
Reward Estimation for Dialogue Policy Optimisation

Pei-Hao Su, Milica Gašić and Steve Young
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Abstract

Viewing dialogue management as a reinforcement learning task enables a
system to learn to act optimally by maximising a reward function. This re-
ward function is designed to induce the system behaviour required for the
target application and for goal-oriented applications, this usually means ful-
filling the user’s goal as efficiently as possible. However, in real-world spoken
dialogue system applications, the reward is hard to measure because the
user’s goal is frequently known only to the user. Of course, the system can
ask the user if the goal has been satisfied but this can be intrusive. Fur-
thermore, in practice, the accuracy of the user’s response has been found
to be highly variable. This paper presents two approaches to tackling this
problem. Firstly, a recurrent neural network is utilised as a task success pre-
dictor which is pre-trained from off-line data to estimate task success during
subsequent on-line dialogue policy learning. Secondly, an on-line learning
framework is described whereby a dialogue policy is jointly trained alongside
a reward function modelled as a Gaussian process with active learning. This
Gaussian process operates on a fixed dimension embedding which encodes
each varying length dialogue. This dialogue embedding is generated in both
a supervised and unsupervised fashion using different variants of a recurrent
neural network. The experimental results demonstrate the effectiveness of
both off-line and on-line methods. These methods enable practical on-line
training of dialogue policies in real-world applications.
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1. Introduction

Spoken Dialogue Systems (SDS) allow human-computer interaction using
natural speech. They can be broadly divided into two categories: chat-based
systems which converse with users with the aim of providing contextually
relevant responses in broad domains [1, 2], and task-oriented systems de-
signed to assist users to achieve specific goals (e.g. find hotels, movies or
bus schedules) [3]. The latter are typically designed on top of a structured
ontology (or a database schema), which defines the domain that the system
can talk about. The development of such systems traditionally requires a
substantial amount of hand-crafted rules combined with various statistical
components. These include a spoken language understanding module [4, 5],
a dialogue belief state tracker [6] to predict user intents and track the di-
alogue history, a dialogue policy [7] to determine the dialogue flow, and a
natural language generator [8] to convert abstract system responses into nat-
ural language. Teaching such a system how to respond appropriately in all
situations is non-trivial. Traditionally, the dialogue management component
has been designed manually using flow charts to directly specify system be-
haviour. More recently, it has been formulated as a planning problem and
solved using reinforcement learning (RL) to enable automatic optimisation
during interaction with users [7, 9, 10, 11, 12, 13, 14, 15, 16]. In this frame-
work, the system learns by a trial and error process governed by a potentially
delayed learning objective, a reward function.

A typical approach to defining the reward function in a task-oriented
dialogue system is to apply a small per-turn penalty to encourage short
dialogues and to give a large positive reward at the end of each successful
interaction. Figure 1 is an example of a dialogue task which is typically set
when bootstrapping or evaluating a system using paid subjects. When paid
subjects are primed with a specific task to complete, dialogue success can be
determined from both subjective user ratings (Subj ), and from an objective
measure (Obj ) based on whether or not the pre-specified task was completed
[17, 18]. However, when operating with real users, prior knowledge of the
user’s goal is not normally available and hence it is not possible to compute
an objective reward.

Furthermore, objective ratings must necessarily be quite strict to ensure
that paid subjects properly exercise the system. As a consequence, tasks
often fail because the paid subject forgot to ask for a required piece of in-
formation. For example, in Figure 1, the paid subject forgot to ask for the
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Figure 1: An example of a task-oriented dialogue with a pre-defined task and the evaluation
results.

phone number. This results in a mismatch between the Obj and Subj ratings.
Unfortunately, relying on subjective ratings alone is also problematic since

paid subjects frequently give inaccurate responses partly because they for-
get the complete task as in the example above, and also because they are
concerned that their answers will affect their payment. Real users are of-
ten unwilling to extend the interaction in order to give feedback, and even
when they do, their feedback can also be unreliable [18], for example due to
sociological effects such as not wishing to be impolite.

All of the above can result in unstable learning [19, 20]. When bootstrap-
ping a system using paid users, an effective albeit inefficient solution is to
ignore all dialogues for which the objective success assessment differs from
the subjective success assessment (referred to as the Obj = Subj check below)
[18]. However, as well as being inefficient, this solution does not help address
the real problem which is how to train systems on-line with real users when
the user’s goal is generally unknown and difficult to infer.

To deal with the above issues, this paper investigates the use of an inde-
pendent reward estimator which can be trained to monitor a dialogue and
accurately estimate task success independently of the specific goal set, or of
whatever goal is in the user’s mind. The investigation is in two parts.

We first describe a recurrent neural network (RNN) designed to estimate
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objective success Obj, which is trained from off-line simulated dialogue data
[21, 22]. The resulting policy is found to be as effective as the one trained with
dialogues using the Obj = Subj check. However, a user simulator will only
provide a rough approximation of real user statistics and developing a user
simulator is a costly process [23]. In addition, the interactions encountered
during subsequent deployment might be distributed very differently to those
generated by the simulator.

To counter this, the second part of the paper describes an on-line active
learning method in which users are asked to provide feedback on whether the
dialogue was successful or not [24]. In this set-up, active learning is used to
limit requests for user feedback to only those cases where the feedback would
be useful. The estimator used is a Gaussian process classification (GPC)
model. This has the advantage that as well as being highly data efficient and
providing a measure of uncertainty in its estimates, it also incorporates a
noise model which can be used to compensate for cases where the user feed-
back is inaccurate. Since GPC operates on a fixed-length observation space
and dialogues are of variable-length, an RNN-based embedding function is
used to provide fixed-length dialogue representations.

When the above components are integrated with a GP-based dialogue
management policy, we demonstrate that both the dialogue policy and the
reward estimator can simultaneously learn on-line from scratch, making this
framework directly applicable to real-world applications in which systems
learn directly in interaction with real users performing real-world tasks.

The rest of the paper is organised as follows. The following section gives
an overview of related work and then Section 3 introduces the components
of our spoken dialogue system, the operating domain, and the learning algo-
rithm used for dialogue policy training. The proposed off-line reward estima-
tor is presented in Section 4, where the turn-level dialogue features and the
off-line reward model are described. Following this, the framework of on-line
active reward estimation is introduced in Section 5. This includes the design
of the dialogue embedding function and the active reward model trained from
real user feedback. In Section 6, the proposed approaches are evaluated in
the context of an application providing restaurant information in Cambridge,
UK. The accuracy of the off-line reward model on a reward prediction task
is given and then the results of dialogue policy learning are presented. To
provide some insight into the effectiveness of the dialogue embedding, an
analysis of the dialogue embedding space is also presented. Finally, the per-
formance of the active reward model when simultaneously trained with the
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dialogue policy on-line with real users is presented. Concluding remarks are
made in Section 7.

2. Related Work

Dialogue evaluation has been an active research area since late 90s. In
the PARADISE framework, a linear function of task completion and vari-
ous other dialogue features such as dialogue duration were used to infer user
satisfaction[17]. This measure was later used as a reward function for learn-
ing a dialogue policy [25]. However, as noted above, obtaining an accurate
estimate of task completion is difficult when the system is interacting with
real users. Also, concerns have been raised regarding the theoretical validity
of the PARADISE model [26].

Several approaches have been adopted for learning a dialogue reward
model given a corpus of annotated dialogues. For example, Yang et al used
collaborative filtering to infer user preferences[27]. The use of reward shaping
has also been investigated to enrich the reward function in order to speed up
dialogue policy learning[28, 29]. It has also been demonstrated that there is
a strong correlation between an expert’s user satisfaction rating and dialogue
success [30]. However, all these methods assume the availability of accurate
dialogue annotations such as expert ratings, which in practice are hard to
obtain.

One effective way to mitigate the effects of annotator error in lower qual-
ity annotations is to obtain multiple ratings for the same data and several
methods have been developed to guide the annotation process using uncer-
tainty models [31, 32]. Active learning is particularly useful for determining
when an annotation is needed [33, 34] and it is often implemented using
Bayesian optimisation [35]. For example, Daniel et al exploited a pool-based
active learning method for a robotics application[36]. They queried the user
for feedback on the most informative sample collected so far and showed the
effectiveness of this method. Active learning coupled with Gaussian pro-
cess regression has been previously used for dialogue policy optimisation and
shown to be more sample efficient than alternative methods [7].

Rather than explicitly defining a reward function, inverse RL (IRL) aims
to recover the underlying reward from demonstrations of good behaviour
and then learn a policy which maximises the recovered reward [37]. IRL
was first introduced into SDS design by Paek et al, where the reward was
inferred from human-human dialogues to mimic the behaviour observed in
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a corpus [38]. IRL has also been studied in a Wizard-of-Oz (WoZ) setting
[39, 40], where typically a human expert served as the dialogue manager
to select each system reply based on the speech understanding output at
different noise levels. However, this approach is costly and there is no reason
to suppose that a human wizard is acting optimally, especially at high noise
levels.

Since humans are better at giving relative judgements than absolute
scores, another related line of research has focused on preference-based ap-
proaches to RL [41]. For example, in one study, users were asked to provide
rankings between pairs of dialogues [42]. However, this is also costly and
does not scale well in real applications.

3. The Core Spoken Dialogue System

The Cambridge restaurant domain is used for all of the experimental work
described in this paper. Users converse with the system to find restaurants
in Cambridge that match their required constraints such as food type, area,
etc. The domain consists of approximately 150 venues and each venue has
six attributes (slots) of which three (area, price-range and food-type) can be
used by the system to constrain the search and the remaining three (phone
number, address and postcode) are informable properties that can be queried
by the user once a database entity has been found.

Two operating modes are used in the experiments: live user trial mode
and user simulation mode. In live user trial mode, the core components
of the SDS comprise a domain independent HMM-based speech recogniser, a
confusion network (CNet) semantic decoder [4], the BUDS belief state tracker
that factorises the dialogue state using a dynamic Bayesian network[43], a
Gaussian process-based dialogue manager [7], and a template-based natu-
ral language generator (NLG) to map system actions into natural language
responses back to the user.

In user simulation mode, an agenda-based simulated user is used to in-
teract with the system at the abstract dialogue act level [44]. In this mode,
the system consists of only the BUDS belief state tracker and the dialogue
manager. The user simulator includes an error generator, which can be set
to generate user inputs with different semantic error rates (SER).

The core of the dialogue manager is a dialogue policy π which maps the
belief state b ∈ B, a distribution over all possible dialogue states at each
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turn, to a system action a ∈ A, which in live mode is converted into natural
language using the NLG component.

As explained in the introduction, the behaviour of a statistical dialogue
system is conditioned by a reward function r(b, a) which for any given belief
state b and action a defines the immediate reward for that turn. Dialogue
policy optimisation seeks to use reinforcement learning to maximise the total
reward expected over each complete dialogue.

An estimator for the expected cumulative reward (also called the return)
from any given belief state b and action a to the end of the dialogue is often
defined by a Q-function:

Q(b, a) = Eπ

(
T∑

τ=t+1

rτ |bt = b, at = a

)
(1)

where rτ is the immediate reward obtained at time τ and T is the dialogue
length1. Optimising the Q-function is equivalent to optimising the policy π.

For all of the experiments described in this paper, the Q-function is mod-
elled by a Gaussian process (GP):

Q(b, a) ∼ GP (m(b, a), k((b, a), (b, a))) (2)

where m(·, ·) is the prior mean function and the kernel k(·, ·) is factored
into separate kernels over belief and action spaces kB(b,b′)kA(a, a′). The
policy is optimised using an algorithm called GP-SARSA [7, 45] in which the
Q-function is updated by calculating the posterior given the collected belief-
action pairs (b, a) (dictionary points) and their corresponding rewards.

GP-based reinforcement learning (GPRL) is particularly appealing since
it can learn from a small number of observations by exploiting the correlations
defined by the kernel function and, as a bonus, it also provides a measure of
the uncertainty in its estimates. This knowledge of the distance between data
points in the observation space greatly speeds up policy learning since the Q-
values of the unexplored space can be estimated from the Q-values of nearby
points. However, computation and model complexity become intractable
if every data point had to be memorised. So instead, sparse approximation

1The total reward in RL often includes a discount factor to discount the value of future
rewards. Dialogues in a task oriented SDS typically require only 6 or 7 turns, and they
rarely extend beyond 20 turns. Hence the discount factor is normally set to 0.99 or 1.0.
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methods such as kernel span [45] are used to bound the size of stored training
points.

Further reductions in data space requirements can be achieved by con-
densing the action set into a fixed set of summary actions, which are then
heuristically mapped back into the master system action space using a set
of hand-crafted rules. The summary action space consists of a set of slot-
dependent and slot-independent summary actions. Slot-dependent summary
actions include requesting the slot value, confirming the most likely slot value
and selecting between the top two slot values.

The summary action kernel is defined as:

kA(a, a′) = δa(a
′) (3)

where δa(a
′) = 1 iff a = a′, 0 otherwise. The belief state consists of the

probability distributions over the Bayesian network hidden nodes that relate
to the dialogue history for each slot and the user goal for each slot. The
dialogue history nodes can take a fixed number of values, whereas user goals
range over the values defined for that particular slot in the ontology and can
have very high cardinalities. User goal distributions are therefore sorted ac-
cording to the probability assigned to each value since the choice of summary
action does not depend on the values but rather on the overall shape of each
distribution. The kernel function over both dialogue history and user goal
nodes is based on the expected likelihood kernel [46], which is a simple linear
inner product. The kernel function for belief space is then the sum over all
the individual hidden node kernels:

kB(b,b′) =
∑
h

〈bh,b
′
h〉 (4)

where bh is the probability distribution encoded in the hth hidden node.

4. Off-line Reward Estimation

In this section, a recurrent network-based reward estimator is described
which can be trained to estimate task success based on turn-level features
extracted directly from each dialogue. Once trained, the reward estimator
enables on-line policy optimisation with real users without access to either
Obj or Subj task success ratings. It does however require training data
annotated for task success which in the work described here is generated
off-line by a user simulator.
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Recurrent neural networks (RNNs) are a subclass of neural network mod-
els with recurrent connections from one time-step to the next. Their ability
to succinctly capture and retain history information makes them suitable for
modelling sequential data with temporal dependencies. They have been pre-
viously used with success in a variety of natural language processing (NLP)
tasks such as language modelling [47, 48, 49] and spoken language under-
standing (SLU) [50].

4.1. Training data and dialogue features

The data used to train all of the reward estimation models was collected
by training several Gaussian process policies [7] at various error rates (see
Section 6.2 below) from scratch using an agenda-based simulated user [44].
Each dialogue was labelled as a success or failure using the objective criteria
(Obj ) described in the introduction i.e. a dialogue was labelled as successful
if all of the users’ goals randomly generated at the start of the dialogue
were completed. The reward function used during policy training gave -1 at
each turn to encourage brevity, and +20 at completion if the dialogue was
successful, otherwise 0. The return (cumulative reward) < was, therefore,
calculated as:

< = 20× 1success −N (5)

where N is the number of dialogue turns and 1success is an indicator function
for success.

For all models, a feature vector ft was extracted at each turn t consist-
ing of the following concatenated sections: a one-hot encoding of the user’s
top-ranked dialogue act, the real-valued belief state vector formed by concate-
nating the distributions over all goal (area, price range, food type), method
and history variables [43], a one-hot encoding of the summary system action,
and the current turn number (see Figure 2).

Figure 2: Feature vector ft extracted at each turn t.

This form of feature vector was motivated by considering the primary
information a human would require to read a transcription and rate the
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Figure 3: An unrolled view of the RNN model. The feature vectors extracted at turns
t = 1, . . . , T are labelled ft. Two types of output are considered: binary classification and
regression.

success of the dialogue. The inclusion of the belief vector, the user dialogue
act and the system’s actions makes this feature vector domain and system
dependent.

The aim of the RNN reward predictor is to enable policy learning with
real users without prior knowledge of the users’ goal. To do this, the model
should consider the information available at every turn of the dialogue and
then evaluate whether or not the policy provided everything that was asked
for. The hope is that by training the RNN model on data from simulated
users, it will generalise and provide accurate assessments of dialogues with
real users whose goals are not known a priori.

4.2. Recurrent Neural Network Structure

The RNN reward predictor takes as input the feature vectors ft described
above and updates its hidden layer ht at each turn t.2 Once the dialogue
ends, the hidden layer is then connected to an output layer to make a single
reward prediction for the whole dialogue as depicted in Figure 3.

The network structure in the final layer is determined by the choice of
supervised training targets, of which two types were considered:

2Convolutional neural networks were also investigated on the same task as in [21]
However, only results using an RNN are shown here since it was found to be generally
more robust.
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1) Classification model: in this case, the RNN is formulated as a binary
classifier which is trained to predict success or failure for each dialogue. The
targets are {0, 1} and the final layer of the RNN outputs a scalar through
a sigmoid activation function and is trained with a cross-entropy loss. The
output from this network is a probability p that the dialogue is a success,
and the hard class label predicted by the model is taken as 1 if p > 0.5, else
0. This hard label is used to determine whether to give a final reward of +20
during policy learning, as per Equation 5.

2) Regression model: in this case, the RNN is formulated as a regressor
with the actual return value used as the training target. The model’s final
layer has no non-linearity (activation) and the whole model is trained with
a mean-square-error (MSE) loss function. During subsequent policy learning
using this predictor, the per-turn penalty is suppressed since it is already
taken account of by the RNN reward predictor.

5. On-line Active Reward Learning

The off-line reward predictor described above suffers from the obvious
problem that it requires either a user simulator to be built or a substan-
tial amount of training data to be collected and annotated. Furthermore,
whichever approach is taken, the training data may be a poor match to the
user population used for on-line policy optimisation.

An alternative is to learn a predictor directly on the real user population
in parallel with policy optimisation, with the label annotation provided by
subjective user feedback. However as noted above, subjective user ratings,
especially ones collected via crowd-sourcing, tend to be inaccurate [20], po-
tentially intrusive and hard to collect since users will often just “hang-up”
as soon as they have the information they need. In this section, a Gaussian
process-based reward estimator is described which uses active learning to
limit intrusive requests for feedback and a noise model to mitigate the effects
of inaccurate feedback [24].

The proposed system framework is depicted in Figure 4. It is divided
into two main parts: a dialogue embedding function, and an active reward
model to obtain user feedback and predict dialogue success. When each
dialogue ends, a sequence of turn-level features ft as illustrated in Section 4.1
is extracted and fed into an embedding function ς to obtain a fixed-dimension
dialogue representation d that serves as the input to the reward model. This
reward is modelled as a Gaussian process which for every input d provides
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Figure 4: Schematic depiction of the on-line reward estimator. The two main system
components: dialogue embedding creation, and reward modelling based on user feedback,
are described in Section 5.

an estimate of task success along with an estimate of the uncertainty. Based
on this uncertainty, the reward model decides whether to query the user for
feedback or not. It then returns a reinforcement signal to update the dialogue
policy π, which is trained using the GP-SARSA algorithm as described in
Section 3.

Note that the reward model and the dialogue policy are being jointly op-
timised during the sequence of dialogues. Initially, the joint learning process
is being supervised by the user feedback. Once learning is underway, the user
supervision becomes lighter and ultimately the learning becomes essentially
unsupervised.

5.1. Dialogue Embeddings

The use of embedding functions for sequence modelling has recently gained
attention especially for word representations, and it has boosted performance
on several natural language processing tasks [51, 52, 53]. Embedding has
also been successfully applied to machine translation (MT) where it enables
varying-length phrases to be mapped to fixed-length vectors using an RNN
Encoder-Decoder [54]. Here an embedded representation of the sequence of
dialogue turn level features is computed in order to drive the reward model.

Two methods of generating dialogue embeddings have been explored: a
supervised and an unsupervised approach. Once computed, these embeddings
are used as the observations for the reward model described in the section
Section 5.2.
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Figure 5: Unsupervised dialogue embedding using the LSTM Encoder-Decoder structure.

5.1.1. Supervised Dialogue Embedding

In this case, the RNN described in Section 4.2 is used whereby the hidden
layer hT at the final turn T serves as the dialogue representation ds to sum-
marise the entire dialogue in a single fixed-length vector. Note, however, that
as with the off-line reward estimator described in 4.2, this approach requires
training data which is expensive to collect and may be biased with respect
to the target population.

5.1.2. Unsupervised Dialogue Embedding

To avoid the need for labelled training data, an encoder-decoder structure
can be used to generate dialogue representations. The basic set-up is illus-
trated in Figure 5. Turn level feature sequences ft as described in Section 4.1
are input to the model, encoded and then decoded to reconstruct the input.
The encoder is a Bi-directional Long Short-Term Memory network (BLSTM)
[55, 56], which has been shown to outperform uni-directional LSTM in var-
ious tasks [57, 58]. It takes into account the sequential information from
both directions of the input data, computing the forward hidden sequences−→
h 1:T and the backward hidden sequences

←−
h T :1 while iterating over all input

features ft, t = 1, ..., T :

−→
ht = LSTM(ft,

−→
h t−1)

←−
ht = LSTM(ft,

←−
h t+1)
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where LSTM denotes the activation function. The dialogue representation
du is then calculated as the average over all hidden sequences:

du =
1

T

T∑
t=1

ht (6)

where ht = [
−→
ht;
←−
ht] is the concatenation of the two directional hidden se-

quences.3 The decoder is a forward LSTM that takes du as its input for
each turn t to produce the sequence of features f ′1:T . The encoder-decoder
is trained by minimising the mean-square-error (MSE) using stochastic gra-
dient decent (SGD):

MSE =
1

N

N∑
i=1

T∑
t=1

||ft − f ′t||2 (7)

where N is the number of training dialogues and || · ||2 denotes the l2-norm.

5.2. Active Reward Learning

A Gaussian process is a Bayesian non-parametric model that can be used
for regression or classification [59]. It is particularly appealing since it can
learn from a small number of observations by exploiting the correlations
defined by a kernel function and it provides a measure of uncertainty of
its estimates. In the context of spoken dialogue systems it has been suc-
cessfully used for RL policy optimisation [7, 60] and IRL reward function
regression [61].

Here we propose modelling dialogue success as a Gaussian process (GP).
This involves estimating the probability p(y|d,D) that the task was success-
ful given the current dialogue representation d and the pool D containing
previously classified dialogues. We pose this as a classification problem where
the rating is a binary observation y ∈ {−1, 1} that defines failure or success.
The observations y are considered to be drawn from a Bernoulli distribution
with a success probability p(y = 1|d,D). The probability is related to a
latent function f(d|D) : Rdim(d) → R that is mapped to a unit interval by a
probit function p(y = 1|d,D) = φ(f(d|D)), where φ denotes the cumulative
density function of the standard Gaussian distribution.

3Note use of a bi-directional LSTM does not cause any difficulty at run time because
we are only interested at predicting success at the end of the dialogue.
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Figure 6: 1-dimensional example of the proposed GP active reward learning model.

The latent function is given a GP prior: f(d) ∼ GP(m(d), k(d,d′)),
where m(·) is the mean function and k(·, ·) the covariance function (kernel).
The stationary squared exponential kernel kSE is used. It is also combined
with a white noise kernel kWN to account for the “noise” in users’ ratings:

k(d,d′) = p2 exp(−||d− d′||2

2l2
) + σ2

n (8)

where the first term denotes kSE and the second term kWN .
The hyper-parameters p, l, and σn can be optimised by maximising the

marginal likelihood using a gradient-based method [62]. Since φ(·) is not
Gaussian, the resulting posterior probability p(y = 1|d,D) is analytically
intractable. So instead approximate optimisation was performed using ex-
pectation propagation (EP) [63].

Querying the user for feedback is costly and may have a negative impact
on the user experience. This can be reduced by using active learning based on
uncertainty estimates of the GP model [64]. This ensures that user feedback
is only sought when the model is uncertain about its current prediction. For
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the case here, an on-line (stream-based) version of active learning is required.
A 1-dimensional example is shown in Figure 6. Given the labelled data

D, the predictive posterior mean µ∗ and posterior variance σ2
∗ of the latent

value f(d∗) for the current dialogue representation d∗ can be calculated.
Then a threshold interval [1−λ, λ] is set on the predictive success probability
p(y∗ = 1|d∗,D) = φ(µ∗/

√
1 + σ2

∗) to decide whether this dialogue should be
labelled or not. The decision boundary implicitly considers both the posterior
mean as well as the variance.

When deploying this reward model in the proposed framework, a GP with
a zero-mean prior for f is initialised and D = {}. After the dialogue policy
π completes each episode with the user, the generated dialogue turns are
transformed into the dialogue representation d = σ(f1:T ) using the dialogue
embedding function ς. Given d, the predictive mean and variance of f(d|D)
are determined, and the reward model decides whether or not it should seek
user feedback based on the threshold λ on φ(f(d|D)). If the model is un-
certain, the user’s feedback on the current episode d is used to update the
GP model and to generate the reinforcement signal for training the policy π;
otherwise the predictive success rating from the reward model is used directly
to update the policy. This process takes place after each dialogue.

6. Experiments

6.1. Experimental Settings

All of the experiments used the target domain and spoken dialogue sys-
tem structure described in Section 3. Policy training used the reward given
by Equation 4.1 and the maximum dialogue length was set to 30. The on-line
system used paid subjects recruited via Amazon Mechanical Turk (AMT).
Each user was assigned specific tasks in a given sub-domain and then asked
to call the system in a similar set-up to that described in [65, 66]. After
each dialogue, the users were asked whether they judged the dialogue to be
successful or not. Based on that binary rating, the subjective success was cal-
culated as well as the average reward. An objective rating was also computed
by comparing the system outputs with the assigned task specification.

6.2. Off-line Reward Estimator

6.2.1. RNN-based Dialogue Success Prediction

The off-line reward estimator described in Section 4 was implemented
using the Theano library [67, 68], with a hidden layer of 300 units and sigmoid
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activation units. All models were trained using stochastic gradient descent
(per dialogue) on data generated by three independently trained GP-based
policies interacting with a simulated user at a 15% semantic error rate (SER)
[69]. One model was fully trained on 18K dialogues (train-18K) and second
model was trained on only 1K dialogues (train-1K). The contrast between
the larger train-18K set and the smaller train-1K set is provided to give
some insight into the impact of reduced availability of training data. A
separate validation set of 1K dialogues was also generated to avoid overfitting.

There were two test sets: a matched set of 1K dialogues generated at SER
15% (testA) and a larger set containing 3K dialogues at each of four SERs:
0%, 15%, 30%, and 45% (testB) where the latter provides an indication of
how models perform when there is a mis-match between train and test sets.

For each dialogue, the input features were represented as the concatena-
tion of four segments as shown in Figure 2, which were realised in two config-
urations: a domain-dependent feature vector F617 and a domain-independent
feature vector F74 [22] where the subscripts denote the size of the vectors.

For F617, the number of elements were 21, 575, 20, 1 respectively for
the user act, full belief state, system action and rescaled turn number. The
full belief state was the concatenation of the distribution over each domain-
dependent slot such as price-range and area and the distribution over domain-
independent features relating to the user’s discourse. For the system act, a
fixed set of generic system actions (e.g. goodbye) and Na slot-dependent
system actions was available for each slot S (e.g. ‘request-S’, ‘confirm-S’,
etc.). Given Ns slots, this will result in Ns × Na slot-dependent system
actions.

For F74, the number of features were 21, 38, 14, 1 respectively for the user
act, summarised belief state, domain-independent system action and rescaled
turn number. Note that this was designed to be a light-weight feature vector
applicable across multiple domains. The difference between the summarised
and full belief state is that each set of domain-dependent slot distributions
is represented by a normalised entropy value. Thus the entire summarised
belief state is domain-independent. Similarly, a domain-independent system
action was created by mapping slot-dependent system actions to a single
slot-independent action (e.g. ‘request-S1’, . . . , ‘request-SNs ’ 7→ ‘request ’).
The rescaled turn number was expressed as a percentage of the maximum
number of allowed turns, here 30. The one-hot user dialogue action encoding
was formed by taking only the most likely user action estimated by the CNet
semantic decoder.
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Figure 7: Prediction of the RNN model trained on 18K and 1K dialogues and tested on
sets testA and testB (see text). Results of success/failure label F-measure (left axis) are
represented as bars.

As described in Section 4.2, both binary success classification models
and reward regression models were trained. For the case of binary success
classification, both input feature sets F617 and F74 were tested. For the
regression case only F617 was tested. The results are shown in Figure 7,
where the y-axis is the F-measure of the success classification (bar plot).
When using the large training set (18K, sub-figures 7(1) & 7(3)), all models
obtained an F-score above 0.93 on success label prediction and were within
∼ ±0.03 of the objective return targets on testA and within ∼ ±0.05 on
testB.

Without the benefit of a simulated user, it may not be possible to obtain
sufficient labelled training dialogues to fully train the RNN model. However,
the results shown in sub-figures 7(2) & 7(4) suggest that the model is rea-
sonably robust even with as little as 1000 training dialogues. In this case,
the binary classification model is the most accurate.

Note that the domain specific feature set F617 only slightly outperformed
the domain independent F74 set. Therefore given the desirability of domain
independence, the remaining sections focus on the use of the F74 feature set.

Overall, these results suggest that RNNs, sequentially processing turn
level features, are able to provide useful estimates of success and reward.
The results on set testB also show that the models can perform well under
varying error rates as would be encountered in real operating environments.
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Figure 8: Learning curve for the reward plotted as a function of the number of training
dialogues. The baseline system (red line) updates the policy only when the Subj and Obj
measures agreed. The blue line shows training using the RNN dialogue success predictor.
The lightly coloured bands denote 1 standard error.

6.2.2. Policy Learning with Human Users

Based on the above results, the binary RNN classification model with
the feature vector F74 was selected for training dialogue policies on-line.
Two systems were trained by users recruited via AMT. Firstly, an Obj=Subj
system was built trained only with the dialogues whose user Subj rating
matched the system Obj measurement. This of course requires knowledge of
each task in order to compute the reward, and hence would not be viable for
real users. However, it serves as a useful baseline.

Secondly, a system was trained using only the RNN to compute the re-
ward signal. Note that a hand-crafted system is not used for comparison here
since it does not scale to larger domains and is sensitive to speech recognition
errors. Three policies were trained for each system, then averaged to statis-
tically verify the performance. Figure 8 shows how the success rate improves
as a function of the number of available training dialogues up to a maxi-
mum of 500 dialogues. For both plots, the moving average was calculated
using a window of 150 dialogues and each result was the average of the three
policies in order to reduce noise. It can be seen that the final performance
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of the RNN system resulted in a comparable policy to the baseline system.
However, the baseline system actually required ∼ 850 dialogues (due to dis-
carding the cases where Obj 6=Subj ). In contrast, the RNN system was more
efficient and less costly since it used every dialogue.

The results indicate that the RNN dialogue success classifier was able to
train a policy at least as well as the baseline system even though the baseline
required prior knowledge of the users goal and selected only dialogues where
the objective and subjective success estimates agreed.

6.3. On-line reward estimator

6.3.1. Supervised and Unsupervised Dialogue representations

The supervised RNN model described in Section 5.1.1 and the LSTM
Encoder-Decoder model described in Section 5.1.2 were used to generate
supervised and unsupervised representations ds and du for each dialogue.
The domain-independent feature vector F74 was used as the input of both
embedding models and the target for the LSTM Encoder-Decoder model,
where in the latter case the training objective was to minimise the MSE of
the reconstruction loss.

For the supervised embedding, the size of hidden layer ds, was set to 32.

In the unsupervised case, the sizes of
−→
ht and

←−
ht in the encoder and the hidden

layer in the decoder were all 32, resulting in dim(ht) = dim(du) = 64. SGD
per dialogue was used to train each model. In order to prevent over-fitting,
early stopping was applied based on the held-out validation set.

The data used to train the supervised dialogue embedding were the simu-
lated dialogues train-1K and the validation set as specified in Section 6.2.1,
and testA served as the test set. This dataset is denoted by sim. The
embedding function was thus effectively the intermediate product created
during the training of the RNN-based off-line reward model described in
Section 6.2. For the unsupervised dialogue embedding, two datasets were
investigated: firstly, the same dataset used to train the supervised embed-
ding as mentioned above; and secondly, a corpus consisting of 8565, 1199
and 650 real user dialogues in the Cambridge restaurant domain was used
for training, validation and testing respectively. This corpus was collected in
previous user trials using paid subjects recruited via the AMT service. Thus
this dataset is denoted by amt.

In order to visualise the effect of the embeddings, all of the test dialogues
were transformed using the two embedding functions and the resulting rep-
resentations dsim

s , dsim
u and damt

u were plotted using t-SNE [70]. The results
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Figure 9: t-SNE visualisation on the supervised dialogue representations of the simulated
data dsim

s in the Cambridge restaurant domain. Labels are the subjective ratings from the
users and colours represent the total length of each dialogue.

are shown in Figures 9 and 10. For each dialogue sample, the shape indi-
cates whether or not the dialogue was successful, and the colour indicates the
length of the dialogue (maximum 30 turns). As can be seen in Figure 9, the
supervised embedding function trained on simulated data clearly separates
successful and failed dialogues into two categories. It is also clear that in
simulation, the successful dialogues were mostly short and the failed ones
were mostly aborted when the 30 turn limit was reached.

The patterns for the unsupervised embedding trained on both data are
rather different, which are shown in sub-figures 10(a) & (b). In 10(a), the
successful dialogues are distributed according to dialogue length from the
bottom (shorter dialogues) to the top (longer dialogues). Compared to the
patterns in Figure 9, the separation between successful and failed dialogues is
less obvious, since the unsupervised embedding function was trained without
success labels. Similar patterns can be found in sub-figure 10(b). These
show that dialogue length was one of the most prominent features in the
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(a) Unsupervised: dsim
u (b) Unsupervised: damt

u

Figure 10: t-SNE visualisation on (a) the unsupervised dialogue representations of the
simulated data dsim

u , and (b) the unsupervised dialogue representations of the real user
data damt

u in the Cambridge restaurant domain. Labels are the subjective ratings from the
users and colours represent the total length of each dialogue.

unsupervised dialogue representations dsim
u and damt

u . Also for the dataset
amt, the failed dialogues were distributed over all of the length range and the
successful dialogues were on average shorter than 10 turns.

Investigating these two datasets sim and amt, it appears that whilst simu-
lated and real data follow similar patterns in successful dialogues, typified by
short conversations and clear information exchange between the user and the
system, there is much more diversity in the real dialogues. This is especially
the case for failed dialogues where real users halt the conversation as soon as
they lose patience whereas simulated users persist until the maximum turn
limit is reached. Note that for the simulated users, there is a patience setting
which terminates the dialogue once the number of repetitive system responses
reaches a certain threshold. However, real users demonstrate impatience in
many different ways such as getting inconsistent system responses.

6.3.2. Dialogue Policy Learning

Given well-trained dialogue embedding functions, the proposed GP re-
ward model operates on the embedded input space. The system was imple-
mented using the GPy library [71]. Given the predictive success probability
of each newly seen dialogue, the threshold λ for the uncertainty region was
initially set to 1 to encourage label querying and annealed to 0.85 over the
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Figure 11: Learning curves showing subjective success as a function of the number of
training dialogues used during on-line policy optimisation. The on-line GP supervised,
on-line GP unsupervised and Obj =Subj systems are shown as green, black, and red lines.
The light-coloured areas are one standard error intervals.

first 50 collected dialogues and then fixed at 0.85 thereafter. Initially, as
each new dialogue was added to the training set, the hyper-parameters that
define the kernel structure defined in Equation 8 were optimised to minimise
the negative log marginal likelihood using conjugate gradient ascent [59]. To
prevent overfitting, after the first 40 dialogues, these hyper-parameters were
only re-optimised after every batch of 20 dialogues.

Two systems: on-line GP supervised and on-line GP unsupervised were
trained with a total of around 350 dialogues on-line by users recruited via
the AMT service. Figure 11 shows the on-line learning curve of subjective
success during training. For each system, the moving average was calculated
using a window of 150 dialogues. In each case, three distinct policies were
trained and the results were averaged to reduce noise.

As can be seen, both systems had better than 80% subjective success rate
after approximately 200 training dialogues. the supervised model performed
slightly better during the learning process, and both converged to similar
performance. This may be because the supervised embedding function was
trained with knowledge of the objective success, and this is correlated to
the subjective success ratings of real users. Nevertheless, after 300 dialogues

23



Figure 12: Learning curves showing subjective success as a function of the number of
training dialogues used during on-line policy optimisation. The on-line GP, Subj and
off-line RNN systems are shown as black, yellow, and blue lines. The light-coloured areas
are one standard error intervals.

both embeddings achieve similar performance suggesting that the unsuper-
vised embedding is perfectly adequate for the task, and it has the significant
advantage that it can be trained on real data without annotations. In the
following, the unsupervised method was therefore chosen for further investi-
gation.

In addition to the above comparisons, two other systems were explored
which used different methods to compute the reward:

• the Subj system which directly optimises the policy using only the
user’s subjective assessment of success whether accurate or not.

• the off-line RNN system that uses 1K simulated data and the corre-
sponding Obj labels to train an RNN success estimator as in [21].

For the Subj system rating, in order to focus solely on the performance of
the policy rather than other aspects of the system such as the fluency of the
reply sentence, users were asked to rate dialogue success by answering the
following question: Did you find all the information you were looking for?
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Figure 13: The number of times each system queries the user for feedback during on-line
policy optimisation as a function of the number of training dialogues. The orange line
represents the Subj system, and the black line stands for the on-line GP system.

Figure 12 shows the on-line learning curve of the subjective success rating
with the moving average of 150 dialogues when training the three systems:
on-line GP (with unsupervised embedding), Subj, and off-line RNN. In each
case, three distinct policies were trained and the results were averaged to
reduce noise. The systems were trained with a total of 500 dialogues on-line
by users recruited via the AMT service.

We can clearly see that all three systems perform better than 85 % subjec-
tive success rate after approximately 500 training dialogues. To investigate
learning behaviour over longer spans, training for the on-line GP and the
Subj systems was extended to 850 dialogues. As can be seen, performance
in both cases is broadly flat.

Similar to the conclusions drawn in [20], the Subj system appears to suffer
from unreliable user feedback. As with the Obj =Subj system in Figure 8,
this is partly due to users forgetting the full requirements of the task and in
particular, they forget to ask for all required information. From Figure 12 it
can be clearly seen that the on-line GP system consistently performed better
than Subj system, presumably, because its noise model mitigates the effect
of inconsistency in user feedback. Of course, unlike crowd-sourced subjects,
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real users might provide more consistent feedback, but nevertheless, some
inconsistency is inevitable and the noise model offers the needed robustness.

The advantage of the on-line GP system in reducing the number of times
that the system requests user feedback (i.e. the label cost) can be seen in
Figure 13. The black curve shows the number of active learning queries
triggered in the on-line GP system averaged across the three policies. This
system required only 150 user feedback requests to train a robust reward
model. On the other hand, the Subj system requires user feedback for every
training dialogue as shown by the dashed orange line (of course, the same
applies to the Obj =Subj system in the previous experiment).

Of course, the off-line RNN system required no user feedback at all when
training the system on-line since it had the benefit of prior access to a user
simulator. Its performance during training after the first 300 dialogues was,
however, inferior to the on-line GP system.

6.3.3. Dialogue Policy Evaluation

In order to compare performance, the averaged results obtained between
400-500 training dialogues are shown in the first section of Table 1 along with
one standard error. For the 400-500 interval, the Subj, off-line RNN and on-
line GP systems achieved comparable results without statistical differences.
The results of continuing training on the Subj and on-line GP systems from
500 to 850 training dialogues are also shown. As can be seen in the table,
the on-line GP system was significantly better presumably because it is more
robust to erroneous user feedback compared to the Subj system.

6.3.4. Reward Model Evaluation

The above results verify the effectiveness of the proposed reward model
for policy learning. Here we investigate further the accuracy of the on-line
GP model in predicting the subjective success rate. An evaluation of the
on-line GP reward model between 1 and 850 training dialogues is presented
in Table 2.

Since three reward models were learnt each with 850 dialogues, there
were a total of 2550 training dialogues. Of these, the on-line GP model
queried the user for feedback a total of 454 times, leaving 2096 dialogues for
which learning relied on the reward model’s prediction. Therefore, for a fair
comparisons results shown in the table are averaged over 2096 dialogues.

As can be seen, there was a significant imbalance between successful and
failed dialogues since the policy was improving along with the training dia-
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Table 1: Subjective evaluation of the off-line RNN, Subj and on-line GP system during
different stages of on-line policy learning. Subjective: user binary rating on dialogue
success. Statistical significance was calculated using a two-tailed Students t-test with
p-value of 0.05.

Dialogues Reward Model Subjective (%)

400-500

off-line RNN 89.0 ± 1.8
Subj 90.7 ± 1.7

on-line GP 91.7 ± 1.6

500-850
Subj 87.1 ± 1.0

on-line GP 90.9 ± 0.9*
* p < 0.05

logues. This lowered the recall on failed dialogue prediction is expected since
the model is biased toward successful dialogues. Overall, however, perfor-
mance as judged by F-measure appears to be adequate.

Table 2: Statistical evaluation of the prediction of the on-line GP systems with respect
to Subj rating.

Subj Precision Recall F-measure Number
Fail 1.00 0.52 0.68 204
Suc. 0.95 1.00 0.97 1892
Total 0.96 0.95 0.95 2096

6.4. Example Dialogues

The key benefits of the on-line GP reward model compared to other
models are its robustness to noise and efficient use of user supervision. Since
the four systems compared above differ only in the design of the reward model
(learning objective), their on-line behaviours were broadly similar.

Two example dialogues between users and the on-line GP system are
listed in Table 3 to illustrate how the system operates under different noise
conditions. The user’s subjective rating and the rating determined by the
on-line GP reward model are also shown. The labels ‘n-th ASR’ and ‘n-th
SEM’ indicate the n-th most likely hypotheses from the speech recogniser
and the semantic decoder respectively.

27



Table 3: Example dialogues between on-line users and the proposed on-line GP system.

-Low noise condition- (User Subjective Evaluation: Success, on-line GP Evaluation: Success)
Machine : Hello, welcome to the Cambridge dialogue system, what kind of food would you like?
Human : [Top ASR] Yeah I want to find a restaurant that serves European food.

[Top SEM] inform(food=european,type=restaurant)
Machine : Hotel du Vin and Bistro is a nice place. It serves European food.
Human : [Top ASR] Uh what is the address and phone number?

[Top SEM] request(phone,addr)
Machine : Hotel du Vin and Bistro is a nice place. Their address is 15-19 Trumpington Street and their phone is 01223 227330.
Human : [Top ASR] Thank you goodbye.

[Top SEM] bye()
Machine : Thank you for using this system.

-High noise condition- (User Subjective Evaluation: Success, on-line GP Evaluation: Success)
Machine : Hello, welcome to the Cambridge dialogue system, What kind of food would you like?
Human : [Top ASR] And I want to find a expensive restaurant it should be in the south part of town.

[Top SEM] inform(area=south,pricerange=expensive,type=restaurant)
Machine : Gourmet burger kitchen is a nice place it is in the expensive price range.
Human : [Top ASR] And do you have something else?

[Top SEM] null()
[2nd SEM] reqalts()

Machine : Did you say you are looking for a venue in the area of south ?
Human : [Top ASR] Yes.

[Top SEM] affirm()
Machine : Frankie and Benny’s is a nice place, it is in the south part of town and it is in the expensive price range.
Human : [Top ASR] Okay can I have the uh address phone number called for any.

[Top SEM] request(addr)
[2nd SEM] request(phone,addr)

Machine : Frankie and Benny’s is a nice place. Their address is Clifton Way and their phone number is 01223 412430.
Human : [Top ASR] What is the pub called for free you any?

...
[5th ASR] What is the post code for free you any?
[Top SEM] request(postcode)

Machine : Frankie and Benny’s is a nice place. Their postcode is C.B 1, 7 D.Y.
Human : [Top ASR] Thank you goodbye.

[Top SEM] bye()
Machine : Thank you for using this system.

7. Conclusion

Computing a reliable reward function for training a dialogue policy on-line
using reinforcement learning is difficult since the user’s objective is usually
unknown. Directly querying the user at the end of each dialogue is equally
problematic since the resulting feedback is often inaccurate and repeated
querying for feedback can be intrusive.

This paper has explored the design of a reward model which automati-
cally estimates the success of a dialogue by monitoring the sequence of dia-
logue turns. Two approaches were investigated. Firstly, a recurrent neural
network was utilised as a task success predictor which was pre-trained from
off-line data. Secondly, an on-line learning framework was described whereby
the dialogue policy is jointly trained alongside the reward function modelled
as a Gaussian process with active learning. To provide a fixed size input
space for the Gaussian process, variable length dialogue turn sequences are
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embedded using both a supervised recurrent neural network, and an unsu-
pervised RNN-based encoder-decoder. Both perform similarly, but the latter
has the advantage of requiring no task success annotation and can therefore
be trained on unlabelled corpora.

This on-line reward model enables stable policy optimisation by robustly
modelling the inherent noise in real user feedback and uses active learning to
minimise the number of feedback requests to the user. The proposed on-line
reward models achieved efficient policy learning and better performance com-
pared to other state-of-the-art methods in the Cambridge restaurant domain.
A key advantage of this Bayesian model is that its uncertainty estimate al-
lows active learning and noise handling in a natural way. This mitigates the
two key problems of requesting direct user feedback: it minimises the intru-
sive nature of asking for feedback, and it successfully filters inaccurate user
responses.

Overall, the techniques developed in this paper enable for the first time
viable approaches to on-line learning in deployed real-world dialogue systems.
Dialogue policies can be learned from scratch without requiring the collec-
tion and annotation of bootstrap training data or the construction of a user
simulator.

As with all of our previous work, the reward function studied here is
focused primarily on task success and this may be too simplistic for many
commercial applications. Further work may therefore be needed in conjunc-
tion with human interaction studies to identify and incorporate the further
dimensions of dialogue quality needed to optimise user satisfaction. Nev-
ertheless, task success is likely to remain the principal component of user
satisfaction for the majority of applications, and hence the work reported
here should be a major step forward in the practical deployment of systems
which can learn and improve on-line without manual intervention.
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[3] S. Young, M. Gašic, B. Thomson, J. Williams, Pomdp-based statistical
spoken dialogue systems: a review, Proc of IEEE 99 (2013) 1–20.
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[44] S. Keizer, M. Gašić, F. Jurcicek, F. Mairesse, B. Thomson, K. Yu,
S. Young, Proc of SIGDIAL (2010).

[45] Y. Engel, Algorithms and representations for reinforcement learning,
PhD Thesis, 2005.

[46] T. Jebara, R. Kondor, A. Howard, Probability product kernels, J. Mach.
Learn. Res. 5 (2004) 819–844.

[47] A. Karpathy, L. Fei-Fei, Deep visual-semantic alignments for generating
image descriptions, CoRR abs/1412.2306 (2014).

33



[48] T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, S. Khudanpur, Recur-
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