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Abstract
Most Voice Conversion (VC) systems exploit source-filter de-
composition based on linear prediction (LP) to transform spec-
tral envelopes, incurring as a result various issues related to the
oversimplification of the LP voice source model. Whilst resid-
ual prediction methods can mitigate this problem, they cannot
be used to modify voice source quality. In this paper, a sys-
tem which employs linear transformations to convert both the
spectral envelope and the LF glottal waveform is presented. Its
performance is shown to be comparable to that of a state-of-the-
art VC implementation in terms of speaker identity conversion
but its output has better quality. In addition, it is also capable of
transforming the quality of the voice source.
Index Terms: LF waveform, deconvolution, voice conversion

1. Introduction
The most widely used speech signal representations are the
Source-Filter Model and the Sinusoidal Model. The Source-
Filter representation [1] is based on a simple production model
composed of a glottal source waveform exciting a time-varying
filter loaded at its output by the radiation of the lips. The
main challenge in Source-Filter modelling is the estimation of
the glottal waveform and vocal tract filter parameters from the
speech signal.

Linear Prediction (LP) is one popular technique used to ob-
tain a combined parameterisation of the glottal source, vocal
tract and lip radiation components in a unique all-pole filter
H(z). Such a filter is then excited, as shown in Figure 1, by a
sequence of impulses spaced at the fundamental period T0 dur-
ing voiced speech and by white gaussian noise during unvoiced
speech. If the speech signal were truly the response of an all-
pole filter, the LP error or residual would be a train of impulses
spaced at the voiced excitation instants and the impulse/noise
voice source modelling would be accurate. In practice, how-
ever, the LP residual looks more like a white noise signal with
larger values around the instants of excitation. While exciting
the LP filter with the LP residual results in speech that is in-
distinguishable from the original, using an impulse train as the
voiced excitation produces speech with a very buzzy quality.
The strength of LP lies in its ability to automatically estimate a
set of filter coefficients which compactly represent the envelope
of the speech spectrum, making it popular in applications where
the spectral characteristics of the speech wave need to be cap-
tured with a small number of parameters. Its main drawback,
on the other hand, stems from the over-simplified modelling of
the glottal source which prevents its use in systems requiring
high-quality speech outputs.

Sinusoidal Models assume the speech waveform to be com-
posed of the sum of a small number of sinusoids with time-
varying amplitudes, frequencies and phases. Such modelling
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Figure 1: Schematic diagram of the LP model

was mainly developed by McAulay and Quatieri [2] in the mid-
1980’s and has been shown to be capable of producing high-
quality speech even after pitch and time-scale transformations.
However, because of the high number of sinusoidal amplitudes,
frequencies and phases involved, sinusoidal modelling results
less flexible than the source-filter representation to modify spec-
tral features.

In order to obtain high-quality converted speech, state-of-
the-art VC implementations mainly employ variations and ex-
tensions of the original sinusoidal model. In addition, they gen-
erally adopt a source-filter formulation based on LP to carry out
spectral transformations. Unfortunately, this implies the use of
LP residuals as the voice source representation. Sinusoidal VC
systems have developed residual prediction and selection meth-
ods [3] based on the correlation between spectral envelope and
LP residuals to reintroduce the target spectral detail lost after
envelope conversion. Because residuals contain the errors in-
troduced by the LP parameterisation, residual prediction tech-
niques have been found to improve conversion performance.
However, LP residuals do not constitute an accurate model of
the voice source and residual prediction alone is not capable of
modifying the quality of the voice source. This prevents their
use in applications requiring voice quality modifications such
as, for example, speech repair.

In this paper, a source-filter modelling formulation which
uses a representation of the glottal source more accurate than LP
residuals is adopted for voice conversion. This allows the use
of linear transformations for the conversion of the voice source.

2. Joint Estimation Analysis Synthesis
The Joint Estimation Analysis Synthesis (JEAS) model used
for the analysis, modification and synthesis of speech is illus-
trated in Figure 2. It follows the general Source-Filter represen-
tation introduced in Section 1, employing white gaussian and
amplitude-modulated white gaussian noise to model the turbu-
lence and aspiration noise components respectively, a digital
differentiator for lip radiation and an all-pole filter to repre-
sent the vocal tract. However, instead of simplifying the mod-
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Figure 2: Schematic diagram of the JEAS Model

elling of the voice source with a two-pole filter as in LP, the
Liljencrants-Fant (LF) model [4] is adopted to better capture the
characteristics of the derivative glottal wave. Then, in order to
estimate the different model component parameterisations from
the speech wave, it applies the joint voice source and vocal tract
parameter estimation technique based on Convex Optimization
proposed in [5].

2.1. Modelling the Voice Source: LF model

Among the existing glottal wave parameterisations, the LF
model [4] has become the model of choice for research on the
glottal source. It has been shown to be capable of modelling
a wide range of naturally occurring phonations and the effects
of its parameter variations are well understood. It exploits the
linearity and time-invariance properties of the Source-Filter rep-
resentation and assumes the commutation of the vocal tract and
lip radiation filters to combine the modelling of the source ex-
citation and lip radiation in the parameterisation of the deriva-
tive of the glottal waveform. Typical LF pulses corresponding
to glottal and derivative glottal waves are shown in Figure 3.
Mathematically, it can be described as:

g(n) =


E0eαn sin

(
ωgn

)
0 ≤ n < Te

− Ee
εTa

[
e−ε(n−Te) − eε(Tc−Te)

]
Te ≤ n < Tc

(1)

Along with Ee, the LF pulse can be uniquely determined by
the timing parameters: (Tp, Te, Ta, Tc). These parameters can
be easily identified from the estimated derivative glottal wave.
Therefore, they are generally obtained first and the synthesis
parameters (E0, α, ωg, ε), from which the LF waveform can be
computed directly are then derived. Another important set of
LF parameters are the R-parameters (Rg,Rk,Ra), which are nor-
malised respect to T0 and correlate with the most salient glottal
phenomena, i.e. the glottal pulse width and the skewness and
abruptness of closure.

Rg =
T0

2 · Tp
; Rk =

Te − Tp

Tp
; Ra =

Ta

T0
(2)

2.2. Joint Source-Filter Deconvolution

The method employed to obtain the JEAS voice source and vo-
cal tract model parameters from the speech wave is based on
the joint estimation approach proposed in [5]. It involves us-
ing a voice source model simple enough to allow the source-
filter deconvolution to be formulated as a Convex Optimization
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Figure 3: Typical glottal and derivative glottal LF waveforms
and identifying features: glottal excitation strength Ee and tim-
ing parameters (Tp,Te, Ta,Tc)

problem. Then, the derivative glottal waveform obtained by in-
verse filtering (IF) with the estimated filter coefficients is re-
parameterised by LF model fitting.

Deconvolution is accomplished by minimising the squared
error between the modelled Rosenberg-Klatt (RK) and the true
derivative glottal waveforms. The RK model consists of the
basic voicing waveform of Equation (3) and a low-pass filter,

1
1−µz−1 , which encodes the spectral tilt.

ĝ(n) =

{
0 1 ≤ n < nc

2a(n − nc) − 3b(n − nc)2 nc ≤ n < T0
(3)

where nc represents the duration of the closed phase and the
parameters a and b hold a = b · (T0 − nc) · T0.

The true derivative glottal wave g(n) can be defined as

g(n) = s(n) −
p∑

k=1

αk s(n − k) (4)

where s(n) is the speech wave and αk are the coefficients of the
vocal tract all-pole filter.

The error between the modelled and the true derivative glot-
tal waves e(n) can be calculated by subtracting Equations (3)
and (4) in the closed and open phases

e(n) = ĝ(n) − g(n)

=



0 − s(n) +

p∑

k=1

αk s(n − k)

2a(n − nc) − 3b(n − nc)2 − s(n) +

p∑

k=1

αk s(n − k)

(5)

which rearranged and rewritten in matrix form gives

E = FX − S (6)

where X = [ α1 · · · αp a b ]′ is the parameter vector
to estimate. [5] demonstrated the least squares error optimiza-
tion of Equation (6) to be convex and thus, efficiently solvable
via Quadratic Programming. In order to smooth possible ad-
jacent parameter discontinuities, linear interpolation of source
and tract parameter trajectories is applied.
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Figure 4: Effect of adaptive pre-emphasis: a) speech spectrum
and estimated spectral envelope; b) IF derivative glottal wave
and fitted LF waveform; c) IF derivative glottal wave spectrum
and fitted LF wave spectrum

Whilst in [5] the low-pass filter representing the spectral
tilt is separated from the source and incorporated into the vo-
cal tract to allow the formulation of the convex optimization
problem, the spectral tilt is encoded differently in our imple-
mentation. We use adaptive pre-emphasis (AP) to estimate
and remove the spectral tilt filter contribution from the speech
wave before convex optimization. The effect of adaptive pre-
emphasis is illustrated in Figure 4. The vocal tract filter en-
velope estimates obtained this way do not encode source spec-
tral tilt characteristics, which are reflected in the closing phase
of the resulting derivative glottal waveforms instead. This has
been found to improve the fitting of the return phase of the LF
model and thus, of the high frequencies of the glottal source.

As in [5], wavelet denoising is used to extract the glottal
aspiration noise component from the IF derivative glottal wave
estimate. However, it is modelled differently: by modulating
zero mean unit variance Gaussian noise with the LF waveform
fitted for each pitch period and adjusting its energy to match
that of the aspiration noise estimate Ne.

Visual inspection of the estimated spectral envelope and fit-
ted LF waveforms has shown that the joint source-filter decon-
volution technique is successful and does not introduce notice-
able artifacts in the parameterisation. Moreover, speech resyn-
thesised with the estimated JEAS model parameters has been
found to be almost indistinguishable from the original.

3. Linear Transformations for LF Glottal
Waveform Conversion

Linear transformations provide a robust and efficient method of
spectral envelope conversion. The parameterisation of the glot-
tal source provided by JEAS Modelling allows the same robust
transformation technique to be applied to the voice source pa-
rameters, avoiding the need to predict appropriate LP residuals.

Five-dimensional feature vectors derived from the JEAS
model parameters linked to the voice source of every pitch pe-
riod have been employed for glottal waveform conversion. Each
feature vector is composed of the glottal excitation strength Ee,
the normalised R-parameters (Rg,Rk,Ra) and the energy of the
aspiration noise Ne.

As proposed for spectral envelope conversion in [6], Gaus-
sian Mixture Models (GMMs) can also be used to describe
the source and target glottal feature spaces, classify them into
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Figure 5: Linear Transformation of LF Glottal Waveforms: a)
source, target and converted derivative glottal LF waves; b)
source, target and converted trajectories of the glottal feature
vector parameters (Ee,Rg,Rk,Ra,Ne)

M classes and train class specific linear transformations. A
weighted sum of the linear transformations can then be em-
ployed to convert each glottal source feature vector x

F (x) =


M∑

m=1

λm(x)Wm

 x̄ (7)

where x̄ is the extended feature vector x̄ = [x′, 1]′ and λm is
the interpolation weight of transformation matrix Wm, its value
given by the probability of vector x belonging to class Cm

λm(x) = P(Cm|x) =
αmN(yt; µm,Σm)
M∑

i=1

αiN(yt; µi,Σi)

(8)

αm, µm and Σm being the weights, means and variances of the
GMM components respectively and N() representing the Nor-
mal Distribution.

The transformation matrices Wm can be estimated using
parallel training data and a least square error criterion [6].

As it can be seen in Figure 5, glottal conversion does move
the source feature vector parameter contours closer to the tar-
get and produces converted glottal waveforms which are more
similar to the target.

4. Evaluation
In order to evaluate the glottal waveform transformation tech-
nique, its performance was compared to the high-quality voice
morphing system described in [6]. This employs a Pitch-
Synchronous Harmonic Model (PSHM) to represent and manip-
ulate the speech signal, linear transformations to convert spec-
tral envelopes, a prediction method to transform residuals and
a phase prediction technique to mitigate the artifacts caused by
the unnatural sinusoidal phase dispersion. In contrast, the JEAS
VC system uses linear transformations to convert both the spec-
tral envelopes and the LF glottal waveforms.

A conversion task based on the VOICES database [7] in-
volving male-to-male (MM), male-to-female (MF), female-to-
male (FM) and female-to-female (FF) transformations was used
for the evaluation. Of the 150 parallel sentences available per
conversion experiment, the first 120 were used for training and
the remaining 30 for testing. Spectral vectors of order 30
were employed to train 8 linear spectral envelope transforms
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Figure 6: Results of the ABX test

between each source and target speaker pair. Aligned source-
target vector pairs were obtained by applying forced alignment
to mark sub-phone boundaries and using Dynamic Time Warp-
ing (DTW) to further constrain their alignment. For PSHM
residual and phase prediction, target GMMs and codebooks of
40 classes and entries were built. For JEAS, glottal waveform
conversions were also applied using 8 linear transforms per pair.
These numbers were the optimal for the experimental setting.

A listening test was carried out to assess the performance
of the PSHM and JEAS systems in terms of recognizability and
quality. 12 subjects took part in the perceptual study.

In the first part an ABX test in which subjects were pre-
sented with PSHM-converted (A), JEAS-converted (B) and tar-
get (X) utterances and were asked to choose the speech sam-
ple A or B they found sounded more like the target X in terms
of speaker identity. The prosody of the target was employed
to synthesise the converted sentences in order to normalise the
pitch, duration and energy differences between speakers for the
perceptual comparison. 10 utterances of each conversion type
(MM, MF, FM, FF) were presented. The order of the sam-
ples in terms of conversion type and conversion system was
randomised. Informal listening of the utterances transformed
using the PSHM and JEAS conversion systems revealed that
it was often very difficult to convincingly choose between sys-
tems in terms of speaker identity. For this reason, subjects were
also allowed to select a ’NO STRONG PREFERENCE’ option
when they did not have a strong preference towards one of the
presented A or B speech samples.

Figure 6 shows the results of the ABX test. The JEAS-
converted samples were preferred over the PSHM-converted
ones overall, which suggests that glottal source transforma-
tion slightly improves speaker identity conversion. However,
the ’NO STRONG PREFERENCE’ (NSP) option was selected
almost as often as the JEAS-converted utterances in general,
which reveals that subjects often found it difficult to distinguish
between conversion systems in terms of speaker identity. Pre-
sumably this is because the most important speaker identifying
cues, i.e. the spectral envelopes, were transformed using the
same method in the two cases. Hence, it is expected that both
systems should perform equally in terms of speaker recogniz-
ability. Overall, the results show that the residual prediction
and glottal waveform conversion techniques are comparable in
terms of perceptual speaker identity transformation.

The second part aimed at determining which system pro-
duces speech with a higher quality. Subjects were presented
with PSHM and JEAS converted speech utterance pairs and
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Figure 7: Results of the quality comparison test

asked to choose the one they thought had a better speech quality.
The results are shown in Figure 7. There is a clear preference
for the sentences converted using the JEAS method which was
chosen 75.7% of the time on average. There was thus a clearly
distinguishable quality difference between the PSHM and JEAS
transformed samples. Utterances obtained after PSHM con-
version have a ’noisy’ quality caused by phase discontinu-
ities. Wherease, the JEAS converted sentences sounded much
smoother. This quality difference might also have favoured the
slight preference towards JEAS conversion in the ABX test.

5. Conclusions
In this paper a new method to convert glottal source charac-
teristics in VC applications has been presented. It involves
the application of linear transformations to convert LF wave-
forms obtained using a speech representation capable of auto-
matically estimating glottal source and vocal tract parameterisa-
tions from the speech wave. The proposed VC implementation
achieves conversions comparable to the state-of-the-art in terms
of speaker recognizability but with a higher speech quality.
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