
Scaling Up POMDPs for Dialog Management: The “Summary POMDP” Method

Jason D. Williams and Steve Young

Cambridge University Engineering Department
Trumpington Street, Cambridge CB2 1PZ, UK

jdw30@cam.ac.uk sjy@eng.cam.ac.uk

ABSTRACT

Partially Observable Markov Decision Processes (POMDPs)
have been shown to be a promising framework for dialog
management in spoken dialog systems. However, to date,
POMDPs have been limited to artificially small tasks. In this
work, we present a novel method called a “Summary POMDP”
for scaling slot-filling POMDP-based dialog managers to cope
with tasks of a realistic size. An example dialog problem
incorporating a user model built from real dialog data is
presented. A dialog manager is created using this method and
evaluated using a second user model created from held-out
dialog data. Results confirm that summary POMDP policies
scale well, and also show that summary POMDP policies are
reasonably robust to variations in user behavior.

1. INTRODUCTION

Dialog management for spoken dialog systems can be
approached as planning under uncertainty. (Fully-observable)
Markov decision processes ((FO)MDPs) and partially
observable Markov decision processes (POMDPs) offer a
principled framework in this pursuit [5]. MDPs offer an
accessible body of optimization techniques and have been
successfully used to create dialog managers for problems of
realistic sizes [4, 6, 9, 10]. However, MDPs do not take proper
account of the corruption introduced by the speech recognition
channel. The POMDP framework, which is designed to cope
with noisy input, has been found to consistently outperform
MDP-based systems [8, 14, 15, 16]. Despite their promise,
POMDPs to date have been limited to artificially small “toy”
problems. Systems in the literature handle fewer than 10 distinct
user goals [8, 14, 15, 15]. In this paper, we present a method
for scaling up POMDPs for dialog management – the “Summary
POMDP method” – and demonstrate its ability to create a robust
slot-based dialog manager capable of handling a realistically
sized dialog problem.

This paper is organized as follows: Section 2 briefly reviews
background on POMDPs. Section 3 presents the summary
POMDP method. Section 4 briefly demonstrates the method,
Section 5 provides an evaluation, and Section 6 concludes.

2. OVERVIEW OF POMDPS

Formally, a POMDP is defined as a tuple {S, A, T, R, O, Z},
where S is a set of states; A is a set of actions that an agent may

take; T defines a transition probability),|(assP ′ ; R defines the
expected (immediate, real-valued) reward),(asr ; O is a set of
observations; and Z defines an observation probability,

),|(asoP ′′ .
The POMDP operates as follows. At each time-step, the

machine is in some unobserved state s . Since s is not known
exactly, we maintain a distribution over states called a “belief
state,” b. We write)(sb to indicate the probability of being in a
particular state s. Based on b(s), the machine selects an action
a , receives a reward r , and transitions to (unobserved) state
s′ , where s′ depends only on s and a . The machine then
receives an observation o′ which is dependent on s′ and a . At
each timestep, we update b as follows:

 ∑
∈

′′′⋅=′′
Ss

sbsasPasoPksb)(),|(),|()(, (1)

where k is a normalization constant [2]. We refer to maintaining
the value of b at each time-step as “belief monitoring.”

The variables a, o, and s may be factored into components.
For example, s could be decomposed into),,,(21 Nssss K=
such that NN SsSsSs ∈∈∈ ,,, 2211 K . In this case, b(s) is
written),,,()(21 Nsssbsb K= ,),|(asoP ′′ is written

),',,','|(21 asssoP NK′ , etc. This factoring may allow
conditional independence to be exploited, reducing the
parameters required to express T, R, and Z.

The cumulative, infinite-horizon, discounted reward is called
the return:

 ∑ ∑
∞

= ∈0
),()(

t
t

Ss
t

t asrsbλ (2)

where tb indicates the distribution over all states at time t;
)(sbt indicates the probability of being in state s at timestep t;

ta is the action a taken at time t; and λ is a geometric discount
factor, 10 ≤≤ λ . A policy Ab ∈)(π specifies an action to take
given a belief state.1 The goal of the planner is to find a policy
that maximizes the return.

The domain b of a policy)(bπ is a point in S-dimensional
space, called belief space. In general a policy is a partitioning of
belief space, where each partition corresponds to an action. In
fact, the size of the policy space grows exponentially with the
size of the observation set and doubly exponentially with the

1 We will assume the planning horizon for a policy is infinite
unless otherwise stated.

distance (in time-steps) from the horizon [2]. Nevertheless, real-
world problems often possess small policies of high quality.

In this work, POMDP optimization is performed with
Perseus [11]. Perseus heuristically selects a small set of
representative belief points, and then iteratively applies value
updates to just those points instead of all of belief space,
achieving a significant speed-up over exact method. Increasing
the number of belief points enables the algorithm more complex
policies at the expense of more computation.

3. THE “SUMMARY POMDP” METHOD

This paper is concerned with so-called “slot-filling” dialogs,
which are common in the spoken dialog system literature. In
slot-filling dialogs, there exist Ν slots, where slot i takes on one
of iN values. The user enters the dialog with a goal – i.e., a
desired value for each slot – and the aim of the machine is to
correctly submit the user’s goal.

Traditional POMDP-based dialog managers scale poorly
because their state space, action set, and observation set grow as

iNΠ . For example, consider a problem with two slots in which
each slot takes on one of 100021 === MNN values. In this
case, the POMDP is performing planning on a distribution over

62 10=M states with more than 610 actions and observations.
Even with recent techniques, creating policies on POMDPs of
this size is intractable.

By contrast, the summary POMDP method considers only
the most likely hypothesis for each slot, effectively reducing the
size of each slot to 2 values. The action and observation sets are
similarly reduced. Overall this approach reduces the growth
factor from ΝM to Ν2 .

The summary POMDP method consists of three phases:
construction, sampling & optimization, and execution. As the
method is explained, an example dialog problem is presented for
illustration.

3.1. Construction of the “master POMDP”
First, a POMDP called the master POMDP is constructed. The
state variable of the master POMDP is factored into three groups
of variables which express the user’s goal, the user’s action, and
the state of the dialog from the perspective of the user. Note
that, from the machine’s perspective, all of these variables are
hidden. This factoring facilitates estimating the transition and
observation functions and specifying the reward function [14].

The method requires that the state space component for the
user’s goal is further subdivided into Ν slots, with one
component for each slot, slot

N
slot SS K1 . The components for the

user’s action and dialog state may, if desired, be further
decomposed.

An illustrative master POMDP in the travel domain is shown
as an influence diagram in Figure 1, with components described
in Table 1. In this dialog problem, the user is trying to travel
from a from location to a to location in a world with 1000 places.
Thus the user’s goal includes 2 components representing 2 slots,

slot
fromS and slot

toS , each of which takes on 1 of 1000 values. The
model of user’s action has been decomposed into the
components A

iS , eq
iS , WH

iS , YN
iS , 2WH

iS , and 1WH
iS . Two

conditional probability tables form the core of the user model.

The distribution)|(A
i

WH
i ssP gives the probability that the user

provides various wh-responses (i.e., ways of stating a slot value)
such as london or to(london) for a given system action. The
distribution),|(eq

i
A
i

YN
i sssP gives the probability that the user

includes a yn-response (yes or no) in their utterance for a given
system action. The other user action components (A

iS , eq
iS ,

2WH
iS , and 1WH

iS) are deterministic functions and simply enable
WH
iS and YN

iS to be expressed succinctly. Finally, the node
gdl

iS expresses dialog state, i.e., whether slot i is, from the
standpoint of the user, not-stated, stated, or confirmed.

In the summary POMDP method, the action set is also
factored, into),,,(1

slot
N

slotforce aaaa K= , such that slot
i

slot
i Sa ∈

and forceforce Aa ∈ . forceA represents the set of locutionary
forces available to the system. In Figure 1, the system action is
formed),,(slot

to
slot
from

force aaaa = . forceA contains 5 values: ask-
from, confirm-from, ask-to, confirm-to, submit. Composite
system actions express include, for example, confirm-to(london),
submit(boston,london), or ask-from.

The observation set O represents the output of the speech
recognition and parsing process, and includes all possible user
utterances at the concept level. In the example dialog problem,
the observation set includes all combinations of user actions (as
observed by the parser). For example, one observation might be
the parse {yes, place(london), to(place(boston))}. In general and
as in the example, the observation set will be too large to
estimate a conditional probability table. Instead, we create a
function)|(),(soPpof err → which estimates)|(soP for a
given o and per-concept error rate perr. In the example problem,
the error rate perr specifies the likelihood that a single concept is
misrecognized (i.e., substituted or deleted).

The reward function is specified by the system designer. In
the example dialog problem, the reward function encourages the
system to correctly identify the user’s goal as quickly as possible
while observing conversational norms. For actions which do not
end the dialog, per-turn penalties are assigned which seek to
reward “appropriate” behavior, as listed in Table 2. For
example, a higher per-turn penalty is given for confirming a slot
that hasn’t been stated than for confirming one that has. The
submit action, which is the only action that ends the dialog,
assigns +50 if the user’s goal is correctly identified and -50 if
not.

The process of belief monitoring involves inferring b(s)
based on the observation o as in Eq. 1. Initially, b(s) is a flat
distribution but as the dialog proceeds, it sharpens around the
most likely values of slot

is . The provision of an accurate user
action model and observation function greatly facilitates this
process.

3.2. Construction of the summary POMDP
Whereas traditional methods would attempt to optimize the
master POMDP directly (e.g., [14]), here we form a second
POMDP called the summary POMDP in which optimization will
be conducted.

The state space of the summary POMDP, S
~ , contains a

component slot
iS

~ corresponding to each slot component slot
iS in

.′.′

R

Timestep t Timestep t+1

slot
toS

forceA

slot
toAA

toS

eq
toS

WH
toS

dlg
toS

YN
toS

1WH
toS 2WH

toS

O

from slot
to slot

slot
toS

eq
toS

1WH
toS 2WH

toS

from slot
to slot

.′.′

.′.′

.′.′

.′.′
.′.′

.′.′

.′.′

O

.′.′

A
toS

dlg
toS

WH
toS

YN
toS

Figure 1: Influence diagram showing the master POMDP for
the sample dialog problem, following [1]. Unshaded nodes

are observable, and shaded nodes are unobservable. Circles
are chance nodes; squares are decision nodes; and diamonds
are utility nodes. Arrows show causal influence. For clarity,
only the to slot is shown, and the action and utility nodes for
the t+1 time-step have been omitted. The dotted boxes show

composite state and action variables.

Set Meaning
slot
iS User’s goal for slot i
eq
iS Indicates whether slot

iA equals slot
iS

A
iS System’s action as it relates to this slot

WH
iS WH-portion of user’s action, e.g., to(x) or x
YN
iS YN-portion of user’s action (yes, no)

1WH
iS WH action with slot value only, e.g., london

2WH
iS WH act w/ slot name & value, e.g., to(london)

gdl
iS Dialog state: {not stated, stated, or confirmed}
O Full concept string (both slots)
forceA Sys Act: ask-to/from, confirm-to/from, or submit
slot
iA Content of system action (same set as slot

iS)
R Reward (see Table 2 and text)

Table 1: Definition of node labels in Figure 1.

Dialog state System action Reward
Not stated ask –1
Not stated confirm –3

Stated ask –2
Stated confirm –1

Confirmed ask –3
Confirmed confirm –2

Table 2: Per-turn rewards for the sample problem.

the master POMDP. Each slot
is~ takes on just 2 values,

},{~ restbests slot
i ∈ , calculated as follows:







≠
==

).())(max(arg,
)())(max(arg,~

tSsbifrest
tSsbifbests slot

i
slot
it

slot
i

slot
itslot

i

Essentially, for a given slot, the state of the summary POMDP
expresses whether the most likely hypothesis in the master
POMDP is correct.

Other state space components from the master POMDP may
be included in the summary POMDP state space if desired. In
the example dialog problem, the state of the summary POMDP
S
~ includes a component gdl

iS
~

 which is a copy of the dialog

state in the master POMDP, gdl
iS . The example summary

POMDP includes a total of 36 states. Figure 2 shows an
influence diagram of the example summary POMDP, illustrating
how a summary POMDP contains fewer and more compact
components than the master POMDP, facilitating optimization.

The action space of the summary POMDP includes only
forceA . Thus, in the example dialog problem, the summary

action A
~ includes the component forceA but not slot

fromA or slot
toA ,

yielding a total of five actions in the example summary POMDP.
The observation set of the summary POMDP, O

~ , includes
two components OS

iO ↔~ and SS
iO ↔~ for each slot i. The first

observation component is calculated as follows:









=↔

)(about n informatio no provides ,
))((argmaxnt with inconsiste is ,

))((argmax with consistent is ,
~

slot
i

slot
i

slot
i

OS
i

sboifni
sboific

sboifc
O

This “consistency” relationship is specified by the system
designer. In the example dialog problem, if the observation
contains london (without an indication of to or from), it is
consistent with))(max(arg slot

isb = london and inconsistent with
any other value for both i = to and i = from. If the observation
contains to(london), it is consistent with))(max(arg slot

tosb =

london and provides no information about slot
froms . The

Timestep t Timestep t+1

slot
fromS~

OS
toO ↔~

forceA~

SS
fromO ↔~

R~
dlg
fromS~

slot
toS~

dlg
toS~

OS
fromO ↔~

SS
toO ↔~

forceA~

.′.′ .′.′

.′.′ .′.′

.′.′ .′.′

slot
fromS~

dlg
fromS~

slot
toS~

dlg
toS~

.′.′ .′.′
.′.′

.′.′R~

OS
toO ↔~

SS
fromO ↔~

OS
fromO ↔~

SS
toO ↔~

Figure 2: Influence diagram showing the summary POMDP

for the sample dialog problem

observations yes and no alone provide no information about any
slot via OS

iO ↔~ – i.e., niO OS
i =↔~ .

The second observation component is calculated as follows:







≠
==

−

−↔

))(max(arg))(max(arg,
))(max(arg))(max(arg,~

1

1
slot
it

slot
it

slot
it

slot
itSS

i
sbsbifne
sbsbifeqO

In other words, SS
iO ↔~ indicates whether the most likely

hypothesis for slot
is has changed. For example, in the sample

problem, suppose that))(max(arg slot
fromt sb = london, the action

confirm-from(london) is taken, and no is observed. This would
result in a significant reduction in)(1 londonbt + , and a new most

likely hypothesis, for example))(max(arg 1
slot
fromt sb + = leeds. In

this example, london ≠ leeds, so neO SS
from =↔~ .

3.3. Sampling & Optimization
To estimate the system dynamics of the summary POMDP, we
sample from the master POMDP using a random policy. At
each timestep, an action Aa

~~ ∈ in the summary POMDP is
randomly selected. The action Aa ∈ in the master POMDP is
then formed by setting))(max(arg slot

i
slot
i sba = and combining

a~ and iaslot
i ∀, to form a. Finally, the value of the reward r is

calculated.
Next, a value for the next (unobserved) state s′ and

observation o′ of the master POMDP are then sampled. Then
the belief state)(sb ′′ of the master POMDP is calculated as in
Eq. 1. Finally, the state s ′~ and observations o ′~ of the summary
POMDP are calculated as described in 3.2. By sampling
repeatedly in this way, the transition function)~,~|~(assP ′ ,
observation function)~,~|~(asoP ′′ , and reward function)~,~(asr
of the summary POMDP are estimated. After sampling,
optimization is performed on the summary POMDP to compute
a policy, asb ~))~(

~
(~ ∈π , using for example [11].

3.4. Execution
To execute the controller, belief monitoring is performed in the
master POMDP. The belief state of the summary POMDP is
calculated as

))((max)~(
~ slot

i
s

slot
i sbbestsb

slot
i

== (3)

and)~(
~

1)~(
~

bestsbrestsb slot
i

slot
i =−== . The action a~ is

selected based on the policy calculated above, i.e.,))~(
~

(~ sba π= .
The action Aa ∈ in the master POMDP is then formed by
setting))(max(arg slot

i
slot
i sba = for all slots i and combining a~

and iaslot
i ∀, to form a. After a is taken, a reward r and an

observation o′ are received, and the next belief state)(sb ′′ is
calculated (Eq. 1.)

4. DEMONSTRATION

Figure 5 shows an example conversation between the test user
model and the POMDP. The small graphs show the distribution

of “belief mass” in)(slot
isb and)~(

~ slot
isb over the course of the

dialog. Only 3 of the 1000 values of slot
is are shown.

At the beginning of the dialog, the belief mass in)(slot
isb is

spread evenly over all goals, and)~(
~

bestsb slot
i = is low. As the

dialog progresses, probability mass sharpens around observed
slot values. As explained in the description of the method
above, at each time-step,))(max()~(

~ slot
i

slot
i sbbestsb == . For

example, after turn U1, leedssb slot
to =))(max(arg and

)()~(
~

leedsbbestsb slot
i == .)~(

~
restsb slot

i = is equal to ∑b for

all other values of slot
is .

One strength of the probabilistic approach is that the system
never commits to one value for a slot; rather,)(

~
bestb is acting

as a global confidence score over the course of the dialog. For
example, the no observed in U4 redistributes probability mass in

)(slot
tosb from =slot

tos leeds to all other values, causing a

decrease in)(
~

bestsb slot
to = . Alternatively, a second observation

providing further support for =slot
froms cambridge in U5 causes an

increase in)(
~

bestsb slot
from = . A second strength is that the effect

on b of an observation is scaled by the likelihood of the
corresponding user action. For example, in U4, the user action
from(sheffield) is very unlikely, so when the observation
from(sheffield) is made it increases)(sheffieldsb slot

from = but only
slightly.

5. EVALUATION

We are interested in determining how performance of the
summary method varies with error rate, how robust the method
is to variations in user behavior, and finally how the summary
method compares to traditional methods.

To do this, we employ real dialog data from the SACTI-1
corpus [13]. The SACTI-1 corpus contains 144 human-human
dialogs in the travel/tourist information domain using a
“simulated ASR channel” [12]. The corpus contains a variety of
word error rates, and the behaviors observed of the subjects in
the corpus are broadly consistent with behaviors observed of a
user and a computer using a real speech recognition system [13].
The corpus was segmented into a “training sub-corpus” and a
“test sub-corpus,” which are each composed of an equal number
of dialogs, the same mix of word error rates, and disjoint subject
sets. Wizard/User turn pairs were annotated, and one user model
was then estimated from each sub-corpus.

The training user model was installed in nodes WH
iS and

YN
iS in the master POMDP, giving the wh portion of the user’s

response such as to(cambridge), and the yn (yes/no) portion,
respectively. To create the summary POMDP, 20,000 dialog
turns were sampled. Policy optimization was performed with 50
belief points, 50 iterations, and a discount of 99.0=λ .2 To
form a baseline, 20,000 dialog turns were then run with the

2 The number of belief points broadly sets an upper bound on the
complexity of the resulting policy.

-1

0

1

2

3

4

5

6

7

8

0.0
5

0.1
0

0.1
5

0.2
0

0.2
5

0.3
0

0.3
5

0.4
0

0.4
5

0.5
0

0.5
5

0.6
0

0.6
5

p err

R
ew

ar
d

ga
in

ed
 /

tu
rn

User model built from training set

User model built from test set

Figure 3: perr vs. reward gained per turn for the sample

dialog problem

-10

-8

-6

-4

-2

0

2

4

6

8

3 4 5 10 20 50 10
0

20
0

50
0

10
00

20
00

50
00

M (Number of distinct slot values)

Av
er

ag
e

or
 e

xp
ec

te
d

re
tu

rn

Summary POMDP
Baseline

Figure 4: n (number of distinct slot values) vs. average or
expected return for a simplified 1-slot dialog problem. The

baseline is a direct solution of the master POMDP.

resulting policy and the training user model. Next, the test user
model was installed into the Master POMDP, and 20,000 dialog
turns were run with the policy created from the training user
model. This process was repeated for values of perr from 0.05 to
0.60.

Figure 3 shows results for a range of values of perr. The Y-
axis shows average reward gained per dialog turn, and error bars
indicate the 95% confidence interval for the true average reward
gained per dialog turn. As speech recognition errors increase,
the average reward per turn decreases, consistent with traditional
methods [8, 14, 15]. For all values of perr except 0.05,
performance on the test user model is no less than 0.5 points of
the training user model and is generally very close. In other
words, the policy created for the training user model is
performing similarly on the testing user model, implying that the
method is reasonably robust to variations in patterns of user
behavior. In some cases, e.g., perr = 0.05, the policy performs
better on the test user model than on the training user model.
This is possible because different user models can provide
different amounts of information. In this example, the test user
model provides slightly more information than the training user
model, which enables the policy to perform better on the testing
user model at certain error rates.

Finally, the system was run in a simpler one slot
configuration which allowed the master POMDP to be optimized

directly. Direct solutions were computed with 1,000 belief
points and 50 iterations. The summary POMDP method was
then applied using 20,000 dialog turns, 50 belief points and 50
iterations. This process was repeated for values of M (i.e.,
distinct number of slot values) from 3 to 5000. The concept
error rate was set to perr = 0.30, and the discount to 99.0=λ for
all experiments.

Figure 4 shows M vs. average or expected return for the
summary method and the baseline. The solution algorithm was
not able to optimize the master POMDP directly for M > 100.
Error bars show 95% confidence intervals for true expected
return. For small problems, i.e., lower values of M, the
summary method performs equivalently to the baseline. For
larger problems, the summary method outperforms the baseline
by an increasing margin. Moreover, the summary POMDP
policy was derived using 95% fewer belief points than the
baseline; i.e., the summary method’s policies scale to large
problems and are much more compact.

It is interesting to note that as M increases, the performance
of the summary POMDP method appears to increase toward an
asymptote. This trend is due to the fact that all confusions are
equally likely in this model. For a given error rate, the more
concepts in the model, the less likely consistent confusions are.
Thus, having more concepts helps the policy identify spurious
evidence over the course of a dialog.

6. CONCLUSION

POMDP-based dialog managers have been shown to outperform
MDP-based dialog managers, but to date have been limited to
artificially small problems. This paper has demonstrated a
method for scaling POMDP-based dialog managers to problems
of a realistic size. The method has been demonstrated with a 2-
slot problem incorporating a user model estimated from real
dialog data, and experiments have shown that the resulting
dialog manager copes well with changes in patterns of user
behavior. Moreover, summary dialog policies appear to be as
good as those derived directly for the full model.

As presented here, the size of the state space and observation
space in the summary POMDP still grow exponentially in the
number of slots. While many real-world problems use a handful
of slots (e.g. 2, 3 or 4), others use many slots. Thus one
theoretical issue to address in future work is how to scale to
large numbers of slots. The factored nature of the summary
POMDP may be of some help here, for example [7]. Finally,
future practical work will attempt to validate the method by
constructing an end-to-end system.

7. ACKNOWLEDGEMENTS

The authors would like to thank Pascal Poupart for several
helpful, insightful discussions. Thanks also to Matt Stuttle and
Jost Schatzmann for helpful comments on the presentation of
this paper. The work reported in this paper was supported by the
EU FP6 Talk Project.

11. REFERENCES

[1] Finn V. Jensen. Bayesian Networks and Decision Graphs.
New York: Springer Verlang, 2001.

[2] Leslie Pack Kaelbling, Michael L. Littman and Anthony R.
Cassandra. Planning and Acting in Partially Observable
Stochastic Domains. Artificial Intelligence, Vol. 101, 1998.

[3] Staffan Larsson and David Traum. Information state and
dialogue management in the trindi dialogue move engine toolkit.
Natural Language Engineering, 5(3–4):323–340, 2000.

[4] Esther Levin, Roberto Pieraccini, and Wieland Eckert. A
Stochastic Model of Human-Machine Interaction for Learning
Dialogue Strategies. IEEE Transactions on Speech and Audio
Processing, Volume 8, No. 1, 11-23, 2000.

[5] Esther Levin and Roberto Pieraccini. A Stochastic Model of
Computer-Human Interaction For Learning Dialogue Strategies.
Eurospeech, Rhodes, Greece, 1997.

[6] Olivier Pietquin. A Framework for Unsupervised Learning
of Dialogue Strategies. Ph D thesis, Faculty of Engineering,
Mons, Belgium, 2004.

[7] Pascal Poupart and Craig Boutilier. VDCBPI: an
Approximate Scalable Algorithm for Large Scale POMDPs.
Advances in Neural Information Processing Systems 17 (NIPS-
2004), Vancouver, BC, pp 1081-1088.

[8] Nicholas Roy, Joelle Pineau and Sebastian Thrun. Spoken
Dialogue Management Using Probabilistic Reasoning. Annual
meeting of the Association for Computational Linguistics (ACL-
2000).

[9] Konrad Scheffler and Steve Young. Automatic learning of
dialogue strategy using dialogue simulation and reinforcement
learning. Proc. Human Language Technology (HLT-2002), San
Diego, pp. 12-18.

[10] Satinder Singh, Diane Litman, Michael Kearns and Marilyn

Walker. Optimizing Dialogue Management with Reinforcement
Leaning: Experiments with the NJFun System. Journal of
Artificial Intelligence, Vol. 16, 105-133, 2002.

[11] Matthijs T. J. Spaan and Nikos Vlassis. Perseus:
randomized point-based value iteration for POMDPs. Technical
Report IAS-UVA-04-02, Informatics Institute, University of
Amsterdam, 2004.

[12] Matthew Stuttle, Jason D. Williams, and Steve Young. A
Framework for Wizard-of-Oz Experiments with a Simulated
ASR-Channel. International Conferences on Spoken Language
Processing (ICSLP-2004), Jeju, South Korea, 2004.

[13] Jason D. Williams and Steve Young. Characterizing Task-
Oriented Dialog using a Simulated ASR Channel. International
Conference on Spoken Language Processing (ICSLP), October
2004, Jeju, South Korea.

[14] Jason D. Williams, Pascal Poupart, and Steve Young.
Factored Partially Observable Markov Decision Processes for
Dialogue Management. 4th Workshop on Knowledge and
Reasoning in Practical Dialog Systems, International Joint
Conference on Artificial Intelligence (IJCAI), August 2005,
Edinburgh.

[15] Jason D. Williams, Pascal Poupart, and Steve Young.
Partially Observable Markov Decision Processes with
Continuous Observations for Dialogue Management. In Proc.
6th SigDial Workshop on Discourse and Dialogue, September
2005, Lisbon.

[16] Zhang Bo, Cai Qingsheng, Mao Jianfeng, and Guo Baining.
Planning and Acting under Uncertainty: A New Model for
Spoken Dialogue System. Proceedings of the 17th Annual
Conference on Uncertainty in Artificial Intelligence (UAI-01).
San Francisco, USA, 2001.

Turn Notes)(slot
fromsb)~(

~ slot
fromsb)(slot

tosb)~(
~ slot

tosb

[prior to dialog start]
Prior to dialog start,

probability mass is spread
evenly over all slot values.

CAMB.

LONDON
… …

SHEFF.

BEST
REST

 BEST
REST

S1: Where are you going to?
U1: London
 [misrecognized as Leeds]

Top hypothesis for to slot is
now leeds; from slot has
received no information.

CAMB.

LONDON
… …

SHEFF.

BEST
REST

LEEDS

LONDON
… …

OXFORD

BEST
REST

S2: Where are you leaving from?
U2: From Cambridge
 [misrec as To Oxford]

User model predicts this
obs. is unlikely: to(oxford)
gets minimal belief mass.

CAMB.

LONDON
… …

SHEFF.

BEST
REST

LEEDS

LONDON
… …

OXFORD

BEST
REST

S3: Where are you leaving from?
U3: From Cambridge
 [reco ok]

Top hypothesis for from
slot is now cambridge.

CAMB.

LONDON
… …

SHEFF.

BEST
REST

LEEDS

LONDON
… …

OXFORD

BEST
REST

S4: To Leeds, is that right?
U4: No, to London
 [misrec as No, from Sheffield]

to(leeds) reduced;
from(sheffield) has small
effect b/c of user model.

CAMB.

LONDON
… …

SHEFF.

BEST
REST

LEEDS

LONDON
… …

OXFORD

BEST
REST

S5: Where are you going to?
U5: To London from Cambridge
 [reco ok]

Top hypothesis for to slot is
now london; from slot is

now very certain.

CAMB.

LONDON
… …

SHEFF.
BEST
REST

LEEDS

LONDON
… …

OXFORD

BEST
REST

 [System prints ticket from
 London to Cambridge]

Figure 5: Example conversation and belief states. The user is trying to travel from Cambridge to London.

LEEDS

LONDON
… …

OXFORD

