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ABSTRACT

We propose a method for constructing dialogue success
classifiers that are capable of making accurate predictions in
domains unseen during training. Pooling and adaptation are
also investigated for constructing multi-domain models when
data is available in the new domain. This is achieved by
reformulating the features input to the recurrent neural net-
work models introduced in [1]. Importantly, on our task of
main interest, this enables policy training in a new domain
without the dialogue success classifier (which forms the re-
inforcement learning reward function) ever having seen data
from that domain before. This occurs whilst incurring only
a small reduction in performance relative to developing and
using an in-domain dialogue success classifier. Finally, given
the motivation with these dialogue success classifiers is to en-
able policy training with real users, we demonstrate that these
initial policy training results obtained with a simulated user
carry over to learning from paid human users.

Index Terms— statistical spoken dialogue systems, dia-
logue success, multi-domain, policy training

1. INTRODUCTION

By largely removing requirements to hand-craft components
and rules, statistical approaches can significantly reduce de-
velopment time in building spoken dialogue systems (SDS).
In addition, learning to understand and respond from data has
been demonstrated to produce more robust systems [2, 3].

However, in absolute terms, developing statistical SDS is
still an expensive task. Even with the architecture in place, the
requirements to obtain data for developing a dialogue system
in a new domain, particularly if it requires supervised (expert)
labels, may be a sticking point [4]. Indeed this cost may often
be linear in the number of components of the SDS; e.g. differ-
ent data may be required to individually train a belief tracker,
dialogue manager and natural language generator. In order to
move towards truly rapid development of SDS, methods and
algorithms need to be discovered for making as much use of
existing abilities of functioning SDS from other domains.
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In assuming the framework of statistical SDS, we model
dialogue as a sequential decision problem with a partially ob-
servable Markov decision processes [2, 5, 6] that explicitly
accounts for inherent uncertainty in speech recognition and
semantic understanding. In this context the dialogue manager
(also ‘policy’ or ‘agent’) controls how the system responds
and is trained by reinforcement learning (RL) [7], obtaining
feedback from the environment via a reward function in order
to evaluate and improve its behaviour.

Generally such agents are trained with a simulated user,
or paid users presented with a task to complete. In such cases
prior knowledge of the task is available in order to evaluate
the agent’s behaviour at the conclusion of each dialogue. Our
goal however is to be able to learn from real users, by which
we mean humans who come to a SDS with their own goals in
mind, and in this case it is a difficult task to specify the reward
function as the users goal is unobserved. As such inference on
the users goal or directly on the dialogue’s success is required.

Of course in some situations it is possible and even natu-
ral for the system to ask the user for feedback at the dialogues
conclusion (e.g. confirming a purchase with a yes/no ques-
tion), however this is not always possible and user responses
can be noisy [8] which results in slower learning.

In [1] a supervised neural network (NN) model was pro-
posed for inferring whether a dialogue was successful (did
the user obtain what they were after from the system?) or not
based only on information available in the ‘real user’ learning
environment. That is it inferred the dialogue’s binary suc-
cess/failure label without requiring unavailable knowledge of
what goal the user had in mind, doing this with ∼ 95% ac-
curacy. Policies trained with this model as a reward function
were subsequently adjudged by human’s evaluations to be as
good as one trained when using the prior task knowledge.

The model as described in [1] however was limited to be-
ing able to operate only within the SDS domain it was trained
in. Because the model is non-trivial to develop, and because
we would like to develop new SDS with minimal effort, we
would ideally like to be able to use the developed model to
classify dialogues in new, unseen domains. This is the focus
of this paper. Our main contributions are to:
a) Reformulate the feature inputs to the model such that it has
the possibility of operating across multiple domains.
b) Show evidence that when no labelled data is available in a



new domain, that models from other domains are able to di-
rectly make accurate predictions.
c) Show that when data is available in a new domain gen-
erally more accurate models can be built by pooling training
datasets rather than building a model from scratch or perform-
ing model adaptation.
d) Importantly demonstrate that these multi-domain models
are able to train comparatively good policies in new domains.

The paper is organised as follows: §2 reviews the RNN
model proposed in [1] and an overview of the SDS we ex-
periment with is given in §3. In §4 we outline our proposal
for overcoming the difficulties in directly using or adapting
the model in [1] to new domains. The four domains used in
our experiments are also described along with results of pre-
dicting dialogue success/failure outcomes. How these models
subsequently perform when used to inform reward functions
for policy training is then investigated in §5. Related research
is discussed in §6 and conclusions are drawn in §7.

2. REVIEW: RNN DIALOGUE SUCCESS MODEL

We now review the Recurrent NN (RNN) model introduced
in [1]. This is a vanilla RNN that takes as input a feature ex-
tracted at each turn (system + user exchange) of the dialogue,
and updates a hidden layer forming a representation of the ob-
served sequence to date. This continues until the dialogue’s
completion at which time it outputs a probability distribution
over the binary target labels conditioned on its hidden repre-
sentation. This is a standard Elman RNN topology with which
we use a cross-entropy loss function and sigmoid activations
in all neurons and that is trained with a dataset of input-output
pairs via backpropagation, see e.g. [9] for details.

We note also that several other recurrent architectures
were investigated, but none found to be consistently more
accurate than the vanilla RNN model we use. These included
LSTM [10], GRU [11] as well as bi-directional [12] and
deep/stacked [13] versions of each of these (results omitted
due to space). Our hypothesis is that for this task, the most
informative features occur towards the dialogue’s conclusion,
such that the model can afford to ‘forget’ earlier inputs [14].
Some evidence for this is presented in Table 1, where only a
small reduction in the model’s F-measure are observed when
making predictions based on only the final 5 turns rather than
all turns in the dialogue.

testA testB
Whole Dialogue 94.1 90.4

Last 5 Turns Only 94.0 90.0

Table 1: Comparison of F-measures of RNN dialogue suc-
cess prediction models when using all versus only the final
five turns. TT domain. Models trained on train-1K. The
domains and train/test datasets are described in §4.2.

3. DIALOGUE SYSTEM DESCRIPTION

In all experiments the following SDS components were
used. Belief updating was done via the BUDS [15] dy-
namic Bayesian network operating over state and user goal
variables. Policy learning was implemented by a Gaussian
process via the GP-SARSA algorithm [16]. As policies typ-
ically require O(104) dialogues to converge, a simulated
user [17] (operating at the semantic level) was used prior
to the concluding human user trial. The natural language
understanding and generation components used for human
user trials were both hand crafted, using a Phoenix grammar
[18] and templates (mapping system semantics to natural
language) respectively.

Policies were trained with the following reward function:

R(D) = 20 ∗ 1(D)−N (1)

where N is the number of turns in dialogue D, and 1(D)
is an indicator function for the dialogues success. R(D) is
given at the dialogue’s end and a reward of 0 is given at
all preceding turns. 1(D) is determined by either an RNN
model’s prediction or, for the baselines, given by an objective
measure that uses exact prior knowledge of the user’s goal.

4. MULTI-DOMAIN SUCCESS PREDICTION

As mentioned, the model described in [1] is somewhat ex-
pensive to develop, requiring the development of a super-
vised learning dataset of input-output pairs and the subse-
quent training. Given a new domain in which we wish to
develop a SDS, we would like to be able to directly use (or
at least bootstrap) our prior efforts in developing earlier di-
alogue success classifiers in order to rapidly obtain suitable
classification performance in this new domain.

The central issue in [1] that precludes this is that the turn-
level features fed to the RNN to make a success/failure clas-
sification are of domain-dependent dimensions. We are thus
outside of the standard machine learning adaptation problem,
which may be posed as: given a distribution over inputs P (x)
and a classifier (conditional distribution over targets) P (y|x),
how do we adjust our classifier when the input distribution
changes?

The core issue for developing multi-domain RNN success
classifier models is thus dealing with this input feature vari-
ability and establishing a common input feature space.

4.1. Features: multi-domain representations

In order to obtain performance across multiple domains with
a single model we look to develop fixed length features via
making simple approximations to the previously introduced
[1] domain dependent feature, here denoted by F .

To review,F is extracted at each turn by concatenating the
following: one-hot encodings of each of the system action and



most likely user action (as estimated by the belief tracker) ⊕
full belief state (distributions over slot values) ⊕ turn number
normalised by the maximum number of turns (here 30).

The dimension of F thus contains two independent
sources of domain dependent variability: the number of slots
and slot cardinality (the number of values within a slot). We
propose to deal with the cardinality by replacing the full dis-
tributions over each slot (‘slot beliefs’), by some predefined
set of summary statistics of each distribution. Here we use
simply the normalised entropy.

The remaining variability pertains to the differing number
of slots across domains. For the system we experiment with,
there is a fixed set of Na system actions available for each
slot S (e.g. ‘request-S’, ‘confirm-S’, etc.). If we have Ns

slots, then our variability is in the fact that we have Ns slot
entropies, plus Ns ×Na slot dependent system actions.

This is dealt with in two ways. The first is to make a
coarse approximation whereby the slot distribution informa-
tion is discarded and all slot dependent system actions are
mapped to a single slot-independent action (e.g. ‘request-
S1’, . . . , ‘request-SNs

’ 7→ ‘request’). This fully domain-
independent feature is of length 28 in our experiments, and
we denote it by F28. Diagrams are given in the appendix §9.

The second approach is to impose a limit on the num-
ber of slots a domain can have, and pad out (with zeros) the
slot distribution summary (normalised entropy) components
along with the domain dependent system actions up to this
limit. We set a limit in our experiments of a maximum of 6
(user) informable slots, making this feature of length 74, so
we denote it by F74. It is important to maintain an order to
the components of this representation still, such that the RNN
models have some chance to generalise to new domains.

Note that the raw featuresF certainly do contain much re-
dundancy. Using an autoencoder (AE) NN to perform dimen-
sion reduction resulted in almost no loss in the RNN model’s
performance (not reported). However, whilst one can map
features from multiple domains into a common space with
such methods, there is no expectation for obtaining similarly
distributed inputs across domains. This proved to be the case.
Dimension reduction methods only reformulate the problem
as a standard machine learning adaptation problem.

4.2. Domains and datasets

Four individual domains are used to explore questions regard-
ing the performance of the RNN models. These are slot-
value type ontologies describing: 1) restaurant information
within Cambridge, UK called Toptable (TT), 2) San Fran-
cisco Restaurants (SFR) and 3) SF Hotels (SFH), and lastly
4) a laptop information system (LAP).

Table 2 outlines the size of the domains, as well as the
size of the raw feature F given to the RNN model at each
turn per [1]. The size of this feature implicitly gives an in-
dication of the cardinality ranges of the slots; both SFR and

LAP have 6 ‘informable’ (from the users perspective) slots,
but the raw SFR feature is much larger as SFR contains slots
with a greater number of possible values.

Domain Key: TT SFR SFH LAP
# Informable Slots: 3 6 6 6

# Requestable Slots: 3 3 3 3
Raw RNN Feature F Size: 617 1167 970 497

Table 2: Domain identifiers, sizes and size of domain depen-
dent raw RNN classifier feature F . See text for details.

All datasets for training RNN dialogue success models
are obtained from training policies from random with a user
simulator [17], producing supervised pairs: (sequence of turn
level dialogue features, objective success/failure target label).
The semantic error rate (SER) of the simulated user is set to
15% and data is balanced regarding target labels.

For each domain we produced a training set of 18K
dialogues (train-18K) and a smaller set of only 1K
(train-1K). A separate validation set of 1K dialogues
is used with both training sets to control overfitting. Two
test sets were used: a further 1K dialogues also at SER 15%
(testA) and a larger set (testB) containing 3K dialogues
from each of four SER (0%,15%,30%,45%) as the data oc-
curred (i.e. by training policies from random in each SER
condition and without balancing success/failure targets).

The train-1K condition is more realistic than
train-18K in the sense that dialogues may be collected in
some other way and require success/failure annotations by hu-
man experts. The training data may also only be collected in
a single environment, so testB gives an indication of how
models may perform in real world applications which can ex-
perience a variety of environmental factors that influence se-
mantic understanding or speech recognition rates.

4.3. Single domain models

Before investigating basic generalisation properties of the
RNN success/failure classifiers1, we report in-domain only
results using the original feature F as well as the two fixed
length features F28 and F74. These are given as F-measures
(which are more informative than accuracy) in Table 3, with
all results reported as the average of three models (each
RNN beginning from a different random initialisation of
their weights) along with one standard error. The binary
success/failure label is taken as the most probable given the
distribution over labels output by the RNN.

Inspection of these results using F in each domain pro-
vides evidence that the method proposed in [1] is viable, al-
though we note that the highest performance is consistently

1All models were built in Python using Theano [19, 20]. Stochastic gra-
dient descent per dialogue was used during backpropagation to train each
model, and almost no optimisation of hyper-parameters (learning rate, model
structure) was performed. All hidden layers where set to half the input fea-
ture size. A cross-entropy loss function was used with sigmoid activations
everywhere. L1 and L2 regularisation were found unnecessary.



Domain: TT SFR
Features: F F28 F74 F F28 F74

train-18K + testA 96.0 ± .0 95.8 ± .1 95.7 ± .2 92.3 ± .4 89.8 ± .8 92.4 ± .6
train-1K + testA 95.0 ± .0 93.6 ± .4 94.1 ± .2 90.8 ± .1 90.0 ± .0 89.6 ± .0
train-18K + testB 94.0 ± .0 92.8 ± .1 92.9 ± .2 88.0 ± .8 85.5 ± 2.4 89.6 ± .5
train-1K + testB 91.0 ± .0 90.5 ± .3 90.4 ± .2 89.2 ± .1 86.0 ± .0 87.1 ± .1

Domain: SFH LAP
Features: F F28 F74 F F28 F74

train-18K + testA 94.3 ± .1 92.2 ± .5 93.8 ± .1 91.8 ± .3 85.5 ± .3 90.9 ± .5
train-1K + testA 90.7 ± .1 89.3 ± .1 89.8 ± .0 84.8 ± .1 83.4 ± .1 88.0 ± .3
train-18K + testB 91.4 ± .1 90.6 ± .7 91.2 ± .2 85.1 ± .3 82.1 ± .5 81.4 ± .5
train-1K + testB 88.9 ± .1 87.4 ± .3 86.6 ± .2 81.7 ± .0 77.8 ± .1 77.5 ± .7

Table 3: Shown for all 4 domains are model F-measures on the 2 in-domain test sets (testA, testB) when using each of the
3 considered turn level inputs: F ,F28 and F74. Models are trained on either train-1K or the larger train-18K.

achieved within the smallest domain, namely TT. The results
also demonstrate only a small but persistent decrease in per-
formance between training on train-18K and train-1K.

Comparing columns within each domain we note that
models using the full feature F are most accurate, but that
the use of the coarser, fixed length inputs typically resulted
in only a small reduction in the F1 measure. This small
degradation is the cost we incur when enabling multi-domain
functionality via these feature adjustments.

For all subsequent experiments we stick to training mod-
els with the F74 feature as it is typically the most accurate
of the two features allowing multi-domain capabilities. We
also subsequently only consider training with the train-1K
datasets, as requiring data of this volume is more realistic
for developing models in situations where human labelling
of gathered dialogues may be required in order to construct
the training sets, and should therefore broaden their appeal.

4.4. Multi-domain models
4.4.1. Case 1: Generalisation

When we have no data in a new domain for training an
RNN success predictor, we would ideally like to be able to
directly use an existing model from another domain. The
upper portion of Table 4 shows the performance of models
(rows) trained with train-1K using F74 and tested both
within their own domain2, and directly in each of the other
three domains. Again three models are trained in each do-
main and results are averages across the three on each test
set. Standard errors are omitted due to space, but were of
a similar negligible order as those reported in Table 3. We
note that the models perform remarkably well in completely
new domains, as emphasised by the final column where the
arithmetic average of the F-measure of each model across all
four domains is given. Recall that the chance rate is 50% on
the balanced testA dataset, while approximately 70% of
targets are ‘success’ labels in the unbalanced testB set.

4.4.2. Case 2: Pooling & Adaptation

If a dataset D with labelled targets exists in a new domain, the
question then becomes how best to use this data? We have at
least three options: (1) we can use the data to train a model,
from a random initialisation (RI) of the RNN weights, as nor-
mal; (2) if data is available from previous model development
in another domain we can combine or pool this with D and
train a multi-domain model (again from RI); (3) we can use
D to adapt a model from a different domain, meaning per-
form stochastic gradient descent (training) with D using the
previous model as a starting point (rather than from RI).

First we consider options (1) and (2). (1) may be con-
sidered a baseline and is given by the diagonal entries of the
upper part of Table 4. Results of pooling data, option (2),
are given in the lower part of Table 4. Pooling choices, given
space, do not cover all possible combinations but are done
based on semantic similarities of the domains (restaurants, or
hotel + restaurants), except for the final row in which case all
four domains train-1K data are simply pooled together.

Regarding option (3) of adaptation, Table 5 shows the re-
sults in each individual domain when taking a model from
another domain as an initialisation of RNN weights and per-
forming backpropagation with the new domains data. All re-
sults in this table are within the same domain as training and
are averages of adapting from three in-domain models each
trained from a different random initialisation. Note that the
diagonals are purely option (1) RI models.

Comparing pooling and adaptation results we note that
both approaches generally produce more accurate models
compared to isolated, in-domain model building (option (1)).
Analysing Tables 4 and 5 we see that pooling typically pro-
duces more accurate models than adaptation, although the
differences are small. Given this result however, we don’t
pursue the use of any adaptation models for policy training.

2Note that the in domain results in Table 4, the ‘diagonal’ entries in the
upper section, correspond exactly to the appropriate elements of Table 3.



TT SFR SFH LAP AVERAGE
testA testB testA testB testA testB testA testB testA testB

Single:
TT 94.1 90.4 82.3 88.8 83.0 88.7 78.5 84.2 84.5 88.0

SFR 85.5 86.2 89.6 87.1 89.9 88.3 83.6 78.2 87.2 85.0
SFH 85.3 85.6 90.0 85.3 89.8 86.6 83.7 76.2 87.2 83.4
LAP 85.3 82.7 88.7 84.1 87.7 84.7 88.0 77.5 87.4 82.2

Pooling:
TT + SFR 94.0 91.3 91.8 90.8 90.9 91.1 85.1 83.1 90.5 89.1

TT + SFR + SFH 93.9 91.7 89.5 87.6 91.8 88.8 86.0 80.0 90.3 87.0
All 4 domains 93.3 90.8 89.9 87.4 89.8 88.0 87.9 80.0 90.2 86.5

Table 4: Generalisation - Upper section: models trained on their train-1K sets and Lower section: trained on the pooling
of these datasets. Columns show the F-measure of the resulting models for testA and testB in all four domains.

Adapted from ↓ TT SFR SFH LAP Avg.
TT-model 90.4 87.6 88.5 76.1 85.7

SFR-model 90.7 87.1 90.4 78.7 86.7
SFH-model 91.6 86.8 86.6 75.8 85.2
LAP-model 90.7 85.9 88.1 77.5 85.5

Table 5: Adaptation - Success label F-measure on testB
for models trained with train-1K when adapted from a
model already trained in another domain.

5. POLICY TRAINING

We now explore how the RNN model’s performance in pre-
dicting success/failure labels translates to performance on the
policy training task, where the binary label output by the RNN
is used directly as the dialogue success indicator 1 in Eqn. 1.

5.1. Policy training: simulate user

To gain an initial insight into the ability of these RNN dia-
logue success classifiers for policy training, in Figure 1 pol-
icy training results are shown in the SFR and SFH domains
when training with a simulated user and comparing three dif-
ferent reward signals: a baseline given by the objective re-
ward which makes use of exact knowledge of the users goal,
and two RNN success predictors, one built in-domain in each
case and the other directly using the success classifier model
trained in the TT domain.

It can be seen that the use of the in-domain RNN model
in each case is able to produce policies which are within one
standard deviation of the baseline policy for each domain as
trained under its objective reward signal. Regarding gener-
alisation of the RNN models, it is seen that direct use of the
out-of-domain TT RNN model is able to train comparable
policies but introduces a loss of between 2% and 5% absolute
against the baseline in both cases.3

3In both Figure 1 and Figure 2 all policies are evaluated after every 1000
training dialogues all under the same objective measure with 1000 testing
dialogues. Five policies are trained in all conditions and results are reported

(a) Simulated user policy training in: SFR

(b) Simulated user policy training in: SFH

Fig. 1: Policy training results in (a) SFR and (b) SFH when
using either the objective reward (baseline), in-domain RNN
classifier or directly using the out-of-domain TT RNN model.

With this initial insight into how the performance of the
RNN models translate into policy training performance (as
measured against the objective baseline) we now consider us-
ing the RNN models trained on data pooled across multi-
ple domains, which were shown to produce the most accu-
rate success classifiers. Figure 2 shows simulated user policy
training results in the LAP domain with the objective base-
line reward signal, compared to using an RNN model trained
on the pooled data of the 3 other domains, and to the RNN
model trained on the pooling of all four domains (the mod-
els in the 2nd last and last rows of Table 4 respectively). We
subsequently refer to these models as pool3 and pool4.

as averages over these. All training occurred at an SER of 15%.



Fig. 2: LAP policy training under reward functions given by
the objective (baseline), and pool3 and pool4 RNNs.

It is seen that greater success prediction accuracy trans-
lates to improved policies in the expected manner. Also by
comparing Table 4 with the Figures 1 and 2 it is seen that
RNN models which are only ∼ 90% accurate at predicting
success/failure labels for dialogues are still able to be used to
train policies which suffer a reduction of only a few percent
absolute as measured against the baseline policies trained un-
der the objective reward function which is unavailable in the
‘real user’ learning scenario.

5.2. Policy training: human users

The pool3 and pool4 RNNs were then used to train a pol-
icy in LAP with human users recruited via Amazon Mechan-
ical Turk. By doing so we investigated whether the simulated
user policy training results could translate to learning from
humans. No objective reward function was used as a baseline
as it was demonstrated in [1] that in-domain RNNs were able
to train policies with real users that are not statistically dif-
ferent to the ones trained under the objective baseline. Tasks
required finding a laptop meeting 3 given constraints and sub-
sequently querying a further property of the retrieved laptop.

We train 3 policies for both cases, collecting 300 dia-
logues in all 6 policies. To evaluate the resultant policies
learning was stopped and subjective feedback was collected
from the users regarding their ability to complete 50 further
tasks with each of the 6 policies. Averages of the user feed-
back over the 150 tasks covered by each of the pool3 and
pool4 systems are given in Table 6. Observing the subjec-
tive Success, we see the system trained with the pool3model
that has not seen any LAP data is able to train a policy that
is comparable to using the pool4 model. The Quality of the
dialogues were adjudged to be slightly inferior however.

pool3 pool4
Quality (0-5) 3.16 ± 0.11 3.45 ± 0.11
Success (%) 72.2 ± 3.7 78.7 ± 3.3

Table 6: Human evaluations of LAP policies trained with
the out-of-domain pool3 RNN, and with the pool4 model.
Quality: 6-point Likert scale rating, Success: binary label.

6. RELATED WORK

In machine learning in general much research has looked at
adaptation of statistical models [21, 22, 23] however research
into adaptation of SDS components to new domains [24, 25,
26, 27, 28] or user behaviour [29] presents its own challenges
and is comparatively nascent. Research into these questions
is growing though [30], and will continue to given the natural
progression towards multi-domain SDS [31, 32, 33].

A lot of work has looked at methods and metrics for eval-
uating SDS [34, 35, 36]. These have generally been con-
sidered as aids to system developers to experiment with de-
sign choices and recognise those that are leading to certain
measures of good performance. Typically these require an-
notations or features which preclude their use directly in RL
reward functions for direct training of dialogue managers in
SDS. Certainly one advantage of RL training is that, if a re-
ward function can be specified that encodes the problem well,
then the policy can be both trained and evaluated under it.

Methods that, similar to our proposed approach, fit this
paradigm are found in [37] where a corpus of dialogues with
expert annotations of dialogue success are used for develop-
ing a turn-level reward function suitable for policy training,
and in [4] where the environment external to the agent is de-
veloped from Wizard-of-Oz data (including a reward func-
tion) in which subsequent RL policy training is performed.

7. CONCLUSIONS

We have shown that the proposed turn-level inputs given to
the RNN dialogue success classifiers enable strong multi-
domain performance and generalisation abilities depending
upon whether training data is or is not available within a new
domain respectively. These ratings provided by the RNN
models were also importantly shown to provide suitable feed-
back for RL training of SDS policies in both simulated and
real user scenarios.

Although initially we considered exploring more sophisti-
cated methods for handling the variable number of slots (e.g.
recursive autoencoders [38], or mapping to a distribution
over some certain discovered or defined slot archetypes), we
quickly discovered that making approximations to the RNN
inputs resulted in good models. Of the two proposed features
enabling multi-domain capabilities, since Table 3 shows that
the fully domain independent feature F28 is typically less
accurate than F74, one remaining concern is with the im-
posed restriction of F74 on the number of allowable slots in
a domain. Several options may be considered here but we
predict that the most beneficial approach is to only consider
the top N slots in a domain as ranked by the entropy of the
domain’s database of entities. We are currently developing
larger domains in order to answer these and other questions,
such as can active reward learning [39] be introduced into the
proposed framework to improve reward function accuracy.
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[16] Milica Gašić and Steve Young, “Gaussian processes for
pomdp-based dialogue manager optimisation,” TASLP,
vol. 22, 2014.

[17] J. Schatzmann and S. Young, “The hidden agenda user
simulation model,” Audio, Speech, and Language Pro-
cessing, IEEE Transactions on, vol. 17, no. 4, pp. 733–
747, May 2009.

[18] Wayne Ward, “Extracting information in spontaneous
speech,” in ICSLP. 1994, ISCA.

[19] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pas-
cal Lamblin, Razvan Pascanu, Guillaume Desjardins,
Joseph Turian, David Warde-Farley, and Yoshua Ben-
gio, “Theano: a CPU and GPU math expression com-
piler,” in Proceedings of the Python for Scientific Com-
puting Conference (SciPy), June 2010.

[20] Frédéric Bastien, Pascal Lamblin, Razvan Pascanu,
James Bergstra, Ian J. Goodfellow, Arnaud Bergeron,
Nicolas Bouchard, and Yoshua Bengio, “Theano: new
features and speed improvements,” Deep Learning and
Unsupervised Feature Learning NIPS Workshop, 2012.

[21] Yishay Mansour, Mehryar Mohri, and Afshin Ros-
tamizadeh, “Domain adaptation: Learning bounds and
algorithms,” CoRR, vol. abs/0902.3430, 2009.

[22] Matthew E. Taylor and Peter Stone, “Transfer learning
for reinforcement learning domains: A survey,” J. Mach.
Learn. Res., vol. 10, pp. 1633–1685, 2009.

[23] Hal Daume III, “Frustratingly easy domain adapta-
tion,” in Proceedings of the 45th Annual Meeting of
the Association of Computational Linguistics, Prague,
Czech Republic, June 2007, pp. 256–263, Association
for Computational Linguistics.

[24] K. Georgila and O. Lemon, “Adaptive multimodal di-
alogue management based on the information state up-
date approach,” W3C Workshop on Multimodal Interac-
tion, vol. 23, pp. 142, 2004.

[25] Verena Rieser and Oliver Lemon, Reinforcement Learn-
ing for Adaptive Dialogue Systems: A Data-driven
Methodology for Dialogue Management and Natural
Language Generation, Springer, 2011.



[26] Jason Williams, “Multi-domain learning and general-
ization in dialog state tracking,” in SIGDIAL, 2013.
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9. APPENDIX

Fig. 3: Feature diagrams. F : the original (domain de-
pendent) feature as proposed in [1], F28: the coarse ap-
proximation which discards all belief state information and
summarises slot-dependent system actions into a master sys-
tem action (e.g.‘request-Slot1’, . . . , ‘request-SlotNs

’ 7→ ‘re-
quest’), andF74: which first imposes a limit on the number of
(user) informable slots and then retains only an entropy statis-
tic of each slot’s belief distribution, as well as retaining all
slot-dependent system summary actions (e.g.‘request-Slot1’,
. . . , ‘request-SlotNs

’), padding with zeros the segments la-
beled (b) and (c) if the current domain has less slots than the
imposed limit on the number of slots, in order to maintain a
fixed length vector - 74 dimensional within the reported ex-
periments of this paper). See §4.1 for details.


