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ABSTRACT	
  

We investigate the potential of statistical techniques for spoken dialogue 
systems in an automotive environment. Specifically, we focus on partially 
observable Markov decision processes (POMDPs), which have recently been 
proposed as a statistical framework for building dialogue managers (DMs). These 
statistical DMs have explicit models of uncertainty, which allow alternative 
recognition hypotheses to be exploited, and dialogue management policies that can 
be optimised automatically using reinforcement learning. This paper presents a 
voice-based in-car system for providing information about local amenities (e.g. 
restaurants). A user trial is described which compares performance of a trained 
statistical dialogue manager with a conventional handcrafted system. The results 
demonstrate the differing behaviours of the two systems and the performance 
advantage obtained when using the statistical approach. 
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1	
   INTRODUCTION	
  

Spoken dialogue has many potential advantages over, or in combination with, 
other modalities in an automobile. This has led to the deployment of various in-car 
systems integrating spoken dialogue, with applications such as telephony, 
entertainment, and navigation. 

However, the user experience of these systems is often extremely poor. Part of 
the problem is that the noisy conditions can cause a drastic deterioration of 
automatic speech recognition performance. This results in systems repeatedly 
asking the same question, which in turn causes users to become frustrated. 

This paper discusses how a change to the dialogue manager can result in 
improved overall performance, even in the context of poor recognition accuracy. 
Current dialogue managers are typically designed as deterministic decision 
networks. Since system designers will usually include a confidence threshold before 
accepting a given piece of information, the system ends up asking the same question 
over and over. This decision network structure also makes it difficult for system 
designers to use the information in N-best lists of speech-recognition hypotheses. 
The result is typically a system that is not robust to understanding errors. 

Recently, a statistical approach to building dialogue managers has been 
developed based on partially observable Markov decision processes (POMDPs). 
These statistical DMs have explicit models of uncertainty which allow alternative 
recognition hypotheses to be exploited, and dialogue management policies that can 
be optimised automatically using reinforcement learning. This paper will present a 
voice-based in-car system for providing information about local amenities (e.g. 
restaurants). A user trial is described which compares performance of a trained 
statistical dialogue manager with a conventional handcrafted system. 

2	
   SYSTEM	
  OVERVIEW	
  

The system architecture is shown in figure 1. It consists of 5 distinct modules: 
automatic speech recognition (ASR), semantic decoding or spoken language 
understanding (SLU), dialogue management (DM), natural language generation 
(NLG) and speech synthesis or text-to-speech (TTS).   

The user speaks to the system, and the acoustic signal y is converted by the 
speech recognizer into a set of sentence hypotheses w, which represents a 
probability distribution over all possible things that he might have said.  In practice, 
w is represented by an N-best list. The sentence hypotheses are converted into an N-
best list of dialogue acts v by a semantic decoder.   The dialogue manager represents 
the dialogue state s in a factored form via the triple <u,g,h> (see also figure 2) 
where u is the actual (but unknown) user utterance, g is the assumed user goal and h 
represents the history (Williams and Young, 2007). Since this state cannot be 
directly observed the system maintains a probability distribution b over this state, 
which is called the belief state. The belief state is updated at every user turn using 
Bayesian inference treating the input v as evidence. 



	
  

	
  

 

Figure 1  Architecture of  the Spoken Dialogue System 

Based on b, the optimal system response a is selected using a mapping π:b→a 
which is called a policy and which is trained automatically using reinforcement 
learning.  The abstract system dialogue act a is converted to an appropriate 
utterance m by a natural language generator and then converted to speech x by a 
HMM-based speech synthesizer.  

The spoken dialogue system is implemented using the ATK platform 
(http://mi.eng.cam.ac.uk/research/dialogue/atk_home.html). ATK is an API 
designed to facilitate building experimental applications for systems trained using 
the HTK speech recognition toolkit (see http://htk.eng.cam.ac.uk). It consists of a 
C++ layer sitting on top of the standard HTK libraries. ATK is multi-threaded and 
supports real-time speech recognition. ATK allows a variety of components to be 
connected together to implement different architectures and applications, and hence 
it provides a flexible platform for building spoken dialogue systems.  

To illustrate the system’s capability, two typical dialogues are shown in Tables 1 
and 2.   The first is an example of a straight forward query for which the system is 
able to provide recommendations immediately. The second is an example where 
there is no restaurant matching the user’s requirements.  In this case, the user 
relaxes his constraints and the system offers him alternatives. 

 
Table 1  An example of a straightforward dialogue  
Sys Hello, welcome to the Cambridge restaurant system? You can ask for 

restaurants by area, price range or food type. How may I help you? 
Usr Hi, I'm looking for an Indian restaurant in the north. 
Sys There are 3 restaurants in the north of town serving Indian food! Would you 

like something in the cheap, moderate, or expensive price range? 
Usr I don’t mind 
Sys Royal spice is a nice restaurant in the north of town serving Indian food. 
Usr What's the address? 
Sys Sure, It is on Victoria Avenue Chesterton. 



	
  

	
  

Usr Thanks, bye 
Table 2  An example dialogue where the user relaxes their constraints  
Sys Hello, welcome to the Cambridge restaurant system? You can ask for 

restaurants by area, price range or food type. How may I help you? 
Usr Hi, I'm looking for an expensive Chinese restaurant in the west. 
Sys I am sorry, but there is no expensive restaurant that is in the west part of town 

and serves Chinese food. 
Usr Do you have anything in the moderate price range? 
Sys Sorry would you like something in the expensive price range or in the 

moderate price range? 
Usr Moderate. 
Sys I am sorry, but there is no moderately priced restaurant that serves Chinese 

food and in the west part of town. 
Usr How about the south? 
Sys Would you like Chinese food or you don't care? 
Usr I'd like a Chinese restaurant. 
Sys The Lucky star is a moderately priced Chinese restaurant in the south of 

town. 
Usr What's the address? 
Sys Sure, It is on Cambridge Leisure Park Clifton Way Cherry Hinton. 
Usr Thank you, goodbye 

 
Next, we describe in more detail each of the basic components of the system. 
The Automatic Speech Recognition (ASR) module uses the Cambridge 

HTK/ATK speech recogniser. It accepts live speech input and voice activity 
detection (VAD) is used to determine the start and end of each user utterance. A tri-
gram language model and word-internal triphone HMMs are then applied in a two-
pass decoding scheme.   In the first pass, a bi-gram language model is used and the 
resulting lattice is rescored by a tri-gram language model in the second pass.  The 
output is the 10 best hypotheses along with their confidence scores. The pruning 
thresholds and model size are optimised so that the decoder runs in real time. The 
acoustic model is trained on data from various sources, including desktop 
microphone (wide-band data), landline and mobile phone (narrow-band data) and 
VoIP recording (in-domain narrow-band data), about 130 hours in total. The front-
end uses perceptual linear predictor (PLP) features with energy and first, second and 
third derivatives. A heteroscedastic linear discriminant analysis (HLDA) transform 
is used to project these features down to 39 dimensions. The language model (LM) 
is trained using a class-based language modeling technique. The language model 
training data is about 400K words. The basic idea is to train a generic statistical LM 
and then expand this generic LM to a specific LM using the information for the 



	
  

	
  

specific task in hand. The word list (dictionary) of the generic LM consists of 
common words used in dialogues (such as good-bye, hello, can ...) and abstract slot 
labels (such as SLOT_NAME, SLOT_AREA ...). This generic LM is trained on a 
corpus generated from the 400K-word corpus by substituting abstract slot labels for 
the actual slot values in our previously collected data. Hence, the generated LM is a 
special class-based LM consisting of both common words and abstract slot values. 
We then expand this LM to a specific word-based LM using a class-to-word 
mapping from the database. 

The Spoken Language Understanding (SLU) module converts the N-Best 
ASR output to N-Best dialogue acts with confidence scores. A rule-based hand-
crafted Phoenix semantic parser is used in the baseline system (Ward 1991). 
Various minor modifications of the original system were made to convert the output 
of this parser into the Cambridge dialogue act format. The Cambridge dialogue 
format structures the semantic representation as an act type followed by a sequence 
of items, where each item contains a concept and a value (both of which are 
optional). Each ASR hypothesis from the N-Best list is parsed into a distinct 
dialogue act. Identical dialogue acts are then merged and the confidence scores are 
added together.  The resultant multiple dialogue act hypotheses with confidence 
scores are then fed into the dialogue manager. Table 3 shows the dialogue acts in 
the Cambridge dialogue semantic representation format for the example shown in 
Table 1.  

 
Table 3  Example dialogue in the Cambridge dialogue act format 
Sys hello() 
Usr inform(food=indian, area=north,  type=restaurant)  
Sys confreq(count="3", type=restaurant, food=indian, area=north, pricerange, 

option=cheap, option=moderate, option=expensive) 
Usr inform(=dontcare) 
Sys inform(name="Royal spice", type=restaurant, food=Indian, area=north) 
Usr request(addr) 
Sys inform(addr="Victoria Avenue Chesterton") 
Usr bye() 

 
The Dialogue Management (DM) component uses the Bayesian Update of 

Dialogue State (BUDS) framework for updating belief states and a learned policy to 
select system action (Thomson and Young, 2010). The BUDS DM is an approach 
within the Partially Observable Markov Decision Process (POMDP) framework. In 
this approach, the DM maintains a distribution over the dialogue state space, which 
is referred to as the belief state. The belief state is updated according to the user 
goal, the observed SLU hypotheses and the dialogue history. The system action is 
then selected according to the updated belief state. In order to deal with the 
intractability of both updating belief states and action selection, two techniques of 
compressing the dialogue state space are employed. The first optimisation is to 



	
  

	
  

factorize the user goal and dialogue history further into a series of concepts with 
concept-level goals (called sub-goals) and concept-level histories.  

 

Figure 2  Dependencies in the BUDS dialogue system 

Conditional independence assumptions are taken such that the concept-level 
goal is only dependent on the previous system action, the same concept-level goal 
of the previous turn and optionally the parent concept-level goal of the previous turn 
(see figure 2). With the factorization, tractable belief state update can be developed. 
In the case of the baseline restaurant system, the concepts are name, area, price 
range, food type, address, post code and signature dish. The second optimisation is 
used to simplify the action selection process. After updating the belief state, the full 
state space (also referred to as a master state space) is mapped into a much smaller 
summary space, in which action selection takes place, resulting in a summary action 
that gets mapped back into master space using information from the original belief 
state. The mapping from the (summarized) belief state to system action is referred to 
as a policy. In the baseline system, a handcrafted policy is used. 

The Natural Language Generation (NLG) component reads in the dialogue 
act output by the DM component and generates natural language responses. In the 
baseline system, we use a template-based NLG. We have also added basic 
anaphoric references to the NLG to make replies more natural. For instance, when 
the system suggests a restaurant to the user, the name of that restaurant becomes the 
topic of the conversation. Instead of repeating the restaurant's name many times, the 
system refers simply to “it”. When the system operates in noisy conditions, it is 
often the case that the system has to repeat the same dialogue act. In such cases 
NLG adds variations in the output text in order to appear more natural to the user.  

The Text-To-Speech (TTS) component gets text from the NLG components 
and synthesizes speech using a trainable HMM-based speech synthesizer. Text 
analysis is first performed to convert raw text into phone-level context labels. 
Context-dependent HMMs are then used to model spectrum, fundamental frequency 
and duration of the context-dependent phones. During synthesis, the duration, 
spectrum and fundamental frequency are generated from the HMMs and then 
converted to speech waveform. As it is a parametric model, HMM-TTS has more 



	
  

	
  

flexibility than traditional unit-selection approaches and is especially useful for 
producing expressive speech (Yu, Mairesse and Young 2010). 

3	
   PROOF-­‐OF-­‐CONCEPT	
  DEPLOYMENT	
  

The Restaurant Information task was selected for the deployment and evaluation 
of the system described above in an automotive environment. Using a far field 
hands-free microphone, users can ask for information directly about a restaurant by 
name but more interestingly, they can search for a restaurant by expressing their 
preferences for food type, price range and area. The system will then suggest 
restaurants and when requested provide the user with details such as post-code, 
address and telephone number. Users can also change their mind or adjust their 
constraints if no venues match their initial query. It must be noted that the system 
uses an open microphone architecture, i.e. there is no push-to-talk. The system is 
always listening and the user can speak at any time. 

In a real world scenario the user would be calling the system via mobile phone 
while driving, for example someone driving to a new town would like to find out a 
place to eat. The system would have to select the target town either using location 
based information (e.g. the selected destination in the GPS device), or if the user 
specifically requests a town. We have integrated our dialogue system with an online 
restaurant information service provider. However, we currently assume that the 
town is known in advance. The TopTable (http://www.toptable.com) web-service 
provides information on around 20,000 restaurants from around the world. Once the 
town is selected, the system extracts the following information for each venue: the 
venue’s name, area, price range, food type, address, post code and signature dish. 
The system ontology is updated with a list of possible names and food types and the 
semantic decoder is also updated to be able to understand the user talking about the 
restaurants’ names and food types. The ASR and TTS pronunciation dictionaries are 
automatically updated to include new unknown words, such as restaurant names, 
addresses, dishes etc. This enables our dialogue system to operate for any town, as 
long as it is available through the web-service. For the evaluation process the city of 
Cambridge was selected, and a database of about 150 venues was built.  

A VoIP interface was implemented so that remote users can use telephones to 
communicate with the system. SIPGate (www.sipgate.co.uk) was used as the SIP 
(Session Initiation Protocol) service provider.  This service converts incoming 
PSTN (Public Switched Telephone Network) calls to IP data and streams them to 
our server. An open source SIP client, PJSIP, is used to manage SIP calls from 
SIPGate and the low-level audio IO functionality required by the dialogue server. 

4	
   EVALUATION	
  

The evaluation process took place in two stages. In the first stage we used a 
handcrafted system to collect training data. We then used the collected data to train 
statistical models for the semantic decoder and the dialogue manager. In the second 



	
  

	
  

stage we evaluated the trained dialogue components in contrast to the handcrafted 
ones. The aim of the experiment was to test the robustness and performance of a 
spoken dialogue system in a moving car.  

The data collection stage of the experiment was performed in a standing car. 
About 25 subjects were asked to perform a set of 20 randomly generated tasks. The 
subject was sitting in the front passenger seat while the operator was sitting in the 
driver’s seat. A call was made using an android mobile phone paired via Bluetooth 
with an OnStar mirror (www.onstar.com). The mirror’s built-in microphone and 
loudspeakers were used as the speech interface. Two recording conditions were 
tested; for the first one the car’s fan was off, while for the second one the fan was 
set in its maximum speed. For each task, the subject read one of the tasks, while the 
instructor placed the cal to the system. After, the dialogue completion the subject 
was asked if the dialogue was successful or not. 

A total of 511 dialogues were collected for both conditions. The dialogue 
success rate was 67.1% (79.6% with the fan off, and 55.5% with the fan on). The 
collected speech data was automatically transcribed using Amazon Mechanical 
Turk crowd sourcing (Jurčíček et al 2011). The total audio length of all the 
dialogues was 2.2 hours (user turns only). The resulting speech database was further 
split into a training set (~60%) and a test set (~40%). This was done at the speaker 
level; the word error rate (WER) per speaker was measured from the transcriptions, 
and then each speaker was assigned to either the train or the test set. The 
distributions of WERs per speaker, as well as the ratio of male to female speakers 
were kept the same in both train and test sets. The training set was used to adapt the 
ASR acoustic model. This resulted in an absolute WER reduction of about 9% 
(from 25.8% to 16.9%) for the in-car test data set. The LM was not updated since 
the available data was not sufficient for language model training. 

In the second stage of the experiment we trained a POMDP dialogue system and 
evaluated its performance in comparison with a hand-coded one based on MDP and 
optimized for the restaurant info task. Henceforth, the two systems are termed as: 

• MDP, hand-coded dialogue manager based on an MDP architecture 
• POMDP, trained POMDP dialogue manager 

Both systems used the same Phoenix-based semantic decoder and the same 
retrained speech recognition system. 

The experimental setup was similar to the one used for data collection, while 
taking place in a car driven around the city of Cambridge by a professional driver. 
The subject sat in the front seat and the experiment instructor in the rear seat. Each 
subject was asked to complete 14 dialogue tasks (7 for each of the two systems). 
After the completion of each dialogue, the subject reported to the instructor if he or 
she considered the task successful or not. A total of 30 subjects took part in the 
experiment and a total of 399 dialogues were collected. Some of the subjects did not 
complete the whole set of tasks due to technical difficulties. Table 4 summarises the 
subjective performance for each of the dialogue systems. For each system, the table 
shows the total number of dialogues, the number of successful dialogues, the 
estimated subjective success rates, and the word error rate (WER). The standard 
error on the success rates was estimated under the assumption that the success rates 



	
  

	
  

follow a binomial distribution (Thomson and Young, 2010). The actual word error 
rates may be lower than the ones reported here since the crowd sourcing 
transcription process usually introduces additional word errors. 
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Figure 3  The effect of the WER factor on success rates of the MDP and POMDP systems. 

Table 4  Subjective evaluation results 

System # Dialogoues # Successful % Success Subjective WER 
MDP 200 130 65.00 ± 3.37 46.83 
POMDP 199 141 70.85 ± 3.22 43.93 

 
We performed analysis of variance to test the statistical significance of the 

results. The test shows that the difference in the success rate of the two systems is 
not statistically significant at the 95% confidence level [p-value = 0.20]. We also 
tested the statistical significance of the WER factor, which also showed that there is 
no statistically significant difference between the word error rates of the two 
systems [p=0.44]. To have a more accurate depiction of the WER factor on the 
performance of the systems, figure 3 shows the logistic regression of the probability 
of success against the word error rate for a particular dialogue. The plotted points 
show the true WER of a given dialogue along with the predicted probability of 
success according to the logistic regression model. Unfilled markers depict 
successful dialogues, while filled ones depict unsuccessful dialogues. The dotted 
lines show one standard error on each side of the predicted probability of success. 



	
  

	
  

The POMDP system has a higher success rate on average. Although this difference 
is not statistically significant, the results strongly suggest that the POMDP system 
can cope better with ASR errors. We can see, for example, that the MPD system has 
some failure points even when the speech recognition performs reasonably well 
(WER<15%), while, on the other hand, the POMDP system starts to break at WER 
above 25%. This suggests that the improvement in the performance of the POMDP 
system is not due to better speech recognition performance but rather due to a more 
robust dialogue manager. 

5	
   CONCLUSIONS	
  

We have investigated a statistical approach to dialogue management for in-car 
speech-based information systems with the aim of increasing robustness to 
recognition errors. A Restaurant Information task was selected for this pilot study. 
A statistical dialogue manager based on POMDPs was trained and evaluated in 
comparison with a non-statistical one optimized manually for the same task. The 
evaluation took place in a realistic scenario where human subjects were driven 
around in an urban environment while talking to the dialogue system in an open 
microphone manner. Moreover, the system was integrated with an online service 
providing up to date restaurant information.  Although the corpus of 400 dialogues 
collected for the evaluation is too small to give statistical significance, the results 
did indicate that the statistical dialogue manager has a higher success rate and is 
more robust to speech recognition errors. This suggests that in noisy situations, such 
as the automotive environment, where speech recognition is prone to errors, the 
statistical approach to dialogue management can improve overall performance.  
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