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Abstract— Voice morphing is a technique for modifying a

transformation-based approaches are now the most popular.

source speaker's speech to sound as if it was spoken by soman particular, the continuous probabilistic transforroatiap-

designated target speaker. The core process in a voice moriply

system is the transformation of the spectral envelope of the
source speaker to match that of the target speaker and linear

transformations estimated from time-aligned parallel training

proach introduced by Stylianou et al. [4] provides the LHasel
for modern systems. In this approach, a Gaussian mixture
model (GMM) is used to classify each incoming speech

data are commonly used to achieve this. However, the naive frame, and a set of linear transformations weighted by the

application of envelope transformation combined with the rec-
essary pitch and duration modifications will result in noticeable
artifacts. This paper studies the linear transformation approach

to voice morphing and investigates these two specific issues

Firstly, a general maximum likelihood framework is proposed for
transform estimation which avoids the need for parallel traning
data inherent in conventional least mean square approacheSec-
ondly, the main causes of artifacts are identified as being duto
glottal coupling, unnatural phase dispersion and the high gectral
variance of unvoiced sounds, and compensation techniquesea
developed to mitigate these. The resulting voice morphingystem
is evaluated using both subjective and objective measure$hese
tests show that the proposed approaches are capable of effeely
transforming speaker identity whilst maintaining high quality.
Furthermore, they do not require carefully prepared parallel
training data.

Index Terms— Voice morphing, voice conversion, linear trans-
formation, phase dispersion

I. INTRODUCTION

continuous GMM probabilities are applied to give a smoothly
varying target output. The linear transformations aredsiy
estimated from time-aligned parallel training data usiegst
mean squares. More recently, Kain has proposed a variant of
this method in which the GMM classification is based on a
joint density model[5]. However, like the original Styliam
approach, it still relies on parallel training data. Altlybuthe
requirement for parallel training data is often acceptatblere
are applications which require voice transformation fon-no
parallel training data. Examples can be found in the enter-
tainment and media industries where recordings of unknown
speakers need to be transformed to sound like well-known
personalities. Further uses are envisaged in applicatibese
the provision of parallel data is impossible such as when the
source and target speaker speak different languages.

This paper begins by expressing the continuous probabilis-
tic transform of Stylianou as a simple interpolated linear
transform. Expressed in a compact form, this represemtatio

Voice morphing which is also referred to as voice tranghen leads straightforwardly to the realisation of the con-
formation and voice conversion is a technique for modifyingentional training and conversion algorithms. In analogy t

a source speaker’s speech to sound as if it was spokenthg transform-based adaptation methods used in recognitio
some designated target speaker. There are many applEatigh, [8], the estimation of the interpolated transform i®ith
of voice morphing including customising voices for TTSxtended to a maximum likelihood formulation which does
systems, transforming voice-overs in adverts and films tmt require that the source and training data be parallel.
sound like that of a well-known celebrity, and enhancing the Although interpolated linear transforms are effective in
speech of impaired speakers such as laryngectomees. Two tkapsforming speaker identity, the direct transformatiin
requirements of many of these applications are that firsthpiccessive source speech frames to yield the requirecdt targe
they should not rely on large amounts of parallel trainintadaspeech will result in a number artifacts. The reasons for
where both speakers recite identical texts, and secoritly, this are as follows. Firstly, the reduced dimensionality of
high audio quality of the source should be preserved in tiiee spectral vector used to represent the spectral envelope
transformed speech. and the averaging effect of the linear transformation tesul
The core process in a voice morphing system is the transfar-formant broadening and a loss of spectral detail. Segondl
mation of the spectral envelope of the source speaker toomatmnatural phase dispersion in the target speech can lead to
that of the target speaker and various approaches have baedible artifacts and this effect is aggravated when pituth a
proposed for doing this such as codebook mapping [1], [2]uration are modified. Thirdly, unvoiced sounds have very
formant mapping [3] and linear transformations [4], [5]].[6 high variance and are typically not transformed. However,
Codebook mapping, however, typically leads to discontiesii in that case, residual voicing from the source is carried ove
in the transformed speech. Although some discontinuitiés the target speech resulting in a disconcerting backgtoun
can be resolved by some form of interpolation techniguehispering effect.
[2], the conversion approach can still suffer from a lack of To achieve high quality of voice conversion, all these issue
robustness as well as degraded quality. On the other hahdye to be taken into account and in this paper, we identify an
formant mapping is prone to formant tracking errors. Hencpresent solutions for each of them. These include a spectral



refinement approach to compensate the spectral distodiorshould be independent of the message and the environment so

phase prediction method for natural phase coupling and #mrat whatever and wherever the source speaker speaksrhis/h

unvoiced sounds transformation scheme. Each of these teabice characteristics can be successfully transformeduoc

nigues is assessed individually and the overall performarfic like the target speaker. Clearly the changes applied tcethes

the complete solution evaluated using listening testsr&hi¢ features must be capable of straightforward realizatiothiey

is found that the enhancements significantly improve sgealepeech model. Thirdly, the type of conversion function and

identification scores and perceived audio quality. the method of training and applying the conversion function
The remainder of the paper is organised as follows. Firshust be decided. More details on these two latter issues are

the transform-based voice morphing framework is outlined presented below.

Section Il, followed by a description of the interpolateniar

transform and its estimation under different training dendg Spectral Parameters

tions. In Section Ill, the various problems discussed atzoge .
: : . As indicated above, the overall shape of the spectral en-

their corresponding solutions are presented. The perfocma

ofthe enhanced system uith these new techniques megra(§iFER PTERCE T SR BPRARTET e ORI
is evaluated in Section IV and finally, overall conclusions a P

. . voiced sounds. Generally, there are several ways to estimat
presented in Section V. the spectral envelope, such as using LPC [12], cepstral co-
efficients [13] and line spectral frequencies (LSF) [15]. In

Il. TRANSFORMBASED VOICE MORPHING SYSTEM Stylianou’s system [4], a set of discrete MFCC coefficients
A. Overall Framework is used to represent the spectral envelope. They concluded

Transform-based voice morphing technology converts tl?lgat this method provides a better envelope fit at the spdcifie

speaker identity by modifying the parameters of an acous [gauency points than LPC—pased methods. Whilst Kain in [5]
representation of the speech signal. It normally incluses t used line spectral frequencies (LSF) converted from the LPC

parts, the training procedure and the transformation [sharee filter parqmeters_ for the reason that LSFs have better_linegr
The training procedure operates on examples of speech frerolqtlon attrlbutes._ Both methods havg been stud1e<_j :
the source and the target speakers. The input speech exxam fi Previous researg:h n [6.] and [11]. LS'.: s the final .ch0|ce
are first analyzed to extract the spectral parameters theg-re Or our system as it requires less coefﬂmgntg t9 efflcu_ently
sent the speaker identity. Usually these parameters erthedetaPture _th_e formant stru_cture. For cases with I|m|teql trgin
short-term acoustic features, such as the spectrum shape fa, this IS rather crucial. Furthermore the robust !rulm_o
the formant structure. After the feature extraction, a ession tion propert.les of LSF are adyantageo_us when using linear
function is trained to capture the relationship between tﬁ@nsformgtlons for _the conversion function.
source parameters and the corresponding target paramiaters The main steps in estimating the LSF envelope for each
the transformation procedure, the new spectral paramatersSpeeCh frame are 6_15 follows, )
obtained by applying the trained conversion functions ® th 1) Use the amplitudes of the harmoniggk = 1,- - -, K)
source parameters. Finally, the morphed speech is synéesi determined by the pitch synchronous sinusoidal model
from the converted parameters. to represent the magnitude spectruf.is determined

Although it is outside the scope of this paper, mapping the DY the fundamental frequendy, its value can typically
prosody of the source speaker to be like the target speasar is range from 50 to 200. _
equally important and challenging problem. In all of the wor 2) Resample the magnitude spectrum non-uniformly ac-
reported in this paper, the source pitch is simply shifted an cording to the bark scale frequency warping using cubic
scaled to match the mean and variance of the target speaker. SPline interpolation [14]. _ .
This is just about adequate for similar speakers such ag thos3) Compute the LPC coefficients by applying the Levinson-
used in the evaluations reported later in the paper but it is Durbin algorithm to the autocorrelation sequence of the
clearly not a general solution. warped power spectrum.

There are three inter-dependent issues that must be decide) Convert the LPC coefficients to LSF.
before building a voice morphing system. Firstly, a mathe- In order to maintain adequate encoding of the formant
matical model must be chosen which allows the speech sigtiucture, LSF spectral vectors with an orderpof 15 were
to be manipulated and regenerated with minimum distortioused throughout our voice conversion experiments.
Previous research [9], [4], [5] suggests that the sinusoida
model is a good candidate since, in principle at least, thdS Linear Transforms
model can support modifications to both the prosody and th
spectral characteristics of the source signal without ¢adu
ing significant artifacts[10]. However, in practice, corsien
quality is always compromised by phase incoherency in t &
regenerated signal, and to minimise this problem, a pit%a
synchronous sinusoidal model is used in our system [
[11]. Secondly, the acoustic features which enable humans t
identify speakers must be extracted and coded. These ésatur X = [x1,X2, - *,X;]; Y = [y1,¥2, ", ¥YT); Q)

®We now turn to the key problem of finding an appropri-
ate conversion function to transform the spectral pararsete

ssume that the training data contains two sets of spectral
ctorsX andY which respectively encode the speech of the
urce speaker and the target speaker,



where each vectax; (or y;) is of dimensionp.

A straightforward method to convert the source vectors
is to use a linear transform. In the general case, the linear
transformation of @-dimensional vectoxk is represented by
ap x (p+ 1) dimensional matriX?” applied to the extended
vector x = [x/,1). Since there are a wide variety speech
sounds, a single global transform is not sufficient to captur
the variability in human speech. Therefore, a commonly used
technique is to classify the speech sounds into classeg asin
statistical classifier such as a Gaussian Mixture Model (GMM AN (x)%
and then apply a class-specific transform. Thus, in this,case = WA(x) (5)
the source data s& would be first grouped intdVv classes
using a GMM, and then a class-specific transfdifp would
be estimated for each speech clégsforn =1, ---, N. L

However, in practice, the selection of a single transform W = W1:W2:"'5WN}
from a finite set of NV transformations can lead to discontinu-
ities in the output signal. In addition, the selected transf and
may not be appropriate for source vectors that fall in the -
overlap area between classes. Hence, in order to generate A (x)x
more robust transformations, a soft classification is pretein e
which all N transformations contribute to the conversion of the Az (%)%
source vector. The contribution degree of each transfoomat A(x) = " )
matrix depends on the degree to which that source vector :
belongs to the corresponding speech class. Thus the camvers X
function applied to each source vector has the following AN (x)x
general interpolation form,

AL(x)x
A2 (x)x

where

(6)

px (Nx(pt1))

(N><(P+1)) x1

Gathering all the training vectors into single matriéésnd
N Y as above gives the following set of simultaneous equations
Fx) = Ax)W,)x (2)  for estimatingW,
n=1 Y = WA(X) (8)
where \,, is the interpolation weight of transformation matri
W,, and its value is given by the probability of vectofalling
in speech clas¢),,, i.e.

XThe standard least-squares solution to equation (8) is then

-1

W = YA(X)' (A(X)A(X)’) 9)
an N (X5 i, X))

An(x) = P(Cylx) = (3) In practice, we use the pseudo inverse in equation (9), since

N
> im1 N (x5 iy ) for many cases where the number of mixtures is large and
where {a,}, {1} and {2,} are the weights, means andhe amount of training data is limitedA(X)A(X)" will
covariances of the GMM model respectively, aNd) denotes Pecome non-positive definite due to numerical errors. This
the normal distribution. It should be noted that\if(x) is set LSE training approach is essentially equivalent to Stylizis

as approach in [4] but with a more interpretable and flexible
formulation.

1 for n:argmax(P(C |X)) The _a<_:curate f_;\lignme_nt of source and tgrget_ vectors in

An (%) _{ 0 otherwise " (4) the training set is crucial for a robust estimation of the

transformation matrices. Normally a Dynamic Time Warping
then a hard classification is applied to the conversion fanct (DTW) algorithm is used to obtain the required time aligntnen
in equation (2). where the local cost function is the spectral distance betwe

The conversion functioff is entirely defined by thex (p+ source and target vectors. However, the alignment obtained
1) dimensional matrice®/,,, forn = 1,---, N. Two different using this method will sometimes be distorted when the sourc
estimation methods can be used to train these transformatémd target speakers are very different, this is especially a
matrices. problem in cross gender transformation.

1) Least Square Error EstimationWhen parallel training  Where the orthography of the training data is available, a
data is available, the transformation matrices can be astith more robust approach is to use a speech recogniser in “forced
directly using the least square error (LSE) criterion. Iis thalignment mode” to find corresponding phone or sub-phone
case, the source and target vectors are time aligned sutch twundaries. A DTW algorithm can then be employed to align
each source training vectar; corresponds to a target trainingthe corresponding segments between the source and target
vectory;. For ease of manipulation, the general form of thatterances. In the work described here, the HTK recogniser
interpolated transformation in (2) can be rewritten contlyac is used [18] with a set of speaker independent monophone
as, HMMs. The recogniser is used to force align both the source



and the corresponding target utterance, after which the-utt) " P(qm(t)|5<§k_l),/\/l) = 1 which justifies the expansion

ances can be labelled into time-marked segments where echquation (12).

segment corresponds to one HMM state. Noting that the likelihood in equation (13) only depends on
2) Maximum Likelihood EstimationAs noted in the intro- the second parameter ¢ and K, it follows that

duction, the provision of parallel training data is not a = - =

feasible and phence it onId be useful %‘ the requwe?ﬁané - 1)|M) QX XD X* 1)) _’C(X(k DX 1)) (16)

formation matrices could be estimated from non-paralléhdaand by Jensen’s Inequality,

The form of equation (5) suggests that, analogous to the use _ ~ ~ ~

of transforms for adaptation in speech recognition [7],, [8] KXED XMWy < oxE=1 XE=D), 17)

ma.\ximur.n likelihood (ML) should provide a framework forHence if the auxiliary functior@()"((’“*l),f((k)) is maximised

doing this. such that QX+~ )X ™M) > QXH--1X(¢-D), then it

First consider the simple case of one global linear tramsfor, . (k)
ollows from equations (13), (16) and (17) thatX'*)|M) >
W and assume that there is a statistical modethat has been I X(’“_l)l/\/l). Thus, repeated maximisation of equation (14)

trained to well-represent the target speaker’'s speechn TQS find W), each time updating the Gaussian component
the optimal linear transforril’ applied to the source vectors accupation probabilities to use the previous transformdse

X t_ {x;]} would be the ?nelt:althres(;ﬂtst;]n the Ccln;/erttﬁgventually toIW. In practice, it is found that convergence
vectors having maximum log likelihood with respect to Beeurs quickly and only a few iterations are required. Intjee

target speech model, i.e. often just one iteration is sufficient for similar speakers.
The required maximisation at each stépproceeds by

iy _ argmax Zlo POVERIM) 10) rewntmgthde auxiliary function in (14) (with the constaetms
w - g ¢ suppressed) as,
B T
_ = = 1
= A LVRIM) a1 oXEDXW) = 133 5.00) (18)
t=1 m
where, in our case, the statistical mod&f is a Hidden {(Wit — ) S (W — pm)

Markov Model (HMM).

There is no closed-form solution fdi/, but an efficient where W = W®) is the transform at step, and u,, and
iterative solution is possible using Expectation-Maxiatisn Y, are the mean vector and covariance matrix of Gaussian
(EM). Consider the source data skt transformed at each componentn in M, andj3,,(t) is,
iteration stepk by W) to glve a converted data s&t(*) = - (k—1)

{x"}, wherex(" = W®x,, (note thatk > 0 andx{” = Bun(t) = BLV () = Plam(®)I%; 7, M). (19)
x;), the log Iikelihood can then be decomposed as, Note that the initial value 0By (t) = P (g (t)[x¢, M).

Differentiating Q in equation (18) with respect td/ and
5 T equating to zero gives,
LEX®|M) = " logP(W Pz, M)
t=1
T —1 -
=33 PlgnF Y M) log PW Wz M) (12) ;Zﬂm s = ;Zﬂm(“zm Wik, (20)
The left-hand side of equation (20) is independent#iéfso

(k)
= ZP G OFFY M) 1o P( ’qm(k)”M) call this Z. Introducing variables,
m ! Pl (%7, M)

tlm

(k=1) x (k) X (k—1) x (k)
QUK X0) — KK K1) 13) VO = 3605 (22)
where m
. D® = xx (22)
QX1 X (M) ZZ (gm ()[R, M) equation (20) can then be rewritten as
logP (", 4y 14 T
. ogP(x;", qm (t)I M) (14) z =% vOWwDO, (23)
KX, XO) = 33 Pl M)
t=1 m Assuming that M has diagonal covariance matrices, a

10gP(gm(t )|X(k) M). (15) closed form solution can be derived by defining a new matrix
G with elements[7],
Here ¢,,(t) indicates Gaussian component of the tar-
get HMM M at time ¢, and the sum is taken over

(t (t .
all components which can be aligned witk,. Hence ” Z ( )



(a) within gender (b) cross gender

—— LSE —— LSE
- ML o ML

w) =Gz (25) = T

W is then calculated row by row using 655

wherew; andz; are thei-th row of W andZ, respectively.

To estimate multiple transforms using this scheme, a source
GMM is used to assign the source vectors to classes via
equation (4) as in the LSE estimation scheme. A transform
matrix is then estimated separately for each class using the
above ML scheme applied to just the data for that class.
Though it is theoretically possible to estimate multiplants-
forms using soft classification, in practice, matrid®@sand o5 ] e
G will become too large to invert. Hence the simpler hard ol ] sas|
classification approach is used here. N N N

As with the least mean squares method using parallel R S,
data, performance is greatly improved if sub-phone segment
boundaries can be accurately determined in the source data1. Spectral distortion ratio for LSE and ML transforms, (a) hiit-
using the target HMMM and “forced alignment” recognition gender voice conversion, (b) cross-gender voice conversio
mode. This enables the set of Gaussians evaluated for each
source frame to be limited to just those associated with the ] ]
HMM state corresponding to the associated sub-phone. THEere{a} are the amplitudes resampled from the normalised
does, of course, require that the orthography of the sourdectral envelope at K uniformly spread frequencies, and
utterances be known. Similarly, knowing the orthography olf is set to 100 throughout our experiments. A d|s_tort|qn ratio
the target training data makes training the target HMM sémpliS then used to compare the converted-to-target distoviitn
and more effective. More details on implementation issues 4"€ Source-to-target distortion, which is defined as,

given in the following subsection. ;
D= Zt:l d(Stgt (t)a Sconv (t))

D. Evaluation Zthl d(Stgt(t), Ssre(t))

1) Data: The VOICES database from OGI is used fowhere S;g;(t), Ssrc(t) and Scon(t) are the target spectral
evaluation[5]. This corpus contains recorded speech fram gnvelope, source spectral envelope and the convertedapect
different speakers reading 50 phonetically rich senterigash €nvelope at time respectively. The summation in each case
sentence is spoken 3 times by each speaker. The speech §at@mputed over time-aligned data ahds the total number
was recorded at 22K Hz sampling rate using a 16 bit encodiffjtest vectors after time alignment.
in a professional sound-booth with high quality headphones It should be noted that since the spectral distortion also
The recording procedure involved a “mimicking” approacHepends on the degree to which the time-alignment process
which resulted in a high degree of natural time-alignmeggn align similar vectors, it is typically quite large, ewehen
between different speakers. Pitch period information fache applied to the same speaker. For example, the average log
utterance is also provided and this was used for our pitsRectral distortiond between two utterances with identical
synchronous speech representation. In our experimenis, féontent and spoken by the same speaker can vary from 5 to 10
different voice conversion tasks were investigated: ntade- dB, whilst the distortion between two different speakersildo
male, male-to-female, female-to-male and female-to-femaiormally be in the range from 13 dB to 20 dB. So in practice,
conversion. For each speaker-pair, the first 120 utteramees @ distortion ratio of D = 50% would represent acceptable
used as training data, and the remaining 30 utterances fa¢gnversion performance. Note also that a 100% distortita ra
the test set. corresponds to the distortion between the source and target

2) Objective MeasureObjective measures seek to evaluspectrum.
ate the differences between two speech signals. Since mang) LSE and ML ComparisonThe training of LSE trans-
perceived sound differences can be interpreted in termsfefms is straightforward. First, a GMM model is trained on
differences of spectral features [16], spectral distortie the source vectors and the interpolation weights are cosaput
considered to be a reasonable metric both mathematically &¢cording to equation (3). Second, a forced alignment of all
subjectively. In speech processing, a log spectral medsuraitterances is computed and sub-phone boundaries are marked
often used to determine the distance between two spectfa [{fhird, DTW-based time alignment is applied constrained by
Similarly in this paper, the log spectral distortion betwéao these sub-phone boundaries to produce a set of alignedesourc
spectral envelopes was used to provide an objective meadaf@et vector pairs. In the case of the OGI Voice corpus,
of the conversion performance around 30,000 vector pairs are obtained for each speaker pai

Once the training data has been extracted, the transfamati
K matrices can be computed using equation (9).
d(S1,8,) = %2(1010910%16 — 10logyoal )? (26) The ML training scheme is a Iittle' mor_e.complex.. First,
1 the orthography of the target speaker’s training data isvkno

62.51

log spectral distortion ratio %
log spectral distortion ratio %

621 1 5451

1 2 4 6 8 10 12

x 100% (27)



TABLE 1l
The result of a preference test to compare LSE and ML transfdr
utterances.

and used to train a monophone HMM set with 4 Gaussian
mixture components per state. Since the data is sparsaf-a tie
mixture technique is employed such that the HMM states

share Gaussian components but with different weights for ML LSE

different states. The same source GMM as for LSE is used preference| 48.3% | 51.7%

to classify the source vectors so that multiple ML transferm

can be estimated. As suggested above, the source utterances ‘ ‘ ‘ ‘ ‘ ‘

were force-aligned to map every source training vector to a
specific HMM sub-phone state, which therefore required that e - ]
the orthography of the source training data is also knowe. Th
Gaussian component occupation probabilities were then com
puted as per equation (19) and then the required transfammat
matrices estimated using equation (25).

The number of iterations required depends on the source
and target data. One iteration is typically sufficient fothin-
gender conversion. However, for cross-gender conversian,
or more iterations are necessary.

Fig.1 shows the spectral distortion ratio using LSE and ML
transforms. For both methods, the distortion decreasebeas t
number of transforms is increased until data sparsity tesul > 20 "‘é’umbemfeﬁ‘a"ussiancon?;?onen‘sini’i°.arge¢HJ$° 10
in over-training. For these experiments with approximatel
30,000 training vectors per speaker, the results suggast thg. 2.  Spectral distortion ratio over different numbers of Gaassi
around 10 transforms is optimal. This correspondsi@iox components in the target HMM. (10 ML transforms)

(15 x 16) = 2400 parameters. The difference between LSE

and ML transforms in the within gender voice conversion is _ ) o

very small as shown by Fig.1(a), however the difference §ource to target d|st(_)rt|_on of cross gendgr conversion ishmu
larger for the cross gender conversion case as shown in FRjger than that of within gender conversion.

1(b). However, defining the signal-to-noise ratio between t Although the differences are small and are subjectively

LSE and ML transformed utterances as imperceptable, distortion is nevertheless consisterdlyet
in all cases for LSE derived transforms compared to ML

N ) derived transforms. This may be because the use of time-
SNR =10 x logro > 1 Sise(n) (28) aligned parallel data in the LSE case allows the evolution
SN 8156 (1) = S (n)]? of the spectral vectors to be captured whereas in the ML
case, the spectral evolution is only approximately modelle
Table | shows that the signal to noise ratio is actually Vel the HMM state transitions. This suggests that improving
high even in the cross-gender case and should be impercepé modelling accuracy of the target HMM should improve
able to human listeners. To test this further, a formaltist¢ he ML transforms.
tes_t was conducted whereby listeners were presented With:ig_ 2 shows that increasing the number of Gaussian com-
pairs of utterances generated by the LSE and the ML methgdnents in the target HMM can reduce the spectral distortion
respectively, and asked to select the one with the highesfis however this is limited by data sparsity. Fig. 3 shofa
perceived quality. Note that in this experiment only theltya \yhen increasing the number of training vectors, the spectra
of the converted speech is of concern, not the transformatigistortion ratio decreases for both the ML and LSE cases.
accuracy of speaker identity. The latter aspect is evalliéte Thys not surprisingly, both methods can benefit from more
section IV. Table Il indicates that the listeners show awnoﬁaining data but the ML method can benefit from having more
equal preference for the ML and LSE converted utterancggqet training data even when the source data is limiteés Th
and a two tailed t-test indicates that the difference is éwde|aier point can be important for applications where theve i
insignificant (p=0.499 in support of the null hypothesis). 5 yery large amount of data available for the target but only
limited data for the source [21].
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log spectral distortion ratio %
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TABLE |
The SNR ratio in dB between LSE and ML transformed utterances TABLE IlI

The spectral distortion ratios of LSE, parallel ML and noarallel ML

within gender | cross gender|

SNR 30.4 4.1 transforms.
) ) ) LSE parallel ML | non-parallel ML
Note that although the distortion ratio of the cross gender within gender | 65.1% 67.4% 68.0%
conversion seems much lower than that of the within gender cross gender| 57.1% 61.8% 61.1%

conversion as shown in Fig. 1, the average log spectral
distortion value is actually higher (8.83 dB for cross gande The above evaluation was conducted using entirely parallel
and 8.37 dB for within gender). This is simply because theaining data in order to be able to compare the LSE and



() within gender (b) cross gender LSE conversion function
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frequency (Hz)
number of training vectors X1000 number of training vectors X1000

. . . . . Fig. 4. Examples of spectral envelope conversion using ML and LSE
Fig. 3. Spectral distortion ratio for single LSE and ML transformeed estimated linear transforms. (a) Spectral envelope ceiger using LSE
different numbers of training vectors, (a) within gendeiceoconversion, (b) estimated transforms. (b) Spectral envelope conversiomguslL estimated

cross gender voice conversion. transforms. (dotted line: the source spectral envelopghttr solid line: the
target spectrum; dark solid line: the converted spectraledope.)

ML approaches. However, the use of parallel data for the ML

approach may flatter the results compared to what would hagepreserved, a harsh quality is introduced into the comdert
been obtained with truly non-parallel training data. Tot tespeech. However, to simultaneously model the magnitude and
this a further experiment was conducted in which the 13fhase and then convert them both via a single unified tramsfor
training utterances for each speaker were divided into tvi® extremely difficult.

equal sets. For the LSE estimation, the first 60 utterances oSince phase dispersion actually determines waveform shape
both source and target speaker were used for training. Fowe can predict the waveform shape based on the spectral
ML estimation, however, the first 60 utterances of the targetvelope then we can also predict the phases. Inspired by
speaker were used to train the tied-mixture HMM. Then bothis idea, the following phase prediction approach has been
sets of source utterances were used to generate two differgeveloped.

ML transforms: the “parallel” ML transforms, and the “non- A GMM model is first trained to cluster the target spec-
parallel” ML transforms. Since the training data was onlytal envelopes coded via LSF coefficients inld classes
half the size of the previous experiments, only 4 transfornig, ... C,,) such as in the ML estimation. Then for each
were estimated in each case. As shown in Table Ill, tharget envelopey;, we have a set of posterior probabilities
parallel ML and the non-parallel ML transforms gave verny(C,,|y:). The vectorP(y,) composed from these probabili-

similar performance, although both are worse than the LSfes can then be regarded as another form of representdtion o
transforms. The latter is almost certainly because theetarghe spectral shape,

HMM was badly undertrained with only 60 utterances.
Finally, an example of spectral envelope conversion using _ /

LSE and ML transforms is shown in Fig. 4. Both methods Plye) = [P(Cilyo), -, P(Culye)] (29)

have converted the source spectral envelope to match th&ach element?(C;|y;) of this vector can be regarded as

target, however many spectral details have been lost asd ftitie weight of a codebook entr§; and the set o/ codebook

is a major cause of the spectral distortion. Moreover,fiste entries

report that overall the converted speech is not high quality T =[S, -, Sum] (30)

with many artifacts including a muffled effect. In the follmg

section, these artifacts are analysed and solutions gegken can be chosen to minimise the coding error over the training
data. That is7 can be chosen to minimize the following least

[1l. SYSTEM ENHANCEMENT square error criterion,
The converted speech produced by the baseline system N
described above will often contain artifacts. This sectits E=Y (s(t)=TP(y:)) (s(t) = TP(y:)) (31)

cusses these artifacts in more detail and describes theosmu t
developed to mitigate them.

1

wheres(t) is thet'th speech frame in the target training data
o normalized to a certain pitch value, say 100Hz. The standard
A. Phase Prediction solution to equation (31) is then

As is well known, the spectral magnitude and phase of hu-

N N
man speech are highly correlated. In the baseline systeem wh T — s(OP(v,) Py P(v.) 32
only spectral magnitudes are modified and the original phase (g (t)P(ye) )(; (Pe) ) 59
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B. Spectral Refinement

As noted earlier in Fig.4, although the formant structure
of the source speech has been transformed to match the
target, the spectral detail has been lost as a result of iregluc
the dimensionality of the envelope representation durireg t
transform. Another clearly visible effect is the broadenof
the spectral peaks caused, at least in part, by the averaging
effect of the estimation method. All these degradationsd lea
to muffled effects in the converted speech.

To solve this problem, a straightforward idea is to re-
introduce the lost spectral details to the converted epesio
A spectral residual prediction approach has been develtiped
L do this based on the residual codebook method proposed in

Frequency (H2) [5], where the codebook is trained using a GMM model.

Fig. 5. Example of the unwrapped phase spectra generated by minimumThe lOg magthde spectrum of the spectral residuab

phase, phase codebook and phase prediction. Light solid five target phase Calculated via
spectrum. Dark solid line:the phase spectrum generatedhag@ prediction.

Dashed line: the phase spectrum generated by minimum pBexted line: _ o
the phase spectrum generated by phase codebook. Tt = 2010910H(t)5m 20[0910H(t>6’“’ (34)

—— target

201 — predict
— — minimum

Angle

whereH (t);,, is the amplitude contour of the sinusoidal com-
ponents of speech framend H (¢)..., is the spectral envelope
esented by the LSF coefficients. In our experimentss
0 dimensional vector resampled from the residual contou
~ - Each spectral residua} is associated with an LSF vectgy,
5(t) = TP(xw); (33) and is therefore associated with a set of posterior proitiabil
The required phases can then be obtained from the predictesdin equation (29). Similar to the phase prediction apgrpac
waveform 5(t) using the analysis routine and pitch-scala residual codebooR = [R;, Ra,---, Ry] is trained. The
modification algorithm of sinusoidal modelling. prediction error on the training data is defined as follows,
This phase prediction method has been compared with two
other popular phase coding methods: the minimum phase
and the phase codebook approach[19]. The experiments were
conducted as follows. First the original signal was analyze ) )
using the pitch synchronous sinusoidal model, then theraig 2nd the solution ta? is
phase spectra were replaced by the synthetic phase spectra T T .
generated respectively by the minimum phase method, the R — (Zrﬂ’(yt)') (Z P(Yt)P(Yt)/) (36)
phase codebook method and the phase prediction method. =1 =1
In our experiments, the number of speech class€sfor  agter the residual codebodR is obtained, the spectral residual
each speaker is 64, depending on the number of trainifgeqeqd to compensate each converted spectral envelope can b

vectors that can be obtained. Additionally, to reduce e qicted straightforwardly based on the posterior prébab
modelling error, the pitch synchronous sinusoidal modedusjeg

in our experiments has automatically adjusted the end point

Having estimated? from the training data, the waveform eor
shape of any converted spectral envelope can be predictec[d

T
&= Z(Tt —RP(y+)) (r: — RP(yt)) (35)
t=1

of each pitch period to be positioned at the zero-crossing TABLE V

points, and each speech frame was normalized by ener@ﬁect of residual prediction as measured by log spectratation ratios
before modelling the phases. Fig. 5 shows an example of the computed over the real spectrum.

unwrapped phase spectra generated by the m_ini_mum phase Within gender | cross gender

method, phase codebook and the phase prediction method. before RP 74 4% 73.0%

Clearly, the phase prediction spectra more closely fits the after RP 54.3% 53.8%
target phase spectra. Table IV shows the signal to noise rati

(SNR) using the above three different phase coding methodsTaple v shows the log spectral distortion ratio before and
The phase prediction approach outperforms the other tWger residual prediction (RP). Here the log spectral diigto
approaches and furthermore the improvement in audio gualijas computed over the real spectrum instead of the spectral
is noticeable in listening tests. envelope. As can be seen, the use of residual predictiottgesu

TABLE IV in a 20% absolute decrease in the spectral distortion ratio f
both cross and within gender conversions.

As mentioned earlier, transform-based voice conversion
minimum phase| codebook phasé phase prediction systems have a tendency to broaden the formants in the
5.7 123 14.4 converted speech. To mitigate this effect and supprese imois

the spectral valleys, a further spectral refinement is tdyapp

The SNR ratio in dB of three different phase coding methods.




a perceptual filter to the regenerated spectral envelopd of teansformed source sound like the target speaker, and the au

voiced sounds. The perceptual filter is defined as, quality.
4 For the former, an ABX-style preference test was performed
H(w) = (2/5) 0<~vy<pB<1 (37) whereby a panel of 23 listeners were asked to judge whether
A(z/7) an utterance X sounded closer to utterance A or B in terms

where A(z) is the LPC filter and the choice of parameterf speaker identity, where X was the converted speech and
in our system isg = 1.0 andy = 0.94. This filter is A and B were either the source speech or the target speech.

popular in speech coding [20] and its more general use The source and target were chosen randomly from both male
voice conversion is discussed in [6]. and female speakers. There were 32 transformed utterances
in total, equally split between within-gender and croseeps
C. Transforming Unvoiced Sounds transformations. Table VI gives the percentage of the caete
) ] ) ) . utterances that were labelled as closer to the target fdr eac
Unvoiced sounds contain very little vocal tract mformatlocase, where the “baseline system” refers to the system that
and their inclusion in the envelope transformation procesgy transforms the spectral envelopes and “enhancedmsyste
results in noticeable degradation. Hence, in common Wiliters to the system that integrates all of the refinements
other transform-based systems, unvoiced sounds in the bage .rined in section Ill. The results clearly show that the
line system are simply copied from the source. Many unvoicgdnanced system outperforms the baseline system in terms

sounds do, however, have some vocal tract colouring agflyansforming the speaker identity. This is probably riyost
simply copying the source to the target affects the condertg o (4 the inclusion of the spectral residual which contains

spe_ech chara_cteristics, espgcially in cross gendercx;inv_leA speaker specific information. It is also interesting buthpeis
typical effect is the perception of another speaker Whisier ot syrprising to note that almost all the errors occurretthén

beh!nd the target speaker. , within-gender transformations.
Since most unvoiced sounds have no obvious vocal tract

structure and cannot be regarded as short term statiorgry si TABLE VI

nals, their spectral envelopes show large variations. &fbeg Results from the ABX test.

it is not effective to convert them using the same solution as

for voiced sounds. However it can be shown empirically that baseline system] enhanced systen
ABX 86.4% 91.8%

randomly deleting, replicating and concatenating segmeht
the same unvoiced sound does not induce significant agifact _ .
0 assess speech quality between the baseline system and

This observation suggests a possible solution based on uHiI
the enhanced system, a second preference test was conducted

selection and concatenation to transform unvoiced sounds. hereby list ted with pai Ut
In this approach, the target training data is first labellef1ETERY lISteners were presented with pairs of utleraneas g

using the forced alignment technique mentioned in the rated by the baseline system and the new system respgctivel

estimation scheme, so that each speech frame is given then listeners were asked to judge which one has the

HMM state label together with a voiced/unvoiced decisiork?.e'[ter speech quality. Table VIl indicates that most listsn
All these labels and the target speech frames are then gdth efer the converted speech generated by the enhancemsyste
together into a database oreover, as the p-value of this t-test is 0.023, much lower

When a segment of unvoiced speech from the source speatp@rn the significance level 0.05, Fhe dn‘ferenc_e between th.e
anced system and the baseline system in Table VIl is

needs to be transformed, each frame in the segment is fﬁgp

labelled with its corresponding HMM state using the San%att_lsncallyl sm}zmﬁcax.tghls Lsttﬁlons?t?_nt with tths p:cmsﬁ Obr;
forced alignment technique. According to the labels, targj_gc_'v_e evaluations. Althougn the refative contributianeac
unvoiced frames are then chosen from the database usin vidual refinement is very difficult to measure, informal

criterion that encourages the selection of frames whichewe sts suggest thqt the spectral refinemept described ifSect
adjacent in the original target data. This is done by succéH—B above contributes the most to quality enhancement.

sively selecting the longest matching HMM state sequence. TABLE VII

For example, if the sequence of source labelsis “11 1332 Results from the preference test.

1", and the longest matching sequence in the target database

is “1 1 1 3" then the speech frames corresponding to this baseline systen{ enhanced systen|
subsequence are extracted. The procedure then repeaitsjook preference 38.9% 61.1%

for a match for “3 2 1" and so on until the whole of the
source segment is matched. The extracted target frames are
then concatenated and their amplitudes are modified to match V. CONCLUSION

the original source frames. This paper has presented a study of voice morphing based

on interpolated linear transformations. The study hasdsed
IV. EVALUATION OF ENHANCED SYSTEM on two main issues. Firstly, a Maximum Likelihood method
In order to test the overall subjective quality of the voicef estimating the required transformation functions hasnbe
morphing system, listening tests were conducted to asstiss ldeveloped which does not depend on the availability of pedral
the perceptual accuracy of the transformation, i.e. does tinaining data. Comparative tests have shown that this ndetho
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is equal in performance to least mean square estimatorg ugirs] O. Cappe, J. Laroche and E. Mouling®Regularized estimation of

parallel data however it is much more flexible. Secondly, the cepstrum envelope from discrete frequency points” Proceedings of
IEEE ASSP Workshop on Applications of Signal Processing tmlié

main causes of artifacts in the converted speech have been , 4 acoustics. New York 1995.
identified as excessive spectral smoothing, unnatural eph@si] M. Unser, A. Aldroubi and M. Eden:B-Spline Signal Processing”
prediction and conversion of unvoiced speech. Solutions to EEE Trans. on Signal Proc., vol. 41, no. 2, pp. 821-848, Gty

these prOblemS have_ be?n DFOPOSGQ an_d shown to be effe(‘{gg}a F. Ita'kura,“Line Spectrum Representation of Linear Predictive Coeffi-
using a variety of objective and subjective measures. cients”, J Acoust Soc Am, vol. 57, no. 4, pp. 535, 1975
Overall, the results show that transform-based voice cdfl Rabiner, L.R.and B. H. Juangrundamental of Speech Recognitian”

. d h ired id . h hil . Prentice hall, 1993
version can produce the required identity change whilsStimal;7; A Gray and J.D. Markel’Distance measures for speech processing”

taining acceptable quality. In particular, the flexibilio§ the IEEE Transactions on Acoustics, Speech, and Signal Piiogesel.

ML training technique combined with the described qualitE/ ASSP-24, no.5, pp.380-391, October 1976.
. . . L 18] S. Young, D. Kershaw, J. Odell, D. Ollason, V. Valtchév,Woodland.

enhancements offer the promise of immediate application in" «rhe HTK Book V3" Cambridge University, 2000
telephone-based applications such as customising votp@pu [19] R.J. McAulay and T.F. QuatieriPhase Modelling and Its Application
novelty voice-messaging, etc. tloggénusmdal Transform Coding'Proc. IEEE ICASSP, pp. 1713-1715,

Nevertheless, th?re is still cons!derable scope for fmrth@O] J.H. Chen and A. GershdReal-time vector APC speech coding at
work. The most serious weakness in the current system is the 48000 bps with adaptive postfilteringtn Proc. of the IEEE Intl. Conf.

i i P i i on Acoustics, Speech and Signal Processing, 1987.

prosodic mOde"mg' Shifting and scaling the PItCh to matﬁq% H. Ye and S. Young;'Voice Conversion for Unknown Speakersih
the mean and variance of the target speaker is only adequate pyoc |cSLP, Jeju, Korea, 2004.
when the speakers are similar. When the speakers are very
different (e.g. when converting a British English speakear
American English speaker), the resulting perception afitie
is ambiguous. Also, although the enhancements described in
this paper give a substantial improvement in overall audio
quality, there is still residual distortion making it untable for
applications where “studio quality” is required in the certed

speech.

ACKNOWLEDGMENT

This work was supported by a grant from Anthropics Tech-
nology Ltd. The authors thank the volunteers of the peradptu
tests for their assistance.

REFERENCES

[1] M. Abe, S. Nakamura, K. Shikano and H. Kuwabdt#ice conversion
through vector quantization”Proc. IEEE ICASSP, 1988.

[2] L. Arslan, D. Talkin,“Speaker Transformation Algorithm using Segmen-
tal Codebooks (STASC)Speech Communication, 1999.

[3] C.-H. Ho, D. Rentzos, S. VaseghiFormant Model estimation and
transformation for Voice Morphing”Proc. ICSLP, 2002.

[4] Y. Stylianou, O. Cappe and E. Mouline$Continuous probabilistic
transform for voice conversion”lEEE Trans. on Speech and Audio
Processing, vol. 6, no. 2, pp. 131-142, 1998.

[5] A.Kain, “High resolution voice transformation’PhD dissertation, OGlI,
2001.

[6] H. Ye and S. Young;Perceptually Weighted Linear Transformation for
Voice Conversion’ Eurospeech 2003.

[7] C.J. Leggetter and P.C. Woodlantiaximum likelihood linear re-
gression for speaker adaptation of continuous density dnidilarkov
model”. Computer Speech and Language, vol. 9, pp. 171-185, 1995.

[8] M.J.F. Gales,'Maximum Likelihood Linear Transformations for HMM-
based Speech RecognitionComputer Speech and Language, vol. 12,
1998.

[9] E. B. George and M. J. T. SmithSpeech Analysis/synthesis and Modi-
fication Using an Analysis-by-synthesis/overlap-add Sidal Model”,
IEEE Trans. on Speech and Audio Proc., vol. 5, no. 5, pp. 380-4
September 1997.

[10] T. F. Quatieri and R. J. McAulay;Shape Invariant Time-scale and
Pitch Modification of Speech”IEEE Trans. on Signal Proc., vol. 40,
pp. 497-510, March 1992.

[11] H. Ye and S. Young;High Quality Voice Morphing”, In Proceedings
of ICASSP 2004.

[12] J. Wouter and W. Macorf,Control of Spectral Dynamics in Concate-
native Speech SynthesjdEEE Trans. on Speech and Audio Proc., vol.
9, no. 1, pp. 30-38, January 2001.



