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ABSTRACT

Human-machine dialogue is heavily influenced by speech recogni-
tion and understanding errors and it is hence desirable to train and
test statistical dialogue system policies under realistic noise condi-
tions. This paper presents a novel approach to error simulation based
on statistical models for word-level utterance generation, ASR con-
fusions, and confidence score generation. While the method explic-
itly models the context-dependent acoustic confusability of words
and allows the system specific language model and semantic decoder
to be incorporated, it is computationally inexpensive and thus poten-
tially suitable for running thousands of training simulations. Experi-
mental evaluation results with a POMDP-based dialogue system and
the Hidden Agenda User Simulator indicate a close match between
the statistical properties of real and synthetic errors.

Index Terms— error simulation, statistical modelling, spoken
dialogue systems, POMDP, dialogue policy training

1. INTRODUCTION AND OVERVIEW

1.1. User and error simulation for training dialogue systems

A key advantage of taking a statistical approach to dialogue manager
(DM) design is the ability to formalise design criteria as objective
reward functions and to learn an optimal dialogue policy from real
data [1]. The amount of suitably annotated in-domain data required
for training a statistical system, however, typically exceeds the size
of available dialogue corpora by several orders of magnitude. It
is thus common practise to use a two-phased simulation-based ap-
proach where a statistical model of user behaviour is first trained on
the limited amount of available human-computer dialogue data. The
user simulator can then be used to generate any number of dialogues
with the interactively learning DM [2, 3, 4, 5, 6, 7, 8, 9].

While the development of user simulation tools for training sta-
tistical dialogue systems is an active area of research, the error chan-
nel is often either excluded altogether [2] or simulated by generating
random errors at a fixed error rate [10, 11, 12]. In practise how-
ever, errors typically depend on the acoustic confusability of the in-
dividual utterance and their frequency of occurrence is thus not a flat
distribution over all words or semantic concepts.

Errors are also highly system specific and depend not only on
the speaker population and task specification but the system’s speech
recognition and understanding components as well as the type and
amount of available training data. In the DARPA Communicator
Project, for instance, sentence error rates ranged from 11.2 to 42.1%
across the 9 participating sites [13]. A statistical approach to er-
ror modelling that allows the simulator to be trained on real errors
produced with the actual spoken dialogue system (SDS) is therefore
highly desirable.

1.2. Related literature on statistical error simulation

Previous work on statistical error simulation has investigated a num-
ber of different techniques. A straightforward approach is to con-
dition the error rate on the type of task (eg. word vs. digit recog-
nition) [14] and/or the individual speaker [15]. The simulated word
error rate can also be set to approximate the distribution found in the
training data: In [4], for example, 70% of all utterances are transmit-
ted with a WER of 0%, 10% with a WER of 100%, and 20% with a
varying rate between 0 and 100%.

In [3] user dialogue behaviour is modelled as a network of inter-
connected states, with user actions corresponding to state transitions
and errors corresponding to special “mumble”- or “null”-transitions.
While the necessary statistics can be estimated on data, the recog-
nition and understanding components are not explicitly modelled,
and it is hence difficult to estimate the effects of individual system
component improvements on the frequency of errors and the overall
system performance.

All approaches described above avoid the poor assumption of
a globally fixed error rate, but do not explicitly model the acoustic
confusability of individual words and utterances. To overcome this
limitation, error simulation based on phonetic confusions has been
explored by a number of groups including [16, 17, 18, 19]. Word se-
quences are first mapped to phone sequences using a pronunciation
dictionary and confusions are then generated using a set of proba-
bilistic phoneme conversion rules [16], a handcrafted phone confu-
sion matrix [17], or weighted finite state transducers [18, 19]. The
corrupted sequence is then mapped back to a word sequence using
the dictionary and (optionally) weighted using a language model.

While experiments with phone-level confusions have shown to
produce promising results, the amount of training data needed to
model context-dependent phone confusions for a typical tri-phone
based recognizer is often very large. Generating a sufficient num-
ber of phonetic confusions in order to produce a list of word-level
confusions containing semantically different utterances can also be
computationally expensive and hence too slow to be useful for run-
ning thousands of dialogue simulations.

A computationally less expensive word-level error simulation
method for training statistical dialogue systems has been suggested
by [20]. Given a training corpus, a “Word Error Rate” is estimated
for each wordwx by counting how many other wordswx is con-
fused with. While providing an indicator of the confusability of each
word, the method does not incorporate context-dependent features,
and does not distinguish between substitution, deletion and inser-
tion errors. Parameter estimation in [20] is carried out on an isolated
word-recognition corpus, and there is no evaluation of whether or not
the simulated error characteristics differ from those observed with
real dialogue system recognition and understanding components.



2. A NOVEL APPROACH TO ERROR SIMULATION

2.1. Training SDS using Reinforcement-Learning

The application of statistical approaches to spoken dialogue systems,
and in particular the use of Reinforcement-Learning techniques for
optimal dialogue policy design has attracted significant interest over
the last decade. The majority of work in this area is based on the
well-known Markov-Decision Process (MDP) model, which serves
as a formal representation of human-machine dialogue [2].

While MDPs provide a natural basis for modelling dialogue and
have been widely studied in academia, their commercial impact has
been minimal. This may be partly due to the fact that MDPs require
the full state of the dialogue to be known exactly, and hence do not
address the essence of the dialogue management problem, which is
to handle the uncertainty present in human-computer dialogue aris-
ing from recognition and understanding errors [21, 22].

Partially-Observable MDPs (POMDPs) extend the MDP frame-
work by maintaining abelief space, i.e. a probability distribution
over multiple dialogue states. POMDPs thus incorporate an explicit
model of uncertainty and present a much more powerful formalism
for dialogue management. Their practical use in dialogue systems,
however, is far from straightforward and it is only recently, that com-
putationally tractable methods for modelling and updating the belief
state and performing policy optimisation [21, 22, 23, 24] have been
presented. Training experiments with an “agenda-based” user sim-
ulator [8, 9] have shown that competitive POMDP-policies can be
learned, but as with MDP systems the required number of training
episodes is high (typically> 106 dialogue turns). Computational ef-
ficiency is thus a key issue for error simulation techniques designed
to train complex statistical systems.

2.2. Modelling human-computer dialogue errors

At a semantic level, human-computer dialogue can be viewed as
a turn-based exchange ofdialogue acts1. The dialogue act format
used in this paper tags each user turn with anact typesuch ashello,
inform or requestand a list of zero or moreact items. The com-
plete dialogue act has the formacttype(a=x,b=y,...), where the act
itemsa=x andb=y denote slot-value pairs, such asfood=Chinese
or pricerange=cheap. To ensure a consistent probability distribution
across multiple user act hypotheses in the POMDP model, every ut-
terance is semantically decoded as a single dialogue act [25].

The error channel can be viewed as a generative probabilistic
modelP (c, ãu|au), whereau is the true incoming user dialogue act
and ãu is the recognised hypothesis with its associated confidence
scorec. (An extension to an n-best list of multiple hypotheses is
possible.) For the purposes of error simulation, it is convenient to
separate the confidence score generation from the error model, as
has been previously suggested by [17, 21]

P (c, ãu|au) = P (c|ãu, au)P (ãu|au). (1)

2.3. Capturing acoustic confusability

Maximum-Likelihood estimates forP (ãu|au) can be easily obtained
from an annotated corpus using frequency counting. In a typical cor-
pus containing a few hundred dialogues, however, many user acts
will never or rarely occur2. Back-off methods or parameter smooth-
ing techniques can be applied, but finding a suitable scheme is diffi-

1The terms dialogue act and action are used interchangeably in this paper.
2The dialogue act set used in this paper, for example, is roughly of the

order of103 and henceP (ãu|au) can have up to106 parameters.

cult, because semantically “similar” dialogue acts are not necessarily
acoustically similar. For example, whileinform(type=bar)(“A bar
please!”) may be easily confused withinform(drinks=beer)(“Uh
beer please!”), it is less likely to be confused withinform(type=res-
taurant)(“A restaurant please!”).

It is thus desirable to modelP (ãu|au) in a way that allows
word-level confusion statistics to be incorporated and estimated on
real data. To achieve this, one may decompose the error model by
summing over the joint probability of the recognised user actãu, the
recognised word sequencẽwu and the actual word sequencewu, and
then making reasonable conditional independence assumptions:

P (ãu|au) =
∑
w̃u

∑
wu

P (ãu, w̃u, wu|au)

=
∑
w̃u

P (ãu|w̃u)︸ ︷︷ ︸
semantic
decoder

∑
wu

P (w̃u|wu)︸ ︷︷ ︸
confusion

model

P (wu|au)︸ ︷︷ ︸
utterance

generation

(2)

The decomposed model shown in Eq. 2 consists of three compo-
nents.P (wu|au) generates a word-level utterance for a given user
act and is trained on user utterances seen in the dialogue corpus (Sec-
tion 3). P (w̃u|wu) simulates ASR confusions at the word-level and
is trained using the reference transcriptions and ASR output recorded
in the corpus (Section 4).P (ãu|w̃u) models the semantic decoding
process and can be implemented by passing the generated utterance
w̃u to the actual semantic decoder employed in the dialogue system.
The confidence score generation process is described in Section 5.

3. UTTERANCE GENERATION MODEL

3.1. A maximum-likelihood approach

A generative Maximum-Likelihood modelP (wu|au) for predicting
a user utterancewu for a given user actau is easily built by obtaining
the appropriate relative frequency statistics from a transcribed and
annotated dialogue corpus.

P (wu|au) =
f(wu, au)

f(au)
(3)

During simulation, a word-level utterancewu can then be generated
for au according to the likelihood ofwu co-occurring withau in
the training data. To resolve data sparsity issues and a possible lack
of coverage for unseen dialogue acts, simple back-off templates can
be created by replacing slot-values with general variables in seen
utterances, as shown in the example below. Since the utterance gen-
eration model does not need to consider acoustic similarities, the
templates can then be used to generate word-level utterances for se-
mantically similar unseen user acts.

Source: inform(food=Chinese, pricerange=cheap)

CHINESE FOOD IN THE CHEAP PRICERANGE

Template: inform(food=$X, pricerange=$Y)

$X FOOD IN THE $Y PRICERANGE

Unseen: inform(food=French, pricerange=expensive)

FRENCH FOOD IN THE EXPENSIVE PRICERANGE

While more sophisticated methods of language generation exist
(e.g. [26, 27, 28]), the technique presented here is computationally
inexpensive and ensures complete coverage over the set of user acts.



4. ASR CONFUSION MODEL

4.1. Fragment-to-fragment alignments

At the word-level, ASR confusions can be viewed as translations of
a source utterancewu to a confused target utterancẽwu. Omitting
the subscriptu for brevity, the source utterancew can be described
as a sequence ofS words,wS

1 , or a sequence ofN fragments,fN
1 ,

where each fragment is a group of contiguous words inw.
Similarly, the target utterancẽw may be viewed as a sequence

of T words,w̃T
1 , or N confused fragments,̃fN

1 . Note that while the
lengthS of the source utterance does not necessarily equal the length
T of the target utterance, it can be assumed that the numberN of
“clean” source fragments matches the number of “confused” target
fragments. This assumption can be made without loss of generality
since each fragment can have0 or more words (cf. Fig. 1).

I WANT AN EXPENSIVE HOTEL PLEASE
1 2    3  3         4     5

1 2    3            4     5
ONE  INEXPENSIVE  HOTEL PLEASE

Fig. 1. A sample source and target alignment. The central modelling
assumption is that each fragmentf̃i in the confused utterance is gen-
erated as a “translation” of the fragmentfi in the source utterance:
fi → f̃i. Since the length of a fragment can vary, this allows substi-
tution, insertion and deletion errors to be modelled. Iffi = f̃i, this
corresponds to the correct recognition of the given fragment.

In order to formally define the word-to-fragment alignment, it is
useful to introduce the mapping functionsγ andγ̃ for mapping word
indices to fragment indices. Using a vector style notation, one may
write γ = γS

1 , with γk = i iff the k’th word in the source utterance
w belongs to the source fragmentfi. Similarly, γ̃ = γ̃T

1 governs
the alignment of the confused target utterancew̃, with γ̃k = i iff the
k’th word in w̃ belongs to fragment̃fi.

Letting ni denote the length of the clean fragmentfi, and ñi

denote the length of the confused fragmentf̃i, the two constraints∑N
i=1 ni = S and

∑N
i=1 ñi = T ensure that the combined length of

the clean (confused) fragments matches the length of the source (tar-
get) word sequence. Our modelling objective can now be described
as finding the conditional distribution

P (w̃, γ̃, γ|w) = P (w̃, γ̃|γ, w)P (γ|w). (4)

4.2. A simple alignment model

Assuming that the alignment of each word depends only on the cur-
rent word and the previous fragment, the probability of a source
alignmentγ for a given word sequencew can be expressed as

P (γ|w)=P (γS
1 |wS

1 )=P (γ1|w1)

S∏
i=2

P (γi|wi, w
i−1
start, γi−1) (5)

wherewi−1
start are the words assigned toγi−1. The wordw1 is neces-

sarily assigned to fragmentf1, henceP (γ1|w1) = 1 iff γ1 = 1 and
0 otherwise. For all subsequent words, the probability of assigning
wi to fragmentγi given that the wordswi−1

start have been assigned to
γi−1 can be defined as

P (γi|wi, w
i−1
start, γi−1) =





φ if γi = γi−1

1− φ if γi = γi−1 + 1
0 otherwise

(6)

whereφ is the likelihood of seeingwi follow wi−1 in the fragment
starting withwstart

φ =
freq(wstart . . . wi−1wi)

freq(wstart . . . wi−1)
. (7)

When simulating errors, the alignment model is used in a gener-
ative fashion. It is hence not necessary to compute the probability of
all possible word-to-fragment alignments forw. Instead, only one
alignment needs to be generated, requiring a single pass through the
given word sequence.

4.3. Fragment confusions

Once the alignmentγ of the sourcew is known, the conditional
probability of the target̃w and its alignment̃γ given γ andw can
be modelled using fragment confusion probabilities

P (w̃, γ̃|γ, w) = P (f̃N
1 |fN

1 ) =

N∏
i=1

P (f̃i|fi, f̃
i−1
1 ) (8)

≈ P (f̃N
1 )

N∏
i=1

P (f̃i|fi). (9)

Note that the conditioning of each target fragmentf̃i in Eq. 8 is only
on the corresponding source fragmentfi and the preceding target
fragments. The approximation shown in Eq. 9 respects these condi-
tional independence assumptions and can be implemented in a com-
putationally tractable manner using an over generate-and-sample ap-
proach: First, ann-best list of hypotheses is generated by apply-
ing the confusion modelP (f̃i|fi) multiple times to the clean source
fragment sequence. Exploiting the fact thatP (f̃N

1 ) = P (w̃), all
n hypotheses are then scored using the dialogue system’s language
model. The ASR output is selected by sampling from the list of hy-
potheses according to their language model probabilities.

To obtain the necessary fragment confusions statistics, all pairs
of reference transcriptions and ASR outputs(w, w̃) in the training
corpus are aligned using a Levenshtein distance matrix such that the
cost of transformingw into w̃ is minimal given a fixed cost for insert-
ing, deleting and substituting words. The result is a lookup-table of
all fragments occurring in the training transcriptions, together with
their possible confusions (see sample entry below), and the statistics
needed for Eqs. 7 and 9 can be easily obtained from it.

"A BAR" -> "ALL","ART","A BAR","A BAR",

"A CAR","BAR","BAR","BAR","BAR","CAR";

5. CONFIDENCE SCORE GENERATION

Speech recognition engines for dialogue systems typically associate
a confidence scorec with each recognition hypothesis to indicate
the reliability of the result. As has been previously demonstrated by
[17, 21], it is convenient to approximateP (c|ãu, au) by assuming
that there are two distributions forc, one if ãu matchesau and one
if it does not.

P (c|ãu, au) ≈
{

Pcorr(c) if ãu = au

Pincorr(c) if ãu 6= au
(10)

In [17, 21], the two distributions are handcrafted. For the ex-
periments presented in this paper, confidence scores for correct and
incorrect hypotheses are generated by sampling from the distribu-
tions found in the training data.



6. EVALUATION

6.1. Model training and evaluation setup

The statistical models presented in this paper are trained on a tran-
scribed and annotated corpus of human-computer dialogues recorded
with the POMDP-based Hidden Information State (HIS) Dialogue
System [22, 24]. The HIS system is a Tourist-Information domain
prototype that helps users find hotels, bars, and restaurants in a fic-
titious town, subject to certain constraints. (E.g. “a cheap Chinese
restaurant near the Post Office” or “a wine bar playing Jazz music
on the Riverside”). The dataset consists of 160 dialogues, recorded
with 40 different speakers (each of whom completed 4 dialogues)
and contains a total of 6452 dialogue turns and 21,667 words.

Utterance 
Generation

Confidence 
Scoring

Simulated 
Error Channel

Utterance 
Confusion

Semantic 
Decoder

Belief 
Estimator

POMDP-based
HIS DM

Dialogue 
Policy

Action
Selection

Hidden Agenda
User Simulator

User State 
Update

Fig. 2. Dialogue simulation framework

To evaluate the simulated error channel, a corpus of 10,000 syn-
thetic dialogues is generated using the setup illustrated in Fig. 2.
System dialogue acts are produced with the same HIS Dialogue Man-
ager used to record the corpus described above and user dialogue acts
are generated using the Hidden Agenda User Simulator [8, 9]. In
each dialogue cycle, the user outputau is first translated to a word-
level utterancewu and corrupted with ASR confusions to form a list
of hypotheses. The ASR resultw̃u is obtained by sampling from this
list using the HIS system language model, as described in Section 4
and parsed by the HIS semantic decoder to formãu. The result is
associated with a synthetic confidence score and passed to the HIS
dialogue manager to generate the machine responseam, which in
turn is fed back to the user simulator.

6.2. Evaluation of generated user utterances

Before evaluating the word-level utterance generation model, it is
useful to assert that the semantic-level output of the user simulator
correctly reproduces the statistical properties of real user dialogue
acts. Fig. 3 (a) shows the relative frequency of the 4 most com-
mon user dialogue acts in real and simulated data and Fig. 3 (b)
shows the distribution over the number ofsemantic unitsper dia-
logue act. It is assumed that the dialogue act type and each dia-
logue act item (slot-value pair) count as one semantic unit. The act
affirm(area=north,stars=2), for instance, contains 3 semantic units.
As shown, the distribution over semantic units and dialogue act types
selected by the simulated user is very similar to that of real users.

The utterance generation model can now be evaluated by com-
paring statistical properties of the simulated utterances with those of
real user utterances. Fig. 3 (c) shows the distribution over the number
of words per utterance and illustrates that the length of the synthetic
utterances is similarly distributed as the length of real utterances. In
both cases, more than half of all utterances are very short (less than 4
words). The correlation between utterance length and the number of
semantic units is shown in Fig. 3 (d): Here all utterances are grouped
into bins according to their number of words. The mean number of
semantic units per bin is then plotted and again it can be seen that
the simulated data has similar properties as the real data.
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Fig. 3. Comparison of real and simulated utterances
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Fig. 4. Comparison of real and simulated ASR errors

6.3. Evaluation of synthetic ASR confusions

An effective method for evaluating the simulated ASR confusions
is to explore the correlation between Word Accuracy (WAcc) and
Semantic Accuracy (SAcc). Based on the number of substitutions,
insertions and deletions in an utterance containingW words andSU
semantic units, one may define WAcc [29] and SAcc [30] as

Semantic Accuracy = 1− SUS + SUI + SUD

SU
(11)

Word Accuracy = 1− WS + WI + WD

W
. (12)

For Fig. 4 (a), all user utterances are grouped into bins according
to their WAcc and the mean SAcc is then computed for each bin. As
shown in the figure, a decrease in WAcc down to around 60% in real
data does not lead to a significant drop in SAcc. This may be ex-
plained by the fact that the word confusions in this range often affect
non-concept-words so that the decoder is still able to recognize most
semantic units correctly. While the trained simulator mirrors this
phenomenon reasonably well, a baseline using random word con-
fusions produces a much larger drop in SAcc, since all words are
equally likely to be confused.

For Figs. 4 (b-d), all dialogues were grouped in bins according
to their average SAcc. In (b), the success rate is then computed for
each bin, i.e. the percentage of dialogues where a correct venue was
recommended. For (c), the average dialogue performance per bin
is computed by assigning 20 points for a successful venue recom-
mendation (0 otherwise) and subtracting a 1 point penalty for every
dialogue turn. Fig. 4 (d) shows the relative frequency of utterances
which are 100% semantically correct and the relative frequency of
utterances that can be classified as non-understanding errors (0%
semantically correct). All figures indicate a close match between
the statistical properties of the real and simulated data, and in many
cases no statistically significant difference is found.

6.4. Evaluation of generated confidence scores

As explained in Section 5, confidence scores are generated by sam-
pling from the distribution of confidence scores seen in the train-
ing data. The distribution over simulated confidence scores hence
closely matches the real distribution, as verified by Fig. 5.
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7. SUMMARY

This paper has presented a novel and computationally inexpensive
approach to error simulation, suitable for generating large numbers
of training episodes for statistical dialogue systems. Based on word-
level utterance generation and ASR confusion models, it explicitly
models the context-dependent acoustic confusability of words and
allows the system specific language model and semantic decoder to
be incorporated. Confidence scores are obtained by sampling from
the distribution observed in the training data. Experimental results
show that the models can be successfully trained on a small corpus
of transcribed and annotated data and that the statistical properties
of the simulated utterances and dialogue errors closely match those
observed in real human-computer dialogue data.
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