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Abstract

The provision of automatic systems that can provide con-
versational practice for beginners would make a valuable addi-
tion to existing aids for foreign language teaching. To achieve
this goal, the SCILL (Spoken Conversational Interaction for
Language Learning) project is developing a spoken dialogue
system that is capable of maintaining interactive dialogues with
non-native students in the target language. However, the ef-
fective realisation of the intelligent language understanding and
dialogue management needed for such a system, requires robust
recognition of poorly articulated non-native speech. Thispaper
studies several popular techniques for robust acoustic modelling
including HLDA, MAP and CMLLR on non-native speech data
within a specific dialogue domain. In addition, a novel ap-
proach for using cross language speech data to adapt the acous-
tic models is described and shown to be useful when very lim-
ited non-native adaptation data is available. The experimental
results provide a clear story of how to improve recognition per-
formance on non-native speech for a specific task, and this will
be of interest more generally for those developing multi-lingual
spoken dialogue systems.

1. Introduction
Interest in using computers to assist language learning has
grown over the past decade driven by increasing demand for
foreign language teaching. The SCILL (Spoken Conversational
Interaction for Language Learning) project is a collaboration
between MIT CSAIL Spoken Language Systems Group and
the Cambridge Machine Intelligence Laboratory. The aim of
the project is to integrate state-of-the-art technologiesin speech
recognition, natural language processing, understanding, trans-
lation, dialogue management and text-to-speech (TTS) to pro-
vide an intelligent system to assist language learning[1, 2]. This
system will have three major components:

1. an intelligent agent capable of maintaining an interactive
dialogue with the student in the target language. This
agent would act as the “native speaker” versed on some
topic selected from a pre-defined set.

2. a second intelligent agent capable of translating within
the topic domain between the student’s native language
and the target language. This agent will act as an on-line
“tutor” giving advice on how to say required words and
phrases.

3. an assessment component which provides a post-mortem
analysis of the conversation and gives feedback on errors
and areas to improve.

In the prototype SCILL system, the target language is Man-
darin Chinese, the native language is US or UK English and
the conversational domain is “the weather”. The system will
enable a student to participate in a dialogue with the system
in Mandarin whilst simultaneously having access to a “tutor”
that can tell them how to say certain phrases. For example, the
topic might be about the weather in a particular city, and thebi-
lingual “tutor” could provide the student with helpful hints on
how to ask questions about the weather tomorrow and the day
after. This arrangement allows the student to develop conver-
sational skills at their own pace in a non-threatening environ-
ment. The prototype system is based on MIT’s Galaxy system
[3] and integrated with Cambridge’s HTK/ATK speech recogni-
tion engine[4]. Although the system provides acceptable perfor-
mance for native Mandarin speakers, its performance degrades
badly on non-native beginners due to greatly reduced recogni-
tion accuracy. Therefore, improved performance on non-native
speech is needed before the system can be put to practical use.

Previous research on non-native speech recognition has
identified a number of useful techniques for improving robust-
ness [5]. Inspired by the fact that non-native speakers tendto
pronounce words differently from native speakers, Livescuand
Glass proposed a lexical modelling technique [6] to improve
non-native speech recognition. Similarly, Amdal and Kork-
mazskiy used joint pronunciation modelling to incorporatenon-
native pronunciations into the lexicon [7]. Both methods used
data driven techniques to derive a multiple pronunciation lex-
icon, but the result was a relatively modest reduction in word
error rate.

Based on the fact that native and non-native speech have
quite different acoustic spaces, the most straightforwardmethod
to improve non-native speech recognition would be to use non-
native acoustic models trained directly on non-native speech.
However, to obtain sufficient non-native training data is very
difficult, especially when the target group are early stage for-
eign language learners who have difficulty in reading prompts
and who often feel inhibited when speaking aloud. When tar-
get data is limited, speaker adaptation techniques such as MAP
[8] and MLLR [9] can be used to adapt acoustic models trained
on native data. Tomokiyo and Waibel have studied adaptation
methods for non-native speech [10] and found that substan-
tial gains can be obtained. Wang et al. compared the effec-
tiveness of several adaptation techniques on non-native speech
[11], and consistent improvements were confirmed. In addi-
tion to using adaptation techniques to refine the acoustic mod-
els, other acoustic modelling approaches have been proposed to
improve non-native speech recognition including model combi-
nation [12] and model interpolation [11].



Whilst significant gains have been obtained, the major-
ity of the existing work on non-native speech recognition has
been targetted at relatively fluent speakers for which reasonable
amounts of adaptation data could be obtained. As mentioned
above, however, data collection for early stage language learn-
ers is difficult. We are therefore interested in techniques which
can be used to improve robustness for non-native speakers even
when very limited or even no adaptation data is available.

In this paper, we firstly assess the use of current techniques
for robust speech recognition and adaptation in this particularly
difficult application domain. We then describe a cross language
adaptation technique which uses enrolment data in the speaker’s
native language to adapt the target language models. The results
demonstrate that a combination of techniques can significantly
improve performance. For example, in the experiments reported
here on early stage learners of Mandarin Chinese, the character
error rates were reduced by more than 50%.

The remainder of the paper is organised as follows. In sec-
tion 2, an evaluation database of bilingual speech collected in
the weather domain is described. Then in section 3, the base-
line bilingual speech recognition system is presented together
with its performance on non-native speech. In section 4, a num-
ber of model refinement techniques are introduced and evalu-
ated. Then in section 5, a cross-lingual adaptation technique is
described which can be used when there is no target language
adaptation data available. Finally conclusions are presented in
section 6.

2. Bilingual Corpus
A bilingual weather corpus was created for the SCILL project.
The corpus contains speech data from 40 speakers (20 native
Chinese and 20 native English), of which 15 are female and 25
are male. Each speaker was assigned a different set of 80 sen-
tences to read in the weather domain of which half are in En-
glish and half are in Chinese. The organisation of the sentence
sets is as follows:

1-10 pseudo-utterances in English
11-20 pseudo-utterances in Chinese
21-30 natural utterances in English
31-40 natural utterances in Chinese
41-50 utterances with mixed Chinese and English
51-65 natural utterances in English
66-80 natural utterances in Chinese

Sentences 1-50 are provided for testing and sentences 51-80
are provided for adaptation. All speech was read from prompts.
The “pseudo-utterances” denote prompts generated by a hand-
crafted finite state grammar and the natural utterances denote
prompts extracted from real conversations. Although not cov-
ered in this paper, this separation allows a comparison to be
made between grammar-constrained recognition and N-gram
based recognition.

Since the target application environment will be extremely
variable in terms of microphone, speaker and background noise,
the corpus was collected under realistic conditions such asin
classrooms during language classes. It thus covers variations
in background noise, microphones, volumes, ages of speak-
ers (from 14 to 65), and speaker fluency. The speech data is
recorded in 16k 16bits mono format.

The main purpose of this paper is to evaluate the speech
recognition performance of native-English speakers speaking

Chinese, hence the bilingual weather corpus has been parti-
tioned into six sets:

Native: Chinese sentences 11-20 and 31-40 spoken by all 20
Chinese speakers, 400 utterances in total.

NonNativeAB: Chinese sentences 11-20 and 31-40 spoken by
all 20 English speakers, 400 utterances in total.

NonNativeA: Chinese sentences 11-20 and 31-40 spoken by
the first 10 native English speakers, 200 utterances in to-
tal.

AdaptA: Chinese sentences 66-80 spoken by the first 10 native
English speakers, 150 utterances in total.

AdaptB: Chinese sentences 66-80 spoken by the last 10 native
English speakers, 150 utterances in total.

EnrolA: for each speaker in NonNativeA, English sentences
51-65 are used as cross-language enrolment data.

Note that in the above naming convention, the first 10 English
speakers are denoted by A, and the second 10 English speakers
by B.

3. Baseline System
The speech recognition engine used in our system is ATK 1.4
[4]. ATK is an application toolkit for HTK which allows real-
time recognisers built using HTK derived models. The acous-
tic model set and language model set used in ATK are entirely
compatible with those trained by HTK. Moreover, ATK sup-
ports multiple recognisers running simultaneously. Thus in the
SCILL system, bilingual recognition can be implemented with
two ATK recognisers, one in English and the other in Mandarin
Chinese. However, in this paper, we are only concerned with
the Mandarin recogniser.

The Mandarin acoustic model in our baseline system con-
sists of a word internal triphone hmm set with the standard 39
dimensional MFCC features and cepstral mean normalization
(CMN), and 4 mixture components for each tied state. The
model is trained on Microsoft’s Mandarin speech toolbox cor-
pus [13]. This corpus contains read speech from 100 male
speakers for a total of 19,688 utterances. The baseline language
model is a domain specific word class language model interpo-
lated with a standard bigram model trained from a text corpus
in weather domain. The vocabulary size is around 1000. Test-
ing this baseline system results in a 13.45% character errorrate
(CER) for native speakers (Native), and 40.22% for non-native
speakers (NonNativeAB). Clearly there is a large gap in CER
between native and non-native speakers, and indeed, for most
practical purposes the non-native performance is useless.The
next section discusses a number of ways in which this perfor-
mance gap can be reduced.

4. Model Refinement and Adaptation
4.1. Choice of front end

The effectiveness of different choices of front end was inves-
tigated by comparing MFCC and PLP features, and the use of
a HLDA transform [14]. As for the MFCC front-end, the PLP
front end includes 13 PLP coefficients and their delta and ac-
celeration coefficients to give in total 39 coefficients per frame.
The HLDA front-end, applies a52 � 39 dimensional HLDA
transform to the standard 39 PLP features augmented with 13
extra tertiary coefficients. Table 1 shows the recognition re-
sults in terms of CER. As can be seen, the MFCC front end has



similar performance when compared to PLP, but the use of the
PLP+HLDA transform reduces the CER by around 2% abso-
lute.

Table 1:Recognition results with different choices of front end

CER (%) MFCC PLP PLP+HLDA

Native 13.45 14.01 13.03
NonNativeAB 40.22 40.07 38.06

4.2. Word internal vs cross-word models

Another aspect concerning model complexity that we have in-
vestigated is the comparison between word internal (WI) tri-
phones and cross word (XW) triphones. Table 2 indicates that
XW triphones out-perform WI triphone on native speech data,
but degrade on non-native speech data. The reason for this is
probably because the fluency of the non-native speakers is poor
with many short pauses between words. Hence cross word ef-
fects are small and the silence context assumed at word ends by
word internal models dominates. Therefore, even though cross-
word triphones are commonly used in most speech recognition
systems, word-internal triphones are more appropriate forthis
application and are used in all further experiments reported be-
low.

Table 2:Recognition results using WI and XW triphones. Both
model sets use PLP+HLDA front-end

CER (%) Word Internal (WI) Cross Word (XW)

Native 13.03 10.87
NonNativeAB 38.06 41.16

4.3. Number of mixture components

It is well known that enhancing the model complexity by in-
creasing the number of mixture components of the hmm set will
lead to steady improvement on recognition accuracy, as longas
there is sufficient training data to prevent overtraining. Table 3
shows a steady CER reduction on native speech when increas-
ing the component number from 4 to 8 per state, however, on the
non-native speech a small degradation is observed. This may
be because “sharpening” the acoustic models on native training
data moves them further away from the non-native speakers.
However, since the degradation on non-native speech is very
small, only 0.52%, and the improvement on native speech is
more significant, about 1.6%, 8 mixture components per state
are used in our system.

Table 3: Recognition results over different number of mixture
components.

CER (%) 4mix 6mix 8mix

Native 13.03 11.77 11.48
NonNativeAB 38.06 39.51 38.58

4.4. Adaptation using CMLLR and MAP

Constrained MLLR [9] and MAP [8] have been widely used
for speaker adaptation and have proved to be very effective.In

the SCILL application domain, adaptation data in the targetlan-
guage is not available for individual speakers because it isusu-
ally too difficult for them to produce. However, adaptation can
be used to transform a “native” model set into a model set tuned
for non-native speakers.

Table 4 presents the recognition results of using CMLLR
and MAP adaptation to transform the native speaker models to
adapted non-native speaker models. The baseline native model
is the 8 mixture PLP+HLDA word internal triphone set. With
150 utterances in the non-overlapping adaptation set AdaptB,
41 CMLLR transforms were estimated. The results show that
using a pool of non-native adaptation data collected in advance,
can substantially improve the performance on new non-native
speakers. Furthermore, it is clear that CMLLR is more effective
than MAP giving a 19% absolute reduction in CER compared
to 13% absolute reduction for MAP. Finally, note that adapting
the model set towards non-native speakers does not seriously
impact on the performance for native speakers.

Table 4: Recognition results of CMLLR and MAP adaptation
using the AdaptB data set.

CER (%) Baseline CMLLR MAP

Native 11.48 11.60 13.89
NonNativeA 39.86 20.66 26.83

5. Cross language speaker adaptation
In the last section, adaptation of native Mandarin Chinese mod-
els towards a non-native speaker set improved recognition for
new non-natives outside of the adaptation set. Speaker depen-
dent adaptation might be expected to provide further improve-
ment, however as noted above, it is very difficult in practicefor
early stage learners to provide enrolment data in a new language
for which they have great difficulty articulating. They would of
course be easily able to produce enrolment data in their own
native language.

When someone is learning a foreign language, they tend to
use their native phoneme set to pronounce words in the foreign
language, and this motivates the idea of cross language adap-
tation, which in our case is to use English data to adapt Man-
darin Chinese acoustic models. To do this, we first constructed
a mapping by-hand between the phoneme sets of the two lan-
guages. Since the two languages are very different, the map-
ping is not necessarily one to one, neither is it a full mapping
that finds counterparts in Chinese for all the phonemes in En-
glish. A fragment of this mapping is shown in Table 5. Then for
each non-native speaker in test set NonNativeA, we use his/her
corresponding 15 English utterances in EnrolA to conduct cross
language adaptation as follows.

For each English enrolment utterance:

1. force align the utterance using an English acoustic model
set so that the phoneme boundaries are marked.

2. for each English phonex spanning segmentt1 to t2, if
there exists a phoneme mapping in Table 5x ! y, use
Viterbi recognition to find which of all the Mandarin tri-
phones with base phoney matches the acoustic segmentt1 to t2 the best.

On conclusion of this process, all phone segments of the en-
rolment data which have entries in the phone mapping table will
have an associated Mandarin triphone model. Treating these



Table 5:Phoneme mapping from English to Chinese.

English Chinese English Chinese

ay ai aa a
ao o aw ao
ax e ah a
b b d d
ey ei f f
er er g g
hh h ih i
iy i k k
l l m m
n n ow ou

uw ou p p
t t s s
w w y y� � � � � � � � � � � �

segments and their associated models as adaptation data, CM-
LLR adaptation can be performed. Due to the limited amount
of data, this adaptation is limited to a single global transform.

In Table 6, the result of cross language speaker adaptation
is shown. Even though there is a relatively small amount of
data (15 utterances) and the data is in the wrong language, a
5.8% absolute reduction in CER is obtained. This shows that
cross language adaptation is feasible and effective when within
language adaptation data is unavailable. In addition, if wepool
the cross language data “EnrolA” together with the within lan-
guage data “AdaptB” to carry out CMLLR adaptation, further
improvement (19.38% CER) is obtained. This result is compa-
rable with the conventional speaker adaptation result (19.72%)
which uses speaker dependent data in “AdaptA” to do CMLLR
adaptation for each speaker.

Table 6:Recognition results of cross language adaptation.

CER (%) baseline EnrolA +AdaptB AdaptA

NonNativeA 39.86 34.07 19.38 19.72

6. Conclusions
In the framework of developing a practical spoken dialogue sys-
tem for language learning, this paper has focused on solving
one of the main obstacles - robust recognition of the speech
of early stage language learners. Various acoustic modelling
and adaptation techniques have been investigated to optimise
speech recognition performance. These experiments showed
that PLP+HLDA provides the most robust front-end and CM-
LLR is a very effective adaptation technique for making native
acoustic models more robust to non-natives. It was also shown
that the use of cross-word triphones is not appropriate for this
type of data.

Experience has shown that early stage learners of Mandarin
find it very difficult to provide enrolment data, hence conven-
tional speaker enrolment is not possible. However, it is possible
to collect native English enrolment data and by using the pro-
posed cross-language adaptation procedure worthwhile gains
can be obtained.

Overall, with the techniques implemented, the final char-
acter error rate on non-native speakers has been halved from

40% to 19.4%. Although this is still higher than the comparable
native speaker performance of 11.4%, by suitably constraining
the language model, we believe that this will nevertheless al-
low us to build and deply a practical dialogue system which can
provide useful conversational practice for early stage language
learners.
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