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Most previous work on trainable language generation has focused on two paradigms: (a)
using a statistical model to rank a set of pre-generated utterances, or (b) using statistics to
determine the generation decisions of an existing generator. Both approaches rely on the existence
of a handcrafted generation component, which is likely to limit their scalability to new domains.
The first contribution of this paper is to present BAGEL, a fully data-driven generation method
which treats the language generation task as a search for the most likely sequence of semantic
concepts and realisation phrases according to Factored Language Models (FLMs). As domain
utterances are not readily available for most NLG tasks, a large creative effort is required to
produce the data necessary to represent human linguistic variation for non-trivial domains. This
paper is based on the assumption that learning to produce paraphrases can be facilitated by
collecting data from a large sample of untrained annotators using crowdsourcing—rather than
a few domain experts—by relying on a coarse meaning representation. A second contribution
of this paper is to use crowdsourced data to show how dialogue naturalness can be improved by
learning to vary the output utterances generated for a given semantic input. Two data-driven
methods for generating paraphrases in dialogue are presented: (a) by sampling from the N-
best list of realisations produced by BAGEL’s FLM reranker; and (b) by learning a structured
perceptron predicting whether candidate realisations are valid paraphrases. We train BAGEL on
a set of 1,956 utterances produced by 137 annotators, which covers 10 types of dialogue acts
and 128 semantic concepts in a tourist information system for Cambridge. An automated eval-
uation shows that BAGEL outperforms utterance class LM baselines on this domain. A human
evaluation of 600 resynthesized dialogue extracts shows that BAGEL’s FLM output produces
utterances comparable to a handcrafted baseline, while the perceptron classifier performs worse.
Interestingly, human judges find the system sampling from the N-best list to be more natural
than a system always returning the 1-best utterance. The judges are also more willing to interact
with the N-best system in the future. These results suggest that capturing the large variation
found in human language using data-driven methods is beneficial for dialogue interaction.
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1. Introduction

The field of natural language generation (NLG) was one of the last areas of compu-

tational linguistics to embrace statistical methods, perhaps because of the difficulty

of collecting semantically-annotated corpora. Over the past decade, statistical NLG

has followed two lines of research. The first one, pioneered by Langkilde and Knight

(1998), introduces statistics in the generation process by training a model which reranks

candidate outputs of a handcrafted generator. Their HALOGEN system uses an n-gram

language model trained on news articles. HALOGEN is thus domain-independent, and

it was successfully ported to a specific dialogue system domain (Chambers and Allen

2004). However, its performance depends largely on the granularity of the underlying

meaning representation, which typically includes syntactic and lexical information. A

major issue with data-driven NLG systems is that collecting fine-grained semantic an-

notations requires a large amount of time and expertise. For most domains, handcrafting

templates remains a more cost-effective solution.

More recent work has investigated other types of reranking models, such as hierar-

chical syntactic language models (Bangalore and Rambow 2000), discriminative models

trained to replicate user ratings of utterance quality (Walker, Rambow, and Rogati 2002),

or language models trained on speaker-specific corpora to model linguistic alignment

(Isard, Brockmann, and Oberlander 2006). However, a major drawback of the utterance-

level overgenerate and rank approach is its inherent computational cost. In contrast, this

paper proposes a method in which local overgeneration can be made tractable through

beam pruning.

A second line of research has therefore focused on introducing statistics at the

generation decision level, by training models that find the set of generation param-

eters maximising an objective function, e.g. producing a target linguistic style (Paiva
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and Evans 2005; Mairesse and Walker 2008), generating the most likely context-free

derivations given a corpus (Belz 2008), or maximising the expected reward using rein-

forcement learning (Rieser and Lemon 2010). While such methods do not suffer from

the computational cost of an overgeneration phase, they still require a handcrafted

generator to define the generation decision space within which statistics can be used

to find an optimal solution. Recently, research has therefore focused on reducing the

amount of handcrafting required by learning to infer generation rules from data (see

Section 2).

This paper presents BAGEL, an NLG system that can be fully trained from utter-

ances aligned with coarse-grained semantic concepts. BAGEL aims to produce natu-

ral utterances within a large dialogue system domain, while minimising the overall

development effort. Since repetitions are common in human–computer interactions—

especially when facing misunderstandings—a secondary objective of this paper is to

improve dialogue naturalness by learning to generate paraphrases from data. While do-

main experts can be used to annotate data, domain utterances are not readily available

for most NLG tasks, hence a creative process is required for generating these utterances

as well as matching semantics. The difficulty of this process is increased for systems

aiming at producing a large amount of linguistic variation, since it requires enumerating

a large set of paraphrases for each domain input. This paper is based on the assumption

that learning to produce paraphrases can be facilitated by collecting data from a large

sample of annotators. However, this requires that the meaning representation should

(a) be simple enough to be understood by untrained annotators, and (b) provide useful

generalisation properties for generating unseen inputs. Section 3 describes BAGEL’s

meaning representation, which satisfies both requirements. Section 4 then details how

our meaning representation is mapped to a phrase sequence, using cascaded Factored
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Language Models with backoff smoothing. Section 5 presents two methods for using

BAGEL’s probabilistic output for paraphrase generation in dialogue. Section 6 illustrates

how semantically-aligned training utterances for a large tourist information domain

were collected using crowdsourcing. Section 7 then evaluates the trained models in a

dialogue setting, by showing that (a) BAGEL performs comparably to a handcrafted

rule-based generator; and (b) human judges prefer systems sampling from the N-

best output over systems always selecting the top ranked utterance. Finally, Section 8

discusses the implication of these results as well as future work.

2. Related work

While statistics have been widely used to tune NLG systems, most previous work on

trainable NLG has relied on a pre-existing handcrafted generator (Langkilde and Knight

1998; Walker, Rambow, and Rogati 2002). Only recently has research started to develop

NLG models trained from scratch, without any handcrafting beyond the definition of

the semantic annotations.

In order to reduce complexity, previous work has split the NLG task into two

phases: (a) sentence planning and (b) surface realization. The sentence planning phase

maps input semantic symbols to an intermediary tree-like or template structure repre-

senting the utterance, then the surface realization phase converts it into the final text.

As developing a sentence planner capable of overgeneration typically requires sub-

stantial amount of handcrafting (Walker, Rambow, and Rogati 2002; Stent, Prasad, and

Walker 2004), Stent and Molina (2009) have proposed a method which learns sentence

planning rules from a corpus of utterances labelled with Rhetorical Structure Theory

(RST) discourse relations (Mann and Thompson 1988). While additional handcrafting is

needed to map the sentence plan to a valid syntactic form by aggregating the syntactic

structures of the relations arguments, we believe RST offers a promising framework for
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improving the expressiveness of statistical generators. Section 8 discusses how BAGEL’s

expressiveness could be improved by including RST relations.

Language models (LMs) have previously been used for language generation in

order to remove the need for a handcrafted overgeneration phase (Oh and Rudnicky

2002; Ratnaparkhi 2002). Oh and Rudnicky’s (O&R) approach trains a set of word-

based n-gram LMs on human–human dialogues, one for each utterance class in their

corpus. An utterance class corresponds to the intent and zero or more slots in the input

dialogue act. At generation time, the corresponding LM is used for overgenerating a

set of candidate utterances, from which the final utterance is selected based on a set of

reranking rules. Ratnaparkhi addresses some limitations of the overgeneration phase

by comparing systems casting the NLG task as (a) a search over a word sequence

based on an n-gram probabilistic model, and (b) as a search over syntactic dependency

trees based on models predicting words given its syntactic parent and sibling nodes

(Ratnaparkhi 2002). O&R’s method represents the first line of research on NLG that

limits the amount of handcrafting to a small set of post-processing rules, in order to

facilitate the development of a dialogue system’s NLG component. Section 7.1 there-

fore compares BAGEL’s performance with O&R’s utterance class LM approach, and

discusses differences between the two techniques.

Data-driven NLG research has also been inspired by research on semantic parsing

and machine translation. The WASP−1 generator combines a language model with an

inverted synchronous CFG parsing model, effectively casting the generation task as

a translation problem from a meaning representation to natural language (Wong and

Mooney 2007). WASP−1 relies on GIZA++ to align utterances with derivations of the

meaning representation (Och and Ney 2003). Although early experiments showed that

GIZA++ did not perform well on our data—possibly because of the coarse granularity
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of our semantic representation—future work should evaluate the generalisation per-

formance of synchronous CFGs in a dialogue system domain. Lu, Ng, and Lee (2009)

show that Tree Conditional Random Fields (CRFs) outperform WASP−1 and their own

inverted semantic parser, based on automated evaluation metrics, however their system

remains to be evaluated by human judges (Lu, Ng, and Lee 2009). Similarly to the

perceptron reranking approach presented here, Tree CRFs learn a log linear model esti-

mating the conditional probability of semantic tree/phrase alignments given an input

semantic tree. While this line of research is promising, the two datasets evaluated—

GEOQUERY and ROBOCUP—contain a large number of utterances that only differ by the

proper name used. For example, 17 out of the 880 instances of the GEOQUERY dataset

match the template ’what is the capital of $STATE’. Such instances are therefore likely to

occur simultaneously in the training and test partitions. In contrast, in our evaluation

such templates are mapped to the same meaning representation, and we enforce the

condition that the generated meaning representation was not seen during training.

Angeli et al. propose a simpler framework in which the generation task is cast as

a sequence of generation decisions selecting either: (a) a database record to express

(e.g., the temperature); (b) a set of fields for that record (e.g., the minimum, maximum);

and (c) a template realizing those fields (e.g., ’with a low around $MINIMUM’). They

train a set of log-linear models predicting individual generation decisions given the

previous ones, using domain-independent features capturing the lexical context as well

as content selection (Angeli, Liang, and Klein 2010). The templates are extracted from

data aligned with the input records using expectation maximization. This approach

offers the benefit of allowing predictions to be made given generation decisions that

are arbitrarily far in the past. However long-range feature dependencies make a Viterbi

search intractable, hence the authors use a greedy search, which produces state-of-
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the-art results on the ROBOCUP dataset and two weather domains. More recently,

Kondadadi, Howald, and Schilder (2013) also decouple the NLG task as a template

extraction and ranking problem, and show that an SVM reranker can produce outputs

comparable to human-authored texts, for weather reports and short biographies.1

Konstas and Lapata (2012) jointly model content selection and surface realization

by training a forest of PCFGs expressing the relation between records, fields and words.

A Viterbi search is used to find the optimal derivations at generation time, however the

PCFG weights are rescored using an averaged structured perceptron using both content

selection and lexical features. The authors show that their approach outperforms Angeli

et al.’s method on the air transport query domain (ATIS dataset). This paper evaluates

the same averaged structured perceptron algorithm within the BAGEL framework (see

Sections 5.2 and 7.2).

Most other work on data-driven NLG has focused on learning to map syntax to

text. The surface realisation task is an attractive research topic as it is not tied to a

specific application domain. Factored language models have been used for surface real-

isation within the OpenCCG framework (White, Rajkumar, and Martin 2007; Espinosa,

White, and Mehay 2008). More generally, chart generators for different grammatical

formalisms have been trained from syntactic treebanks (Cahill and van Genabith 2006;

White, Rajkumar, and Martin 2007; Nakanishi et al. 2005), as well as from semantically-

annotated treebanks (Varges and Mellish 2001). Since manual syntactic annotation is

costly and syntactic parsers do not necessarily perform well at labelling spoken lan-

guage utterances, the present work focuses on the generation of surface forms directly

from semantic concepts. Future work should investigate whether explicit syntactic

1 These papers were published after the main BAGEL development and thus no detailed comparisons are
offered in this article.
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modelling improves performance, e.g. by conditioning the realisation FLMs on part-

of-speech information.

Previous studies have shown that paraphrasing improves performance in auto-

mated tutoring dialogues (Pon-Barry et al. 2006), and suggested that users prefer dia-

logue systems in which repetitions are signalled (e.g. ’as I said before’), even though that

preference was not significant (Foster and White 2005). However, we do not know of

any research applying statistical paraphrasing techniques to dialogue. Most research on

paraphrasing has focused on unsupervised techniques for extracting paraphrases from

a corpus of written text. Proposed techniques learn to identify phrase templates which

tend to have the same arguments in a monolingual corpus (Lin and Pantel 2001), or to

detect variations between translations of the same text (Barzilay and McKeown 2001;

Bannard and Callison-Burch 2005). While these methods could be used to enrich an

existing generator, they do not model semantics, hence they cannot be applied directly

for NLG. Statistical reranking models have been used for over a decade for language

generation (Langkilde and Knight 1998), however we do not know of any evaluation

of their paraphrasing power. Whereas linguistic variation is typically ignored in NLG

systems, a recent line of research has started investigating how to control a generator to

convey a specific style, e.g. to generate language with a target linguistic genre (Paiva and

Evans 2005), to convey a specific personality trait (Mairesse and Walker 2008, 2011), or to

align with their conversational partner (Isard, Brockmann, and Oberlander 2006). These

systems use statistics for controlling the style of their output, however they require an

existing handcrafted generator, and they were not evaluated within a dialogue context.

We believe that the techniques presented here can also be used for stylistic control by

including stylistic elements in our stack-based semantic representation, however we

leave this as future work.
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Another line of work has used NLG paraphrase mechanisms to show that jointly

optimising NLG and speech synthesis can improve human perceptions of voice quality.

This was achieved by finding the candidate paraphrase yielding the lowest speech unit

concatenation cost using weighted finite state transducers (Bulyko and Ostendorf 2002)

or by using a discriminative reranker trained to predict human judgements of synthesis

quality (Nakatsu and White 2006). Similarly, Stone et al. (2004) propose a method using

dynamic programming for simultaneously optimising NLG, speech synthesis and ges-

ture in animated characters. While all three approaches learn the paraphrase selection

step from data, they rely on handcrafted NLG for producing candidates. Hence future

work should investigate whether voice quality could also be improved by composing

the N-best paraphrases generated by BAGEL with a prosodic reranker.

3. Phrase-based generation from semantic stacks

BAGEL uses a stack-based semantic representation to constrain the sequence of semantic

concepts to be searched. This representation can be seen as a linearised semantic tree

similar to the one previously used for natural language understanding in the Hidden

Vector State model (He and Young 2005). A stack representation provides useful gen-

eralisation properties, and it allows for efficient sequential decoding using dynamic

programming. In the context of dialogue systems, Figures 1 and 2 illustrate how the

input dialogue act—i.e. a semantic tree—is mapped to a set of stacks of semantic

concepts (represented as boxes) and aligned with a phrase sequence, resulting in one

stack/phrase pair per time frame. The root concept of the semantic tree—i.e. the bottom

concept in each stack—expresses the overall communicative goal of the utterance and

is referred to as a dialogue act type. For example, the inform dialogue act type in Figure 1

indicates that the utterance provides information about an entity matching the user’s

constraints; the dialogue act type informall in Figure 2 indicates that all the entities
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Figure 1
Example utterance for the inform dialogue act type, with aligned semantic tree and
corresponding stack sequence in boxes. Mandatory stacks are in bold.

matching some of the user’s constraints also satisfy other constraints. In contrast, the

reject dialogue act type indicates that the system cannot find an entity matching the

specified constraints. See Table 4 in Section 6 for more example dialogue act types.

Non-root semantic concepts include attributes of that entity under consideration (e.g.,

name, food and area at frame 1, 3 and 9 in Figure 1), values for those attributes (e.g.,

respectively name(Jinling), food(Chinese) and area(centre) in Figure 1), as well as

special symbols for logical quantifiers (e.g., all in Figure 2), negations (not) or specify-

ing that an attribute is irrelevant (dontcare). Punctuation symbols are modelled using

the semantic concept punct, as in frame 7 in Figure 1.

The generator’s goal is thus to find the most likely realisation given an unordered

collection of mandatory semantic stacks Sm derived from the input dialogue act. Manda-

tory stacks are represented in bold in Figure 1, such as inform(area(centre)) in frame

9. While mandatory stacks must all be conveyed in the output realisation, Sm does not

contain the optional filler stacks Si that can refer to (a) general attributes of the object

under discussion (e.g., inform(area) in frame 8); (b) to concepts that are not in the input

at all, which are associated with the singleton stack inform (e.g., phrases specific to a
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area 
all 
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Figure 2
Example utterance for the informall dialogue act type, with aligned semantic tree and
corresponding stack sequence in boxes. Mandatory stacks are in bold.

dialogue act type such as ’is a’ in Figure 1, or clause aggregation operations such as

’and’); or (c) to punctuation symbols (e.g., inform(punct) in frame 7).

The general philosophy behind our semantic formalism is to match the practical

requirements of an information presentation dialogue system, i.e. a dialogue manager

typically returns a tree-like structure of coarse-grained semantic concepts describing (a)

the overall dialogue act type, (b) the constraints over entities stored in a domain-specific

database, as well as (c) logical modifiers expressing relations between sets of domain

entities, depending on the dialogue act type. A major advantage of our formalism

compared to more fine-grained formalisms (e.g., lambda calculus) is that it can be easily

understood by human annotators. We believe that this is a crucial point for collecting

the range of utterances required for learning to generate natural paraphrases in large

domains (see Section 6). Furthermore, Section 8 discusses how its expressiveness could

be extended by including additional discourse structures.

BAGEL’s granularity is defined by the semantic annotation in the training data,

rather than external linguistic knowledge about what constitutes a unit of meaning,
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i.e. contiguous words belonging to the same semantic stack are modelled as an atomic

observation unit or phrase.2 In contrast with word-level language models, a major

advantage of phrase-based generation models is that they can model long-range de-

pendencies and domain-specific idiomatic phrases with fewer parameters.

4. FLM-based statistical NLG

In order to find the optimal stack and realisation phrase sequences given an input

dialogue act, we cast the generation task as a search over Factored Language Models

(FLMs), which were introduced by Bilmes and Kirchhoff (2003). FLMs extend tradi-

tional language models by allowing predicted variables to be conditioned on differ-

ent utterance contexts, depending on whether they were sufficiently observed in the

training data. This approach is equivalent to a dynamic Bayesian network in which

the probability of child nodes are estimated by interpolating over different parent

nodes. Dynamic Bayesian networks have been used successfully for speech recognition,

natural language understanding, dialogue management and text-to-speech synthesis

(Rabiner 1989; He and Young 2005; Lefèvre 2006; Thomson and Young 2010; Tokuda

et al. 2000). Such models provide a principled framework for predicting elements in

a large structured space, such as required for non-trivial NLG tasks. Additionally, their

probabilistic nature makes them suitable for modelling linguistic variation, i.e. there can

be multiple valid paraphrases for a given input.

4.1 NLG as a Viterbi-search pipeline

BAGEL models the generation task as finding the most likely sequence of realisation

phrases R∗ = (r1...rL) given an input dialogue act. Each dialogue act is represented as

a set of mandatory semantic stacks Sm (unordered), with |Sm| ≤ L. BAGEL must thus

2 The term phrase is thus defined here as any sequence of one or more words.
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derive the optimal sequence of semantic stacks S∗ that will appear in the utterance given

Sm, i.e. by inserting filler stacks if needed and by performing content ordering. Let us

define the set of mandatory stack orderings as Order(Sm). Any number of filler stacks

can be inserted between two consecutive mandatory stacks, as long as all their concepts

are included in either the previous or following mandatory stack, and as long as each

stack transition leads to a different stack (see example in Figures 1 and 2). For each

mandatory stack sequence Sm in Order(Sm), let us define the set of all possible stack

sequences matching the filler insertion constraints as Fill(Sm).

Ideally, we would like to learn a model which estimates the probability of a realisa-

tion given a dialogue act P (R|Sm) from a training set of realisation phrases aligned with

semantic stack sequences. During the generation process, the realisation probability can

be computed by marginalising over all possible semantic stack sequences satisfying the

dialogue act constraints:

P (R|Sm) =
X

Sm∈Order(Sm)

X
S∈Fill(Sm)

P (R,S,Sm|Sm)

=
X

Sm∈Order(Sm)

X
S∈Fill(Sm)

P (R|S,Sm,Sm)P (S|Sm,Sm)P (Sm|Sm)

=
X

Sm∈Order(Sm)

P (Sm|Sm)
X

S∈Fill(Sm)

P (R|S)P (S|Sm) (1)

Inference over such a model would require the decoding algorithm to consider all

possible underlying stack sequences together with all possible realisations, which is

intractable for non-trivial domains. Since a key requirement of this work was to develop

data-driven techniques that can be used to generate utterances in real-time, the genera-

tion task is approximated by splitting it into 3 sequential decoding steps illustrated in

Figure 3:

13

Computational Linguistics Just Accepted MS. 
doi: 10.1162/COLI_a_00199 
© Association for Computational Linguistics 



Computational Linguistics Volume xx, Number yy

!"#$"%&%'()*'+#,-.'/)0#'

0"-%"1234'
#1"$5'/)0'

/+66'#1"$5'
/)0'

7&"6,#"82-'
9:3"#&'
/)0'

Dialogue act/ 
mandatory 
stack set 

N-best  
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search 

N-best Viterbi  
search 

N-best Viterbi  
search 

Figure 3
Architecture of an FLM-based statistical generator with 3 decoding stages.

1. The ordering of mandatory stacks Sm is predicted independently from the

filler stacks and the realisation phrases. This model can be seen as a

high-level content ordering model. For example, it learns whether or not

the information about the venue’s area should follow the information

about nearby venues. In order to limit the impact of this approximation,

the top N sequences are selected as candidate inputs to the following step

(argmaxN), rather than only the first best. Hence the first generation step

requires computing:

S∗m = argmaxN
Sm∈Order(Sm)

P (Sm|Sm) (2)

2. The resulting N-best mandatory stack sequences S∗m are used to constrain

the search for the full stack sequence S (i.e., by inserting filler stacks

between consecutive mandatory stacks). For example, given that the

information about the area follows the information about nearby venues,

the model might predict that the actual area needs to be introduced by an

area-specific expression (see filler stack at time t = 8 in Figure 1). Hence

for the second generation step we compute:

S∗ = argmaxN
S∈Fill(S∗m)

P (S|S∗m) (3)
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3. The resulting N-best full stack sequences S∗ are used to condition the

search for the realisation phrase sequence R. For example, the realisation

phrase model is likely to predict that ’in the’ and ’centre of town’ should be

associated with the two semantic stacks characterising the area (see

phrases at t = 8 and t = 9 in Figure 1). Hence the third generation step

requires computing:

R∗ = argmaxN
R=(r1...rL)

P (R|S∗) (4)

Each decoding step can be computed using dynamic programming, however the

decoding efficiency depends highly on the locality of context features. In the basic

decoder, we factorise our models by conditioning the realisation phrase at time t on

the previous phrase rt−1, and the previous, current, and following semantic stacks. The

semantic stack st at time t is assumed to depend only on the previous two stacks:

P (Sm|Sm) =

8<:
QT

t=1 P (st|st−1, st−2)
if Sm ∈ Order(Sm)

0 otherwise
(5)

P (S|S∗m) =

8<:
QT

t=1 P (st|st−1, st−2)
if S ∈ Fill(S∗m)

0 otherwise
(6)

P (R|S∗) =
TY

t=1

P (rt|rt−1, s∗t−1, s∗t, s
∗
t+1) (7)

As dynamic Bayesian networks typically require sequential inputs, some processing

is needed to learn to map a set of semantic stacks to a phrase sequence. This is achieved

by keeping track of the mandatory stacks that were visited in the current sequence and

pruning any sequence that has not included all mandatory input stacks on reaching the

final frame. Since the number of filler stacks is not known at decoding time, the network
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is unrolled for a fixed number of frames T defining the maximum number of phrases

that can be generated (e.g., T = 50). The end of the stack sequence is then determined by

a special end symbol, which can only be emitted within the T frames once all mandatory

stacks have been visited. The probability of the resulting utterance is thus computed

over all frames up to the end symbol, which determines the lengthL of S∗ and R∗. While

the decoding constraints enforce that L > |Sm|, the search for S∗ requires comparing

sequences of different lengths. A consequence is that shorter sequences containing only

mandatory stacks are likely to be favoured. While future work should investigate length

normalisation strategies, we find that the learned transition probabilities are skewed

enough to favour stack sequences which include filler stacks.

BAGEL solves Equations (2), (3) and (4) by doing three pipelined Viterbi searches

to find the optimal sequence of output symbols (mandatory semantic stacks, filler

stacks, and realisation phrases) given the input (unordered mandatory stacks, ordered

mandatory stacks, and the full stack sequence, respectively). Our initial generator thus

consists of a pipeline of three FLMs, as illustrated in Figure 3. In terms of computa-

tional complexity, the number of stack sequences Order(Sm) to search over during

the first decoding step increases exponentially with the number of input mandatory

stacks. However, the proposed three-stage architecture allows for tractable decoding

by (a) pruning low probability paths during each Viterbi search, and (b) pruning low

probability sequences from the output N-best list of each component.

4.2 Generalisation to unseen contexts

FLMs allow predicted symbols to be conditioned on any contextual feature. Further-

more, if a feature was not observed during training time, the FLM can backoff to more

general features according to a predefined backoff strategy. This section shows how the
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generation process can be made more robust to unseen dialogue acts by factoring the

semantic stack and realisation phrase variables.

4.2.1 Partial stack modelling. A robust language generator should be able to infer

that some stack sequences are more likely than others even if they were only partially

observed during training, based on co-occurrences on individual stack concepts. For ex-

ample, such a generator should learn that inform(type(restaurant)) is likely to follow

inform(pricerange(cheap)) based on the observation of inform(pricerange(cheap))

followed by inform(type(hotel)). However, if inform(type(restaurant)) has not

been seen during training, it will be assigned a low probability regardless of

its context. This can be alleviated by factorising the stack variable into under-

specified stack configurations, i.e. model the probability of observing a stack

st as the probability of observing the tail of the stack lt as well as the head

of the stack ht given its tail. In other words, the probability of a stack oc-

currence given the previous stack is factorised as P (st|st−1) = P (ht, lt|st−1) =

P (lt|st−1)P (ht|lt, st−1). As a result, the probability that inform(pricerange(cheap)) is

followed by inform(type(restaurant)) will be high even if inform(type(restaurant))

was not observed, as long as inform(pricerange(cheap)) is frequently followed by the

tail symbol inform(type(SOMETHING)) in the training data.

While the proposed factorisation does not entirely resolve the data sparsity issue,

it limits its impact to a single factor. In the example above inform(type(restaurant))

has not been seen during training, hence there is no data to estimate the probability that

the head symbol restaurant governs inform(type(SOMETHING)) in the second factor.

A solution is to back off to the probability of restaurant occurring in a more general

context (e.g., ignoring the underlying stack concepts). The backoff graphs of the two
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(a) Semantic stack head ht and
tail lt factor decomposition. The
full stack probability is obtained
by multiplying both factors using
the chain rule.
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(b) Realisation phrase rt given previous phrase rt−1 and
semantic context st−1, st, st+1. At each parallel backoff step
(2, 4, and 5), the probability of the most likely backoff path is
used.

Figure 4
Backoff graphs for (a) the semantic stack FLMs and (b) the realisation phrase FLM.

Table 1
Example utterance annotation used to estimate the conditional probability distributions in
Figures 4 and 6 ( rt=realisation phrase, st=semantic stack, ht=stack head, lt=stack tail).

rt st ht lt
<s> START START START
The Rice Boat inform(name(X)) X inform(name)
is a inform inform EMPTY
restaurant inform(type(restaurant)) restaurant inform(type)
in the inform(area) area inform
riverside inform(area(riverside)) riverside inform(area)
area inform(area) area inform
that inform inform EMPTY
serves inform(food) food inform
French inform(food(French)) French inform(food)
food inform(food) food inform
</s> END END END

factors are illustrated in Figure 4(a), and an example sequence of backoff variables is

shown in the right column of Table 1.

While the example above shows how a partial stack representation can improve

semantic stack ordering, it can also be used to assign non-zero probabilities to realisation

phrases observed in unseen semantic contexts, by backing off to the head and the tail

of the stack. This process is illustrated by the second and third backoff steps of the
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realisation backoff graph in Figure 4(b). The neighbouring semantic stacks st−1 and

st+1 are first replaced by their stack tail lt−1 and lt+1, respectively (step 2). If none of

the three resulting contexts were observed during training, the current semantic stack

st is replaced by its stack head ht (step 3). If this context was not observed either,

the variables the furthest away are dropped in the following backoff steps. In extreme

cases, the realisation probability is approximated by the unigram count P (rt) in step

7. This mechanism provides BAGEL with the ability to generalise lexical realisations

across contexts. For example, if reject(area(centre)) was never observed at training

time, P (rt = centre of town|st = reject(area(centre))) can be estimated by backing

off to P (rt = centre of town|ht = centre) in step 6. BAGEL can thus generate ‘there are no

venues in the centre of town’ if the phrase ‘centre of town’ was associated with the concept

centre in a different context, such as inform(area(centre)).

4.2.2 Partial phrase modelling. The robustness of FLM-based generation models can

also be improved by allowing the realisation model to back off to partial phrase contexts.

For example, even if the phrase sequence ‘located in the’ and ‘centre of town’ has not

been seen during training, it would be desirable for it to have a higher probability than

‘located in’ followed by ‘centre of town’, which misses a determiner. This can be achieved

by backing off to the last words of the preceding phrase—e.g., ‘in the’ or ‘the’—which

are more likely to precede ‘centre of town’ in the data. Hence FLMs can learn to predict

function words without allocating them an explicit time frame during decoding. In our

experiments, we sequentially backoff to the last two words and the last word of the

preceding phrase.

The backoff graphs in Figure 4 illustrate the factorisation and backoff strategies of

BAGEL’s decoding models, and Table 1 shows an instantiation of the backoff variables

for an example utterance. The predictions of FLMs can be improved by smoothing
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their probability estimate over different contexts, by interpolating between different

backoff probability distributions (Bilmes and Kirchhoff 2003). In our experiments, the

conditional probability distributions of the three models in Figure 3 are smoothed using

Witten–Bell interpolated backoff smoothing, according to the backoff graphs in Figure 4.

Generally, variables which are the furthest away in time are dropped first, and partial

stack variables are dropped last, as they are observed the most. As the optimal backoff

strategy can vary depending on the context, the realisation model implements parallel

backoff strategies (see steps 2, 4 and 5 in Figure 4(b)), i.e. multiple backoff paths are

explored at run-time, and the probability of each backoff node is computed as the

maximum probability of all outgoing paths.

4.2.3 High cardinality concept abstraction. While one should expect a trainable gener-

ator to learn multiple lexical realisations for a given semantic concept, learning lexical

realisations for high-cardinality database entries (e.g., proper names) would increase

the number of model parameters prohibitively. We thus divide pre-terminal concepts in

the semantic stacks into two types: (a) enumerable attributes whose values are associated

with distinct semantic stacks in our model (e.g., inform(pricerange(cheap))), and (b)

non-enumerable attributes whose values are replaced by a generic symbol before training

in both the utterance and the semantic stack (e.g., inform(name(X)). These symbolic

values are then replaced in the surface realisation by the corresponding value in the

input specification. A consequence is that our model can only learn synonymous lexical

realisations for enumerable attributes.

4.3 Scaling to large domains using large-context reranking FLMs

A major inconvenience of the proposed approach is that the performance of the three

Viterbi decoding steps is highly dependent on the size of the context of the predicted
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Figure 5
Architecture of an FLM-based statistical generator using cascaded large context reranking FLMs.

variable. For example, a trigram phrase model with a vocabulary of size V requires

searching over V symbols times V 2 paths leading to that symbol, at every time step.

Generating utterances for real-time interaction in a realistic domain typically limits

context features to a single neighbouring time frame (i.e., bigram) for both the semantic

stack and realisation models, which results in poor modelling accuracy. In order to

model longer contexts while maintaining acceptable decoding performance, we use a

cascaded reranking approach in which the N-best output of each Viterbi search is reranked

by an FLM. The complexity of the reranking steps grows linearly with N and does not

depend on V , hence its impact on performance is minimal compared with the decoding

steps. Figure 5 illustrates the resulting pipeline of FLM models.

Early experimentation has led us to use the backoff strategies illustrated in Figure 6

for our reranking models, as they offer a rich context while maintaining acceptable

real-time performance. The semantic reranking models are dependent on 3 preceding

time frames, and the realisation reranking model is dependent on the two previous

and two following phrases. Reranking backoff strategies can be more complex than the

strategies used during search, as they are only called over a small number of candidate

sequences. For example, the realisation reranking strategy in Figure 6(b) makes use

of parallel backoff to learn patterns such as ’serves X food’ or ’is a X restaurant’. This

can be achieved by allowing the probability of a phrase to depend on the phrase at
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(a) Semantic stack head ht and tail lt given
previous stacks st−1, st−2, st−3. The full
stack probability is obtained by multiplying
both factors using the chain rule.
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(b) Realisation phrase rt given surround-
ing phrases rt−1, rt−2, rt+1, rt+2, semantic
context st, lt−1, lt+1, and preceding words
w−1

t−1, w−2
t−1.

Figure 6
Backoff graphs for (a) both semantic stack reranking FLMs and (b) the realisation phrase
reranking FLM.

time t− 2 rather than on the preceding phrase (see right branch in Figure 6(b)). Hence

if the pattern exists in the training data, p(rt|lt−1, rt−2) is likely to be preferred over

p(lt−1, rt−1) during reranking, e.g. giving a large probability to rt =‘food’ if rt−2 =‘serves’

and lt−1 =inform(food(SOMETHING)).

5. Stochastic paraphrase generation

Since a dialogue act can typically be conveyed in a large number of ways, it seems

natural to model the NLG task as a one-to-many mapping. However, previous work on

statistical NLG has typically focused on evaluating the top ranked utterance, without

evaluating whether the generator can produce paraphrases matching a reference para-

phrase set (Langkilde-Geary 2002; Reiter and Belz 2009). While single-output NLG is

acceptable for one-off text generation, NLG systems used within long-term human–
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Table 2
Example N-best lists produced by BAGEL with FLM reranking (after normalising the
probabilities to 1, but before thresholding).

N-best list Prob
inform(name(X) area(centre) food(Y))
X serves Y food in the city centre. 0.044
X is an Y restaurant in the city centre. 0.035
X serves Y food in the centre of town. 0.033
X serves Y food in the centre of the city. 0.033
X is a Y restaurant in the city centre. 0.029
X is a Y food in the city centre. 0.028
inform(name(X) area(centre) seetype(architecture))
X is an architectural building in the city centre area. 0.025
X is an architectural building in the city centre. 0.024
X is an architectural building. It is located in the centre of the city. 0.022
X is an architectural building in the centre of town. 0.022
X is an architectural building in the centre of the city. 0.022
X is an architectural building. It is located in the city centre. 0.020
request(area)
Whereabouts were you thinking of? 0.141
In which area of town would you like to eat? 0.136
What type of area are you looking for? 0.020
What type of area would you like? 0.020
What kind of? Area are you looking for? 0.019
Whereabouts are you looking for? 0.018
reject(near(X) unitype(department))
There are no university departments near X. 0.091
Unfortunately, there are no university departments near X. 0.031
I’m sorry, there are no university departments near X. 0.028
Unfortunately, there are no, there are no university departments near X. 0.026
I’m sorry, there are no, there are no university departments near X. 0.024
I am sorry, there are no university departments near X. 0.023
I’m sorry, but there are no, there are no university departments near X. 0.020

computer interaction are likely to benefit from modelling the paraphrasal variation

found in human language, e.g. by reducing the repetitiveness of dialogue system ut-

terances or by improving the chances of successful dialogue clarifications.

However, learning to map a single input to a set of surface realisations is a non-

trivial machine learning problem. One advantage of casting the NLG task as search

over FLMs is that the final N-best list of surface realisations can be used to constrain the

search for valid paraphrases. See Table 2 for examples of BAGEL’s N-best outputs in the

tourist information domain. This section proposes two methods using those outputs to

generate paraphrases which can be used interchangeably in dialogue.
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5.1 N-best selection beam for paraphrasing

We first propose to sample from the top of the N-best list produced by BAGEL’s realisa-

tion reranking FLM shown in Table 2. However, to avoid sampling from the long tail of

low-probability utterances, we only consider utterances whose probability lies within a

selection beam relative to the probability first best utterance p1, i.e. only the utterances

generated with a probability above

pmin = p1 · (1− selection beam)

are kept. The top utterances are typically grammatical and natural, however determin-

ing a cut-off threshold which captures some of the linguistic variation found in the data

without introducing disfluencies is a non-trivial problem. Since many system acts are

associated with multiple reference paraphrases in our data, the BLEU score (Papineni et

al. 2002) can be used to tune the threshold value. BLEU is a corpus-level metric which is

typically used to evaluate a test corpus against a set of reference paraphrases. In order to

evaluate the worth of the predicted set of utterances, each utterance within the selection

beam is considered as part of the test corpus, thus favouring models generating multiple

utterances matching any of the reference paraphrases, rather than a single utterance.

Figure 7(a) shows the BLEU score of paraphrase sets generated using different N-best

selection beams, averaged over a 10-fold cross-validation over 1,646 distinct dialogue

act and paraphrase set pairs collected through crowdsourcing. The data collection

process is detailed in Section 6. It is important to note that none of dialogue acts used

for testing were seen at training time. The BLEU score was computed by treating all

predicted paraphrases as a whole document. We find that including the top 6% of the

N-best list produces a higher BLEU score than using the first best utterance only (BLEU

= .39 vs .37). As a high level of overlap with a reference utterance does necessarily result
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Figure 7
Automated evaluation of BAGEL’s predicted paraphrase sets for different N-best selection
beams. Results are averaged over a 10-fold cross-validation.

in grammatical or natural outputs, Figure 7(b) also looks at the precision and recall of

the generated paraphrase set given the reference set, i.e. only considering exact utterance

matches. Although exact matches are rare on unseen inputs, we find that the optimal F-

measure is obtained when considering the top 8% of the probability mass of the N-best

list, which corresponds to an average of 2.1 paraphrases according to Figure 8. Both

evaluation metrics suggest that generating paraphrases improves linguistic variation

without affecting grammaticality, hence potentially improving naturalness in dialogue.

Unless stated otherwise, we use a selection beam of 8% in our experiments.

Table 2 also provides some insight into the potential limitations leading to unnatural

outputs. We find that some errors arise from the separation between the semantic

stack decoding step and the realisation step, together with an excess of smoothing. For

example, ’X is a Y food in the city centre’ in the first section of Table 2 was associated with

a non-zero probability because the phrase sequence X serves Y food occurs frequently

in the data, hence allowing the stack inform(food(Y)) to be followed by inform(food)

rather than inform(type(restaurant)). At the realisation stage, the is a realisation
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Figure 8
Mean size of the predicted paraphrase sets for different FLM selection beams. Results are
averaged over a 10-fold cross-validation.

phrase is associated with a high probability given an inform stack following a restaurant

name and a sentence start symbol, while the phrase food following is a Y is allowed

because the unseen context gets dropped by the backoff strategy. Similarly, the example

’unfortunately, there are no, there are no university departments near X’ in the last section of

Table 2 is associated with a non-zero probability because the semantic stack decoding

step predicted multiple reject stacks followed by a punctuation mark because the

non-adjacent stack context was smoothed away, leading to phrase repetitions at the

realisation stage. While these type of errors are typical of sequential models trained on

a limited amount of data, they tend to be associated with a lower probability than the

top hypotheses, and additional data would make such errors less likely by allowing for

larger contextual dependencies to be modelled without back off. However FLMs will

always associate a small probability to a large range of utterances, hence there is a need

for selecting paraphrases based on a selection beam or statistical classification methods.
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5.2 Structured perceptrons for paraphrase classification

FLMs can be trained easily by estimating conditional probabilities from feature counts

over a corpus, and they offer efficient decoding techniques for real-time generation.

However, FLMs do not scale well to large feature sets (i.e., contexts), as each additional

feature increases the amount of data required to accurately estimate the FLM’s con-

ditional probability distribution. Backing off as described in Section 4.2 alleviates this

issue, however finding the optimal backoff strategy is non-trivial even for small feature

sets (e.g., 10 features). Furthermore, FLMs are trained to maximise the likelihood of

the training data, hence utterances containing frequent phrases are more likely to be

generated than utterances containing infrequent phrases, even if the latter is part of the

training set. Whilst in the previous section, a selection beam was optimised for selecting

paraphrases, it is learned once and for all regardless of the input. This section therefore

investigates whether performance can be improved through discriminative training,

by rescoring the list of candidate semantic stack and realisation sequences produced

by the FLMs based on binary classification models predicting whether each candidate

sequence is a valid paraphrase. We propose a training method inspired by Collins’ work

on discriminative reranking for part-of-speech tagging and syntactic parsing, which

uses the structured perceptron online algorithm to learn to rerank the output of a gen-

eratively trained model (Collins 2002a, 2002b; Collins and Roark 2004). The structured

perceptron algorithm learns a linear discriminant function of the features Φ(x, y) of both

the input structure x and the output structure y—e.g. semantic stack and realisation

phrase sequences, respectively—by iteratively updating its feature weights α each time

it wrongly predicts a training example. Each update makes the weight vector closer to

the features of the training example, and further away from the incorrect prediction. A

crucial point is that each prediction requires finding the output z which maximises the
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discriminant function given the input x. As a Viterbi search is not tractable because of

the large context dependencies of the features, we limit our search to sequences in the

N-best list GEN(x) produced by the short context FLMs.

While structured perceptrons were previously used to learn a reranking function

(Collins 2002a; Collins and Roark 2004), the resulting scores cannot be used directly

to select multiple valid paraphrases among the candidates. Rather than learning a cut-

off threshold as done in Section 5.1, we cast the perceptron reranking step as a binary

classification task, by updating the perceptron’s weight vector accordingly each time

(a) a reference realisation is classified negatively and (b) a non-reference realisation in

GEN(x) is classified positively. The main difference with Collins’ reranking model is

that the zero of the discriminant function is trained to act as a classification threshold.

At generation time, the learned model classifies each candidate realisation of GEN(x)

to determine whether it should be included in the paraphrase set from which the final

utterance can be selected. It is important to note that this approach iterates over training

pairs generated from the same input dialogue act. A consequence is that the data is

no longer independently and identically distributed, thus potentially increasing the

generalisation error of the models.

The resulting kernelized structured perceptron algorithm adapted to our task is given

in Table 3, which learns a set of feature vectors and their corresponding weights. To

facilitate understanding, Table 3 also presents the simplified algorithm in the case of a

linear kernel, in which the weighted feature vectors are collapsed into a single weight

vector. In our experiments, we use a polynomial kernel of degree 3. The feature vectors

represent the number of occurrences of specific combinations of realisation phrases

and/or semantic stacks in the input and output sequences, with an entry for each

instantiation in the training data of each node of the backoff graph of the large context
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FLM in Figure 6. For example, the backoff node rt|lt−1, rt−2 in Figure 6(b) is used to

derive a feature characterizing the number of occurrences of the phrase ’has’ followed

by the stack tail inform(food(SOMETHING)) followed by the phrase ’food’.

Rather than using the final weight vector to make predictions at generation time,

using the averaged weight vector over all updates was shown to generalise better to

unseen examples (Collins 2002a). Collins has shown that structured perceptrons can

outperform boosting and SVM-based models, with a training complexity growing

linearly with the training set size (as opposed to a cubic complexity for large-margin

classifiers).

The resulting NLG pipeline is illustrated in Figure 9, with a perceptron model

reranking the output of each FLM decoding model. All perceptron models are trained

simultaneously by iteratively generating each training example, and updating each

reranking model if its first-best sequence differs from the reference sequence. This

results in three instantiations of the perceptron algorithm in Table 3. As the output of

the first model in the pipeline affects the training process of subsequent models, the

candidate N-best list is reranked twice: (a) before updating the perceptron’s weight

vector in order to find whether the current best hypothesis matches the reference, and

(b) after updating the weight vector to maximise the accuracy of the input to subsequent

models in the pipeline.

6. Corpus collection

Our target domain is a large-scale spoken tourist information system for Cambridge.

Table 4 illustrates the 10 types of dialogue acts which are produced by the dialogue

manager. Because each dialogue act type exhibits different stack ordering patterns, they

require distinct semantic stack prediction models. Some of the communicative goals
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Table 3
The generic kernelized perceptron training algorithm for structured prediction, as well as the
simplified version using a linear kernel. Both algorithms were adapted to the NLG reranking
task.

Input: T training iterations, n training examples associating each input xi with an
output set Yi (i.e. semantic stack or realisation sequences). GEN(xi) returns the
N-best output sequences for input xi based on a Viterbi search using the corre-
sponding FLM, in which N depends on a pruning beam and a maximum value.
Φ(xi, y) is a sparse feature vector of dimensionality d representing the number of
occurrences of specific combinations of realisation phrases and/or semantic stacks
in (xi, y), with an entry for each instantiation in the training data of each node of
the backoff graph of the large context FLM in Figure 6.

Output: a collection V of feature vectors in Rd and their respective weights α in
R|V |. Using a linear kernel, the algorithm is simplified as the weighted feature
vectors can be represented as a single weight vector w =

∑|V |
j=1 αjVj in Rd.

Linear kernel algorithm:
w = ~0
For t = 1...T, i = 1...n

For z in GEN(xi)− Yi

If w.Φ(xi, z) ≥ 0 then w ← w − Φ(xi, z) // incorrect positive prediction
For y in Yi

If w.Φ(xi, y) < 0 then w ← w + Φ(xi, y) // incorrect negative prediction

Kernelized algorithm with kernel function K : Rd × Rd → R:
V = [~0] α = [0]
For t = 1...T, i = 1...n

For z in GEN(xi)− Yi

If
∑|V |

j=1 αjK(Φ(xi, z), Vj) ≥ 0 then // incorrect positive prediction
append Φ(xi, z) to V // weigh instance negatively
append -1 to α

For y in Yi

If
∑|V |

j=1 αjK(Φ(xi, y), Vj) < 0 then // incorrect negative prediction
append Φ(xi, y) to V // weigh instance positively
append 1 to α

include logical operators, such as global negations and logical quantifiers (e.g., row 2, 4

and 5 in Table 4), each of which require a specific dialogue act type. Figures 103 and 11

illustrate the ontology of our domain, which results in 128 distinct semantic stack con-

3 This figure is included to indicate the complexity of the ontology, it is not intended that the detail should
be legible.
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Figure 9
Online discriminative training of an FLM-based statistical generator using cascaded reranking
perceptrons. The only differences between the training and generation process is that (a) weights
are not updated at generation time and (b) only one reranking step is performed after each
decoding stage.

cepts, e.g. characterising whether a venue is a bar, museum, cinema, but also whether

it is cheap, near another venue, whether it has internet, parking space, or whether it

allows children. Since our approach targets dialogue applications, BAGEL’s semantic

representation is defined by the domain ontology itself, hence the semantic concepts

typically correspond to constraints used to narrow down the user goal. In information

presentation systems, such concepts are typically associated with database attributes of

the entities of interest. In our framework, the ontology is shared between the dialogue

manager, the language understanding component and the NLG component. Our ontol-

ogy was thus refined over a long period of time prior to this work. The manual effort

required for defining an ontology for a new domain is highly dependent on the domain

granularity. While automatically deriving ontologies for complex domains remains an

unsolved problem, in recent work an ontology for a bus transportation dialogue system

was handcrafted in a matter of days (Thomson et al. 2010).

Since there is no feedback between the language generator and the dialogue man-

ager, the NLG component is expected to handle any combination of dialogue act type

and semantic concept arguments. The main advantage of data-driven methods over

handcrafted methods is their potential for scaling to such large domains, by shifting
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Table 4
Example realisations for the 10 dialogue act types supported by BAGEL.

# Dialogue act and first-best realisation
1.a confirm(eattype(pub) hasfood)

To confirm, you are looking for a pub that serves food?
1.b confirm(dontcare(area) drinktype(bar))

Could you confirm that you want a bar in any area?
2.a reject(area(X) sport(gym) type(sportsvenue))

There are no sports centres with a gym in X.
2.b reject(known(hasinternet) near(X) type(placetodrink))

Unfortunately, there are no bars for which i have information about the internet near X.
3 inform(name(X) unknown(childrenallowed) drinktype(bar) hasmusic unknown(hastv))

X is a bar with music, but there is no information on whether children are allowed or whether it
has television.

4 informall(all(eattype(restaurant) food(X)) area(riverside))
All the restaurants serving X food are in the riverside area.

5 informonly(only(name(X)) eattype(restaurant) near(Y) pricerange(moderate))
X is the only moderately priced restaurant near Y.

6 suggest(pricerange(cheap) pricerange(expensive) pricerange(moderate))
For example, you can have somewhere cheap, expensive, or somewhere in the middle.

7.a request(pricerange)
What kind of price range would you like?

7.b request(hasparking)
Would you like a place with a parking space?

8.a select(type(placetodrink) type(placetosee))
Do you want to find somewhere to get a drink or go and find somewhere to see?

8.b select(area(X) dontcare(area))
Would you like that to be in the X area or would you like me to search all areas?

9 repeat()
Could you please repeat that?

10 reqmore()
Can I help you with anything else?

the bulk of the development effort from manual tuning to data collection. However, a

major issue is that such methods typically require semantically-annotated data, which is

costly to collect. Furthermore, domain data is rarely available, hence a creative process is

required for generating a wide range of domain utterances. This paper is based on the

assumption that learning to produce paraphrases can be facilitated by collecting data

from a large sample of annotators. However, this requires that the meaning represen-

tation should be simple enough to be understood by untrained annotators. This section

describes how we make use of BAGEL’s coarse-grained semantics to collect data from a

large sample of untrained annotators, using Amazon’s Mechanical Turk.
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Figure 2: Full Ontology of the CamInfo System
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Figure 3: Ontology of Places to Eat

Dialogue acts in all of the Cambridge dialogue systems4

take the form acttype(a1 = v1, a2 = v2, ..) where acttype de-
notes the type of dialogue act and the arguments are act items
consisting of attribute-value pairs5. Attributes refer to the key
information nodes in the user goal tree g of the dialogue state
which is compiled from the ontology described in 3.1. Attribute
names can be dotted’ to indicate a specific node e.g. “place-
toeat.openhours” in Fig. 3. The values of an attribute are ei-
ther sub-nodes as in “type=plactoeat” or atomic values as in
“food=chinese”. In some contexts, the value can be omitted,
for example, where the intention is to query the value of an at-
tribute. Note that the dialogue act types are application domain
independent whereas the attributes and their values are derived
from the application ontology. The most common acts are listed
in Table 1 and a simple dialogue illustrating their use is shown
in Table 2. A full description of the dialogue act set is given in
[9].

3.3. Speech Understanding

The speech understanding function in CamInfo is implemented
by combining a HTK-based speech recogniser with a statistical
semantic decoder(see Fig. 1). The speech recogniser converts
the acoustic speech signal y into a 10-best list of recognised
word sequences {wi} and the semantic decoder then converts

4In addition to the tourist information system described here, we
have have also built systems for Appointments Scheduling and the Pitts-
burgh Let’s Go bus information service.

5Attributes are referred to as slots in some dialogue systems.

Act Description
hello(a=x,b=y,...) open a dialog and give info a=x, b=y, ...
inform(a=x,b=y,...) give information a=x, b=y, ...
request(a, b=x,...) request value for a given b=x ...
reqalts(a=x,..) request alternative with a=x,...
confirm(a=x,b=y,..) explicitly confirm a=x,b=y,..
confreq(a=x,.., d) implicitly confirm a=x,.. and request d
select(a=x,a=y) select either a=x or a=y
affirm(a=x, b=y,...) affirm and give further info a=x, b=y, ...
negate(a=x) negate and give corrected value a=x
deny(a=x) deny that a=x
bye() close a dialogue

Table 1: The principal dialogue acts used by all Cambridge di-
alogue systems.

each wi into one or more user dialogue acts. Duplicate dialogue
acts are merged to form a single N-best list of user dialogue acts
and their corresponding posterior probabilities {vj , pj}. Hence,
the actual number of dialogue acts passed to dialogue manager
varies depending on the speaker and noise level.

Speech recognition in the CamInfo system is provided by
ATK [10] which is a real-time multi-threaded recogniser com-
patible with acoustic and language model resources built using
HTK [11]. The CamInfo recogniser has a vocabulary of around
3000 words. It uses state-clustered word-internal triphones
trained on 40 hours of audio data to produce 4091 distinct
states each with 4 Gaussians per state. The speech waveform is
coded using PLP coefficients plus their 1st, 2nd and 3rd deriva-
tives mapped to a 39-dimensional vector using HLDA[12]. The
recogniser runs with a fixed trigram language model trained
on around 400k words of in-domain data smoothed with about
80M words of general corpus data[13]. There is no grammar
switching so the user can say anything at any time.

Semantic decoding requires a sequence of words to be con-
verted into a dialogue act plus some number of attribute-value
pairs. Early attempts to solve this problem assumed that it was
sufficient to tag each word with a semantic label and hence sim-
ple HMM-taggers could be used[14]. However, this fails with
utterances which have embedded phrases where some form of
hierarchical structure must be supported in order to analyse the
utterance correctly.

A review of various approaches to statistical semantic de-
coding is given in [15, 16]. However, a critical issue for con-
figuring a decoder to a specific spoken dialogue application
is the cost of producing training data in the form of matched
pairs < w, v > of word string and corresponding dialogue act.

3

has attribute 

has value 

entity with parent 
value has attribute 

has value 

attributes are 
inherited 

attributes are 
inherited 

entity with parent 
value has attribute 

Figure 11
Partial ontology for places to eat. All relations are pointing downwards. Attributes at higher
level are inherited for entities matching specific attribute values (dashed lines), e.g. all entities
with attribute eattype set to restaurant have the attributes food, price, phone, etc.

A crucial aspect of data collection for NLG is to ensure that the annotators under-

stand the meaning of the semantics to be conveyed. Annotators were first asked to

provide an utterance matching an abstract description of the dialogue act, regardless

of the order in which the constraints are presented (e.g., Offer the venue Taj Mahal and

provide the information type(restaurant), area(riverside), food(Indian), near(The Red Lion)).

The order of the constraints in the description was randomised to reduce the effect

of priming. The annotators were then asked to align the attributes (e.g., Indicate the

region of the utterance related to the concept ‘area’), and the attribute values (e.g., Indi-

cate only the words related to the concept ‘riverside’). The total input semantic space is

approximated by the set of system dialogue acts produced during 250,000 simulated

dialogues between our statistical dialogue manager (Young et al. 2010) and an agenda-
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based user simulator (Schatzmann et al. 2007). In order to build the training set, we

started with a set of utterances collected for a small subset of our domain (Mairesse et

al. 2010). We then ordered the dialogue acts based on their frequency of occurrence in the

simulated dialogues. In order to ensure that each semantic stack defined by the domain

ontology occurs at least once in our data, we expanded our training set by iteratively

adding the most frequent unseen act which contains an unseen mandatory semantic

stack. The resulting dataset consists of 1,646 unique dialogue acts after replacing non-

enumerable values by a generic symbol. Each dialogue act contains an average of 3.27

mandatory semantic stacks. We generally collected one utterance per act, however two

paraphrases per act were collected during our initial experiment. The resulting dataset

contains a total of 1,956 aligned utterances produced by 137 native speakers of English.

After manually checking and normalising the dataset,4 the layered annotations were

automatically mapped to phrase-level semantic stacks by splitting the utterance into

phrases at annotation boundaries. Each annotated utterance is then converted into a

sequence of symbols such as in Table 1, which are used to estimate the conditional

probability distributions defined in Figures 4 and 6. The resulting vocabulary consists

of 864 distinct semantic stacks and 1,180 distinct realisation phrases, with an average of

7.35 phrase/stack pairs per utterance.

7. Evaluation

This section evaluates BAGEL in the tourist information domain, using an automated

metric as well as human judgements of resynthesized dialogues. Our objective is not

only to evaluate the naturalness of the generated utterances for different training

4 The manual verification took around 15 person hours for 1,956 utterances. It involved correcting English
disfluencies and semantic misinterpretations. No samples were deleted.
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methods, but also to assess whether the linguistic variation found in BAGEL’s outputs

improves the naturalness of the overall dialogue interaction.

7.1 Comparison with utterance class language models

As Oh and Rudnicky’s LM-based approach is the first statistical NLG method that

requires almost no handcrafting (Oh and Rudnicky 2002), we first compare their method

to BAGEL in our domain and discuss the differences between both approaches.

7.1.1 Utterance class LM baseline. Oh and Rudnicky’s (O&R) approach trains a set of

word-based n-gram language models (LMs) after replacing slot values by placeholder

variables. In order to bias the LMs towards specific intents, the LMs are trained on

subsets of the data referred to as utterance classes. An utterance class is the set of

utterances matching a specific dialogue act type and a set of zero or more slots. For

example, inform(near(X)) would be a valid utterance class, characterizing all the

utterance with the inform dialogue act type and at least one near slot. Given large

domains, evaluating all possible utterance class partitions of the data is not tractable:

in their experiments in the air travel domain, Oh and Rudnicky limit their utterance

classes to at most one slot. In order to identify how to partition our data, we investigate

a number of utterance classes: (a) using dialogue act types only; and (b) including

one or more slots. Since deciding what slot to include is a non-trivial problem, we

include slots based on their frequency of occurrence in the utterance class. The utter-

ance class nomatch(eattype(restaurant) near(X)) for instance indicates that

eattype(restaurant) and near(X) are the two most frequent slots for the dialogue

act type. Note that such an utterance class can also generate other slots besides those

belonging to the class, the main difference is that those other slots act as run-time
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constraints in the overgeneration phase, whereas utterance class slots constrain the

model’s training data.

At generation time, the LM for the utterance class matching the input is used to

overgenerate a set of candidate utterances in a depth-first fashion by sampling from the

LM distribution, one word after the other. Since BAGEL relies on the prediction of an end

symbol, we extend O&R’s model with an end symbol determining when to end the ut-

terance. In addition to random sampling, we also implemented a deterministic version

of the algorithm which generates all words that followed the utterance context in the

training data, as long as they do not violate input constraints (i.e. generate unspecified

slots). Decoding was halted if the utterance generated more than 20 words. Although

it was not needed on our dataset, it is important to note that such a greedy search is

likely to require beam pruning on larger datasets. We find that the deterministic version

both improves performance and makes it more comparable with BAGEL’s decoding

algorithm. Additionally, in order to investigate the effect of the granularity of emission

symbols on performance, we also train a phrase-based version of the baseline in which

the LMs are trained to predict symbols representing contiguous words either within

or between surface slots. In all baselines, the final utterance is selected based on an

implementation of the rescoring rules used in (Oh and Rudnicky 2002), which rescore

the utterance based on whether:

1. The utterance is too short or too long. The probability of the generated

utterance is weighted by the probability of the utterance length given the

utterance class according to the training data.

2. The utterance contains repetitions of any of the slots.

3. The utterance contains slots for which there is no valid value in the input.
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4. The utterance lacks any of the required slots.

The last three rules result in a multiplicative weight of 10−9, i.e. the utterance would

only be chosen if no other candidates satisfy the slot constraints. The system returns the

most highly scored utterance over 10,000 iterations for the sampling baseline (vs. 50 in

Oh and Rudnicky’s experiments). Additionally, our implementation of O&R’s method

keeps track of visited slots during generation, hence pruning paths which generate a slot

placeholder which is not part of the input, or generate a slot more times than specified

in the input.

We train models on the same 10-fold cross-validation folds as in Section 5.1, i.e. par-

titioning the 1,646 distinct dialogue acts for which we collected one or more utterance.

None of the test dialogue acts are present in the training folds. Results report the BLEU

scores averaged over the 10 test folds.

7.1.2 Results. A first result shown in Table 5 is that O&R’s original sampling approach

does not perform as well the deterministic algorithm, while being more computationally

expensive. A paired t-test over the 10 cross-validation folds reveals that the difference is

significant for all configurations (p < .01 or lower, two-tailed). The sampling size used

is much larger than in O&R’s experiment, suggesting that sampling does not scale well

to larger domains. The rest of this section refers to the deterministic approach.

We also find that none of the phrase-based O&R models produce BLEU scores above

.10. We believe this is due to the lack of semantic labels besides slot values, which causes

phrases to be very long and unlikely to occur both in the training and test folds. The rest

of this section therefore refers to O&R’s word-based approach.

Table 5 shows that on our dataset O&R’s method is sensitive to the granularity

of the utterance class. The trigram model performs best without including any slot
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Table 5
BLEU score of the word-based utterance class LMs, for different n-gram sizes and different
number of slots included in the utterance class (most frequent first). Best performing parameters
are in bold. The BLEU score is averaged over all cross-validation folds. See Figures 12 and 13 for
results using other parameter configurations.

System n-gram BLEU BLEU BLEU
configuration size no slot 1 slot 2 slots
O&R deterministic 2 .25 .06 .05
O&R deterministic 3 .28 .02 .01
O&R deterministic 4 .25 .01 .00
O&R sampling 2 .25 .03 .03
O&R sampling 3 .27 .02 .01
O&R sampling 4 .23 .01 .00
Bagel n/a .37

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  1  2  3  4  5

Av
er

ag
e 

BL
EU

 s
co

re

Number of slots in utterance class

2-gram
3-gram
4-gram
5-gram

Bagel

Figure 12
BLEU score of the word-based utterance class LMs with deterministic decoding, for different
n-gram sizes and different number of slots included in the utterance class (most frequent first).
The BLEU score is averaged over all cross-validation folds. Bagel indicates the best performing
BAGEL configuration on the same folds.

in the utterance class, with a mean BLEU score of .28. In contrast, BAGEL produces a

score of .37 on the same data (using the most likely utterance only). A paired t-test

shows that this score is significantly higher (two-tailed, p < .0001). The configuration

in which the utterance class consists of the dialogue act type only (i.e. no slots) is the
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Figure 13
BLEU score of the word-based utterance class LMs with sampling, for different n-gram sizes and
different number of slots included in the utterance class (most frequent first). The BLEU score is
averaged over all cross-validation folds. The scores obtained with the best deterministic version
are included for comparison.

only one producing an output utterance for almost all unseen inputs in the test folds

(99% for bigram LMs, 93% for trigram). Figure 12 illustrates results for additional slot

combinations, showing that adding more slots consistently decreases performance.

We find that the addition of the most frequent slot to the utterance class decreases

performance significantly with a BLEU scores of .06 with a bigram model and .02

with a trigram model (p < .0001 for both, two tailed). Figure 12 suggests that perfor-

mance decreases further with larger n-gram sizes. This decrease is likely to be due to

the fragmentation of the training data illustrated in Figure 14, as sparser probability

counts make the generation process less likely to find a path satisfying the global slot

constraints. For instance, adding the most frequent slot in the training data as part of

the utterance class causes more than half of the test input to produce no prediction

using a bigram model. While removing the decoding constraints is not tractable, we
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can estimate the performance of O&R’s method given unlimited computing power, by

only evaluating it on the subset of the data for which the constraints are not violated,

i.e. on the test data which does produce an output utterance. In this case the best O&R

baseline yields a score of .32 on successful predictions (69% of the data) using the 5-

gram model with no slots, however the same model yields a score of .20 when taking

all test utterances into account.

A general issue is that while a broad utterance class reduces data sparsity, it learns a

model more likely to produce the most frequent patterns in the utterance class, making

it difficult to model specific slot combinations correctly. An utterance class including

many slots can model those slots more accurately, however it can only be trained on the

fraction of the data matching that class, creating data sparsity issues.

Regardless of the utterance class size, we find that O&R’s baseline performance

decreases for contexts larger than trigrams. For example, Figure 12 shows that the BLEU

score decreases significantly from .28 for trigrams to .24 and .20 for 4-grams and 5-

grams, respectively (p < .0001 for all differences, no slots in the utterance class). This

decrease in performance is likely to be due to overfitting. Larger n-grams are less fertile

since they result in fewer non-zero transitions from a given context, hence they are less

likely to produce an utterance satisfying the slot constraints. This particular issue could

be alleviated by investigating different smoothing strategies.

Given the large differences in BLEU score observed and the limited resources avail-

able, we did not evaluate O&R’s approach using human judges. It is important to note

that a human evaluation would be desirable to strengthen our findings. Additionally,

future work should evaluate whether the difference in performance holds for larger

datasets.
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Figure 14
Mean number of training utterances per utterance class for different number of slots included in
the class (most frequent slot first). Without any slot the utterance class consists of the dialogue
act type.

7.1.3 Discussion. Like BAGEL, O&R’s method uses a search over a sequential probabilis-

tic model of a phrase given its context. However a major difference with our approach

is that semantic concepts are only explicitly modelled through slot placeholders and

the utterance class. A limitation is therefore that it requires the definition of an optimal

utterance class partition before training, i.e. determining what slots the words should

be conditioned on, if any. Including all slots as part of the utterance class would highly

fragment the data, whereas using only the dialogue act type is likely to reduce the

models capability to produce slot-specific phrasings. As shown in our experiments, the

choice of what slots to include in the utterance class has a large impact on the quality of

the output utterances. BAGEL mitigates this by not conditioning the generated words on

a global utterance class value, but by conditioning the individual words on elements of a

generated sequence of semantic symbols. Given that the number of semantic concepts is
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lower than the vocabulary size, using an explicit semantic representation can reduce the

number of parameters to estimate during training compared with systems relying on

various word contexts. In some cases however the previous words provide additional

useful information (e.g. for local agreement), hence there is value in taking both the

semantic and word context into account whenever needed. Factored language models

provide a way for the learner to choose what context to rely on.

Finally, another difference with our approach is that the lack of hierarchical seman-

tics implies that each lexical item realising an input slot value has to be specified in the

input. This is a valid approach for domains in which slot values are limited to numerical

values or proper nouns, but not for domains in which semantic concepts need to be

realised differently depending on the context and the dialogue act type. For example,

compare how BAGEL realises the area semantic concept in the query ’Whereabouts were

you thinking of?’ as opposed to in the statement ’Char Sue is located in the Arbury area’.

Requiring each slot value to be realised using the same lexical item regardless of the

context is likely to be impossible for large domains, especially with multiple dialogue

act types. This limitation could be alleviated by including the N slots for which we

want to control the lexical realization as part of the utterance class. However, this is

not tractable as it would require fragmenting the data further to produce all 2N slot

combinations as distinct utterance classes. Sharing data across utterance classes or using

hierarchical class-based language models could mitigate this issue, however it is beyond

the scope of this paper.

This section has shown that BAGEL’s FLM approach significantly outperforms ut-

terance class based LMs methods on our data using automated evaluation metrics. We

now evaluate BAGEL using human judgements.
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7.2 Human evaluation from text samples

While automated metrics provide useful information for tuning model parameters, they

only correlate moderately with human naturalness ratings (Papineni et al. 2002). We

therefore evaluate the methods presented in the previous sections through a subjective

rating experiment, using Amazon’s Mechanical Turk services. For each dialogue act in

our unseen test set, we generate a set of paraphrases with each of the following system

configurations: (a) using large context reranking FLMs (FLM); (b) using perceptron

reranking (perceptron); and (c) using the output of the decoding models directly (no

reranking). In order to validate the paraphrasing FLM threshold analysis presented in

Section 5.1, we evaluate utterances generated within a selection beam of 8% and 15%

relative to the probability of the top hypothesis (FLM8 and FLM15), as well as a system

returning the top hypothesis only (FLM0). For each configuration, we either train all

decoding and reranking models on distinct datasets for each dialogue act type in Table 4,

or we train a single realisation model on all dialogue act types (global). While a global

realisation model can potentially generalise across dialogue act types (e.g., not requiring

each top semantic concept to be seen with each act type during training), performance

is likely to be affected by the resulting increase in vocabulary size and the reduction in

consistency between training examples.

Concerning the perceptron reranking algorithm, we use a kernelized perceptron

with a polynomial kernel of degree 3 as it performed best in preliminary experiments

on a subset of our training data. We evaluate all the paraphrases classified as positive

by the model for a given input act. Our experiment compares two variants of the

perceptron model: (a) using the weights of the last perceptron update (Last); and (b)

taking the average of each weight update weighted by the number of instances for

which the weight vector was left unchanged during training (Avg). In order to account
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for differences in computational resources needed by each system, we set the pruning

thresholds such that each paraphrase set is generated within .5 seconds on a Pentium

4.2 GHz. For each input dialogue act, a maximum of 100 realisations were reranked

in our experiments. These were derived from up to 5 semantic stack sequences, each

generating up to 20 realisation phrase sequences.

For the purpose of the evaluation, the generated paraphrase sets for all systems

are combined together and presented in random order, for 4 dialogue acts at a time.

Participants were told that each utterance was meant to have the same meaning, and

they were asked to evaluate their naturalness on a 5 point likert-scale, as illustrated in

Figure 15. Naturalness is defined as whether the utterance could have been produced by

a human. Each utterance is taken from the test folds of the cross-validation experiment

presented in Section 5.1, i.e. the models are trained on up to 90% of the data and the

training set does not contain any of the generated dialogue acts.

Figure 15
Human evaluation interface for text-based utterance evaluation. The generated utterances are
presented in random order.

7.2.1 Results. Table 6 presents the average naturalness rating for each configuration

(Nat). A Wilcoxon rank sum test shows that all systems outperform the FLM system

returning the top hypothesis of the search models, with no reranking (p < .0001, two-

45

Computational Linguistics Just Accepted MS. 
doi: 10.1162/COLI_a_00199 
© Association for Computational Linguistics 



Computational Linguistics Volume xx, Number yy

Table 6
Evaluation results for different reranking configurations. Beam = paraphrase selection beam (%
of first best probability); Mean N = mean number of paraphrases per act; Total N = total number
of paraphrases used for evaluation; Nat = mean naturalness rating over the generated
paraphrase set. The last 3 columns indicate the significance of the difference in naturalness
according to a two-tailed Wilcoxon rank sum test (*=p < .05, **=p < .01, ***=p < .001).

Reranking method Beam Mean N Total N Nat pbase pFLM0 pFLM8

No reranking (base) 0% 1.05 723 3.16 n/a *** ***
FLM0 0% 1.08 744 3.83 *** n/a
FLM8 8% 1.59 1097 3.78 *** n/a
FLM15 15% 2.12 1465 3.67 *** *** *
FLM15 global 15% 2.03 1405 3.68 *** ** *
Avg perceptron n/a 1.46 1012 3.68 *** ** *
Last perceptron n/a 1.91 1317 3.53 *** *** ***

tailed).5 We find that the best performance is obtained using the FLM reranking models,

with an average naturalness of 3.83 when only considering the top hypothesis (FLM0),

compared with 3.16 without any reranking (base). While the automated evaluation

in Section 5.1 predicted an optimal selection beam of 8%, we find that the average

naturalness decreases to 3.78 when taking the average over all paraphrases within that

beam, however the decrease in naturalness is not significant over 1097 samples (p = .33).

Since these results do not take the coverage of the generated paraphrase set into account,

such a non-significant decrease in naturalness is encouraging, as it suggests that the

naturalness of the paraphrases produced are close to the first best. Using a larger

selection beam of 15% increases coverage further but produces a significantly lower

naturalness than both the FLM0 and FLM8 systems (p < .01 and p < .05 respectively).

While we expected that sharing realization models across dialogue act types would help

generalize, overall we find that using one realisation model per dialogue act type does

5 Note that a Wilcoxon signed rank paired test cannot be used because each system can produce a different
number of utterances. As a result the reported significance is an approximation, since the samples may
include examples generated from the same input.
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not perform significantly worse than global realisation models (FLM15 global), while

the former greatly reduces the number of model parameters.

Results show that the perceptron rerankers significantly improve naturalness over

the no reranking baseline (p < .0001). We find that using the averaged weight vector

produces a smaller set of paraphrases which are perceived as more natural (p < .01),

confirming the improvement previously observed for the part-of-speech tagging task

(Collins 2002a). However, results show that both the FLM0 and FLM8 systems outper-

form the perceptron-based systems (p < .01 and p < .05 respectively), and the FLM8

system produces slightly more paraphrases. We find that the averaged perceptron

reranking model produces utterances which are comparable to an FLM selection beam

of 15%, however for the same level of naturalness, the thresholded FLM produces 2.03

utterances on average, as opposed to 1.46 for the perceptron.

Overall, this first human evaluation suggests that the FLM reranker with an 8%

selection beam offers the best trade-off between utterance naturalness and paraphrasal

variation.

7.3 Human evaluation from dialogue extracts

While a text-based evaluation gives a good insight into the level of naturalness of

a generated paraphrase set, it does not evaluate whether differences in naturalness

can be perceived in a spoken dialogue context, nor does it evaluate the effect of the

linguistic variation resulting from the use of multiple paraphrases within a dialogue.

In this regard, this section evaluates the following three hypotheses: (a) the learned

generators can produce language perceived as natural in a dialogue context; (b) varying

the paraphrases used throughout the dialogue improves the system’s naturalness; and

(c) this increase in naturalness makes the user more willing to interact with the system.
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We test these hypotheses by conducting a series of observer-based listening tests

comparing dialogue extracts in which the system utterances have been regenerated and

resynthesized. The original dialogues were collected over the phone during a task-based

evaluation of the Hidden Information State dialogue manager (Young et al. 2010) on the

CamInfo domain, using a handcrafted rule-based language generator. Each utterance is

synthesised using an HMM-based text-to-speech engine trained on the AWB voice of

the ARCTIC dataset using the HTS toolkit (Tokuda et al. 2000).

Our evaluation first compares different generation methods in a pairwise fashion:

(a) the FLM reranking method with N-best outputs sampled from an 8% selection beam

(FLM N-best); (b) the averaged kernelized perceptron reranking method with uniform

sampling over positive predictions (Perceptron); and (c) the single output of the hand-

crafted rule-based generator (Handcrafted). The handcrafted generator is an extension of

the SPaRKy sentence planner (Stent, Prasad, and Walker 2004), which associates each

dialogue act with a content plan tree combining syntactic templates with rhetorical

structure relations. The syntactic templates are aggregated two-by-two in a bottom-up

fashion by trying different clause-combining operations (e.g. by inserting a conjunction,

merging identical subjects, or associating each template with distinct sentences). The

aggregated syntactic tree is then converted into a flat string using the RealPro surface

realizer (Lavoie and Rambow 1997). The handcrafted generator has been tuned over

several months to produce natural utterances for all possible input acts, we therefore

treat it as a gold standard in our evaluation.

We also compare the FLM reranking approach with N-best outputs with an identical

system which always selects the top realisation at each turn (FLM 1-best). In order to

maximise the effect of generated linguistic variation, we do not sample paraphrases

which were already chosen during the previous dialogue turns, unless there are no
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remaining paraphrases for that dialogue act. A total of 255 dialogues were regenerated

for each system. In order to facilitate the listener’s task while maintaining some aspect

of the dialogue context, the dialogues were split into chunks consisting of the two

consecutive system turns, concatenated with the corresponding prerecorded user turn.

In order to make the dialogue extracts more intelligible, regenerated system turns are

concatenated with the user turns with no speech overlap.

11/11/11 Utterance Quality Survey

1/2www.srcf.ucam.org/~farm2/caminfoquery/dialogue-evaluation/…/survey-1.html

Automated Telephone System Quality Survey - Native Speakers of English
Only

Important notes -- read carefully before starting:

If you are not a native speaker of English from one of the regions in the list below, do not accept this HIT.
Make sure you can play the following sound before accepting this HIT: . Otherwise install a plug-in
to play embedded wave files.
There are 4 pairs of sound clips, and each sound clip lasts between 5 seconds and 20 seconds.
You can only complete up to 30 HITs from this batch.
Each sounds file can take up to 500 Kb, please only accept this HIT if you have a good broadband connection. If it is
too slow, wait and play the sound clip again once it is fully loaded.
When rating each sound clip, please keep in mind that all synthesized utterances are meant to be in British English with
a Scottish accent. For example, the expression 'city centre' is used rather than 'downtown'.
You must listen to each sound clip entirely, or your worker ID will be logged and you will not be paid for any HIT
in this batch!

Task:

Please choose your region of origin: Please select a region

Please listen carefully to each pair of extracts from a telephone interaction between a human and a computer
presenting information about the city of Cambridge, and compare both computers by answering the corresponding
questions. If you are not sure, please listen to both sound clips again before making a decision. At the end, you are
also asked whether any of the sound clip pairs were exactly identical.
 

Comparison 1: Computer A
Click to load and play

Computer B
Click to load and play

a. Which computer behaves the most like a human person?
b. Which computer would you rather interact with?
 
 

Comparison 2: Computer A
Click to load and play

Computer B
Click to load and play

a. Which computer behaves the most like a human person?
b. Which computer would you rather interact with?
 
 

Comparison 3: Computer A
Click to load and play

Computer B
Click to load and play

a. Which computer behaves the most like a human person?
b. Which computer would you rather interact with?
 
 

Comparison 4: Computer A
Click to load and play

Computer B
Click to load and play

a. Which computer behaves the most like a human person?
b. Which computer would you rather interact with?
 
 

Figure 16
Human evaluation interface for comparing resynthesized dialogue extracts. Each crowdsourced
evaluation task consisted of 4 pairwise system comparisons.

For each system pair, 600 dialogue extracts were randomly selected for evaluation

out of all the regenerated dialogues. The raters are presented with 4 pairs of dialogue

extracts at a time, which only differ by their system prompts. For each dialogue pair,

they are asked to listen to both sound clips and evaluate (a) which system is the most

natural (naturalness score), and (b) which system they would rather interact with (user

preference score), as illustrated in Figure 16. Participants were native speaker of English

recruited through Amazon Mechanical Turk, and geographically restricted to the USA.

While the British TTS voice used might affect overall perceptions of naturalness of US

judges, it should not introduce any bias within the system comparison as the same

voice was used for each system. Each dialogue extract was rated by a single participant,

and each participant could rate between 4 and 100 dialogue extract pairs. As a result,

between 55 and 64 participants took part in the evaluation of each system pair.

7.3.1 Results. Table 7 summarises the results of the preference tests. The naturalness

and user preference scores represent the percentage of times the judges selected a

given system over the other. A binomial test suggests that the judges did not prefer
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Table 7
Naturalness and user preference percentage of the best performing systems for each pairwise
system comparison (winners in bold). Significance was computed using a two-tailed binomial
test (*=p < .05, **=p < .01, ***=p < .001).

System A System B Nat Pref
FLM N-best Handcrafted 52.2 52.3
FLM N-best FLM 1-best 57.3*** 54.2*
FLM N-best Perceptron 51.2 52.7
Perceptron Handcrafted 54.2* 54.2*

the handcrafted gold over the FLM reranker with N-best outputs, as no significance

was reached over 600 comparisons (p < .05). However, the judges preferred the hand-

crafted generator over the perceptron reranker, possibly because it was also perceived

as significantly more natural (p < .05). No significance was found when comparing the

FLM reranker with the perceptron reranker, however most judges preferred the former,

hence confirming results from the text-based evaluation. Finally, the FLM reranker

with N-best outputs was perceived as significantly more natural than the same system

with 1-best output only (p < .001). Furthermore, results confirm that the judges would

rather interact with the N-best system (p < .05). This result is interesting, as the N-best

generation approach has a higher risk of selecting ungrammatical outputs compared

with the 1-best approach. However, our results show that despite that risk judges prefer

the N-best system, which suggests that data-driven paraphrase generation is beneficial

in dialogue.

It is important to note that crowdsourced evaluations can lead to additional noise

compared with standard lab-based evaluation, mostly due to the possibility of uncoop-

erative evaluators. However the randomization of the order of the evaluated utterances

ensures that such noise does not bias the results towards one system. It is therefore likely

that a more controlled evaluation would have revealed even more significant results.
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8. Discussion and Conclusion

This paper presents and evaluates BAGEL, a statistical language generator that can be

trained entirely from data, with no handcrafting required beyond the semantic anno-

tation. All the required subtasks—i.e. content ordering, aggregation, lexical selection

and realisation—are performed implicitly through a search over Factored Language

Models. We propose a stack-based semantic representation at the phrase level, which is

expressive enough to generate natural utterances from unseen inputs, yet simple enough

for data to be collected from a large set of untrained annotators with minimal manual

correction and normalisation. Results show that this approach outperforms utterance

class LM methods on our data.

In order to make the Viterbi decoding tractable for real world dialogue applications,

we limit the context-size of the decoding FLMs and rerank their N-best output using

large-context reranking models. We investigate two types of reranking models, namely

(a) generatively trained FLM rerankers and (b) discriminatively trained structured per-

ceptron models. The perceptron learns a discriminant function weighting local feature

counts over the full utterance. By kernelizing the perceptron algorithm, the discriminant

function is implicitly made dependent on a larger set of feature combinations (e.g., a

polynomial kernel contains the products of each FLM context feature). While our results

show that the perceptron reranking step is a viable alternative, we find the large context

FLM generalises better on unseen data. This could be a consequence of the fact that

some of the training examples of our algorithm are generated from the same input, and

non-independently distributed data is likely to affect generalisation error. A possible

solution to this issue is to only allow a single weight update per input, by moving

the weight vector closer to the features of the lowest ranked reference paraphrase,

and away from the highest ranked non-reference utterance. However, selecting the
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final paraphrase set would require a cut-off threshold that would need to be learned

separately. Future work should also investigate the use of the large margin criterion

instead of the perceptron criterion, which is more costly to compute but less likely

to overfit, and it can minimise arbitrary loss functions (Tsochantaridis et al. 2004).

Finally, the decoding models could also be learned discriminatively, e.g. by learning

to predict phrase sequences using maximum entropy Markov models or conditional

random fields.

It is important to note that the N-best system evaluated in Section 7.3 is biased

against exact repetitions, i.e. verbatim repetitions are prohibited unless all paraphrases

have been generated. Our N-best system does not model the case in which verbatim

repetitions could be used as an emphasis device. This could be addressed by adding

a semantic element specifying that a specific phrase should be repeated for emphasis

purposes. Since the N-best system did not implement that functionality, we believe

that the preference for the N-best system could be increased when modelling exact

repetitions. Apart from the case of emphasis, we believe that paraphrasing is generally

more natural in dialogue contexts. While this claim is difficult to evaluate, Torrance et al.

have shown that children under 6 fail to distinguish between verbatim repetitions and

paraphrases, i.e. before they learn to read (Torrance, Lee, and Olson 1992). This result

suggests that there might not be any additional cognitive load from using paraphrases

in dialogue.

An important aspect of this work is that BAGEL’s coarse-grained semantics allowed

us to use crowdsourcing to collect semantically-annotated utterances from untrained

annotators. A first implication is that such methods could dramatically reduce devel-

opment time of NLG systems, while improving scalability to large domains. Future

work should therefore evaluate whether the same performance can be achieved in other
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task-oriented domains. Furthermore, while this work treats the training set as fixed,

recent work has shown that active learning can further improve the efficiency of the

data collection process (Mairesse et al. 2010).
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Figure 17
Example utterance and semantic alignment including a contrastive discourse relation.
Mandatory stacks are in bold.

We believe that the granularity of our semantic representation—which is defined by

the attributes of the entity of interest in our domain—is expressive enough for a large

range of information presentation systems. While it is not as expressive as first order

logic, BAGEL implements the all, none and only quantifiers, by treating the quantifier

as any other stack concept (see Figure 2 rows 4 and 5 in Table 4). A limitation is that

currently BAGEL can only present entities satisfying the same set of constraints within a

dialogue act, e.g. ’X and Y are French restaurants near King’s College’. Future work should

focus on extending our semantic representation to include contrastive or justificative

statements, by allowing the presentation of entity-dependent attributes, e.g. ’X is near

King’s College however Y is close to the train station’ or ”You might be interested in X because it

is cheap and near the VUE cinema’. Previous work in NLG has represented such statements

using discourse relations from Mann and Thompson’s Rhetorical Structure Theory

(RST; 1988), as part of the sentence planning process (Walker, Rambow, and Rogati 2002;
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Stent, Prasad, and Walker 2004; Stent and Molina 2009). Hence BAGEL’s expressiveness

could be improved by including discourse relations as part of the semantic tree and

corresponding stack sequence. For example, ’Charlie Chan is located near the Regal however

Jinling is near King’s College’ could be represented by including a CONTRAST discourse

relation to produce the tree in Figure 17. As this would require increasing the stack

depth, experiments with new backoff strategies are likely to be required to confirm that

BAGEL can generalize to support such discourse relations. While adopting a formalism

such as RST would increase BAGEL’s expressiveness, it is also important to note that

it would also raise the level of expertise required for annotating training utterances,

thus potentially making it more difficult to rely on crowdsourcing for collecting training

examples. There is thus a trade-off between the complexity of the semantic annotation

and amount of annotated data that can be realistically collected. While we believe

the granularity of our semantic scheme offers a good balance for dialogue system

applications, more research is needed to establish whether more fine-grained semantics

can yield a sufficient amount of data in arbitrary domains.

The generation of utterances from arbitrary semantic symbols can be difficult for

annotators. The BAGEL framework requires the ontology to be designed such that

it can be easily annotated. Note that the same requirement exists for collecting data

for the system’s natural language understanding component. Annotation errors can

typically be smoothed out by the statistical model, however systematic errors due to

ambiguities in the annotation schema can affect system performance. A consequence

is that the annotation schema might require multiple iterations based on the observed

performance. We believe that most misunderstandings can be resolved by renaming

semantic concepts, or by presenting example utterances to the annotators.
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Crowdsourcing our data collection from a large range of annotators also provides

us with a varied set of training paraphrases. Even without explicitly collecting multiple

utterances for a single dialogue act, identical semantic concepts are typically associated

with different realisation phrases across dialogue acts. We believe that statistical NLG

methods have the potential to learn to reproduce that variability at no extra cost. A

further contribution of this paper is therefore to present and evaluate two methods for

learning to generate paraphrases in dialogue: (a) by thresholding the N-best output

of FLM reranking models and (b) by using a perceptron reranker to learn a decision

boundary between negative and positive utterances in the training set. Whereas NLG

components are typically evaluated from text outputs only, we evaluate both para-

phrase generation methods within the context of dialogue system interaction. A first

result is that human judges do not perceive the resynthesized outputs as significantly

less natural than the outputs of a highly tuned handcrafted gold standard. This result

confirms that BAGEL can successfully learn to generate utterances over a large, real-

world domain. Furthermore, we find that a system varying its output by sampling

from a thresholded N-best list is perceived more favourably than a system always

returning the 1-best utterance. While these results need to be confirmed by a task-based

dialogue system evaluation, they suggest that users prefer systems producing varied

linguistic outputs, which is contrary to the intuition that users are more comfortable

with machines conversing in a predictable, repetitive, machine-like way.
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