
Toward Multi-domain Language Generation using
Recurrent Neural Networks

Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić, Lina M. Rojas-Barahona,
Pei-Hao Su, David Vandyke, Steve Young

Cambridge University Engineering Department,
Trumpington Street, Cambridge, CB2 1PZ, UK

{thw28,mg436,nm480,lmr46,phs26,djv27,sjy}@cam.ac.uk

Abstract

In this paper we study the performance and domain scalability of two different
Neural Network architectures for Natural Language Generation in Spoken Dia-
logue Systems. We found that by imposing a sigmoid gate on the dialogue act
vector, the Semantically Conditioned Long Short-term Memory generator can
prevent semantic repetitions and achieve better performance across all domains
compared to an RNN Encoder-Decoder generator. However, in a domain adap-
tation experiment, the RNN Encoder-Decoder generator, with a separate slot and
value parameterisation, is capable of learning faster by leveraging out-of-domain
data. We conclude that the way to represent and integrate the semantic elements is
of great importance to NN-based NLG systems. Further advances will therefore
require a representation that is more scalable across domains without significantly
compromising in-domain performance.

1 Introduction

Over the past decades, significant progress has been made in applying statistical methods to auto-
mate the development of Spoken Dialogue Systems (SDS) [1, 2]. However, relatively less effort
has been put into the Natural Language Generation (NLG) component because of the difficulty of
data collection. As a consequence, rule-based [3, 4], or a hybrid of rule-based plus statistical ap-
proaches [5, 6] remain the norm for most systems.

Recently, the rise of deep learning and the use of crowdsourcing platforms such as Amazon Mechan-
ical Turk offer a great opportunity for data-driven NLG. Word-based generation was first proposed
by Oh and Rudnicky [7], in which a set of language models (LM) were trained for each utterance
class and used to generate utterances in an over-generation and reranking paradigm. Phrase-based
generators such as Bagel [8] have been observed to improve performance over class-based LM.
However, training such generators requires the alignment between utterances and semantics to have
been annotated beforehand, which is nontrivial for untrained workers. More recently, Recurrent
Neural Networks (RNN) have been proposed for learning generation decisions end-to-end. Wen et
al [9] used an RNN generator accompanied by a set of NN-based rerankers to generate utterances.
Their input features are gated by simple heuristics in order to prevent undesirable repetitions in the
generated output. Subsequently, a Semantically Conditioned Long Short-term Memory generator
(SC-LSTM) [10] was proposed which learnt the gating signal and LM jointly. The authors showed
the deep extension of this model achieved state-of-the-art performance for the two datasets used.

Another generation idea, borrowed from Machine Translation (MT), is the RNN Encoder-Decoder
architecture with attention mechanism [11]. Since the model is so general that the encoder and
decoder can be chosen separately given the task at hand, many people have adopted it to solve a

1



variety of problems, e.g. image captioning [12] and object recognition [13]. Mei et al [14] proposed
a similar Encoder-Decoder architecture by using two layers of attention to model content selection
and attentive input aggregation. They evaluated the model on selective generation datasets such as
WEATHERGOV and ROBOCUP and obtained a large performance boost compared to previous methods.
One goal of this paper is to study the pros and cons of these neural network-based generators by
comparing them with each other on the same dataset.

Modern design of dialogue systems usually starts with a well-defined domain ontology, such as
restaurant search or hotel booking. However, the goal of building an open domain dialogue system
that is capable of talking about any topic is still far away. Several works have begun to address this
problem, such as [15] for multi-domain dialogue state tracking, or [16] for multi-domain dialogue
management. In this paper we also move toward this goal by analysing the domain scalability
of neural language generators. We trained general models by pooling all datasets altogether and
assessed the model’s ability to learn from multi-domain datasets. We also tested whether generators
can be extended to a new, unseen domain by using only a limited amount of in-domain data.

2 The Neural Language Generator

Figure 1: An unrolled view of the RNN-based neural language generator. The output part is an RNN
decoder while the encoder is subject to various designs.

In general, a neural language generator can be divided into two components, an encoder to incorpo-
rate the target meaning representation as the model input, and a decoder to generate sentences, as
shown in Figure 1. Although the decoder is typically an RNN, the choice of the encoder is made
case by case because it depends not only on the nature of the meaning representation but also on
the interaction between semantic elements. Once the input meaning representation is encoded, an
attention-based or feature controlling mechanism is used to select and aggregate the input semantic
elements. At generation time, the state of the RNN decoder is conditioned by the aggregated in-
put vector, and the output distribution of the RNN is sampled to obtain the next token1. Finally, a
lexicalisation operation is performed and the final realisation is obtained.

2.1 Attention-based RNN Encoder-Decoder

The RNN Encoder-Decoder architecture was first proposed in the MT literature [11]. The encoder
first encodes the source information into a distributed vector representation, which the decoder sub-
sequently decodes into the target output. By adopting the idea from Mei et al [14] and modifying it
based on our task, on the encoder side we used a separate parameterisation of slots and values. We
embed each slot-value pair into a distributed vector representation zi by,

zi = si + vi (1)
1We use token instead of word because our model operates on text for which slot names and values have

been delexicalised.

2



Figure 2: The Encoder-Decoder used for NLG in this paper. The input side is a dialogue act (DA)
embedding with an attention over slot-value pairs while the output side is a LSTM network. Note
the action type embedding is not included in the attention mechanism since it acts more like a
background signal to control the style of the sentence. Attention is recomputed for each time step t.

where si and vi are the i-th slot and value embedding, respectively. i runs over the given slot-value
pairs. Finally the dialogue act (DA) embedding at each time step t is formed by,

dt = a⊕
∑
i ωt,izi (2)

where a is the act type embedding,⊕ is vector concatenation, and ωt,i is the weight of i-th slot-value
pair calculated by the attention mechanism,

βt,i = qᵀ tanh(Whmht−1 +Wmmzi) (3)

ωt,i = eβt,i/
∑
i e
βt,i (4)

where ht−1 is the last step hidden layer. q, Whm, and Wmm are parameters to learn. The DA
embedding dt is then fed into a standard LSTM as additional information to produce the hidden
layer, 

it
ft
ot
ĉt

 =


sigmoid
sigmoid
sigmoid
tanh

W4n,3n

 wt

ht−1

dt


ct = ft � ct−1 + it � ĉt

ht = ot � tanh(ct)

where n is the hidden layer size, wt is the input word embedding, and W4n,3n is the model param-
eter. The objective for training the model is maximising the log-likelihood of the training corpus.

2.2 Semantically Conditioned LSTM

The Gated RNN generator was first proposed by Wen et al [9]. Their model used a 1-hot vector for
each slot-value pair and applied a heuristic controlling gate for each pair in the vector, by exactly
matching the slot-value pair and its corresponding token in the realisation. The Semantically Con-
ditioned LSTM [10] embraces the same idea, but instead of using the heuristic gates, the authors
proposed a model based on an LSTM architecture that can learn both the LM and the gating con-
trol signal jointly. The central idea is to apply a sigmoid gate at each time step to the dialogue act
which decides whether to keep or drop slot-value pairs. The gate value depends on the generation
history. The additional gate is therefore dubbed the reading gate [10] since it acts like a keyword
and key-phrase detector that can learn to associate certain patterns of generated tokens with certain

3



slot-value pairs. The entire architecture is end-to-end differentiable so that back propagation can be
used to optimise the parameters. The objective function contains not only the log-likelihood of the
training corpus but also the regularisation terms on the DA transition dynamics [10].

Although the SC-LSTM has been shown to achieve state-of-the-art performance on in-domain
datasets, problems remain as to whether the model can generalise to unseen domains. The cur-
rent slot-value pair based parameterisation forms the major obstacle to this. Since the slot is bundled
with the value using the same parameter [10], the model can not generalise on the same values that
are associated with different slots, and vice versa. E.g. price range=don’t care is considered to be
totally different from food=don’t care, even though they may have a very similar realisation.

3 Experiments

3.1 Experimental Setup

We conducted our experiments on three dialogue domains: restaurant, hotel, and laptop. The restau-
rant and hotel domains were collected in Wen et al [10]. These two domains are relatively small and
multiple references were collected for each dialogue act. In order to test the ability of the systems on
a more complicated domain with a richer semantic input space, we crowdsourced another domain,
laptop, by collecting only one sentence for each dialogue act via Amazon Mechanical Turk (AMT)
service. Each worker was presented a dialogue act (DA), represented by an act type with a set of
slot-value pairs, and asked to enter an appropriate natural language realisation. This yielded about
13K utterances, one for each DA, which is much more difficult than the previous two domains (5.1K
utterances, ∼200 distinct DAs). The new laptop ontology is shown in Table 1.

The generators were implemented using the Theano library [17, 18], and trained by partitioning
each of the collected corpus into a training, validation, and testing set in the ratio 3:1:1. All the
generators were trained by treating each sentence as a mini-batch. Apart from the standard log-
likelihood objective, an l2 regularisation term was added to the objective function for every 10
training examples. The hidden layer size was set to be 80 for all cases, and deep networks, structured
as in Wen et al [10], were trained with two hidden layers and a 50% dropout rate. Stochastic gradient
descent and back propagation through time [19] were used to optimise the parameters. In order to
prevent overfitting, early stopping was implemented using the validation set.

During decoding, we over-generated 20 utterances and selected the top 5 realisations for each DA
according to the following reranking criteria,

R = −(F (θ) + λERR) (5)

where λ is a tradeoff constant, F (θ) is the cost generated by network parameters θ, and the slot
error rate ERR is computed by exact matching of the slot tokens in the candidate utterances. λ is
set to a large value (10) in order to severely penalise nonsensical outputs. Since our generator works
stochastically and the trained networks can differ depending on the initialisation, all the results
shown below were averaged over 5 randomly initialised networks. The BLEU-4 metric [20] and slot
error rate (ERR) [10], which is calculated by averaging slot errors over each of the top 5 realisations
in the entire corpus, were used for the corpus-based evaluation. We used multiple references to
compute BLEU score whenever they were available (i.e. for restaurant & hotel). We compared three
models, SC-LSTM (sc-lstm), its deep version (+deep), and Encoder-Decoder generator (enc-dec).

Table 1: Laptop ontology

act
type

inform, inform only match, inform no match, inform count,
inform all, inform no info, recommend, compare, confirm, select,

suggest, request, request more, goodbye

slots
family*, battery rating*, drive range*, is for business*,

price range*, weight range*, warranty, battery, design, dimension,
utility, weight, platform, memory, price, drive, processor

bold=binary slots, *=slots can take don’t care value

4



3.2 Model Comparison

(a) Comparison of BLEU (b) Comparison of slot error rate

Figure 3: Performance comparison of the three approaches when training from scratch.

In our first experiments we trained each of the three models (sc-lstm,+deep, and enc-dec) from
scratch on the laptop domain with a varied proportion of training data, starting from 10% to 100%.
The result is shown in Figure 3. It clearly shows BLEU increases and the slot error rate decreases
as the models are trained on more data. We found the sc-lstm and its deep version +deep are clearly
better than the Encoder-Decoder enc-dec in all cases. The performance of the best model +deep
starts to saturate around 50% while the enc-dec seems to continue improving even when all the
training set is used. Furthermore, the enc-dec has a much greater slot error rate comparing to the
SC-LSTM approaches (sc-lstm & +deep).

3.3 General Models

We then trained general models by pooling all the data from the three domains together and tested
them in each individual domain. The results are shown in Figure 4. We found sc-lstm and +deep
consistently outperformed enc-dec on all three domains. Although the BLEU score is comparable,
we observed that enc-dec has difficulties in driving down the slot error rate in all cases.

(a) BLEU on three domains (b) Slot error rate on three domains

Figure 4: Comparison of general models on different domains.

3.4 Adaptation

A preliminary experiment on domain scalability was also conducted. To test whether the three mod-
els can leverage out-of-domain data, we first trained out-of-domain models by pooling the restaurant
and hotel domain datasets together. After that, we varied the proportion of in-domain training data
(laptop dataset) and fine tuned the model parameters. The results can be seen in Figure 5. Not sur-
prisingly, the SC-LSTM approaches (sc-lstm & +deep) still outperform the enc-dec model when a
sufficient amount of in-domain data is used (>20%), as suggested in Figure 5 (a). However, when
only a limited amount of in-domain data is available (<5%), the enc-dec model tends to adapt to the
new domain faster than the SC-LSTMs. This phenomenon is highlighted in Figure 5 (b).

5



(a) BLEU with varied amount of adaptation data (b) BLEU with 1%-5% of adaptation data

Figure 5: Performance on laptop domain when adapting models trained on restaurant+hotel dataset.

3.5 Discussion

According to these preliminary experiments, we can draw the following conclusions:

1. Since the SC-LSTMs (sc-lstm & +deep) can effectively prevent undesirable semantic rep-
etitions by gating the DA vector, it effectively drives down the slot error rate. On the other
hand, the Encoder-Decoder generator (enc-dec) controls this by putting a distribution over
all possible slot-value embeddings, which may still cause undesirable repetitions. This
causes the SC-LSTMs to consistently have lower slot error rate than the Encoder-Decoder.

2. The bundled parameterisation of slot-value pairs of SC-LSTMs is necessary to learn a good
alignment between slot-value pairs and their realisations. Unfortunately, it also limits the
scalability of the model since the weights of different slots with the same value are not
shared, and vice versa. This tradeoff can be seen in the preliminary adaptation result shown
in Figure 5. With a separate parameterisation of slots and values, the Encoder-Decoder
generator can adapt faster in the beginning. However, as the amount of in-domain data
increases, the SC-LSTMs outperform the Encoder-Decoder since their bundled slot-value
pair parameterisation allows them to learn better alignments.

3. Although the Encoder-Decoder generator shows signs of better generalisation, none of the
models here benefited significantly from the out-of-domain data. More work should be
done to balance the strengths and weakness of the two models.

4 Conclusion

In this paper we compared two RNN-based generators, the Semantically Conditioned LSTM gener-
ator and the RNN Encoder-Decoder generator. We found that in general, the SC-LSTM approaches
outperformed the RNN Encoder-Decoder because the SC-LSTMs can better prevent the undesirable
semantic repetitions. However, in the preliminary adaptation experiment the RNN Encoder-Decoder
shows a better capability in extending to another domain when only a very limited amount of in-
domain data is available. The separate parameterisation of slots and values is the key to this. Future
work will study better ways of representing and integrating slots and values so that the model can
leverage out-of-domain sources without significantly sacrificing its in-domain performance.

Acknowledgments

Tsung-Hsien Wen and David Vandyke are supported by Toshiba Research Europe Ltd, Cambridge
Research Laboratory.

6



References

[1] Steve Young, Milica Gašić, Blaise Thomson, and Jason D. Williams. Pomdp-based statistical spoken
dialog systems: A review. Proceedings of the IEEE, 2013.

[2] Matthew Henderson, Blaise Thomson, and Steve Young. Proceedings of SIGdial, chapter Word-Based
Dialog State Tracking with Recurrent Neural Networks. Association for Computational Linguistics, 2014.

[3] Adam Cheyer and Didier Guzzoni. Method and apparatus for building an intelligent automated assistant,
2007. US Patent App. 11/518,292.

[4] Danilo Mirkovic and Lawrence Cavedon. Dialogue management using scripts, 2011. EP Patent 1,891,625.

[5] Irene Langkilde and Kevin Knight. Generation that exploits corpus-based statistical knowledge. In Pro-
ceedings of the 36th Annual Meeting of the ACL, ACL ’98, 1998.

[6] Marilyn A Walker, Owen C Rambow, and Monica Rogati. Training a sentence planner for spoken dialogue
using boosting. Computer Speech and Language, 2002.

[7] Alice H. Oh and Alexander I. Rudnicky. Stochastic language generation for spoken dialogue systems. In
Proceedings of the 2000 ANLP/NAACL Workshop on Conversational Systems - Volume 3, ANLP/NAACL-
ConvSyst ’00, 2000.

[8] François Mairesse and Steve Young. Stochastic language generation in dialogue using factored language
models. Computer Linguistics, 2014.

[9] Tsung-Hsien Wen, Milica Gašić, Dongho Kim, Nikola Mrkšić, Pei-Hao Su, David Vandyke, and Steve
Young. Stochastic language generation in dialogue using recurrent neural networks with convolutional
sentence reranking. In Proceedings of SIGdial. Association for Computational Linguistics, 2015.

[10] Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić, Pei-Hao Su, David Vandyke, and Steve Young. Seman-
tically conditioned lstm-based natural language generation for spoken dialogue systems. In Proceedings
of EMNLP. Association for Computational Linguistics, 2015.

[11] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning
to align and translate. CoRR, abs/1409.0473, 2014.

[12] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron C. Courville, Ruslan Salakhutdinov,
Richard S. Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption generation with
visual attention. CoRR, abs/1502.03044, 2015.

[13] Volodymyr Mnih, Nicolas Heess, Alex Graves, and Koray Kavukcuoglu. Recurrent models of visual
attention. CoRR, abs/1406.6247, 2014.

[14] Hongyuan Mei, Mohit Bansal, and Matthew R. Walter. What to talk about and how? selective generation
using lstms with coarse-to-fine alignment. CoRR, abs/1509.00838, 2015.

[15] Nikola Mrksic, Diarmuid Ó Séaghdha, Blaise Thomson, Milica Gasic, Pei-hao Su, David Vandyke,
Tsung-Hsien Wen, and Steve J. Young. Multi-domain dialog state tracking using recurrent neural net-
works. CoRR, abs/1506.07190, 2015.

[16] Milica Gašić, Dongho Kim, Pirros Tsiakoulis, and Steve Young. Distributed dialogue policies for multi-
domain statistical dialogue management.

[17] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, Guillaume Des-
jardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio. Theano: a CPU and GPU math expres-
sion compiler. In Proceedings of the Python for Scientific Computing Conference, 2010.

[18] Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra, Ian J. Goodfellow, Arnaud Bergeron,
Nicolas Bouchard, and Yoshua Bengio. Theano: new features and speed improvements. Deep Learning
and Unsupervised Feature Learning NIPS 2012 Workshop, 2012.

[19] Paul J Werbos. Backpropagation through time: what it does and how to do it. Proceedings of the IEEE,
1990.

[20] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic evaluation
of machine translation. In Proceedings of the 40th annual meeting on ACL. Association for Computational
Linguistics, 2002.

7


	Introduction
	The Neural Language Generator
	Attention-based RNN Encoder-Decoder
	Semantically Conditioned LSTM

	Experiments
	Experimental Setup
	Model Comparison
	General Models
	Adaptation
	Discussion

	Conclusion

