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ABSTRACT 
 
Partially Observable Markov Decision Processes (POMDPs) 
have been shown to be a promising framework for dialog 
management in spoken dialog systems.  However, to date, 
POMDPs have been limited to artificially small tasks.  In this 
work, we present a novel method called a “Summary POMDP” 
for scaling slot-filling POMDP-based dialog managers to cope 
with tasks of a realistic size.  An example dialog problem 
incorporating a user model built from real dialog data is 
presented.  A dialog manager is created using this method and 
evaluated using a second user model created from held-out 
dialog data.  Results confirm that summary POMDP policies 
scale well, and also show that summary POMDP policies are 
reasonably robust to variations in user behavior. 

 

1. INTRODUCTION 
 

Dialog management for spoken dialog systems can be 
approached as planning under uncertainty.  (Fully-observable) 
Markov decision processes ((FO)MDPs) and partially 
observable Markov decision processes (POMDPs) offer a 
principled framework in this pursuit [5].  MDPs offer an 
accessible body of optimization techniques and have been 
successfully used to create dialog managers for problems of 
realistic sizes [4, 6, 9, 10].  However, MDPs do not take proper 
account of the corruption introduced by the speech recognition 
channel.  The POMDP framework, which is designed to cope 
with noisy input, has been found to consistently outperform 
MDP-based systems [8, 14, 15, 16].   Despite their promise, 
POMDPs to date have been limited to artificially small “toy” 
problems.  Systems in the literature handle fewer than 10 distinct 
user goals [8, 14, 15, 15].   In this paper, we present a method 
for scaling up POMDPs for dialog management – the “Summary 
POMDP method” – and demonstrate its ability to create a robust 
slot-based dialog manager capable of handling a realistically 
sized dialog problem. 

This paper is organized as follows:  Section 2 briefly reviews 
background on POMDPs.  Section 3 presents the summary 
POMDP method.  Section 4 briefly demonstrates the method, 
Section 5 provides an evaluation, and Section 6 concludes. 
 

2. OVERVIEW OF POMDPS 
 
Formally, a POMDP is defined as a tuple {S, A, T, R, O, Z}, 
where S is a set of states; A is a set of actions that an agent may 

take; T defines a transition probability ),|( assP ′ ; R defines the 
expected (immediate, real-valued) reward ),( asr ; O is a set of 
observations; and Z defines an observation probability, 

),|( asoP ′′ .   
The POMDP operates as follows.  At each time-step, the 

machine is in some unobserved state s .  Since s  is not known 
exactly, we maintain a distribution over states called a “belief 
state,” b.  We write )(sb to indicate the probability of being in a 
particular state s.  Based on b(s), the machine selects an action 
a , receives a reward r , and transitions to (unobserved) state 
s′ , where s′  depends only on s  and a .  The machine then 
receives an observation o′  which is dependent on s′  and a .  At 
each timestep, we update b as follows: 

 ∑
∈

′′′⋅=′′
Ss

sbsasPasoPksb )(),|(),|()( , (1) 

where k is a normalization constant [2].  We refer to maintaining 
the value of b at each time-step as “belief monitoring.” 

The variables a, o, and s may be factored into components.  
For example, s could be decomposed into ),,,( 21 Nssss K=  
such that NN SsSsSs ∈∈∈ ,,, 2211 K .  In this case, b(s) is 
written ),,,()( 21 Nsssbsb K= , ),|( asoP ′′  is written 

),',,','|( 21 asssoP NK′ , etc.  This factoring may allow 
conditional independence to be exploited, reducing the 
parameters required to express T, R, and Z. 

The cumulative, infinite-horizon, discounted reward is called 
the return: 
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where tb  indicates the distribution over all states at time t; 
)(sbt  indicates the probability of being in state s at timestep t; 

ta  is the action a taken at time t; and λ  is a geometric discount 
factor, 10 ≤≤ λ .  A policy Ab ∈)(π  specifies an action to take 
given a belief state.1  The goal of the planner is to find a policy 
that maximizes the return. 

The domain b of a policy )(bπ  is a point in S-dimensional 
space, called belief space.  In general a policy is a partitioning of 
belief space, where each partition corresponds to an action.  In 
fact, the size of the policy space grows exponentially with the 
size of the observation set and doubly exponentially with the 

                                                 
1 We will assume the planning horizon for a policy is infinite 
unless otherwise stated.   



distance (in time-steps) from the horizon [2].  Nevertheless, real-
world problems often possess small policies of high quality. 

In this work, POMDP optimization is performed with 
Perseus [11].  Perseus heuristically selects a small set of 
representative belief points, and then iteratively applies value 
updates to just those points instead of all of belief space, 
achieving a significant speed-up over exact method.  Increasing 
the number of belief points enables the algorithm more complex 
policies at the expense of more computation. 

 
3. THE “SUMMARY POMDP” METHOD 

 
This paper is concerned with so-called “slot-filling” dialogs, 
which are common in the spoken dialog system literature.  In 
slot-filling dialogs, there exist Ν  slots, where slot i takes on one 
of iN  values.  The user enters the dialog with a goal – i.e., a 
desired value for each slot – and the aim of the machine is to 
correctly submit the user’s goal.   

Traditional POMDP-based dialog managers scale poorly 
because their state space, action set, and observation set grow as 

iNΠ .  For example, consider a problem with two slots in which 
each slot takes on one of 100021 === MNN  values.  In this 
case, the POMDP is performing planning on a distribution over 

62 10=M  states with more than 610  actions and observations.  
Even with recent techniques, creating policies on POMDPs of 
this size is intractable. 

By contrast, the summary POMDP method considers only 
the most likely hypothesis for each slot, effectively reducing the 
size of each slot to 2 values.  The action and observation sets are 
similarly reduced.  Overall this approach reduces the growth 
factor from ΝM  to Ν2 .    

The summary POMDP method consists of three phases: 
construction, sampling & optimization, and execution.  As the 
method is explained, an example dialog problem is presented for 
illustration. 
 

3.1. Construction of the “master POMDP” 
First, a POMDP called the master POMDP is constructed.  The 
state variable of the master POMDP is factored into three groups 
of variables which express the user’s goal, the user’s action, and 
the state of the dialog from the perspective of the user.  Note 
that, from the machine’s perspective, all of these variables are 
hidden.  This factoring facilitates estimating the transition and 
observation functions and specifying the reward function [14].  

The method requires that the state space component for the 
user’s goal is further subdivided into Ν  slots, with one 
component for each slot, slot

N
slot SS K1 .  The components for the 

user’s action and dialog state may, if desired, be further 
decomposed. 

An illustrative master POMDP in the travel domain is shown 
as an influence diagram in Figure 1, with components described 
in Table 1.  In this dialog problem, the user is trying to travel 
from a from location to a to location in a world with 1000 places.  
Thus the user’s goal includes 2 components representing 2 slots, 

slot
fromS  and slot

toS , each of which takes on 1 of 1000 values.  The 
model of user’s action has been decomposed into the 
components A

iS , eq
iS , WH

iS , YN
iS , 2WH

iS , and 1WH
iS .  Two 

conditional probability tables form the core of the user model.  

The distribution )|( A
i

WH
i ssP  gives the probability that the user 

provides various wh-responses (i.e., ways of stating a slot value) 
such as london or to(london) for a given system action.  The 
distribution ),|( eq

i
A
i

YN
i sssP  gives the probability that the user 

includes a yn-response (yes or no) in their utterance for a given 
system action.  The other user action components ( A

iS , eq
iS , 

2WH
iS , and 1WH

iS ) are deterministic functions and simply enable 
WH
iS  and YN

iS  to be expressed succinctly.  Finally, the node 
gdl

iS  expresses dialog state, i.e., whether slot i is, from the 
standpoint of the user, not-stated, stated, or confirmed.   

In the summary POMDP method, the action set is also 
factored, into ),,,( 1

slot
N

slotforce aaaa K= , such that slot
i

slot
i Sa ∈  

and forceforce Aa ∈ .  forceA  represents the set of locutionary 
forces available to the system.  In Figure 1, the system action is 
formed ),,( slot

to
slot
from

force aaaa = .  forceA  contains 5 values: ask-
from, confirm-from, ask-to, confirm-to, submit.  Composite 
system actions express include, for example, confirm-to(london), 
submit(boston,london), or ask-from. 

The observation set O represents the output of the speech 
recognition and parsing process, and includes all possible user 
utterances at the concept level.  In the example dialog problem, 
the observation set includes all combinations of user actions (as 
observed by the parser).  For example, one observation might be 
the parse {yes, place(london), to(place(boston))}.  In general and 
as in the example, the observation set will be too large to 
estimate a conditional probability table.  Instead, we create a 
function )|(),( soPpof err →   which estimates )|( soP  for a 
given o and per-concept error rate perr.  In the example problem, 
the error rate perr specifies the likelihood that a single concept is 
misrecognized (i.e., substituted or deleted). 

The reward function is specified by the system designer.  In 
the example dialog problem, the reward function encourages the 
system to correctly identify the user’s goal as quickly as possible 
while observing conversational norms.  For actions which do not 
end the dialog, per-turn penalties are assigned which seek to 
reward “appropriate” behavior, as listed in Table 2.  For 
example, a higher per-turn penalty is given for confirming a slot 
that hasn’t been stated than for confirming one that has.  The 
submit action, which is the only action that ends the dialog, 
assigns +50 if the user’s goal is correctly identified and -50 if 
not.   

The process of belief monitoring involves inferring b(s) 
based on the observation o as in Eq. 1.  Initially, b(s) is a flat 
distribution but as the dialog proceeds, it sharpens around the 
most likely values of slot

is .  The provision of an accurate user 
action model and observation function greatly facilitates this 
process. 

 

3.2. Construction of the summary POMDP 
Whereas traditional methods would attempt to optimize the 
master POMDP directly (e.g., [14]), here we form a second 
POMDP called the summary POMDP in which optimization will 
be conducted. 

The state space of the summary POMDP, S
~ , contains a 

component slot
iS

~  corresponding to each slot component slot
iS  in 
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Figure 1: Influence diagram showing the master POMDP for 
the sample dialog problem, following [1].  Unshaded nodes 

are observable, and shaded nodes are unobservable.  Circles 
are chance nodes; squares are decision nodes; and diamonds 
are utility nodes.  Arrows show causal influence.  For clarity, 
only the to slot is shown, and the action and utility nodes for 
the t+1 time-step have been omitted.  The dotted boxes show 

composite state and action variables. 

Set Meaning 
slot
iS  User’s goal for slot i 
eq
iS  Indicates whether slot

iA  equals slot
iS  

A
iS  System’s action as it relates to this slot 

WH
iS  WH-portion of user’s action, e.g., to(x) or x 
YN
iS  YN-portion of user’s action (yes, no) 

1WH
iS  WH action with slot value only, e.g., london 

2WH
iS  WH act w/ slot name & value, e.g., to(london) 

gdl
iS  Dialog state: {not stated, stated, or confirmed}  
O  Full concept string (both slots) 
forceA  Sys Act: ask-to/from, confirm-to/from, or submit 
slot
iA  Content of system action (same set as slot

iS ) 
R  Reward (see Table 2 and text) 

Table 1: Definition of node labels in Figure 1. 

Dialog state System action Reward 
Not stated ask –1  
Not stated confirm –3 

Stated ask –2 
Stated confirm –1 

Confirmed ask –3 
Confirmed confirm –2 

Table 2: Per-turn rewards for the sample problem. 

the master POMDP.  Each slot
is~  takes on just 2 values, 

},{~ restbests slot
i ∈ , calculated as follows: 







≠
==

).())(max(arg,
)())(max(arg,~

tSsbifrest
tSsbifbests slot

i
slot
it

slot
i

slot
itslot

i  

Essentially, for a given slot, the state of the summary POMDP 
expresses whether the most likely hypothesis in the master 
POMDP is correct.   

Other state space components from the master POMDP may 
be included in the summary POMDP state space if desired.  In 
the example dialog problem, the state of the summary POMDP 
S
~  includes a component gdl

iS
~

 which is a copy of the dialog 

state in the master POMDP, gdl
iS .  The example summary 

POMDP includes a total of 36 states.  Figure 2 shows an 
influence diagram of the example summary POMDP, illustrating 
how a summary POMDP contains fewer and more compact 
components than the master POMDP, facilitating optimization. 

The action space of the summary POMDP includes only 
forceA .  Thus, in the example dialog problem, the summary 

action A
~  includes the component forceA  but not slot

fromA  or slot
toA , 

yielding a total of five actions in the example summary POMDP. 
The observation set of the summary POMDP, O

~ , includes 
two components OS

iO ↔~  and SS
iO ↔~  for each slot i.  The first 

observation component is calculated as follows: 









=↔

)(about n informatio no provides ,
))((argmaxnt with inconsiste is ,

))((argmax  with consistent is ,
~

slot
i

slot
i

slot
i

OS
i

sboifni
sboific

sboifc
O  

This “consistency” relationship is specified by the system 
designer.  In the example dialog problem, if the observation 
contains london (without an indication of to or from), it is 
consistent with ))(max(arg slot

isb = london and inconsistent with 
any other value for both i = to and i = from.  If the observation 
contains to(london), it is consistent with ))(max(arg slot

tosb  = 

london and provides no information about slot
froms .  The  
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Figure 2: Influence diagram showing the summary POMDP 

for the sample dialog problem   



observations yes and no alone provide no information about any 
slot via OS

iO ↔~  – i.e., niO OS
i =↔~ . 

The second observation component is calculated as follows: 







≠
==

−

−↔

))(max(arg))(max(arg,
))(max(arg))(max(arg,~

1

1
slot
it

slot
it

slot
it

slot
itSS

i
sbsbifne
sbsbifeqO  

In other words, SS
iO ↔~  indicates whether the most likely 

hypothesis for slot
is  has changed.  For example, in the sample 

problem, suppose that ))(max(arg slot
fromt sb = london, the action 

confirm-from(london) is taken, and no is observed.  This would 
result in a significant reduction in )(1 londonbt + , and a new most 

likely hypothesis, for example ))(max(arg 1
slot
fromt sb + = leeds.  In 

this example, london ≠ leeds, so neO SS
from =↔~ .   

 

3.3. Sampling & Optimization 
To estimate the system dynamics of the summary POMDP, we 
sample from the master POMDP using a random policy.  At 
each timestep, an action Aa

~~ ∈  in the summary POMDP is 
randomly selected.  The action Aa ∈  in the master POMDP is 
then formed by setting ))(max(arg slot

i
slot
i sba =  and combining 

a~  and iaslot
i ∀,  to form a.  Finally, the value of the reward r is 

calculated.   
Next, a value for the next (unobserved) state s′  and 

observation o′  of the master POMDP are then sampled.  Then 
the belief state )(sb ′′  of the master POMDP is calculated as in 
Eq. 1.  Finally, the state s ′~  and observations o ′~  of the summary 
POMDP are calculated as described in 3.2.  By sampling 
repeatedly in this way, the transition function )~,~|~( assP ′ , 
observation function )~,~|~( asoP ′′ , and reward function )~,~( asr  
of the summary POMDP are estimated.  After sampling, 
optimization is performed on the summary POMDP to compute 
a policy, asb ~))~(

~
(~ ∈π , using for example [11].   

 

3.4. Execution 
To execute the controller, belief monitoring is performed in the 
master POMDP.  The belief state of the summary POMDP is 
calculated as 

 ))((max)~(
~ slot

i
s

slot
i sbbestsb

slot
i

==  (3) 

and )~(
~

1)~(
~

bestsbrestsb slot
i

slot
i =−== .  The action a~  is 

selected based on the policy calculated above, i.e., ))~(
~

(~ sba π= .  
The action Aa ∈  in the master POMDP is then formed by 
setting ))(max(arg slot

i
slot
i sba =  for all slots i and combining a~  

and iaslot
i ∀,  to form a.  After a is taken, a reward r and an 

observation o′  are received, and the next belief state )(sb ′′  is 
calculated (Eq. 1.)   

 
4. DEMONSTRATION 

 
Figure 5 shows an example conversation between the test user 
model and the POMDP.  The small graphs show the distribution 

of “belief mass” in )( slot
isb  and )~(

~ slot
isb  over the course of the 

dialog.  Only 3 of the 1000 values of slot
is  are shown.   

At the beginning of the dialog, the belief mass in )( slot
isb  is 

spread evenly over all goals, and )~(
~

bestsb slot
i =  is low.  As the 

dialog progresses, probability mass sharpens around observed 
slot values.  As explained in the description of the method 
above, at each time-step, ))(max()~(

~ slot
i

slot
i sbbestsb == .  For 

example, after turn U1, leedssb slot
to =))(max(arg  and 

)()~(
~

leedsbbestsb slot
i == .  )~(

~
restsb slot

i =  is equal to ∑b  for 

all other values of slot
is .  

One strength of the probabilistic approach is that the system 
never commits to one value for a slot; rather, )(

~
bestb  is acting 

as a global confidence score over the course of the dialog.  For 
example, the no observed in U4 redistributes probability mass in 

)( slot
tosb  from =slot

tos  leeds to all other values, causing a 

decrease in )(
~

bestsb slot
to = .  Alternatively, a second observation 

providing further support for =slot
froms  cambridge in U5 causes an 

increase in )(
~

bestsb slot
from = .  A second strength is that the effect 

on b of an observation is scaled by the likelihood of the 
corresponding user action.  For example, in U4, the user action 
from(sheffield) is very unlikely, so when the observation 
from(sheffield) is made it increases )( sheffieldsb slot

from =  but only 
slightly.   

 
5. EVALUATION 

 
We are interested in determining how performance of the 
summary method varies with error rate, how robust the method 
is to variations in user behavior, and finally how the summary 
method compares to traditional methods.   

To do this, we employ real dialog data from the SACTI-1 
corpus [13].  The SACTI-1 corpus contains 144 human-human 
dialogs in the travel/tourist information domain using a 
“simulated ASR channel” [12].  The corpus contains a variety of 
word error rates, and the behaviors observed of the subjects in 
the corpus are broadly consistent with behaviors observed of a 
user and a computer using a real speech recognition system [13].  
The corpus was segmented into a “training sub-corpus” and a 
“test sub-corpus,” which are each composed of an equal number 
of dialogs, the same mix of word error rates, and disjoint subject 
sets.  Wizard/User turn pairs were annotated, and one user model 
was then estimated from each sub-corpus. 

The training user model was installed in nodes WH
iS  and 

YN
iS  in the master POMDP, giving the wh portion of the user’s 

response such as to(cambridge), and the yn (yes/no) portion, 
respectively.  To create the summary POMDP, 20,000 dialog 
turns were sampled.  Policy optimization was performed with 50 
belief points, 50 iterations, and a discount of 99.0=λ .2  To 
form a baseline, 20,000 dialog turns were then run with the  

                                                 
2 The number of belief points broadly sets an upper bound on the 
complexity of the resulting policy.  
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Figure 3: perr vs. reward gained per turn for the sample 

dialog problem 
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Figure 4: n (number of distinct slot values) vs. average or 
expected return for a simplified 1-slot dialog problem.  The 

baseline is a direct solution of the master POMDP. 

resulting policy and the training user model.  Next, the test user 
model was installed into the Master POMDP, and 20,000 dialog 
turns were run with the policy created from the training user 
model.  This process was repeated for values of perr from 0.05 to 
0.60. 

Figure 3 shows results for a range of values of perr.  The Y-
axis shows average reward gained per dialog turn, and error bars 
indicate the 95% confidence interval for the true average reward 
gained per dialog turn.  As speech recognition errors increase, 
the average reward per turn decreases, consistent with traditional 
methods [8, 14, 15].  For all values of perr except 0.05, 
performance on the test user model is no less than 0.5 points of 
the training user model and is generally very close.  In other 
words, the policy created for the training user model is 
performing similarly on the testing user model, implying that the 
method is reasonably robust to variations in patterns of user 
behavior.  In some cases, e.g., perr = 0.05, the policy performs 
better on the test user model than on the training user model.  
This is possible because different user models can provide 
different amounts of information.  In this example, the test user 
model provides slightly more information than the training user 
model, which enables the policy to perform better on the testing 
user model at certain error rates. 

Finally, the system was run in a simpler one slot 
configuration which allowed the master POMDP to be optimized 

directly.  Direct solutions were computed with 1,000 belief 
points and 50 iterations.  The summary POMDP method was 
then applied using 20,000 dialog turns, 50 belief points and 50 
iterations.  This process was repeated for values of M (i.e., 
distinct number of slot values) from 3 to 5000.  The concept 
error rate was set to perr = 0.30, and the discount to 99.0=λ  for 
all experiments.   

Figure 4 shows M vs. average or expected return for the 
summary method and the baseline.  The solution algorithm was 
not able to optimize the master POMDP directly for M > 100. 
Error bars show 95% confidence intervals for true expected 
return.  For small problems, i.e., lower values of M, the 
summary method performs equivalently to the baseline.  For 
larger problems, the summary method outperforms the baseline 
by an increasing margin.  Moreover, the summary POMDP 
policy was derived using 95% fewer belief points than the 
baseline; i.e., the summary method’s policies scale to large 
problems and are much more compact.   

It is interesting to note that as M increases, the performance 
of the summary POMDP method appears to increase toward an 
asymptote.  This trend is due to the fact that all confusions are 
equally likely in this model.  For a given error rate, the more 
concepts in the model, the less likely consistent confusions are.  
Thus, having more concepts helps the policy identify spurious 
evidence over the course of a dialog. 
 

6. CONCLUSION 
 
POMDP-based dialog managers have been shown to outperform 
MDP-based dialog managers, but to date have been limited to 
artificially small problems.  This paper has demonstrated a 
method for scaling POMDP-based dialog managers to problems 
of a realistic size.  The method has been demonstrated with a 2-
slot problem incorporating a user model estimated from real 
dialog data, and experiments have shown that the resulting 
dialog manager copes well with changes in patterns of user 
behavior.  Moreover, summary dialog policies appear to be as 
good as those derived directly for the full model. 

As presented here, the size of the state space and observation 
space in the summary POMDP still grow exponentially in the 
number of slots.  While many real-world problems use a handful 
of slots (e.g. 2, 3 or 4), others use many slots.  Thus one 
theoretical issue to address in future work is how to scale to 
large numbers of slots.  The factored nature of the summary 
POMDP may be of some help here, for example [7].  Finally, 
future practical work will attempt to validate the method by 
constructing an end-to-end system. 
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Figure 5: Example conversation and belief states.  The user is trying to travel from Cambridge to London.  
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