of backchannels so far in the current system
utterance; e denotes the aforementioned EOU probability; c is
a timing state variable which denotes the duration-so-far (upto
one second) of the current voice activity state of the system or
user. e and c were quantised into ten discrete levels. By making
some conditional independence assumptions according to the
definitions of state variables, the transition probability can also
be factored as:

P (s′|s, a) =P (m′|a)P (l′|l, m, m′, u, u′)P (b′|b, m, m′, u, u′)
· P (c′|c, m, m′, u, u′) (2)

· P (u′|m, u, l)P (e′|e, u′) . (3)

Note that the state transitions for variables in (2) are determinis-
tic. However, the user state u and EOU probability e can change
probabilistically along the process according to (3). We assume
that the user’s behaviour depends on the previous voice activity
state and the last speaker. We also assume that the EOU proba-
bility depends on the previous EOU probability and the current
user state. These transition probabilities were empirically esti-
mated from the data.

The micro-turn MDP has three actions: speak, silent and
backchannel. The system can grab the floor by executing the
speak action and then continue speaking. When the user is
speaking, the speak action entails barging in on the user. The
system can release the floor by executing the silent action, or
generate a backchannel with the backchannel action. Note that
we assume that a decision epoch may not occur at some micro-
turns, as in continuous-time MDPs [8]. Once the system grabs
the floor by executing the speak action when the user is silent,
it does not need to release the floor until the system completes
its utterance or the user interrupts. Likewise, when initiating a
backchannel, the system does not need to invoke a second ac-
tion to terminate it since most backchannels are short vocalised
sounds or simple words or phrases.

3.3. IRL algorithm

In this work, the Gaussian Process IRL (GPIRL) algorithm [12]
was used. While most prior IRL algorithms assume the reward
to be a linear combination of a set of features, GPIRL uses GP
regression to learn the reward as a nonlinear function. Hence,
GPIRL enables us to automatically capture the complex reward
structure in micro-turn interaction without enumerating all of
the possibly relevant features which are usually logical conjunc-
tions of state variables [15]. Using the automatic relevance de-
tection kernel, GPIRL can also determine the relevance of each
feature to the underlying true reward while encouraging a sim-
ple reward structure with sparse feature weights.
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Figure 1: Training log-likelihood for each discount factor.
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Figure 2: Distribution over system-user states.

4. Experimental results
The proposed IRL approach can be compared with a supervised
classifier which directly learns a stochastic policy π : S ×A →
[0, 1]. We note that the IRL approach with zero discount fac-
tor (γ = 0) can be viewed as a simple supervised classifier, as
shown in (1). Hence, we compared the different reward func-
tions and policies from the micro-turn MDP with discount fac-
tors ranging from 0 to 0.99.

If the underlying true reward function is known, we can di-
rectly evaluate the performance by measuring how suboptimal
the policy learnt via IRL is under the true reward. However, the
true reward is unknown in practice and thus it is non-trivial to
evaluate the reward functions. In this paper, we compared the
algorithms by measuring log-likelihood to see how well each
can model the given data (Section 4.1) and their generalisation
capabilities to unseen data (Section 4.2). The latter is especially
important in practice where the data is highly sparse: only 883
states were observed in the SpaceBook dataset, out of 3960
possible states. We also analyse the learnt policy to assess if
the IRL technique can reproduce human-like behaviours (Sec-
tion 4.3).

4.1. IRL training results

We tested two forms of reward function R: R(s) which gives
the immediate reward of reaching state s and R(s, a) which
depends on the state-action pair. By using R(s), we can reduce
the number of unknown parameters which will be learnt.

Figure 1 shows training log-likelihood on 11 dialogues over
different discount factors. Note that the result of R(s) with
γ = 0 is omitted since it had a poor log-likelihood of -1.14.
This is because when γ = 0, the Q-value defined in (1) is
written as Qr

sa = rs, and thus the resulting policy will have
the same Q-value (i.e., same probability) for every action. Us-
ing larger γ, the deeper lookahead search can be performed
to take future effects into account, and thus the training log-
likelihood of R(s) with larger γ was higher. When we used
R(s, a), the performance was clearly better than R(s) since
R(s, a) could utilise the actions performed in the given dataset
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Figure 3: Testing log-likelihood for each discount factor.

as an additional feature. However, in the case of R(s, a) the
log-likelihood in training is not sensitive to the discount fac-
tor, and indeed falls as γ increases. This can also be explained
by considering γ = 0. In this case, the IRL algorithm does
not perform any lookahead search in (1), and the rewards will
be exactly the same as the Q-values, i.e., Qr

sa = rsa. How-
ever, it is still allowed to directly search for the good rewards
which is similar to Q-values from IRL with lookahead search
(γ > 0). Hence, the resulting rewards vary across different γ,
but Q-values remain similar. Although it may seem that IRL
provides no benefit over supervised classification, it does in fact
generalise better as will be demonstrated in the next subsection.

Figure 2 shows the relative frequency of the voice activity
state of the machine and user in real and simulated dialogues.
Among 9 possible combinations, the most common 5 states (si-
lence; the system or the user is either speaking or generating
a backchannel while the opponent is silent) and overlap state
(both the system and user is speaking or generating backchan-
nels) are shown. As can be seen, the IRL policy successfully
reproduced the statistical properties of the real dialogues.

4.2. Cross-validation

In order to demonstrate the generalisation capability of the IRL
technique, we conducted cross-validation experiments. The re-
ward function was trained on one dialogue and evaluated on the
remaining 10 dialogues. The environment T in a training dia-
logue might be different from that of the test dialogues, and thus
we computed a maximum-entropy randomised policy in the test
environments given the learnt reward function by solving the
micro-turn MDP. We then tested the policy. We excluded one
dialogue shorter than one minute, which was too sparse to learn
the reward function. Therefore the following results were aver-
aged over 10 experiments.

Figure 3 shows the averaged log-likelihood on the test sets.
For R(s, a), there is a clear trend of increasing log-likelihood
as γ increases upto 0.9, whereas the log-likelihood for R(s)
is maximum at the slightly lower value of 0.8, perhaps be-
cause of the reduced lookahead capability. Compared to the
results in Figure 1, it is clear that IRL with an appropriate dis-
count factor generalises better than supervised classification ap-
proaches. However, it is interesting to note that the performance
of γ ≥ 0.95 was degraded in both cases. We suspect that using
IRL with a deep lookahead search makes it very susceptible to
errors in the estimated environmental model T which is inher-
ently noisy due to the limited amount of training data.

4.3. Policy assessment

We now illustrate with specific examples how the policy learnt
via IRL makes micro-turn decisions. Figure 4a shows the IRL
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(a) Silence.
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(b) Overlap.
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Figure 4: Illustrative examples of IRL policy. The horizontal axis in each subfigure represents elapsed time since the state changed to
(a) “silence” in which both keep silent (b) “overlap” in which both are speaking (c) “listening” in which the system is listening to the
user. The vertical axis represents the probability of each micro-turn action.
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Figure 5: Effect of End-of-utterance (EOU) probability. The
horizontal axis represents elapsed time since the state changed
to “silence” in which both keep silent. The vertical axis repre-
sents the cumulative probability of the system executing a speak
or backchannel action.

0.0 0.2 0.4 0.6 0.8 1.0
Threshold on EOU probability

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

A
ve

ra
ge

re
w

ar
d

Handcrafted
IRLrand
IRLdet

Figure 6: Average reward in simulated dialogues. Error bars
represent 95% confidence intervals.

policy for one second in the “silence” state where the last
speaker is the user and both parties remain silent. Note that
this silent period could be either a short pause within the user’s
utterance or an end-of-utterance. The probability of executing
the speak action increases rapidly about one second after enter-
ing the silence state. The probability of the system executing a
backchannel action is more likely during the period 100ms to
500ms. This suggests that speakers usually make backchannels
in preference to grabbing the floor during short pauses. In the
given dialogues, acknowledgements such as “Okay” frequently
occurred at the beginning of utterances, and thus the probability
of a backchannel also increased after one second of silence.

Figure 4b shows the policy in “overlap” state where the sys-
tem is speaking and the user barges in on the system. The prob-

ability of the speak action slowly decreases to avoid the over-
lap. However, it increases again after 800ms to model the cases
where the system did not hand the floor back to the user. In
Figure 4c, the policy in the state where the system is listening
to the user is shown. The speak and backchannel actions have
a tiny probability, and thus the system simply keeps listening
with high probability.

Figure 5 shows how the policy shown in Figure 4a depends
on the end-of-utterance (EOU) probability e. Each line indi-
cates the cumulative probability of not being silent by executing
a speak or backchannel action. As expected, the learnt policy
starts speaking or backchannels with higher probability as the
EOU probability becomes higher. Interestingly, we also note
that the cumulative probability before one second is larger when
e < 0.1 than when 0.3 ≥ e < 0.4 (the blue solid line is higher
than the red dotted line in Figure 5). This is because the conver-
sant is more likely to generate backchannels than start speaking
if the silence is believed to be a short pause within utterances.

Lastly, we compared the IRL policies with a simple hand-
crafted policy in terms of the resulting IRL rewards. The hand-
crafted policy takes the floor whenever the EOU probability is
larger than a predefined threshold. Figure 6 compares rewards
averaged over 30 simulated dialogues, using the IRL optimal
deterministic policy (IRLdet), and the maximum-entropy ran-
domised policy (IRLrand), and the handcrafted policy. Note
that IRLdet outperformed IRLrand, as explained in Section 2.1.
The handcrafted policy achieved the maximum average reward
when the threshold is 0.9, but it was significantly worse than the
IRL policies.

5. Conclusions
IRL is a technique for recovering an underlying reward function
by observing demonstrated behaviours. The significance of IRL
stems from its ability to learn from demonstrations in a diverse
range of problems where an agent’s behaviour can be charac-
terised by a reward function which reflects the agent’s objec-
tive and preferences. In this paper, we presented an application
of IRL to micro-turn management, with the aim of identifying
the conversational agent’s objective function. Using annotated
recordings of human-human dialogues, IRL successfully learnt
the rewards from data and demonstrated better generalisation
performance than supervised classification. In future work, the
IRL reward function will be integrated into our POMDP-based
dialogue system to allow live tests to be conducted with real
users. We believe that IRL-based micro-turn management could
be further improved by incorporating higher level features such



as semantics and dialogue contexts [16] and this will also be
studied in further work.
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