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ABSTRACT

In the design of spoken dialogue systems that are robust to
speech recognition and interpretation errors, modelling un-
certainty is crucial. Recently, Partially Observable Markov
Decision Processes (POMDPs) have shown to provide a
well-founded probabilistic framework for developing such
systems. This paper reports on the design and evaluation of
the user act model (UAM) as part of the Hidden Information
State (HIS) POMDP dialogue manager. Within this system,
the UAM represents the probability of a user producing a cer-
tain dialogue act, given the last system act and the dialogue
state. Its design is domain-independent and founded on the
notions of adjacency pairs and dialogue act preconditions.
Experimental evaluation results on both simulated and real
data show that the UAM plays a significant role in improving
robustness, but it requires that the N-best lists of user act
hypotheses and their confidence scores are of good quality.

Index Terms— Spoken dialogue systems, POMDPs, user
modelling, evaluation

1. INTRODUCTION

One of the major challenges in the development of spoken
dialogue systems is the problem of uncertainty due to speech
recognition (ASR) and language understanding (NLU) errors,
and unexpected user behaviour. Most systems rely on choos-
ing the most likely result from ASR and NLU, and in cases
where the chosen input turns out to be incorrect, complex
repair strategies are required. By modelling dialogue as a
POMDP (Partially Observable Markov Decision Process), a
framework is provided that enables these uncertainties to be
modelled in a well-founded (probabilistic) manner thereby
leading to more robust policies [1].

A key component of the POMDP framework is theuser
act model(UAM) P (au|sm, am), which represents the prob-
ability that the user would generate a user actau, given the
last system actam and the system statesm. In this paper, we
focus on the design of the UAM in the Hidden Information
State (HIS) POMDP system and provide experimental evalu-
ations of its effectiveness.

In Section 2, the HIS POMDP system is briefly reviewed,
followed in Section 3 by a more detailed discussion of the
UAM. In Section 4 evaluation results on both simulated and
real data are presented, showing the effectiveness of the
UAM. Finally, Section 5 gives some conclusions.
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2. THE HIS-POMDP DIALOGUE MANAGER

The architecture of a POMDP-based dialogue system is
shown in Figure 1. The user produces an actionau based
on his goalsu, resulting in a speech signal to be analysed by
the system’s speech understanding component. This resultsin
an N-best list of user action hypothesesa1

u
, . . . , aN

u
. Instead

of just taking the 1-best result to update the dialogue state
sm, the entire N-best list with confidence scores is used to
compute a probability distribution over all possible dialogue
states, the belief stateb(sm).
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Fig. 1. Architecture of a POMDP-based spoken dialogue sys-
tem

Based on the current belief stateb, the machine selects an
actionam, receives a rewardr(sm, am), and transitions to a
new (unobserved) states′

m
, wheres′

m
depends only onsm

andam. The machine then receives an observationo′ consist-
ing of a new N-best list of hypothesised user actions. Finally,
the belief distributionb is updated based ono′ andam.

Although it provides a powerful and well-founded way
of modelling uncertainty, the POMDP approach to dialogue
management introduces problems of computational complex-
ity, both for belief monitoring and policy optimisation. The
Hidden Information State (HIS) POMDP system deals with
these problems in several ways [2].

First, the dialogue state is factored into three components:
the last user actau, the user’s goalsu and the dialogue his-
tory sd. The dialogue history is based on a simple grounding
model and is encoded deterministically. It yields probability
one when the updated dialogue state hypothesis is consistent
with the history, and zero otherwise.

Second, the space of user goals is partitioned into equiva-
lence classesp of equally likely goals. By replacingsm by its
factors(su, au, sd) and making reasonable independence as-
sumptions, it can be shown that in partitioned form, the belief
state is updated as follows:



b′(p′, a′

u
, s′

d
) = k · P (o′|a′

u
)

︸ ︷︷ ︸

observation
model

·P (a′

u
|p′, am)

︸ ︷︷ ︸

user action
model

·
∑

sd
P (s′

d
|p′, a′

u
, sd, am)

︸ ︷︷ ︸

dialogue model

· P (p′|p) · b(p, sd)
︸ ︷︷ ︸

belief refinement

(1)

wherep is the parent ofp′, i.e.,p′ is a partition resulting from
splittingp.

In this equation, theobservation modelis approximated
by the normalised distribution of confidence measures output
by the speech understanding system. Unlike the observation
model, theuser action modeltakes the context in which the
user performed his action into account. It allows the observa-
tion probability that is conditioned ona′

u
to be scaled by the

probability that the user would perform the actiona′

u
given

the partitionp′ and the last system promptam. For exam-
ple, the observation model might not be able to distinguish
between an acknowledgement and an affirmation for the ut-
terance “Yes”, but if the last system act was a confirmation
(“You want Chinese food?”), the affirmation reading should
become more likely.

3. THE HIS USER ACT MODEL

The HIS user action model is a hybrid model, consisting of a
dialogue act typebigram modeland anitem matching model:

P (a′

u
|p′, am) ≈ P (T (a′

u
)|T (am))

︸ ︷︷ ︸

bigram model

· P (M(a′

u
)|p′, am)

︸ ︷︷ ︸

item matching model
(2)

whereT (·) denotes thetype of the dialogue act andM(·)
denotes whether or not the dialogue actmatchesthe current
partitionp′ and the last system act.

User goals, and therefore, partitions, are specified in
terms of slot-value pairs, e.g.,(food=Chinese). A do-
main ontology specifies a hierarchical structure among the
slots, allowing slots to be defined for specific entities only
(e.g., restaurants have a food type, but bars do not). Dialogue
acts take the formactt(a=v)whereactt is the dialogue act
type,a is an attribute or slot andv is its value (for example,
inform(food=Chinese)).

3.1. The bigram model

The bigram model reflects the dialogue phenomenon ofad-
jacency pairs[3]. For example, a question is typically fol-
lowed by an answer, an apology by an apology-downplayer,
and a confirmation (“you want Chinese food?”) is typically
followed by an affirmation (“Yes please.”), or negation (“No,
I want Indian.”).

The bigram model is trained from data using maximum
likelihood. A corpus of dialogues obtained from a recent trial
involving several statistical dialogue systems includingthe
HIS system [4] was used to estimate the probabilities. Since
many combinations of dialogue act types are never observed,
Witten–Bell smoothing was applied to deal with data sparsity.

3.2. The item matching model

The item matching model reflects the probability that a user
act is consistent with the partition and the last system act.
Each partition represents a hypothesised, possibly underspec-
ified user goal. For example,find(restaurant(food=Chinese))
represents the set of all goals relating to a Chinese restaurant.

The item matching model is deterministic, assigning ei-
ther a full match probabilityor a no match probability, de-
pending on the outcome of matching the user act with the
current partition. These matching probabilities are optimised
empirically. For example, the user is not likely to ask about
Indian food when the user goal actually indicates he wants
a Chinese restaurant. Therefore, the act content (items, con-
sisting of slot-value-pairs) of aninform should match the
partition. On the other hand, a negation is not very likely if
the content of the last system act matches the partition.

The design of the matching model is formalised in terms
of dialogue actpreconditions[5]. The preconditions of an
action specify the conditions that the current dialogue state
has to satisfy in order for an agent to perform that action.
The user wanting to find a Chinese restaurant motivates
him to perform the actioninform(type=restaurant,
food=Chinese) (assuming cooperativity in the sense that
the system will try to satisfy the user’s goal once it has
been informed about it). Each precondition is defined in
terms of an agent, a propositional attitude (typically ‘wants’),
and a propositional argument (typically a slot-value pair).
For example,inform(food=Chinese) has the precon-
dition ‘U WANTS (food=Chinese)’, whereas anegate()
afterconfirm(food=Indian) has the precondition ‘not
WANTS (food=Indian)’.

In Table 1, some examples are given of dialogue acts and
their preconditions in terms of propositional attitudes ofthe
user, and what matching operations against a partition are re-
quired for these preconditions to be satisfied. Since the pre-
conditions do not depend on the slots and their values that are
specific to the domain, the item match model specification is
domain-independent.

In some cases, the preconditions should include other
kinds of properties than items from user and system acts to
be matched against the partition. For example, the user is
only likely to ask for alternatives if the system has offered
a venue. This is the case for partitions in which the ’name’
slot is instantiated. A similar argument can be made about
request(.): the user is only likely to ask for more infor-
mation about a venue if such a venue is under discussion.

4. EVALUATING THE USER ACT MODEL

The user act model is evaluated in two ways. The first ap-
proach compares the overall system performance of the dia-
logue manager with the user act model included in Equation 1
and with it excluded. The second approach investigates the
user act model as an information source which can be used to
rescore the N-best list of user acts as obtained from the speech
understanding system.



User act Preconditions Matching
inform(a=x,b=y) U WANTS a=x, b=y a=x, b=y
request(a,b=x) U WANTS b=x b=x

U WANTS U KNOWS VAL a a
reqalts(a=x) U WANTS a=x a=x
confirm(a=x) U WANTS U KNOWS IF a=x a=x
affirm() [sys:confirm(a=x)]

U WANTS a=x a=x
affirm(b=y) [sys:confirm(a=x)]

U WANTS a=x a=x
U WANTS b=y b=y

negate() [sys:confirm(a=x)]
not(U WANTS a=x) not(a=x)

negate(b=y) [sys:confirm(a=x)]
U BEL S BEL U WANTS a=x
not(U WANTS a=x) not(a=x)
U WANTS b=y b=y

Table 1. Selection of user acts, their preconditions, and re-
quired matching operations; for cases in which it is rele-
vant, the last system act [sys: act] is given. Further nota-
tion: KNOWS VAL : ‘knows the value of’;BEL: ‘believes’;
‘not(a=x)’: the item (a=x) may not match the partition.)

4.1. System performance on simulated data

For the system evaluation approach, we used a user simula-
tor [6] to run a large number of simulated dialogues with the
dialogue manager and then measured the system performance
in terms of average dialogue score and success rate. A dia-
logue is considered to be successful, if the correct venue has
been offered and the additional information has been given,as
specified in the predefined user goal. The score of a dialogue
is obtained by subtracting 1 point for each turn and adding 20
points in case of a successful dialogue.

In Figure 2, results are given comparing the success rates
for the system with and without the UAM in operation and
also with only the bigram component disabled. The results
were obtained by running 3000 simulated dialogues with the
system at different error rates for both configurations.
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Fig. 2. Success rates for the HIS DM, comparing different
configurations of the UAM.

The results clearly show a dramatic improvement in suc-
cess rate when using the UAM (the dialogue scores not given
here for lack of space show the same tendency). However,
the bigram model does not have a significant impact on per-
formance, since the scores are very similar when the bigram
distributions are set to uniform. Figure 2 also compares the
success rates of using 1-best and 2-best lists of simulated user
acts. These results show that the system can benefit more
from the UAM by using multiple user act hypotheses instead
of just the 1-best, especially at the higher error rates.

4.2. Evaluating rescoring of N-best lists on real user data

For the semantic evaluation approach, the effect the UAM has
on the N-best list of user acts and their probabilities generated
by the speech understanding system was investigated. Since
the UAM determines how likely user acts are given the current
dialogue state, and the semantic decoder does not take the
dialogue state into account, N-best lists that are rescaledby
the UAM should be more accurate [7].

Using the trial data mentioned in Section 3, we have eval-
uated the semantic decoder output before and after apply-
ing the user act model. The trial systems all used the same
speech understanding component, in which the speech recog-
niser generated 10-best lists of utterances, which were then
semantically decoded into N-best lists of typically no more
than 3 user act hypotheses. The trials were conducted in noisy
conditions to induce a relatively high error rate. For each user
act a′

u
in the N-best list, the original observation probabil-

ity P (a′

u
|o′) was rescored by multiplying it with the user act

model probabilitiesP (a′

u
|p′(h), am), weighted by the current

beliefs of the hypothesesh containing this user act:

P (a′

u
|o′) ·

∑

h

P (a′

u
|p′(h), am) · P (h) (3)

wherep′(h) denotes the partition associated with a particular
hypothesis.

The semantic output is evaluated using different metrics
that operate on thesemantic itemsa dialogue act consists of,
a semantic item being either a slot-value pair or the dialogue
act type. The scores obtained are based on the number of
item-level substitutions, insertions and deletions. The met-
rics considered are the oracle accuracy (OAcc), the accuracy
of the top-ranked user act hypothesis (TAcc), the confidence-
weighted recall (RCL) and precision (PRC), and the item-
level cross entropy (ICE). The ICE metric was proposed in
[8] as an effective measure for evaluating the usefulness ofan
N-best list of semantic hypotheses within a dialogue system
(note that smaller ICE values indicate higher quality).

Table 2 gives the results both for using only the trial di-
alogues that were obtained with the HIS system (the top two
rows in the table), and for all of the trial dialogues, regard-
less of the particular dialogue manager used (the bottom two
rows).

For all of the metrics used, the rescored probabilities show
an improvement over the original observation probabilities
that is consistent over all datasets. However, in contrast to
what might have been expected from the evaluations with
simulated dialogues, the differences are marginal. The gain in
performance that could be made by employing larger N-best



Rescore Corp Turns Acts OAcc TAcc RCL PRC ICE
NONE HIS 779 1.4 78.9 74.9 75.6 81.3 1.744
UAM HIS 779 1.4 78.9 75.3 75.8 81.5 1.739
NONE all 4231 1.4 77.2 72.9 73.8 80.2 2.036
UAM all 4231 1.4 77.2 73.2 73.9 80.4 2.032

Table 2. Semantic evaluation results for trial data. Corp de-
notes the corpus of dialogues used, Turns denotes the number
of user turns, Acts denotes the average number of act hypothe-
ses in each N-best list per turn.

lists of user acts generated by the simulator is not reflectedby
the semantic evaluations on real data.

In order to relate the system performance results on the
simulated data with the semantic evaluation results, we also
ran 1000 simulated dialogues on different error rates and per-
formed semantic evaluations on the N-best lists of simulated
user acts and their rescored versions. The results in Table 3
show that the UAM now has a stronger impact, particularly
on the ICE scores.

Rescore ER Turns Acts OAcc TAcc RCL PRC ICE
NONE 15 8374 1.1 93.7 87.7 92.0 88.5 0.756
UAM 15 8374 1.1 93.7 88.3 92.1 98.0 0.138
NONE 30 9832 1.6 91.5 76.6 80.8 78.8 1.405
UAM 30 9832 1.6 91.5 79.1 81.6 86.4 0.971
NONE 45 10231 1.7 90.3 73.1 77.4 75.7 1.689
UAM 45 10231 1.7 90.3 76.0 78.4 83.0 1.275

Table 3. Semantic evaluation results for simulated dialogues.
ER denotes the error rate of the simulated user acts.

From these evaluation results, one can conclude that the
UAM can potentially make a significant difference in both
system performance and obtaining more accurate N-best lists,
but the nature of the N-best lists generated by the semantic
decoder in the trial data is such that the UAM cannot do much
to improve it. The acts in the simulated N-best lists [9] show
more variation and have higher oracle scores, enabling the
UAM to rescore them more effectively.

5. CONCLUSION

This paper has reported on the user act model within the
HIS-POMDP dialogue manager. The model is a theoretically
well-founded hybrid model, consisting of a bigram and an
item matching model. The bigram model reflects the notion
of adjacency pairs of dialogue act types, and can be trained
from data, using maximum likelihood. In the design of the
item matching model, the notion of dialogue act preconditions
is used, thereby providing a theoretically well-founded and
domain-independent procedure for determining the logical
consistency of a user act w.r.t. the current dialogue state.

Experimental evaluations on simulated dialogues showed
that the UAM plays a key role in improving robustness at
higher error rates, provided good quality N-best lists are avail-
able. Since the gain in system performance on the simulated
data can almost entirely be ascribed to the item matching
model, the bigram model clearly needs improvement and we

are currently investigating longer span models in which pre-
vious user acts are included.

Evaluation results on real dialogues in terms of rescor-
ing dialogue act hypotheses indicated that on N-best lists that
have less variability and a relatively poor oracle accuracy, the
UAM has only a small effect. This confirms our intuition
that the generation of high quality N-best lists by the speech
understanding system is crucial to obtaining robust dialogue
system performance in adverse conditions.
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