
Statistical User Simulation with a Hidden Agenda

Jost Schatzmann and Blaise Thomson and Steve Young
Cambridge University Engineering Department

Trumpington Street, Cambridge CB2 1PZ, United Kingdom
{js532,brmt2,sjy }@eng.cam.ac.uk

Abstract

Recent work in the area of probabilistic user sim-
ulation for training statistical dialogue managers
has investigated a newagenda-based user model
and presented preliminary experiments with a
handcrafted model parameter set. Training the
model on dialogue data is an important next step,
but non-trivial since the user agenda states are
not observable in data and the space of possible
states and state transitions is intractably large.
This paper presents a summary-space mapping
which greatly reduces the number of state tran-
sitions and introduces a tree-based method for
representing the space of possible agenda state
sequences. Treating the user agenda as a hid-
den variable, the forward/backward algorithm
can then be successfully applied to iteratively es-
timate the model parameters on dialogue data.

1 Introduction

1.1 Statistical user simulation

A key advantage of taking a statistical approach to dia-
logue manager (DM) design is the ability to formalise de-
sign criteria as objective reward functions and to learn an
optimal dialogue policy from human-computer dialogue
data (Young, 2002). The amount of suitably annotated
in-domain data required for training a statistical system,
however, typically exceeds the size of available dialogue
corpora by several orders of magnitude and it is thus
common practise to use a two-phased simulation-based
approach. First, a statistical model of user behaviour
is trained on the limited amount of available data. The
trained model is then used to simulate any number of di-
alogues with the interactively learning dialogue manager
(Levin et al., 2000; Scheffler and Young, 2002; Pietquin,
2004; Georgila et al., 2005; Lemon et al., 2006; Rieser
and Lemon, 2006; Schatzmann et al., 2006).

1.2 Agenda-based user modelling

Recent work by Schatzmann et al. (2007) has presented a
new technique for user simulation based on explicit rep-
resentations of theuser goaland theuser agenda, which
provide compact models of the dialogue context and the
user’s “state of mind” and are dynamically updated dur-
ing the dialogue. Experimental results with the statis-
tical POMDP-based Hidden Information State dialogue
system (Young et al., 2007; Thomson et al., 2007) show
that a competitive dialogue policy can be learnt even with
handcrafted user model parameters.

1.3 Training on real data

While this result is useful for bootstrapping a prototype
DM when no access to dialogue data is available, train-
ing the agenda-model on real human-computer dialogue
data is an important next step. Training avoids the ef-
fort and expertise needed to manually set the model pa-
rameters and ensures that the learned system policy is
optimized for human dialogue behaviour rather than the
handcrafted simulator. The implementation of a suitable
training algorithm for the agenda-based user model, how-
ever, is non-trivial since the user agenda and goal states
are not observable in data. Moreover, the space of possi-
ble states and state transitions is intractably large.

1.4 Paper overview

This paper reviews the agenda-based user model (Sec-
tion 2) and presents an Expectation-Maximization (EM)-
based training method (Section 3) which models the ob-
servable dialogue data in terms of a sequence of hidden
user states. Section 4 discusses the tractability prob-
lems associated with the vast state space and suggests
a summary-space mapping for state transitions. Using
an efficient tree-based method for generating state se-
quences on-the-fly, the forward/backward algorithm can
then be applied to iteratively estimate the model parame-
ters on data. Section 5 concludes with a brief evalution.

2 Agenda-based user simulation

2.1 User simulation at a semantic level

The agenda-based model introduced by Schatzmann et al.
(2007) formalises human-machine dialogue at a semantic
level as a sequence of states and dialogue acts1. At any
time t, the user is in a stateS, takes actionau, transi-
tions into the intermediate stateS′, receives machine ac-
tion am, and transitions into the next stateS′′ where the
cycle restarts.

S → au → S′ → am → S′′ → · · · (1)

Assuming a Markovian state representation, user be-
haviour can be decomposed into three models:P (au|S)
for action selection,P (S′|au, S) for the state transition
into S′, and P (S′′|am, S′) for the transition intoS′′.
Dialogue acts are assumed to be of the formact(a=x,
b=y,...), whereact denotes the type of action (such as
hello, inform or request) and act itemsa=x andb=y de-
note slot-value pairs, such asfood=Chineseor stars=5as
described in (Young et al., 2005).

2.2 State decomposition into goal and agenda

Inspired by agenda-based approaches to dialogue man-
agement (Wei and Rudnicky, 1999; Lemon et al., 2001;
Bohus and Rudnicky, 2003) the user state is factored into
an agendaA and a goalG.

S = (A, G) and G = (C,R) (2)

During the course of the dialogue, the goalG ensures that
the user behaves in a consistent, goal-directed manner.
G consists of constraintsC which specify the required
venue, eg. “a centrally located bar serving beer”, and re-
questsR which specify the desired pieces of information,
eg. “the name, address and phone number of the venue”.

The user agendaA is a stack-like structure containing
the pending user dialogue acts that are needed to elicit
the information specified in the goal. At the start of the
dialogue a new goal is randomly generated using the sys-
tem database and the agenda is populated by converting
all goal constraints intoinform acts and all goal requests
into requestacts. Abyeact is added at the bottom of the
agenda to close the dialogue (cf. Fig. 5 in the Appendix.).

As the dialogue progresses the agenda is dynamically
updated and acts are selected from the top of the agenda
to form user actsau. In response to incoming machine
actsam, new user acts are pushed onto the agenda and no
longer relevant ones are removed. The agenda thus serves
as a convenient way of tracking the progress of the dia-
logue as well as encoding the relevant dialogue history.

1The termsdialogue actanddialogue actionare used inter-
changeably here.

Dialogue acts can also be temporarily stored when ac-
tions of higher priority need to be issued first, hence pro-
viding the simulator with a simple model of user memory
(see Fig. 5 for an illustration). When using ann-gram
based approach, by comparison, such long-distance de-
pendencies between dialogue turns are neglected unless
n is set to a large value, which in turn often leads to poor
model parameters estimates.

Another, perhaps less obvious, advantage of the
agenda-based approach is that it enables the simulated
user to take the initiative when the dialogue is corrupted
by recognition errors or when the incoming system ac-
tion is not relevant to the current task. The latter point
is critical for training statistical dialogue managers be-
cause policies are typically learned from a random start.
The “dialogue history” during the early training phase is
thus often a sequence of random dialogue acts or dia-
logue states that has never been seen in the training data.
The stack of dialogue acts on the agenda enables the user
model to take the initiative in such cases and behave in a
goal-directed manner even if the system is not.

2.3 Action selection and state transition models

As explained in detail in (Schatzmann et al., 2007), the
decomposition of the user stateS into a goalG and an
agendaA simplifies the models for action selection and
state transition. Since the agenda (of lengthN) is or-
dered according to priority, withA[N] denoting the top
and A[1] denoting the bottom item, forming a user re-
sponse is equivalent to poppingn items of the top of the
stack. UsingA[N−n+ 1..N] as a Matlab-like shorthand
notation for the topn items onA, the action selection
model can be expressed as

P (au|S) = δ(au, A[N− n + 1..N])P (n|A,G) (3)

whereδ(p, q) is 1 iff p = q and zero otherwise.
The state transition modelsP (S′|au, S) and

P (S′′|am, S′) are rewritten as follows. LettingA′

denote the agenda after popping offau and using
N ′ = N − n to denote the size ofA′, we have

A′[i] := A[i] ∀i ∈ [1..N ′]. (4)

Using this definition ofA′ and assuming that the goal
remains constant when the user executesau, the first state
transition depending onau is entirely deterministic:

P (S′|au, S) = P (A′, G′|au, A,G)
= δ(A′, A[1..N ′])δ(G′, G). (5)

The second state transition based onam can be decom-
posed intogoal updateandagenda updatemodules:

P (S′′|am, S′)
= P (A′′|am, A′, G′′)︸ ︷︷ ︸

agenda update

P (G′′|am, G′)︸ ︷︷ ︸
goal update

. (6)

3 Model Parameter Estimation

3.1 The user state as a hidden variable

Estimating the parameters of the action selection and
state transition models is non-trivial, since the goal and
agenda states are not observable in training data.

Previous work on the state-based approach to statistical
user simulation (Georgila et al., 2005; Lemon et al., 2006;
Rieser and Lemon, 2006) has circumvented this problem
by annotating training data with dialogue state informa-
tion and conditioning user output on the observable dia-
logue state rather than the unobservable user state. While
this simplifies the training process, providing the neces-
sary annotation requires a considerable effort. If done
manually, the process is often expensive and it can be
difficult to ensure inter-annotator agreement. Using an
automatic tool for dialogue state annotation (Georgila et
al., 2005) can improve efficiency, but the development of
the tool itself is a time-consuming process.

The parameter estimation approach presented here
avoids the need for dialogue state annotation by mod-
elling the observable user and machine dialogue acts in
terms of ahidden sequence of agendas and user goal
states. More formally, the dialogue dataD containing
dialogue turns1 to T

D = {au,am} = {am,1, au,1..., am,T , au,T } (7)

is modelled in terms of latent variables

X = {A,G} (8)

where

A = {A1, A
′
1, ..., AT , A′T } (9)

G = {G1, G
′
1, ..., GT , G′T }. (10)

Collecting the results from Section 2, and noting that
from (5) the choice ofn deterministically fixesA′, the
joint probability can hence be expressed as

P (X,D) = P (A,G,au,am) =

T∏
t=1

P (nt|At, Gt)P (A′′t |am,t, A
′
t, G

′′
t)P (G′′t |am,t, G

′
t).

(11)
The goal is to learn maximum likelihood (ML) values

for the model parameter setθ such that the log likelihood

L(θ) = log P (D|θ) = log
∑

X

P (X,D|θ) (12)

is maximized

θML = arg max
θ
L(θ). (13)

3.2 An EM-based approach

The direct optimization ofL(θ) is not possible, how-
ever, an iterative Expectation-Maximization (EM)-based
approach (Dempster et al., 1977) can be used to find a
(local) maximum of the latent variable model likelihood.
Using Jensen’s inequality, any distributionq(X) can be
used to obtain a lower bound onL(θ)

L(θ) =

log
∑

X

q(X)
P (X,D|θ)

q(X)
≥

∑

X

q(X) log
P (X,D|θ)

q(X)

def= F(q(X), θ). (14)

SinceL(θ) is always greater or equal to the “negative free
energy”F(q(X), θ) the problem of maximizingL(θ) is
equivalent to maximizingF(q(X), θ). Starting from ar-
bitrarily selected model parameters, EM iterates by alter-
nating an E-step and an M-step.

During the E-step, the distributionq(k)(X) over the
latent variables is estimated for fixed model parameters
θ(k−1)

q(k)(X) := arg max
q(X)

F(q(X), θ(k−1)). (15)

It can be shown that this is achieved by setting

q(k)(X) = P (X|D, θ(k−1)). (16)

Using Bayes rule and the law of total probability the RHS
of Eq. 16 can be expressed as

P (X|D, θ(k−1))

=
P (D|X, θ(k−1))P (X|θ(k−1))∑
X P (D|X, θ(k−1))P (X|θ(k−1))

. (17)

Resubstituting (7) and (8) into (17) completes the E-step:

q(k)(A,G)

=
P (au,am|A,G, θ(k−1))P (A,G|θ(k−1))∑

A,G P (au,am|A,G, θ(k−1))P (A,G|θ(k−1))
.

(18)

The M-step now optimizesF(q(X), θ) with respect to
θ whilst holdingq(k)(X) fixed

θ(t) := arg max
θ
F(q(k)(X), θ). (19)

This is achieved by maximizing the auxiliary function

Q(θ, θ(k−1))=
∑

X

P (X,D|θ(k−1)) log P (X,D|θ).
(20)

Substituting Eq. 11 into the above, differentiating with
respect toθ and setting the result to zero, one arrives at
the parameter reestimation formulae shown in Eqs. 21-23
in Fig. 1.

P̂ (n|A,G) =
∑

t P (At = A,Gt = G|au,am, θ(k−1))δ(nt, n)∑
t P (At = A,Gt = G|au,am, θ(k−1))

(21)

P̂ (A′′|am, A′, G′′) =
∑

t P (A′′t = A′′, A′t = A′, G′′t = G′′|au,am, θ(k−1))δ(am,t, am)∑
t P (A′t = A′, G′′t = G′′|au,am, θ(k−1))δ(am,t, am)

(22)

P̂ (G′′|am, G′) =
∑

t P (G′′t = G′′, G′t = G′|au,am, θ(k−1))δ(am,t, am)∑
t P (G′t = G′|au,am, θ(k−1))δ(am,t, am)

(23)

Figure 1: Model parameter update equations for the action selection and agenda and goal state transition models. Note
thatδ(nt, n) is one iffnt = n and zero otherwise. Similarly,δ(am,t, am) is one iffam,t = am and zero otherwise.

4 Implementation

4.1 Tractability considerations

In the Hidden Information State (HIS) Dialogue System
(Young et al., 2007) used for the experiments presented
in this paper, the size of the user and machine dialogue
action setsU andM is

|U| ≈ 103 and |M| ≈ 103. (24)

Goals are composed ofNC constraints taken from the
set of constraintsC, andNR requests taken from the set
of requestsR. Note that the ordering of constraints and
requests does not matter, and there are no duplicate con-
straints or requests. Using typical values for goal specifi-
cations during previous HIS Dialogue System user trials
(Thomson et al., 2007) the size of the goal state space can
be estimated as

|G| =
(|C|

NC

)(|R|
NR

)
=

(
50
4

)(
8
3

)
≈ 107. (25)

The size of the agenda state spaceA depends on the
number of unique user dialogue acts|U| as defined above
and the maximum numberNA of user dialogue acts on
the agenda. The maximum length of the agenda is a
design choice, but it is difficult to simulate realistic di-
alogues unless it is set to at leastNA = 8. If fully popu-
lated,A therefore comprises the vast number of

|A| = |U|!
(|U| −NA)!

≈ 1020. (26)

potential agenda states2 and the number of parameters
needed to modelP (A′′|am, A′, G′′) is of the order

|A ×M×A× G| ≈ 1050. (27)

2Note that the order of agenda items matters and that there
are no duplicate items.

4.2 Agenda updates as a sequence of push actions

The estimates show that when no restrictions are placed
on A′′, the space of possible state transitions is vast. It
can however be assumed thatA′′ is derived fromA′ and
that each transition entails only a limited number of well-
defined atomic operations (Schatzmann et al., 2007).

More specifically, the agenda transition fromA′ to A′′

can be viewed as a sequence of push-operations in which
dialogue acts are added to the top of the agenda. In a
second ”clean-up” step, duplicate dialogue acts, “empty”
acts, and unnecessaryrequest()acts for already filled goal
request slots must be removed but this is a determinis-
tic procedure so that it can be excluded in the follow-
ing derivation for simplicity. Considering only the push-
operations, the items1 to N ′ at the bottom of the agenda
remain fixed and the update model is rewritten as follows:

P (A′′|am, A′, G′′)
= P (A′′[1..N ′], A′′[N ′+1..N ′′]|am, A′[1..N ′], G′′)
= δ(A′′[1..N ′], A′[1..N ′])

· P (A′′[N ′+1..N ′′]|am, G′′). (28)

The second term on the RHS of Eq. 28 can now be fur-
ther simplified by assuming that every dialogue act item
(slot-value pair) inam triggers one push-operation. This
assumption can be made without loss of generality, be-
cause it is possible to push an “empty” act (which is later
removed) or to push an act with more than one item. The
advantage of this assumption is that the known number
M of items inam now determines the number of push-
operations. HenceN ′′ = N ′ + M and

P (A′′[N ′+1..N ′′]|am, G′′)
= P (A′′[N ′+1..N ′+M]|am[1..M], G′′) (29)

=
M∏

i=1

P (A′′[N ′+i]︸ ︷︷ ︸
apush

| am[i]︸ ︷︷ ︸
acond

, G′′) (30)

The expression in Eq. 30 shows that each itemam[i] in
the system act triggers one push operation, and that this

operation is conditioned on the goal. For example, given
that the itemx=y in am[i] violates the constraints inG′′,
one of the following might be pushed ontoA′′: negate(),
inform(x=z), deny(x=y, x=z), etc.

Let apush ∈ U denote the pushed actA′′[N ′+ i] and
acond ∈ M denote the conditioning dialogue act con-
taining the single dialogue act itemam[i]. Omitting the
Dirac delta function in Eq. 28, the agenda update step
then reduces to the repeated application of apush transi-
tion modelP (apush|acond, G

′′). The number of parame-
ters needed to modelP (apush|acond, G

′′) is of the order

|U ×M× G| ≈ 1013. (31)

While still large, this number is significantly smaller then
the number of parameters needed to model unrestricted
transitions fromA′ to A′′ (cf. Eq. 27).

4.3 A summary space model for push transitions

To further reduce the size of the model parameter set and
make the estimation ofP (apush|acond, G

′′) tractable, it
is useful to introduce the concept of a “summary space”,
as has been previously done in the context of dialogue
management (Williams and Young, 2005). First, a func-
tion φ is defined for mapping the machine dialogue act
acond ∈ M and the goal stateG′′ ∈ G from the space of
machine actsM and goal statesG to a smaller summary
spaceZcond of “summary conditions”

φ : M×G 7→ Zcond with |M×G| À |Zcond|. (32)

Secondly, a “summary push action” spaceZpush is de-
fined, which groups real user dialogue acts into a smaller
set of equivalence classes. Using a functionω, summary
push actions are mapped back to “real” dialogue acts

ω : Zpush 7→ U with |Zpush| ¿ |U|. (33)

Agenda state transitions can now be modelled in sum-
mary space using

P (apush|acond, G
′′) ≈ P (zpush|zcond) (34)

wherezpush ∈ Zpush andzcond ∈ Zcond and

zcond = φ(acond, G
′′) (35)

apush = ω(zpush). (36)

For the experiments presented in this paper, 20 sum-
mary conditions and 20 summary push actions were de-
fined, with examples shown in Fig 6. The total number of
parameters needed to modelP (zpush|zcond) is therefore

|Zcond × Zpush| = 400. (37)

The parameter set needed to model agenda transitions is
now small enough to be estimated on real dialogue data.

4.4 Representing agenda state sequences

Given our estimate of|A| ≈ 1020 for the size of the
agenda state space, the direct enumeration of all states
in advance is clearly intractable. The actual number of
states needed to model a particular dialogue act sequence,
however, is much smaller, since agenda transitions are
restricted to push/pop operations and conditioned on dia-
logue context. The training algorithm can exploit this by
generating state-sequences on-the-fly, and discarding any
state sequenceX for whichP (X,D|θ) = 0.

A suitable implementation for this is found in the
form of a dynamically growing agenda-tree, which allows
agenda-states to be represented as tree-nodes and state
transitions as branches. The tree is initialised by creating
a root node containing an empty agenda and then popu-
lating the agenda according to the goal specification as
explained in Sect. 2. However, since the initial ordering
of dialogue acts on the agenda is unknown, all possible
permutations of constraints and requests must be created,
resulting in a row ofNC ! ·NR! initial agendas (cf. Fig. 2).

Update leaf nodes
based on am (push
items onto agenda)

Pop au where possible

Prune tree and join
identical nodes

Generate all possible
initial agendas

Create a root node with
an empty agenda

.

.

Figure 2: Tree-based method for representing state se-
quences.

4.4.1 Updating the tree based onam

The dialogue is now “parsed” by growing the tree and
creating branches for all possible state sequences. Up-
dates based on a machine dialogue actam involve map-
ping each item inam to its corresponding summary con-
dition zcond using the functionφ. For eachzcond a list
of summary push actionszpush is generated, discarding
cases whereP (zpush|zcond) = 0. The summary push
actions are then mapped back to real push actions using
ω and used to create new agendas which are attached to
the tree as new branches. The probability of the transi-
tion/branch is computed as the product of the probabili-
ties of the real push actions. (See Fig. 6 in the appendix
for a detailed illustration.)

The leaf nodes are now cleaned up in a deterministic
procedure to remove empty and duplicate dialogue acts,

to delete all dialogue acts below abye()act, and to re-
move all requests for items that have already been filled
in the user goal. (An exception to the latter is made for
requests that have just been added to the agenda, such that
the simulated user can re-request filled items.)

4.4.2 Updating the tree based onau

In the next step, the tree is updated based on the ob-
served user actau. This part simplifies to poppingau

from the top of the agenda wherever this is possible.
Agendas which do not allowau to be popped off rep-
resent states with zero probability and can be discarded.
In all other cases, a new node with the updated agenda
is attached to the tree. The branch is marked as a pop-
transition and its probability is computed based on the
number of items popped.

4.4.3 Pruning the tree and joining identical nodes
Once the update based onau is completed, the tree

is pruned to reduce the number of nodes and branches.
First, all branches which were not extended during the di-
alogue turn, i.e. branches whereau could not be popped
off the leaf node agenda, are removed. All remaining
branches represent possible sequences of agenda states
with non-zero probability for the dialogue acts seen so
far. In a second step, a more aggressive type of pruning
can be carried out by removing all branches which do not
have a given minimum leaf node probability. After prun-
ing, the size of the tree is further reduced by joining nodes
with identical agendas.

4.5 Action selection and goal update model

The action selection and goal update models experience
similar tractability problems as the agenda update model,
but in both cases a straightforward solution was found to
produce satisfactory results. To simplify the action se-
lection modelP (n|A,G), the random variablen can be
assumed independent ofA andG. The probability dis-
tribution P (n) over small integer values forn (typically
in the range from 0 to 6) can then be estimated directly
from dialogue data by obtaining frequency counts of the
number of dialogue act items in every user act.

The goal update modelP (G′′|am, G′) is decomposed
into separate update steps for the constraints and requests.
Assuming thatR′′ is conditionally independent ofC ′

givenC ′′ it is easy to show that

P (G′′|am, G′)
= P (R′′|am, R′, C ′′)P (C ′′|am, R′, C ′). (38)

The two update steps can be treated separately and imple-
mented deterministically using two rules: 1) IfR′ con-
tains an empty slotu andam is a dialogue act of the form
inform(u=v,r=s,...), thenR′′ is derived fromR′ by setting
u=v given that no other information inam violates any

constraints inC ′′. 2) If am contains a request for the slot
x, a new constraintx=y is added toC ′ to form C ′′. The
latter does not imply that the user necessarily responds to
a system request for any slotx, since the agenda update
model does not enforce a corresponding user dialogue act
to be issued.

4.6 Applying the forward/backward algorithm

Using the summary space mapping for agenda transitions
and simplifying assumptions for the goal update and ac-
tion selection model, the parameter update equation set
reduces to a single equation:

P̂ (zpush|zcond) =∑
k P (zpush,k = zpush, zcond,k = zcond|au,am, θ)∑

k P (zcond,k = zcond|au,am, θ)
(39)

Note thatk is used here rather thant, since every dialogue
turn t involves two state transitions, and there are hence
K = 2T observations and update steps.

The parameter update equation can now be efficiently
implemented by applying the forward/backward algo-
rithm. Letαi(k) denote the forward probability of being
in statei after seeing the observations from1 to k, and
let βi(k) denote the backward probability of seeing the
observations fromk + 1 to K, given that we are in statei
after update stepk:

αi(k) = P (o1, o2, . . . , ok, xk = i|θ) (40)

βi(k) = P (ok+1, ok+2, . . . , oK |xk = i, θ) (41)

Based on the observations, a tree of agendas is con-
structed as described in Section 4.4. After the last obser-
vationK, all agenda items have been popped, so that the
leaf node agendas are empty and can be merged to form a
single end node. The forward/backward probabilities are
now initialised using

αi(1) =
1

NC !NR!
, 1≤ i ≤ NC !NR! (42)

βend(K) = 1 (43)

and then recursively defined for the update steps from
k = 2 to k = K − 1 using

αj(k) =
∑

i

αi(k − 1)aij (44)

βi(k) =
∑

j

aijβj(k + 1) (45)

where the transition probabilityaij of transitioning from
statei to j depends on whether it is a push or a pop tran-
sition. When the transition involves poppingn items off
the agenda,aij equalsP (n). If the transition involves a

sequence of push actions, thenaij is defined as the prod-
uct of the probability of the associated real push actions
(see Fig. 6 in the appendix for an illustration).

Using the forward/backward probabilities, one can
now compute the probabilityτk(i, j) of transitioning
from statei to statej at update stepk as

τk(i, j) =
αi(k)aijβj(k + 1)

αend(K)
. (46)

Finally, the push transition model parameters are up-
dated using

P̂ (zpush|zcond) =

∑
{k,i,j|SPA=zpush,SC=zcond} τk(i, j)∑

{k,i,j|SC=zcond} τt(i, j)
(47)

where the summation subscripts indicate if the summary
push action (SPA)zpush and summary condition (SC)
zcond were used to transition fromi to j at stepk.

5 Evaluation

5.1 Dialogue training data

The parameter estimation approach presented in this pa-
per was tested using a small corpus collected with the
HIS Dialogue System (Young et al., 2007; Thomson et
al., 2007; Schatzmann et al., 2007). The dataset consists
of 160 dialogues from the tourist information domain,
recorded with 40 different speakers, each of whom com-
pleted 4 dialogues. In total, the corpus contains 6452 di-
alogue turns and 21667 words. All utterances were man-
ually transcribed and annotated using the set of dialogue
act definitions described in Section 2.1. No dialogue state
or user state annotation was needed.

5.2 Training results

The user model was trained on the dialogue corpus de-
scribed above and Fig. 3 shows the number of agenda tree
leaf nodes during a typical training episode on a sample
dialogue. For each machine dialogue act, the tree is ex-
tended and 1 or more new nodes are attached to each tree
branch, so that the number of leaf nodes stays constant or
increases. Pop operations are then performed where pos-
sible, the tree is pruned and identical nodes are joined so
that the number stays constant or decreases. At the end
of the dialogue, only a single leaf node with an empty
agenda remains.

When plotting the log probability of the data (Fig. 4),
it can be seen that the EM-based algorithm produces a
monotonically increasing curve (as expected). The algo-
rithm quickly converges to a (local) optimum, so that in
practise only a few iterations are needed. For illustration
purposes, the training run in Fig. 4 was performed on two
dialogues. As can be seen the log prob of the individual
dialogues increases (top two lines), just as the log prob of
the complete dataset (bottom line).

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Dialogue turn

N
u

m
b

er
 o

f
le

af
 n

o
d

es

Figure 3: Graph showing the number of agenda tree leaf
nodes after each observation during a training run per-
formed on a single dialogue.

-50

-40

-30

-20

-10

0
1 2 3 4 5 6 7 8 9 10

EM iteration

L
o

g
 p

ro
b

ab
il

it
y

P(O_1|M)

P(O_2|M)

P(O|M)

Figure 4: Graph showing a monotonous increase in log
probabilityL(θ) after each iteration of the EM algorithm.

5.3 Comparison of real and simulated data

An initial evaluation of the simulation quality has been
performed by testing the similarity between real and sim-
ulated data. Table 1 shows basic statistical properties
of dialogues collected with 1) real users, 2) the trained
agenda model and 3) the handcrafted baseline simulator
used by Schatzmann et al. (2007). All results were ob-
tained with the same trained dialogue manager and the
same set of user goal specifications. Since the model aims
to reproduce user behaviour but not recognition errors,
only the subset of 84 dialogues with a semantic accu-
racy above 90% was used from the real dialogue corpus3.
The results show that the trained simulator performs bet-
ter than the handcrafted baseline. The difference between
the statistical properties of dialogues generated with the
trained user model and those collected with real users is
not statistically significant with confidence of more than
95%. Hence, based on these metrics, the trained agenda
model appears to more closely match real human dia-
logue behaviour. One may expect that a dialogue system
trained on this model is likely to perform better on real
users than a system trained with the handcrafted simula-
tor, but this is still an open research question.

3Semantic accuracy was measured in terms of substitution,
insertion and deletion errors as defined by Boros et al. (1996).

Real Users Tr. Sim Hdc. Sim
Sample size 84 1000 1000
Dial. length 3.30±0.53 3.38±0.07 4.04±0.19
Compl. rate 0.98±0.03 0.94±0.02 0.93±0.02
Performance 16.23±1.01 15.32±0.34 14.65±0.50

Table 1: Comparison of basic statistical properties of
real and simulated dialogue data (mean±95% confidence
thresholds). Dialogue length is measured in turns, task
completion rate is based on the recommendation of a cor-
rect venue, and dialogue performance is computed by as-
signing a 20 point reward for a successful recommenda-
tion (0 otherwise) and subtracting 1 point for every turn.

6 Summary

This paper has extended recent work on an agenda-based
user model for training statistical dialogue managers and
presented a method for estimating the model parameters
on human-computer dialogue data. The approach mod-
els the observable dialogue acts in terms of a sequence
of hidden user states and uses an EM-based algorithm to
iteratively estimate (locally) optimal parameter values.

In order to make estimation tractable, the training al-
gorithm is implemented using a summary-space mapping
for state transitions. Agenda state sequences are repre-
sented using tree structures, which are generated on-the-
fly for each dialogue in the training corpus. Experimental
results show that the forward/backward algorithm can be
successfully applied to recompute the model parameters.

A comparison of real and simulated dialogue data has
shown that the trained user model outperforms a hand-
crafted simulator and produces dialogues that closely
match statistical properties of real data. While these ini-
tial results are promising, further work is needed to re-
fine the summary state mapping and to fully evaluate the
trained model. We look forward to reporting these results
in a future paper.

References

D. Bohus and A. Rudnicky. 2003. Ravenclaw: Dia-
log management using hierarchical task decomposition
and an expectation agenda. InProc. of Eurospeech.
Geneva, Switzerland.

M. Boros, W. Eckert, F. Gallwitz, G. Gorz, G. Hanrieder,
and H. Niemann. 1996. Towards understanding spon-
taneous speech: Word accuracy vs. concept accuracy.
In Proc. of ICSLP. Philadelphia, PA.

A. Dempster, N. Laird, and D. Rubin. 1977. Maxi-
mum likelihood from incomplete data via the EM algo-
rithm. Journal of the Royal Statistical Society, Series
B, 39(1):1–38.

K. Georgila, J. Henderson, and O. Lemon. 2005. Learn-
ing user simulations for information state update dia-
log systems. InProc. of Eurospeech. Lisbon, Portugal.

O. Lemon, A. Bracy, A. Gruenstein, and S. Peters. 2001.
The WITAS multi-modal dialogue system I. InProc.
of Eurospeech. Aalborg, Denmark.

O. Lemon, K. Georgila, and J. Henderson. 2006. Eval-
uating Effectiveness and Portability of Reinforcement
Learned Dialogue Strategies with real users: the TALK
TownInfo Eval. InProc. of SLT, Palm Beach, Aruba.

E. Levin, R. Pieraccini, and W. Eckert. 2000. A Stochas-
tic Model of Human-Machine Interaction for Learning
Dialog Strategies.IEEE Trans. on Speech and Audio
Processing, 8(1):11–23.

O. Pietquin. 2004. A Framework for Unsupervised
Learning of Dialogue Strategies. Ph.D. thesis, Faculte
Polytechnique de Mons.

V. Rieser and O. Lemon. 2006. Cluster-based User Sim-
ulations for Learning Dialogue Strategies. InProc. of
ICSLP, Pittsburgh, PA.

J. Schatzmann, K. Weilhammer, M.N. Stuttle, and
S. Young. 2006. A Survey of Statistical User Simu-
lation Techniques for Reinforcement-Learning of Dia-
logue Management Strategies.KER, 21(2):97–126.

J. Schatzmann, B. Thomson, K. Weilhammer, H. Ye, and
S. Young. 2007. Agenda-based user simulation for
bootstrapping a POMDP dialogue system. InProc. of
HLT/NAACL. Rochester, NY.

K. Scheffler and S. Young. 2002. Automatic learning of
dialogue strategy using dialogue simulation and rein-
forcement learning. InProc. of HLT. San Diego, CA.

B. Thomson, J. Schatzmann, K. Weilhammer, H. Ye, ,
and S. Young. 2007. Training a real-world POMDP
dialogue system. InProc. of HLT/NAACL Workshop:
Bridging the Gap. Rochester, NY.

X. Wei and A.I. Rudnicky. 1999. An agenda-based dia-
log management architecture for spoken language sys-
tems. InProc. of IEEE ASRU. Seattle, WA.

J. D. Williams and S. Young. 2005. Scaling Up POMDPs
for Dialog Management: The “Summary POMDP”
Method. InProc. of ASRU. San Juan, Puerto Rico.

S. Young, J. Williams, J. Schatzmann, M. Stuttle, and
K. Weilhammer. 2005. The hidden information state
approach to dialogue management. Technical Report
CUED/F-INFENG/TR.544, Cambridge University.

S. Young, J. Schatzmann, K. Weilhammer, and H. Ye.
2007. The Hidden Information State Approach to Di-
alog Management. InProc. of ICASSP, Honolulu, HI.

S. Young. 2002. Talking to machines (statistically speak-
ing). In Proc. of ICSLP. Denver, CO.

7 Appendix

7.1 Sample dialogue and user state sequence

Initialisation (Generate goal constraints and requests and populate the agenda)

C0 =

[
type = bar
drinks = beer
area = central

]
R0 =

[
name =
addr =
phone =

]
A0 =

inform(type = bar)
inform(drinks = beer)
inform(area = central)
request(name)
request(addr)
request(phone)
bye()

Sys 0 Hello, how may I help you?(Push 0 items onto the agenda)
Usr 1 I’m looking for a nice bar serving beer.(Pop 2 items off the agenda)

C′1 =

[
type = bar
drinks = beer
area = central

]
R′1 =

[
name =
addr =
phone =

]
A′1 =

inform(area = central)
request(name)
request(addr)
request(phone)
bye()

Sys 1 Ok, a wine bar. What price range?(Add 1 constraint, push 2 items onto the agenda)

C2 =

type = bar
drinks = beer
area = central
prange = cheap

 R2 =

[
name =
addr =
phone =

]
A2 =

negate(drinks = beer)
inform(prange = cheap)
inform(area = central)
request(name)
request(addr)
request(phone)
bye()

Usr 2 No, beer please!(Pop 1 item off the agenda)
Sys 2 A bar serving beer, correct?(Push 1 item onto the agenda)

C3 =

type = bar
drinks = beer
area = central
prange = cheap

 R3 =

[
name =
addr =
phone =

]
A3 =

affirm()
inform(prange = cheap)
inform(area = central)
request(name)
request(addr)
request(phone)
bye()

Usr 3 Yeah something cheap in the town centre.(Pop 3 items off the agenda)

C′3 =

type = bar
drinks = beer
area = central
prange = cheap

 R′3 =

[
name =
addr =
phone =

]
A′3 =

request(name)
request(addr)
request(phone)
bye()

Sys 3 Murphy’s on Main Sq. serves cheap beer.(Fill 2 requests, delete agenda requests for filled slots)

C4 =

type = bar
drinks = beer
area = central
prange = cheap

 R4 =

[
name = Murphy′s
addr = Main Sq
phone =

]
A4 =

[
request(phone)
bye()

]

Usr 4 And what’s the phone number?(Pop 1 item off the agenda)
Sys 4 The number is 796 69 94.(Fill 1 request)

C5 =

type = bar
drinks = beer
area = central
prange = cheap

 R5 =

[
name = Murphy′s
addr = Main Sq
phone = 7966994

]
A5 =

[
bye()

]

Usr 5 Thanks, goodbye! (Pop 1 item off the agenda)

Figure 5: Sample dialogue showing the state of the user goal and agenda. Note that system turn 1“What price range?”
triggers the user actinform(prange=cheap)to be pushed onto the agenda but it is not executed until turn 3 because
negate(drinks=beer)is issued first.

7.2 Sample agenda update transition using the summary-space mapping

am = confreq(p=q,r)

1. ReceiveConfirmAXok [p=q]
2. ReceiveRequestA [r]

1. PushAffirm {0.3}
PushAffirmAX {0.4}
PushNothing {0.3}

2. PushInformAX {0.5}
PushInformBY {0.4}
PushNull {0.1}

Map dialogue act to
M summary conditions

Generate list of
summary push actions
with non-zero probability

1. affirm() {0.3}
affirm(p=q) {0.4}
--- {0.3}

2. inform(r=x) {0.5}
inform(s=y) {0.2}
inform(t=z) {0.2}
null() {0.1}

Map summary push
actions to real

push actions

Receive machine act
with M dia act items

a) affirm() {0.3}
inform(r=x) {0.5}

b) affirm() {0.3}
inform(s=y) {0.2}

c) affirm() {0.3}
inform(t=z) {0.2}

d) affirm() {0.3}
null() {0.1}

e) affirm(p=q) {0.4}
inform(r=x) {0.5}

Generate all
combinations of

real push actions

Execute push actions to
form new agenda nodes

Agenda A

…

a)

b)

c)

…

{0.15}

{0.06}

{0.06}

Figure 6: Simplified example illustrating the summary space technique for agenda updates.

The incoming machine act in this example is assumed to beam =confreq(p=q,r), i.e. an implicit confirmation of
the slot-value pairp=q and a request for the slotr. The update step proceeds as follows:

1. Based on the current state of the goal (not shown here), the first step is to map each dialogue act item (slot-
value pair) to a summary conditionzcond. Given that the confirmationp=q in the example does not violate any
of the constraints in the user goal, it is mapped toReceiveConfirmAXok[p=q]. The request forr is mapped to
ReceiveRequestA[r].

2. A list of summary push actionszpush, each with probabilityP (zpush|zcond), is now generated for each summary
conditionzcond. A (shortened) list of examples is shown in the figure. The summary push actionPushInformAX,
for instance, implies that aninform act with the requested slot (in this caser) is pushed onto the agenda. Note
that summary push actions with zero probability can be discarded at this point.

3. The summary push actions are now mapped to real push actions. This is a 1-to-1 mapping for most summary
push actions, but some summary push actions can map to several real push actions. This is illustrated in the figure
by the summary push actionPushInformBY, which implies that the corresponding real push action is aninform
dialogue act containing some slot-value pairB=Y other than the requested slot, in this cases=y or t=z. In such
cases, the probability mass is split evenly between the real push actions for a summary push action, as shown in
the figure.

4. Using one real push action from each summary condition, a list of all possible combinations of push actions is
now generated. Each combination represents a series of dialogue acts to be pushed onto the agenda. As shown in
the figure, each combination is used to create a new agenda. The transition probability is computed as the product
of the real push actions that were used to make the transition.

Note that the set of summary conditions and summary actions is independent of the number of concepts and database
entries, allowing the method to scale to more complex problem domains and larger databases.

