
A Clustering Approach to Semantic Decoding

Hui Ye and Steve Young

Cambridge University Engineering Department
Trumpington Street, Cambridge, England, CB2 1PZ

hy216@eng.cam.ac.uk, sjy@eng.cam.ac.uk

Abstract
This paper presents a novel algorithm for semantic decoding

in spoken language understanding systems. Unlike conventional
semantic parsers which either use hand-crafted rules or statisti-
cal models trained from fully annotated data, the proposed ap-
proach uses an unsupervised sentence clustering technique called
Y-clustering to automatically select a set of exemplar sentences
from a training corpus. These exemplars are combined with sim-
ple sentence-level semantic annotations to form templates which
are then used for semantic decoding. The performance of this ap-
proach was evaluated in the travel domain using the ATIS corpus.
Training is fast and cheap, and the results are significantly better
than those achieved using HMM-based or stack-based statistical
parsers.

1. Introduction
Spoken dialogue systems require robust decoders to extract the
required semantic information from the automatically recognised
user inputs. Existing approaches to semantic decoding are ei-
ther rule-based or statistical. Rule-based systems typically require
hand-crafted rules which might then be augmented with corpus
statistics (e.g. MIT’s TINA [1], CMU’s PHOENIX [2], and SRI’s
Gemini [3] systems). Whilst good performance is often achieved
using this approach, rule-based parsers are normally expensive to
build and hard to transplant from one application to another. Fur-
thermore, they can still degrade badly in the face of high speech
recognition error rates and unexpected or ill-formed input sen-
tences.

In contrast, the statistical approach seeks to automatically
train parsers from semantically annotated sentences in the hope of
building more robust decoders with less effort. An early example
is AT&T’s finite state semantic tagger in which a HMM is used to
assign semantic concepts to words [4]. More sophisticated mod-
els have been proposed since that can handle hierarchical structure
such as the hierarchical Hidden Understanding Model [5], the hi-
erarchical Hidden Markov Model [6] and the Hidden Vector State
(HVS) model [7]. However, these models are complex and typi-
cally require every training utterance to be semantically annotated.

In some sense, both the rule-based and the statistical ap-
proaches mentioned above treat semantic decoding as a classical
parsing problem. An alternative would be to treat the problem as a
straightforward pattern recognition problem in which all sentences
which share the same semantic annotation are deemed to be mem-
bers of the same class. However, if sentences were classed accord-
ing to their semantics, this would still require all training sentences
to be semantically annotated. Our experience in building statistical
decoders suggests that several thousand such sentences are needed
to build a robust decoder and the provision of this data is time-

consuming and often prohibitive.
This paper describes a simple and straightforward approach to

robust semantic decoding which is fully automatic and which re-
quires relatively few training sentences to be annotated, and only
at the sentence level. Furthermore, the approach works surpris-
ingly well, outperforming our best statistical parser on the ATIS
corpus. The key idea is to first cluster sentences into classes with-
out knowledge of their semantics and then assign a single semantic
annotation to each class. To decode, the unknown input sentence
is assigned the semantics associated with the class (or classes) to
which it most closely matches.

The remainder of the paper is organised as follows. The
sentence clustering algorithm, which we call Y-clustering, is de-
scribed next in section 2 and a semantic decoder based on Y-
clustering is described in section 3. Section 4 then presents exper-
imental results using the ATIS corpus. Finally, section 5 presents
our conclusions.

2. Y-Clustering
2.1. A General Schema for Sentence Clustering

Given a set of N training sentences {S1, . . . , SN}, the Y-
clustering algorithm seeks to group the sentences into Y classes
and then select one sentence from each class to serve as an exem-
plar. Each such exemplar is called a template. The basic process is
similar to the familiar K-means clustering algorithm which in the
context of sentences can be described as follows:

1. (Initialisation): Randomly select Y different sentences as
the initial templates {T1, T2, · · · , TY }.

2. (Clustering): Assign each training sentence {Si} to the
class m∗ with the most similar template, i.e.

m∗ =
argmax
m

{d(Si, Tm)} for m = 1, · · · , Y. (1)

where d(S, T ) is a distance measure between sentence S
and template T .

3. (Template regeneration): For each class, select the sentence
ST which yields the highest within-class similarityD as the
template T for that class:

ST =
argmax
Si

{D(Si)} for i = 1, · · · , H. (2)

where D(S) is the total similarity between sentence S and
all members of the class, i.e.

D(S) =
HX

h=1

d(S, Sh) (3)

and where H is the number of sentences assigned to that
class.



4. Return to Step 2 until the termination criteria is satisfied.
For example, similar to K-means, the process can be termi-
nated when the newly regenerated templates are identical to
those generated in the previous iteration.

The two key issues which arise in converting the above to a practi-
cal algorithm are the choice of distance metric and the method of
controlling the generation of classes. These are dealt with next.

2.2. Similarity and Saliency

The similarity between two sentences will clearly depend on the
words within them. To ensure that key informational bearing
words such as content words are weighted more heavily than the
less relevant words such as function words, every word is assigned
a saliency. The saliency of a word will then represent how impor-
tant the word is in distinguishing the current class from the other
classes.

Assume that there are H sentences in a class, and α sentences
in that class contain the word w. Additionally, assume that there
are M classes, and among them β classes contain the word w.
Then the saliency of w in that class is defined as

I(w) =

r
α

H
× (1− β

M
). (4)

This is a form of mutual information between the within class fre-
quency and inter-class frequency, and it ranges from 0 to 1. A word
with high saliency in a class will occur frequently in that class and
it will be rare in all of the other classes.

Given a definition for the saliency of a word, a distance met-
ric between a sentence S and a template T can be defined as fol-
lows. Firstly, a DTW algorithm is used to align S against T . When
two identical words are aligned they receive a score equal to their
saliency, and in all other cases the score is zero. Thus, no penalty
is applied for mismatched words or for insertions and deletions
and the overall alignment is chosen so as to maximise the total
score. Given this DTW alignment, assume that there are L words
in the sentence S, K words in the template T with saliency Ii for
i = 1, · · · , K, and J words, w1, w2, · · · , wJ of S were aligned
to the template, then the similarity between the sentence S and the
template T is given by:

d(S, T ) =

vuutJ

L
×
PJ
j=1 I(wj)
PK

i=1 Ii
. (5)

Again, this is a mutual information style of definition which bal-
ances the degree of similarity as viewed from the perspective of
the sentence (the first term in equation (5)) and the template (the
second term in equation (5)). Its use avoids assigning high simi-
larity to cases of unbalanced matching, e.g. where a long sentence
matches a short template or vice versa, and it ensures that similar-
ities always fall in the range 0 to 1.

2.3. Controlling the generation of classes

The Y-clustering algorithm is based on the K-means style cluster-
ing outlined in section 2.1 and the distance metric defined above in
equation (5). However, conventional K-means clustering does not
necessarily lead to the best sentence classes in terms of sentence
similarity. In fact, if the number of classes is fixed in advance,
then two undesirable consequences result. Firstly, sentences will
be assigned to the nearest class during training regardless of their

within class similarity i.e. the within class similarity is not con-
trollable. Secondly, similar classes can be generated, i.e. the inter-
class similarity is not controllable. This often happens when the
number of classes to train is larger than the number of underlying
classes. Hence it is necessary to perform sentence clustering in a
more controlled way.

The problem can be simplified by viewing every sentence as a
point in two dimensional space. The problem now becomes how
to use a number of circles with the same radius p to cover all these
points so that every point must be inside a circle. Additionally,
two conditions must be met: 1) circles can only be located with
the centre at an existing point; 2) the number of circles should
be minimised to reduce overlapping. Returning now to the actual
problem of sentence clustering, the circles are the sentence classes,
the centre of the circle is the template, and the radius of the circle
p is the maximal allowed distance within a class, i.e. the similar-
ity threshold. The Y-clustering algorithm attempts to satisfy the
above requirements by generating sentence classes in stages. The
number of classes that can be generated at each stage is controlled
by a similarity threshold p. In each stage, the algorithm evaluates
the number of out-of-class (OOC) sentences/points to check that
the coverage of the generated classes/circles is increasing, and it
continues iteratively searching and merging similar classes until
coverage starts decreasing. In the following stage, the process is
repeated but just using the OOC sentences/points remaining from
the preceding stage. This continues until all of the training data
have been allocated to classes within the threshold p.

Since there are often some out-of-domain sentences in the
training set, some of the generated classes will have very few mem-
bers (very likely just one sentence in a class). Hence on completion
of the Y-clustering algorithm, all generated templates are collected
to form a single set and all of the training sentences are re-assigned
to the nearest template. The number of sentences in each class is
then used to rank the templates. Finally, the desired number of
templates Y can be selected as the top Y entries in the ranked list,
thereby pruning all of the out-of-domain classes at the bottom of
the list.

2.4. The Y-clustering Algorithm

The Y-clustering algorithm is as follows:

1. Assign a value to a similarity threshold p ranging from 0 to
1 (e.g. p = 0.7), and set the maximum number of templates
to generate in each pass M (e.g. M = 500).

2. Tag all training sentences as OOC and select the first M
distinct sentences in the corpus to form the initial set of
templates. Set all word saliencies to 1.

3. For each training sentence S, select each template T in turn
and compute the similarity d(S, T ) using equation (5). If
the similarity is higher than p, assign S to template class
T and go to the next sentence; otherwise if the similarity
is less than p for all templates, assign the sentence to the
class with highest similarity score and mark the sentence as
OOC.

4. After assigning all sentences, sort the templates into order
based on the number of sentences in each template class,
then delete the empty classes. This improves efficiency
in subsequent iterations and encourages merging of similar
classes by ensuring that templates with the most members
are always examined first.



5. If the number of OOC sentences is fewer than in the pre-
vious iteration, then update the word saliencies using equa-
tion (4), regenerate the templates as in step 3 of section 2.1,
and return to Step 3.

6. Store the set of templates generated in the previous steps,
and set aside all of the sentences which are not marked as
OOC. Then repeat from step 2 until all of the data has been
used.

7. Finally, collect together all of the generated templates and
assign each training sentence to the nearest template. Rank
the templates according to the number of assigned sen-
tences. If there are more than the required Y templates in
the ranked list, discard all but the top Y entries.

This algorithm guarantees that the sentence similarities in every
classes are above the similarity threshold. The number of final
classes in the ranked list depends on the threshold p and the distri-
bution in the training corpus.

3. Semantic decoding using Y-clustering
The target application area for the type of semantic decoding being
described in this paper is limited domain spoken dialog systems.
These systems are typically concerned with so-called slot-filling
dialogues where the application is characterised by a set of lex-
ical classes (i.e. slots) such as city name, day, ticket class,
etc. and extracting the semantics of an utterance primarily involves
identifying the slot names and their values1. Thus, for example, the
sentence

Show me flights from London to Paris

would have semantics defined by two slot value pairs
Slots/Values: FROMLOC.CITY = London

TOLOC.CITY = Paris

To use the Y-clustering approach for semantic decoding, the
following steps are performed. Firstly before clustering, each sen-
tence in the corpus is pre-processed such that any lexical class
members are replaced by their class names. The sentences are
then clustered to generate a set of templates. Each template then
has the associated slot/values attached where the values reference
the position of the corresponding word in the utterance. Thus, if
the above sentence was a template, it would be stored as:

Show me flights from city_name to city_name
Slots/Values: FROMLOC.CITY = T(5)

TOLOC.CITY = T(7)

Decoding a sentence then consists of matching it against ev-
ery template using the same DTW alignment procedure used in
training. For every template whose similarity lies above a thresh-
old, the corresponding slot/value pairs are instantiated along with
the similarity score itself. Thus, more than one template can con-
tribute to the set of slot/value pairs extracted from an utterance.
This allows new forms of sentence to be processed by partially
matching against different templates. Where there is competition,
the rule used is that each word in the sentence can only appear
in one slot/value pair and if a word matches more than one slot,
then the match with the highest similarity score is selected. How-
ever, the same slot can be used multiple times when it is bound to
different words.

1The intended dialog act also needs to be determined but this is not
considered here.

4. Experiments
4.1. Experimental Setup

This section describes the experimental evaluation of the Y-
clustering algorithm using the ATIS-3 NOV93 and DEC94 test
sets. The training set has 4978 sentences in total which are se-
lected from the Class A training data in the ATIS-2 and ATIS-3
corpora. The same experimental setup as in [7] was applied so that
the Y-clustering approach can be compared fairly with the FST and
HVS models presented there.

As described in the previous section, the training sentences
were first preprocessed to replace lexical class members by their
corresponding lexical class names. There are a total of 30 such
domain specific lexical classes defined for the ATIS domain. Then
after Y-clustering, all the resulting templates were annotated with
the corresponding slot value pairs. These were derived from the
same semantic frame structures used in [7] 2. There were in total
47 distinct semantic slots.

To parse a test sentence, it was first preprocessed to apply the
same lexical class substitution as used in training, then aligned to
each of the templates to compute a similarity score.

The following example shows the matching of a typical ATIS
sentence.
O:show flights from burbank to milwaukee for today
S:show flights from city_name to city_name for time
T:show all flight_stop flights from city_name to city_name
A:S(1) S(0) S(0) S(2) S(3) S(4) S(5) S(6)
Similarity: 0.778
Template Slots: FLIGHT_STOP = T(3)

FROMLOC.CITY_NAME = T(6)
TOLOC.CITY_NAME =T(8)

Nominated Slots/Values:
FLIGHT_STOP=T(3)=S(0)=NULL (Discarded)
FROMLOC.CITY=T(6)=S(4)=O(4)=burbank (Confidence 0.778)
TOLOC.CITY=T(8)=S(6)=O(6)=milwaukee (Confidence 0.778)

where O is the original test sentence, S is the test sentence after
lexical class substitution, T is the matched template, T(n), S(n)
and O(n) means the n-th word in the template, the preprocessed
sentence and the original sentence respectively, and A denotes the
word alignment. For example, in the above case, the first word
of the template was aligned to the first word of the test sentence
as denoted by S(1), and the second word of the template has no
counterpart in the test sentence as denoted by S(0).

Finally, the slots/values for all matches scoring more than 0.1
were pooled and ranked as described in the previous section to give
the final output.

4.2. Results

The Y-clustering approach was tested using the NOV93 and
DEC94 ATIS-3 test sets which contain 893 sentences in total. Each
sentence was annotated using the same frame structure as that ap-
plied to the training set. This annotation was used as the reference.
The extracted semantics of the test sentences were represented
by the slot/value pairs output by the Y-clustering algorithm and
these were compared with the slot/value pairs from the reference.
An F-measure computed from the precision (P) and recall (R) of
slot/value pairs was used to evaluate the overall decoding perfor-
mance. It should be noted that a strict comparison was adopted in
the experiments where the match of slot/value pairs between the
reference and the decoder output is only marked correct if both
the slot name and slot value are matched. This is the same strict
criterion as used in [7].

2These semantic frame structures were automatically derived from the
SQL database queries supplied with the ATIS corpus.



Table 1: Performance comparison of Y-clustering, FST and HVS models on ATIS.

Y-clustering FST HVS
p 0.6 0.7 0.8 0.9 / /

#templates 657 1105 1827 2821 / /
Recall 93.86% 94.46% 95.39% 95.32% 86.71% 89.82%

Precision 87.61% 87.36% 88.22% 87.15% 84.84% 88.75%
F-measure 90.63% 90.76% 91.66% 91.05% 85.77% 89.28%

Table 1 shows the F-measure scores obtained by the Y-
clustering decoder for various values of similarity threshold ‘p’
when the full list of generated templates is used (i.e. Y is the max-
imum possible in each case). For comparison, the performance
of the FST and HVS models reported in [7] are also shown. It
can be observed that the performance of the Y-clustering approach
is competitive whilst requiring only a relatively small set of tem-
plates to be annotated (e.g. 657 for the case of p = 0.6). The FST
and HVS models on the other hand required the full training set to
be annotated i.e. nearly 5000 sentences. Note that increasing the
similarity threshold resulted in more templates, however, the cor-
responding increase in performance is modest. This suggests that
many of the additional templates generated are either redundant or
correspond to out of domain sentences.

As explained in section 2.3, an alternative way to control the
number of templates generated is to prune the final ranked list.
This in principle should remove outlier templates and focus the
decoding more on the in-domain templates. Table 2 presents the
results obtained for the p = 0.8 case when the generated template
list is pruned back to various Y values. As can be seen, this prun-
ing results in a significant increase in performance. When the top
600 templates were selected, the recall and precision values were
balanced and the F-measure reached a maximum at 93.42%. Com-
paring this result with the case for p = 0.6 in Table 1, it can be seen
that for a similar number of templates, setting a higher threshold
and then pruning works much better. Fig 2 also shows that even
when as few as 400 templates were used, the 92.89% F-measure
was still significantly better than the results obtained by the statisti-
cal parsers even though less than 10% of the training data had to be
semantically annotated. Finally, consistent with Table 1, Table 2
shows that generating more templates does not necessarily lead to
better performance, since the introduction of redundant templates
leads to poorer precision.

Table 2: Performance of template selection. (p=0.8)

Y-clustering (p=0.8)
#templates 200 400 600 800 1000 1827

Recall 88.47% 93.12% 93.75% 94.50% 94.85% 95.39%
Precision 92.06% 92.66% 93.09% 90.06% 90.33% 88.22%

F-measure 90.23% 92.89% 93.42% 92.23% 92.54% 91.66%

The above experimental results show that the Y-clustering
algorithm can produce competitive performance at reduced cost
compared to existing statistical semantic decoders. Furthermore,
for real applications, Y-clustering is extremely flexible. For ex-
ample, the templates can be manually defined for a new applica-
tion and only the word saliencies updated using Y-clustering. This
might be an effective way of bootstrapping a system, when initially
little training data is available.

Another advantage of Y-clustering is that disfluent and ill-
formed sentences as well as speech recognition errors do not sig-
nificantly degrade performance, as long as the key words are in-
tact. For instance, in the following example, the user first wanted
to ask for “the earliest” flights then changed her mind to ask for the
“cheapest” flights. The incomplete word then resulted in recogni-
tion errors in both O and S. However, since the key words were
correctly recognised, the decoder was still able to fully recover the

semantics without error.
U:show the earl- cheapest flights from london to boston

can you
O:should me flights from london to boston can you
S:should me flights from city_name to city_name can you
T:flights from city_name to city_name
Similarity: 0.745

Finally, note that in the experiments reported here, the Y-
clustering algorithm was only used for semantic decoding. How-
ever, there seems to be no reason why templates could not also be
tagged with the appropriate dialog act to allow dialog act detection
to be performed simultaneously.

5. Conclusion
This paper has presented the Y-clustering algorithm for semantic
decoding. Unlike conventional semantic parsers which either use
hand-crafted rules or statistical models trained from fully anno-
tated data, the proposed approach uses an unsupervised sentence
clustering technique to automatically select a set of exemplar sen-
tences from a training corpus. These exemplars are combined
with simple sentence-level semantic annotations to form templates
which are then used for semantic decoding. The performance
of this approach was evaluated in the travel domain using the
ATIS corpus, and compared with two previously reported statis-
tical parsers. The results obtained from Y-clustering in terms of F-
measure are significantly better and furthermore, they are achieved
with only 10% of the training sentences requiring annotation.

These results suggest that the Y-clustering approach has con-
siderable potential. The DTW-based matching process is intrin-
sically robust to variations in the input such as those caused by
recognition errors, disfluencies and ill-formed sentences. Further-
more it is simple and flexible. For example, it should be straight-
forward to extend the method to provide dialogue act decoding.
The method is now being incorporated into a working spoken di-
alogue system and evaluation of its efficiency and robustness in
other applications will be reported in future work.

6. References
[1] Seneff, S., “Robust parsing for spoken language systems”,

ICASSP 1992.

[2] Ward, W., Issar, S., “Recent improvements in the CMU spo-
ken language understanding system”, In Proc. of the ARPA
Human Language Technology Workshop 1996.

[3] Dowding, J., Moore, R., Andry, F., Moran, D., “Interleav-
ing syntax and semantics in an efficient bottom-up parser”,
In Proc. of the 32nd Annual Meeting of the Association for
Computational Linguistics 1994.

[4] Pieraccini, R., Tzoukermann, E., Gorelov, Z., Levin, E., Lee,
C., Gauvain, J., “Progress report on the CHRONUS system:
ATIS benchmark results”, In Proc. of the DARPA Speech and
Natural Language Workshop, 1992.

[5] Schwartz, R., Miller, S., Stallard, D., Makhoul, J., “Hidden
understanding models for statistical sentence understand-
ing”, In Proc. of ICASSP 1997.

[6] Fine, S., Singer, Y., Tishby, N., “The hierarchical hidden
markov model: Analysis and applications”, Machine Learn-
ing 1998.

[7] He, Y., Young, S., “Semantic processing using the hidden
vector state model”, Computer Speech and Language 19(1):
85-106, 2005.


