
BAYESIAN UPDATE OF DIALOGUE STATE FOR ROBUST DIALOGUE SYSTEMS

Blaise Thomson, Jost Schatzmann and Steve Young

Engineering Department, Cambridge University, CB2 1PZ, UK
{brmt2, js532, sjy}@eng.cam.ac.uk

ABSTRACT
This paper presents a new framework for accumulating beliefs in
spoken dialogue systems. The technique is based on updating a
Bayesian Network that represents the underlying state of a Partially
Observable Markov Decision Process (POMDP). POMDP models
provide a principled approach to handling uncertainty in dialogue
but generally scale poorly with the size of the state and action space.
The framework proposed, on the other hand, scales well and can be
extended to handle complex dialogues. Learning is achieved with a
factored summarising function that is applicable for many slot-filling
type dialogues. The framework also provides a good structure from
which to build hand-crafted policies. For very complex dialogues,
this allows the POMDP’s principled approach to uncertainty to be
incorporated without requiring computationally intensive learning
algorithms. Simulations show that the proposed framework outper-
forms standard techniques whenever errors increase.

Index Terms— Learning systems, Speech processing, Robust-
ness

1. INTRODUCTION

One of the major problems facing current state-of-the-art dialogue
systems is robustness. Speech recognition systems cannot be relied
upon to give a correct word-level form for any given user utterance.
This problem is exacerbated by the task of semantic decoding which
is also error prone. The result is that a typical system allows only
constrained modes of interaction and frequently needs to confirm
the information it receives.

Recent systems accommodate for errors by maintaining beliefs
about what the user has said rather than accepting the output from
the recogniser. Researchers have, for example, built models that up-
date a compressed representation of belief using the most likely last
user utterance [1]. A more principled approach is to use the full set
of possible user utterances to update a distribution over user goals
[2]. This is theoretically more appealing, has a stronger mathemat-
ical basis and one would expect it to therefore give better results.
The model used to do this type of update is the Partially Observable
Markov Decision Process (POMDP).

Although the POMDP model provides an elegant solution, its
update formulae are intractable for all but the simplest dialogues.
This led to the Hidden Information State (HIS) model being sug-
gested as a less computationally demanding approach [3]. The HIS
model improves efficiency by grouping together user goals into par-
titions which are indistinguishable given the past user utterances.
However, this approach can eventually become unwieldly if the di-
alogue is allowed to progress for a long time, or if the recogniser

The work described in this paper was suported by a St John’s College
Benefactors’ Scholarship and an EPSRC grant. Thanks to the anonymous
reviewers and to Jason Williams for their comments.

output contains a large number of alternative hypotheses. As the
number of possible past utterances increases, the number of parti-
tions will increase also.

This paper proposes an alternative approach to enabling tractable
POMDP updates. The method uses a Bayesian Network to represent
the state of the POMDP, where the network is factored according to
the slots in the system. This has several advantages. It is computa-
tionally more efficient, scales better, is easier to implement, easier
to allow for changes in the user goal and easier to extend to more
complicated types of dialogue. The efficiency arises because more
conditional independence assumptions are made. The ease of use is
a result of the intuitive nature of Bayesian Networks and the highly
structured form of the model.

The structure of this paper is as follows. The next section in-
troduces the POMDP model and develops the Bayesian Update of
Dialogue State framework. Section 3 discusses how policies may be
designed with this approach. Both learned and hand-crafted policies
are discussed. The section also discusses a new summary function
technique which is required for learning because of the factored form
of the belief network. Section 4 gives the results of a simulation ex-
periment comparing the model against various baselines. Section 5
concludes the paper.

2. BAYESIAN UPDATE OF DIALOGUE STATE

Any POMDP contains a set of machine actions A, a set of states S
and a set of observations O. In a dialogue system the actions de-
note the allowable machine utterances, m ∈ A. A dialogue system
state represents a combination of the user’s goal, g, the user’s last
utterance, u, and some form of dialogue history, h. Hence the state
is factored as (g, u, h) = s ∈ S . States are hidden and must be
inferred from the output of the recogniser, which forms the observa-
tion, o ∈ O. This inference is done under the Markov assumption:
states are conditionally dependent on only their previous value and
the last machine action. Given an observation function P (o|s) and
a state transition function P (s′|s, a), a belief distribution over states
can then be updated using Bayes Theorem [2]1.

To make this update equation more tractable the Bayesian Up-
date of Dialogue State (BUDS) framework makes several further as-
sumptions. Most importantly, the system state is further factorised
according to a set of slots, i ∈ I. The goal becomes g = (gi)i∈I ,
the user act u = (ui)i∈I and the dialogue history h = (hi)i∈I .
Next some conditional independence assumptions are taken. The
user act for a slot depends only on that slot’s user goal value and
the last machine action. The slot history depends on the previous
slot history and the current slot user act. The slot user goals depend
on their previous value, the last machine action and may depend on

1The notation here differs from previous papers to avoid subscripts. Com-
mon previous notation is am = m, su = g, au = u and sd = h



any combination of other current slot user goal values allowing a
Bayesian Network structure. As usual, the observation depends on
the user act. Figure 1 shows an example network for two time-slices
of a two-slot system based on this idea.

Fig. 1. The two time-slice network for updating the beliefs of two
slots: type of venue and food. The food slot only applies if the
type of venue is restaurant and is assumed to take the value “N/A”
otherwise.

Belief updating is done with standard Dynamic Bayesian Net-
work algorithms. The current implementation uses Loopy Belief
Propagation but improvements could be made with other approxi-
mate approaches [4]. The history nodes never have observed chil-
dren and can be omitted for updates of the user goal beliefs.

Implementing changes in the user goal is simplified by specify-
ing a probability of change in each slot given the last machine act
and assuming a constant distribution given a change. This allows a
simple trade off between the emphasis placed on new information
compared to old accumulated beliefs.

2.1. An example implementation

Further simplifications to the above framework can be made by as-
suming that the user goal network is a tree and that lower nodes in
the tree are either applicable or not depending on their parent. Figure
2 shows the goal tree used for an implementation of this approach to
building a Tourist Information System.

Fig. 2. A Bayesian Network showing the different slot-level user
goal nodes and their dependencies for a Tourist Information System.

The task of the system is to aid tourists in finding a hotel, bar or
restaurant and to give information about the venue. A user may ask
about a venue by name or by specifying constraints. This is encoded
in the “method” node which stores the probability that each of these
approaches is being used. Although the system cannot ask about
this node explicitly, its value is inferred just like any other node. The
user can ask about the address, phone number or a comment for any
venue. The corresponding nodes for these slots have uninformative
user goals since only the dialogue history is important. The user is
also allowed to explicitly inform a particular value for any of the

remaining slots: type of venue, area, price range, nearness to a par-
ticular location, number of stars, type of music, type of drinks, type
of food served and name. For these slots the system may request
information about the user’s constraint, confirm it or select between
two options. The actions available to the system also include in-
forming the user about a venue and informing the user that there is
no venue matching a set of constraints.

3. POLICY DESIGN

There are two approaches that can be taken to policy design. The
simpler approach is to hand-craft what the system should say as a
function of the various slot probabilities. The alternative is to ex-
ploit the POMDP structure of the problem to allow automatic policy
learning.

When hand-crafting a policy, the system designer has complete
freedom in deciding which action to take for a particular belief dis-
tribution. Typically, the probability of the most likely value for each
slot will be the most important feature. If the probability is high the
slot value is accepted. The system then decides which action should
be taken. It may try to find out more information about nodes it is
unsure about or it may tell the user something based on the nodes it
has accepted.

Policy learning is significantly more difficult [2]. First a reward
must be specified for each pair of action and state and a discount rate
γ is chosen. Next some form of learning algorithm is applied. Typi-
cally these algorithms make use of the value function, V π , which is
the expected future reward of following a policy π, given an initial
belief state. Another important quantity is the Q function, which is
the expected future reward of following a policy after taking a par-
ticular action [5].

General POMDP algorithms are well known to be intractable
for large state spaces. In a dialogue system cast as a POMDP at
least one state is needed for every user goal. This number grows
exponentially with the number of slots in the system. In the Hidden
Information State model, learning was implemented by summarising
the full belief distribution according to the beliefs in the most likely
partitions [3]. An algorithm for online learning of the Q function
was then implemented using a grid-based approximation. This type
of approach will not work in the BUDS framework since there is
no concept of a partition. Grid based approximations to a summary
containing the probability of each slot require too many grid points
and are ill-suited to the task. Instead, some form of tiling or more
general function approximation must be used.

An algorithm that performs well within the proposed framework
is episodic Natural Actor Critic [6]. For each action, a, a summary
function φa(b) is defined. This maps belief distributions, b, to a
summary vector that the system designer believes are important in
making choices between actions. The task of the algorithm is to find
parameters, θ, such that θ · φa(b) is a good measure of how appro-
priate taking action a is. Given the parameters a stochastic policy
π is defined which gives the probability of taking action a from be-
lief state b. During a dialogue the action to be taken at any point
will be sampled from the distribution given by π. This probability
distribution is given by the following equation:

π(a|b,θ) =
eθ·φa(b)∑
a′ eθ·φa′ (b)

(1)

Learning of the θ parameters is done via natural gradient de-
scent. This technique has been shown to avoid local maxima during
optimisation [6]. It is also covariant in the choice of parameters so



rescaling of parameters does not distort learning. If G is the Fisher
Information matrix and α is an arbitrary scalar, the update equation
is:

4θ = αG−15θV πθ (2)

As shown in [6], these gradient vectors can be estimated using ordi-
nary least squares. For each dialogue, two statistics are needed,

ψt =

nt∑
k=1

γk5θ log π(ak|bk,θ) (3)

yt =

nt∑
k=1

γkrk (4)

where t denotes which dialogue is under consideration, nt is the
number of turns in the dialogue, ak is the kth action taken and bk

is the kth observed belief state. A vector w and scalar J are then
chosen to minimise the sum of squares error:∑

t

(w ·ψt + J − yt)
2 (5)

Adjustments can be made to reduce the weighting of earlier dia-
logues, since they will have used unoptimised parameter values. Af-
ter a suitable number of iterations, the parameters are updated by

θt+1 = θt + αw (6)

3.1. Learning with BUDS

In a dialogue system, learning over the full action set is unnecessary
since some actions will always be suboptimal. For example, if a sys-
tem confirms the value of a particular slot it should always confirm
the most likely value. It will never be optimal to confirm less likely
values. This prior information is included in the learning process
by grouping such actions together. The groups are called summary
actions and play a similar role to the summary actions of the HIS
model [3].

Typical summary actions will be to “request”, “confirm” the
most likely value or to “select” between the top two values for a
particular slot. An example of such a summary action would be to
“confirm the most likely food type”. Similarly, offers of database
entities matching the users constraints can be combined to form a
single summary ”offer” action. The details of what happens when
taking such a summary action can then be hand-crafted by the sys-
tem designer. Formally, the POMDP’s action set is reduced and the
system becomes a continuous state Markov Decision Process with
fewer actions available. Assuming one “offer” action and “request”,
“confirm” and “select” actions for each slot, the number of available
actions to the system will be three times the number of slots plus 1.
This approach of grouping together actions is the first simplification
made while learning in the BUDS model.

The next simplification comes in the design of the summary vec-
tor functions, φ. Since the dialogue state is factored according to the
slots in the system, the summary functions are also factored accord-
ingly. Any further information can be encoded by including an extra
summary factor. Formally, the summary function for summary ac-
tion a is split according to the slot factor beliefs bi which record the
belief distribution over (gi, hi), and an auxiliary summary f(b):

φa(b) =
∑
i∈I

φa,i(bi) + φ∗a(f(b)) (7)

Each of the factor summaries, φa,i, summarise the information
relevant for a particular slot into a vector. Although not required, it

is preferable that the summaries do not interact so φa,i and φa,j are
chosen to never have nonzero values at the same vector index when
i 6= j. Similarly, the auxiliarly function should only take nonzero
values at indices where the slot summaries are zero.

In the example of a Tourist Information System, the φa,i are
evaluated by splitting into five cases determined by how the sum-
mary action a relates to slot i. Either the slot is being requested,
confirmed or selected by action a, an offer of a venue is made, or an-
other slot is talked about. The φa,i are then defined as selector func-
tions using this information along with a grid-based summary of the
belief. The resulting vector will have zeroes everywhere except for a
1 corresponding to the relevant grid region and action case. The slot
belief space is split into seven fixed regions based on the probabilities
of the two most likely values for the slot. In the current implemen-
tation, the grid groups together all slot beliefs where the most likely
value is less than 0.4. Other belief points are mapped to the clos-
est point in the set {(1, 0), (0.8, 0), (0.8, 0.2), (0.6, 0), (0.6, 0.2),
(0.6, 0.4)}. The first element in these tuples is the probability of
the most likely value and the second is the probability of the second
most likely value. Note that a grid based approximation is possible
at the slot level because the dimensionality is so much smaller. At
the overall level this summary causes a form of tiling [5].

Venue offers are grouped together into a single offer action. First
the system goes through all slots checking if their probability is
higher than a threshold. If the set of such slots allows no venues,
then an offer action will tell the user that there is no such venue.
Otherwise the system will give the user information about the venue
that most likely matches the system beliefs. The exact information
that is given is handcrafted and can use the history beliefs to give the
most likely requested slots.

In order to help learn when to offer, the auxiliary summary of
belief f(b) stores how close in probability the venues are to one
another. There are three possible cases: one venue is much more
likely than any others, there is a group of two or three venues that
are much more likely or there are a large number of venues that are
approximately equally likely. Depending on which of these cases
is observed and whether an offer is made or further information is
requested, the φ∗ function will set an appropriate index in the vector
to 1 and leave all others 0.

4. EVALUATION

The proposed framework was evaluated against competitive base-
line systems on a Tourist Information System task by using semantic
level simulations. An agenda-based user simulator was developed
[7] and a simulated error channel using random substitution, dele-
tion, and insertion errors was used to test robustness. The same sim-
ulator was used in both training of learned policies and for testing of
the various approaches.

The error channel assumes a fixed N -best list which represents
the word-level output of a speech recogniser. Each item in the list
is scrambled randomly with probability e and is decoded to the true
semantic user act with probability 1−e. From the N -best list a confi-
dence for each act is computed by counting the number of repetitions
of each act and using Bayes Theorem.

The BUDS belief update framework was implemented as in Sec-
tion 2.1. A hand-crafted policy (BUDS-HDC) for the framework
was built by accepting the most likely value for a slot if its prob-
ability was greater than 0.8. If sufficient information for a venue
recommendation was available, the hand-crafted system offered the
information. Otherwise the system tried to implicitly confirm, con-
firm, select or request (in that order) one of the low probability slots.



Slots where the most likely value had probability above 0.5 were
confirmed or implicitly confirmed. Slots where this probability was
below 0.4 were requested. If the probability of the most likely value
was between 0.4 and 0.5, the user was asked to select between the
most likely two values. As a variation on this approach, the evalu-
ation also included a system that uses the same approach but only
uses the most likely user act for any turn (BUDS-HDC-MLUA).

As described in Section 3.1, policy learning was implemented
using a factored summary function with the episodic Natural Actor
Critic algorithm (BUDS-LEARNED). The confusion rate e was set
to 0.4. Parameters were intitialised to zero and were updated every
500 dialogues. Figure 3 shows how the policy improves over time
and eventually scores slightly higher than the hand-crafted policy.
The system was rewarded with 20 points if the system gave a venue
that matched all the users constraints and also gave all the requisite
information (phone, address, etc). No points were given when this
was not achieved. One point was removed for every dialogue turn.

Fig. 3. A plot of the mean reward for the BUDS learned policy
during training.

The traditional approach to building dialogue managers is to use
either a finite state Markov Decision Process (MDP) model, or to
hand-craft a policy (HDC). Both these approaches take only the most
likely output from the recogniser, since it is usually impractical to
use more. Two such systems were built by maintaining a set of slots,
where the slots are either unknown, known or confirmed. At each
turn, the slots are updated for the top user act hypothesis. Based on
this information the hand-crafted policy chooses to offer information
about a particular venue, or to request or confirm a slot. The MDP
policy uses the same information but implements standard reinforce-
ment learning techniques to optimise the choice of action [5].

Figure 4 shows the results of a comparison of the various sys-
tems at different error levels. As can be seen from the graph, system
performance is comparable at low error rates while at higher rates
differences develop. Firstly, the use of a full probabilistic framework
significantly outperforms using only the most likely hypothesised
user act. This is particularly evident when comparing the BUDS
hand-crafted policy with a full distribution of possible acts against
the same policy using only the most likely act. Secondly, the BUDS
framework shows good improvements over traditional approaches,
even when the same information is used. This is a consequence of
using a systematic approach to handling conflicting evidence from
different dialogue turns. Finally, the learned BUDS policy is able to
improve on the hand-crafted policy at all error levels. This suggests
that the learning has been effective and that if a suitable learning
technique is applied, performance gains can be realised.

Fig. 4. A comparision of the performance of five different systems.
Each point represents the mean after 5000 dialogues. Error bars
show the estimated standard deviation of the mean.

5. CONCLUSIONS

This paper has introduced a new Bayesian Update of Dialogue State
approach to maintaining beliefs in dialogue systems. Based on the
POMDP model, the system has a strong mathematical basis, but be-
cause of the conditional independence assumptions taken, updating
can be done in a tractable way. Policies may be hand-crafted or
learned using reinforcement learning algorithms.

An implementation of this framework was trained and tested us-
ing simulated interactions. The framework outperforms traditional
approaches even when using exactly the same information. Fur-
thermore, the framework naturally incorporates N -best outputs and
significantly improves when given a full distribution over user acts.
A novel summary function for learning was also designed for the
framework. The resulting learned policy was shown to have the best
performance of all systems tested. It is a well-documented prob-
lem that performance with simulations and real users are not always
comparable [8]. Future work will need to evaluate the performance
of the system with real users.

6. REFERENCES

[1] D. Bohus and A Rudnicky, “Constructing accurate beliefs in
spoken dialog systems,” in Proc. of ASRU, 2005.

[2] J. Williams and S. Young, “Partially Observable Markov Deci-
sion Processes for Spoken Dialog Systems,” Computer Speech
and Language, vol. 21, no. 2, pp. 231–422, 2007.

[3] S. Young, J. Schatzmann, K. Weilhammer, and H. Ye, “The
Hidden Information State Approach to Dialog Management,” in
Proc. of ICASSP, Honolulu, Hawaii, 2007.

[4] F. Jensen, Bayesian Networks and Decision Graphs, Statistics
for Engineering and Information Science. Springer, 2001.

[5] R. Sutton and A. Barto, Reinforcement Learning: An Introduc-
tion, Adaptive Computation and Machine Learning. MIT Press,
Cambridge, Mass, 1998.

[6] J. Peters, S. Vijayakumar, and S. Schaal, “Natural actor-critic,”
in Proc. of ECML. 2005, pp. 280–291, Springer.

[7] J. Schatzmann, B. Thomson, K. Weilhammer, H. Ye, and
S. Young, “Agenda-based user simulation for bootstrapping a
pomdp dialogue system,” in Proc. of HLT/NAACL, 2007.

[8] J. Schatzmann, M. N. Stuttle, K. Weilhammer, and S. Young,
“Effects of the user model on simulation-based learning of dia-
logue strategies,” in Proc. of ASRU, 2005.


