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Almost all present day continuous speech recofuch of this development was driven by a series
nition (CSR) systems are based on Hidden Markaxf DARPA and NSA programmes[7] which set ever
Models (HMMs). Although the fundamentals ofmore challenging tasks culminating most recently in
HMM-based CSR have been understood for sevemistems for multilingual transcription of broadcast
decades, there has been steady progress in refinirggvs programmes[8] and for spontaneous telephone
the technology both in terms of reducing the impaconversations[9].
of the inherent assumptions, and in adapting the mod- Although the basic framework for CSR has not
els for SpECiﬁC applications and environments. Tr@]anged Signiﬁcant]y in the last ten years, the de-
aim of this chapter is to review the core architecturgjled modelling techniques developed within this
of a HMM-based CSR system and then outline thamework have evolved to a state of considerable
major areas of refinement incorporated into modergpphistication (e.g. [10, 11]). The result has been
day systems. steady and significant progress and it is the aim of

this chapter to describe the main techniques by which

this has been achieved. Many research groups have
1. INTRODUCTION contributed to this progress, and each will typically

have their own architectural perspective. For the sake

Automatic continuous speech recognition (CSR) @f logical co_herence, the presentat_ion given here is
Sufﬁcienﬂy mature that a Variety of real world apsomeWhat biassed towards the architecture developed

plications are now possible including command ari@f Ca_mbn(iige and supported by the HTK Software
control, dictation, transcription of recorded speechPOlkit[12]".

and interactive spoken dialogues. This chapter de- The chapter is organised as follows. In section 2,
scribes the statistical models that underlie currerttie core architecture of a typical HMM-based recog-

day systems: specifically, the hidden Markov modeliser is described [13]. Subsequent sections then de-
(HMM) and its related technologies. scribe the various improvements which have been

The foundations of modern HMM-based continthade to this core over recent years. Section 3 dis-
uous speech recognition technology were laid dowi¥/sses methods of HMM parameter estimation and
in the 1970’s by groups at Carnegie-Mellon, IBMSSUes relating to improved covariance modelling.
and Bell Labs [1, 2, 3]. Reflecting the compuln sections 4 and 5, methods of normalisation and
tational power of the time, initial development inddaptation are described which allow HMM-based
the 1980’s focussed on whole word small vocabi@coustic models to more accurately represent specific
lary applications[4, 5]. In the early 90's, attentiorﬁpea}kers and environments. Finally in section 6, the
switched to continuous speaker-independent recdgulti-pass architecture refinements adopted by mod-
nition. Starting with the artificial 1000 wor&e- €fn transcription system is described. The chapter
source Managemettask [6], the technology devel-concludes in section 7 with some general observa-
oped rapidly and by the mid-1990’s, reasonable ac-
curacy was being achieved for unrestricted dictation. *Available for free download it k. eng. cam ac. uk




Springer Handbook on Speech Processing and Speech Conatioimic 2

tions and conclusions. the most likely word sequence is output. Alterna-
tively, modern decoders can generate lattices contain-
ing a compact representation of the most likely hy-
potheses.

The following sections describe these processes

o and components in more detail.
The principal components of a large vocabulary con-

tinuous speech recogniser are illustrated in Fig 1.

The input audio waveform from a microphone is con-

verted into a sequence of fixed size acoustic vectors

Y = y,..yr in a process called feature extraction. ]
The decoder then attempts to find the sequence % FeatureExtraction
wordsW = ws ... wx which is most likely to have

2. ARCHITECTURE OF A HMM-BASED
RECOGNISER

generated’, i.e. the decoder tries to find The feature extraction stage seeks to provide a com-
. pact encoding of the speech waveform. This encod-
W = argrwnax{p(W|Y)} (1) ing should minimise the information loss and provide

a good match with the distributional assumptions

However, since(W|Y) is difficult to model directly, ma_de by the acoustic models. Feature vectors are
Bayes’ Rule is used to transform (1) into the equivdYPically computed every 10ms using an overlapping

lent problem of finding: analysis window of around 25ms. One of the sim-
plest and most widely used encoding schemes uses
W = argmax{p(Y|W)p(W)}. ) Mel-Frequency Cepstral Coefficients (MFC{1g]).
w These are generated by applying a truncated cosine

transformation to a log spectral estimate computed

by smoothing an FFT with around 20 frequency bins
istributed non-linearly across the speech spectrum.
he non-linear frequency scale used is callddel

e caleand it approximates the response of the hu-

word “bat” is composed of three phones /b/ /ael tfya ear. The cosine transform is applied in order

About 40 such phones are required for English. 15 smooth the spectral estimate and decorrelate the
For any givenW, the corresponding acousticieature elements.

model is synthesised by concatenating phone models Further psychoacoustic constraints are incorpo-

to mak(:] words as defin?dhby a pr)]ronunci?jti?n dicti9xted into a related encoding calleerceptual Linear
hary. The parameters of these phone models are egliz jiction (PLP)[15]. PLP computes linear predic-
mated from training data consisting of speech wavgg, coefficients from a perceptually weighted non-
forms and their orthographic transcriptions. The larjy, o511y compressed power spectrum and then trans-
guage model is typically arv-gram model in which ¢,q the linear prediction coefficients to cepstral co-
_the probability of each word is conditioned only ONfficients. In practice, PLP can give small improve-
its N — 1 predecessors. Th€-gram parameters are o g over MFCCs, especially in noisy environments

estimated by counting N-tuples in appropriate 4hd hence it is the preferred encoding for many sys-
corpora. The decoder operates by searching throu@ilns_

all possible word sequences using pruning to re- .. - )
move unlikely hypotheses thereby keeping the searé:h In addition to the spectral coefficients, first order

tractable. When the end of the utterance is reach E#alt.a) and second-order (delta-delta) regression co-
efficients are often appended in a heuristic attempt

2 practice, the acoustic model is not normalised and the lat0 compensate for the conditional independence as-
guage model is often scaled by an empirically determinedtemh  sumption made by the HMM-based acoustic models.

and a word insertion penalty is added i.e. in the log domartdh : ; ; PR
tal likelinood is calculated aiog p(¥ W) + ap(IV) + G|V The final result is a feature vector whose dimension

whereq is typically in the range 8 to 20 and is typically in the e_llity is typically around 40 and which has been par-
range O to -20. tially but not fully decorrelated.

The likelihoodp(Y |W) is determined by aacous-
tic modeland the priop(W) is determined by &n-
guage modef The basic unit of sound represente
by the acoustic model is thEhone For example, the
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2.2. HMM Acoustic Models whereX = z(0)..z(T) is a state sequence through

the composite model and
As noted above, the spoken wordslin are decom-

posed into a sequence of basic sounds cédileske T
phones To allow for possible pronunciation varia- p(X,Y|Q) = a,(0).x(1) wa ) () @) w(t41)
tion, the likelihoodp(Y |IW) can be computed over =1

multiple pronunciation’s (7)
The acoustic model parametds;; } and{b;()}
p(Y|W) = ZP Y|Q)p(QIW) (3) can be efficiently estimated from a corpus of training

utterances using Expection-Maximisation (EM)[16].

Each Q is a sequence of word pronunciation%zor each utterance, the sequence of baseforms is

und and the corresponding composite HMM con-
@1 ... Qr where each ng)nunuanon sa sequenc%ucted A forward-backward alignment is used to
of base phone§; = q1 .... Then

compute state occupation probabilities (the E-step)
and the means and covariances are then estimated
QW) = Hp Q|wy) (4) via simple weighted averages (the M-step)[12, Ch
7]. This iterative process can be initialised by as-
signing the global mean and covariance of the data to
wherep(Qy|wy) is the probability that worduy, is  all Gaussian components and setting all transitition
pronounced by base phone sequefgeln practice, probabilities to be equal. This gives a so-calfkd
there will only be a very small number of possibl&tart model. The number of component Gaussians in
Q. for eachw;, making the summation in (3) easilyany mixture can easily be increased by cloning, per-
tractable. turbing the means and then re-estimating using EM.

Each base phongis represented by a continuous  This approach to acoustic modelling is often re-
density hidden Markov model (HMM) of the formferred to as thébeads-on-a-stringnodel, so-called
illustrated in Fig 2 with transition parametefs;;} because all speech utterances are represented by con-
and output observation distributiofis; () }. The lat- catenating a sequence of phone models together.
ter are typically mixtures of Gaussians The major problem with this is that decomposing

each vocabulary word into a sequence of context-
independent base phones fails to capture the very
b(y) = Z CimN (Y; Hjm: Zjm) ©) large degree of context-dependent variation that ex-
m=t ists in real speech. For example, the base form pro-
where A/ denotes a normal distribution with meamunciations for “mood” and “cool” would use the
., @nd covarianc&;,,, and the number of compo-same vowel for “00”, yet in practice the realisations
nentsM is typically in the range 10 to 20. Since theof “00” in the two contexts are very different due to
dimensionality of the acoustic vectoyss relatively the influence of the preceding and following conso-
high, the covariances are usually constrained to bant. Contextindependent phone models are referred
diagonal. The entry and exit states a@n-emitting to asmonophones
and they are included to simplify the process of con- A simple way to mitigate this problem is to use
catenating phone models to make words. a unique phone model for every possible pair of left

Given the composite HMMY formed by con- and right neighbours. The resulting models are called

catenating all of its constituent base phones then ttrigohonesand if there areéV base phones, there are

acoustic likelihood is given by logically N potential triphones. To avoid the result-
ing data sparsity problems, the complete selogf
p(Y|Q) = Zp (X,Y|Q) (6) ical triphonesL can be mapped to a reduced set of

physical models” by clustering and tying together

3Recognizers often approximate this byiaxoperation so that the parameters in each cluster. This mapping pro-

alternative pronunciations can be decoded as though theyate C€SS is i"UStr_atec_j in Fig 3 and the parameter tying
ternative word hypotheses. is illustrated in Fig 4 where the notation x-q+y de-
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notes the triphone corresponding to phone g spok#resised. One disadvantage is that the partitioning
in the context of a preceding phone x and a followingan be rather coarse. This problem can be reduced
phone y. The base phone pronunciations Q are desing so-calledoft-tying18]. In this scheme, a post-
rived by simple look-up from the pronunciation dicprocessing stage groups each state with its one or
tionary, these are then mapped to logical phones d@a«0 nearest neighbours and pools all of their Gaus-
cording to the context, finally the logical phones arsians. Thus, the single Gaussian models are con-
mapped to physical models. Notice that the contexterted to mixture Gaussian models whilst holding the
dependence spreads across word boundaries and thial number of Gaussians in the system constant.

is essential for capturing many important phonologi- To summarise, the core acoustic models of a
cal processes. For example, the [p] in “stop that” haiodern speech recogniser is typically comprised of
its burst suppressed by the following consonant. 3 set of tied-state mixture Gaussian HMM-based
The clustering of logical to physical models typi-acoustic models. This core is commonly built in the
cally operates at the state-level rather than the modellowing steps[12, Ch 3]:
level since it is simpler and it allows a larger set
of physical models to be robustly estimated. The
choice of which states to tie is made using decision
trees[17]. Each state positibof each phong has
a binary tree associated with it. Each node of the
tree carries a question regarding the context. To clus-
ter statei of phonegq, all statesi of all of the log- 2. The parameters of the single-Gaussian mono-
ical models derived frong are collected into a sin- phones are iteratively re-estimated using 3 or 4
gle pool at the root node of the tree. Depending on iterations of EM.
the answer to the question at each node, the pool g
states is successively split until all states have trick-""
led down to leaf nodes. All states in each leaf node
are then tied to form a physical model. The ques-
tions at each node are selected from a predeterminegl The set of training data single-Gaussian tri-

set to maximize the likelihood of the training data phones is iteratively re-estimated using EM and

given the final set of state-tyings. If the state output the state occupation counts of the last iteration
distributions are single component Gaussians and the gre saved.

state occupation counts are known, then the increase o ] )

in likelihood achieved by splitting the Gaussians at>- A decision tree is created for each state in each
any node can be calculated simply from the counts Dase phone, the single-Gaussian triphones are
and model parameters without reference to the train- Mapped into a smaller set of tied-state triphones
ing data. Thus, the decision trees can be grown very and iteratively re-estimated using EM.

efficiently using a greedy iterative node splitting al- 5 - \ixture components are iteratively split and re-

gorithm. Fig 5 illustrates this tree-based clustering.  ostimated until performance peaks on a held-out
In the figure, the logical phones s-aw+n and t-aw+n development set.

will both be assigned to leaf node 3 and hence they

will share the same central state of the representatiVbe final result is the required tied-state context-
physical mode?. dependent mixture Gaussian acoustic model set.

The partitioning of states using phonetically-
driven decision trees has several advantages. In par-
ticular, logical models which are required but were
not seen at all in the training data can be easily syn-

1. A flat-start monophone set is created in which
each base phone is a monophone single-
Gaussian HMM with means and covariances
equal to the mean and covariance of the training
data.

Each single Gaussian monophone q is cloned
once for each distinct triphone x-g+y that ap-
pears in the training data.

4invariably each phone model has three states
5The total number of tied-states in a large vocabulary speake
independent system typical ranges between 1000 and 5066 sta
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2.3. N-gram Language Models The discounting coefficient is based on the Turing-
) - Good estimat@ = (r + 1)n,41/rn, wheren,. is the

The prior probability of a word sequend® = npumber ofN-grams that occur exactlytimes in the

w..wg required in (2) is given by training data. Although Katz smoothing is effective,

there are now known to be variations which work bet-
_ ter. In particular, Kneser-Ney smoothing consistently
p(W) = kI:[lp(w”w’“*l’ o) 8) outperforms Katz on most tasks [20, 21].
B An alternative approach to robust language model
For large vocabulary recognition, the conditioningstimation is to use class-based models in which for
word history in (8) is usually truncated ty — 1 every wordw;, there is a corresponding clags[22,

K

words to form anV-gramlanguage model 23]. Then,
K K
p(W) = [] plwrlwi—r, w2, ..., wins1) ©)  p(W) =[] p(wrlew)p(erler—1, .-, crn11)
k=1 k=1

(12)
where N is typically in the range 2 to 4. Th&'- As for word based models, the cladsgram proba-
gram probabilities are estimated from training textsilities are estimated using ML but since there are far
by counting/N-gram occurrences to form maximumfewer classes (typically a few hundred) data sparsity
likelihood (ML) parameter estimates. For examplés much less of an issue. The classes themselves are
let C(wy—2wi—1wy) represent the number of occurchosen to optimise the likelihood of the training set
rences of the three words, _owj,—1wy, and similarly - assuming a bigram class model. It can be shown that
for C(wg—owi—1), then when a word is moved from one class to another, the

change in perplexity depends only on the counts of a
C(wp—2wk—1wk) (10) relatively small number of bigrams. Hence, an itera-
C(wg—2wg—1) tive algorithm can be implemented which repeatedly

scans through the vocabulary, testing each word to

The major problem with this simple ML estimationsee if moving it to some other class would increase
scheme is data sparsity. This can be mitigated by Jikelihood [24].

combination of discounting and backing-off, known
asKatz smoothinfi.9]

plwp|wp—1,wi—2) =

In practice it is found that for reasonably sized

training sets, an effective language model for large

p(ws|w—1, We—2) vocabulary appliqations consistg of a word-based tr_i-
o ‘ gram or 4-gram interpolated with a class-based tri-
C(wp—2wp_1wy,)

- it ¢>c’ gram.
C(wp—2wi—1)

Clwy—swy_1wy)
C(wp—owi—1)
= a(wg_1, wr_2) pw|wy_1) otherwise (11) As noted in the introduction to this section, the
most likely word sequenc®’ given a sequence of
whereC’ is a count threshold] is a discount coeffi- feature vectorsY = y,..y, is found by search-
cient anda is a normalisation constant. Thus, wheing all possible state sequences arising from all
the N-gram count exceeds some threshold, the Mpossible word sequences for the sequence which
estimate is used. When the count is small the sam@as most likely to have generated the observed
ML estimate is used but discounted slightly. The disdataY. An efficient way to solve this problem
counted probability mass is then distributed to the uis to use dynamic programming. Let;(t) =
seenN-grams which are approximated by a weightethaxx {p(y, - .., y:, z(t) = j|M)} i.e. the maxi-
version of the corresponding bigram. This idea camum probability of observing the partial sequence
be applied recursively to estimate any spa¥sgram y,..y, and then being in statg¢ at time¢ given the
in terms of a set of back-off weights and-1-grams. model M. This probability can be efficiently com-

=d

if 0<C <’ 24. Decodingand Lattice Generation



Springer Handbook on Speech Processing and Speech Conatioimic 6

puted using the Viterbi algorithm ther entry states, emitting states or exit states. Es-
sentially, tokens are passed from node to node and at
¢j(t) = max{¢;(t = 1)ai;} bj(y:) ~ (13) each transition the token score is updated.
o ) o When a token transitions from the exit of a word
It is initialised by settinge;(t) to 1 for the ini- +to the start of the next word, its score is updated
F|a| state and 0 _fOI’ a” Other states. The prob-ab|by the |anguage mode| probab"'ty p|us any Word in_
ity of the most likely word sequence is then giveRertion penalty. At the same time the transition is
by max;{¢;(T')} and if every maximisation decisionyecorded in a recort containing a copy of the token,
is recorded, a traceback will yield the required beghe current time and identity of the preceding word.
matching state/word sequence. The link field of the token is then updated to point
In practice, a direct implementation of the above the recordR. As each token proceeds through the
algorithm becomes unmanageably complex for conetwork it accumulates a chain of these records. The
tinuous speech where the topology of the models, thest token at timé&” in a valid network exit node can
language model constraints and the need to boutign be examined and traced back to recover the most
the computation must all be taken account of. Folikely word sequence and the boundary times.
tunately, much of this complexity can be abstracted The above Token Passing algorithm and associ-
away by a simple change in viewpoint. ated recognition network is an exact implementation
First, the HMM topology can be made explicitof the dynamic programming principle embodied in
by constructing a recognition network. For task ori¢13). To convert this to a practical decoder for speech
ented applications, this network can represent the uécognition, the following steps are required:
terances that the user is allowed to say i.e. it can rep;
resent a recognition grammar. For large vocabular
applications, it will typically consist of all vocabu-
lary words in parallel in a loop. In both cases, words
are represented by a sequence of phone models as de-
fined by the pronunciation dictionary (see Fig 6), and
each phone model consists of a sequence of states as
indicated by the inset. If a word has several pronun-
ciations as in the general case described by (3), they
are simply placed in parallel. 2. As a consequence of beam search, 90% of the
Given this network, at any timein the search,a ~ computation is actually spent on the first two
single hypothesis consists of a path through the net- phones of every word, after that most of the to-
work representing an alignment of states with feature kens fall outside of the beam and are pruned.
vectorsy; ..y,, starting in the initial state and ending ~ To exploit this, the recognition network should
at statej, and having a log likelihootbg ¢; (t). This betree-structuredso that word initial phones are
path can be made explicit via the notion ofaken shared (see Fig 8).
consisting of a pair of values logP, link > where 3
logP is the log likelihood andlink is a pointer to
a record of history information [25]. Each network
node corresponding to each HMM state can store a
_single token and recognition proceeds by propagat- Simply delaying the application of the language
ing these to.ken's argund the network. model until the end of the following word is not
The basic Viterbi algorithm given above can now g option since that would make pruning inef-
be recast for continuous speech recognition a3the fective. Instead, an incremental approach must
ken Passinglgorithm shown in outline in Fig 7. The be adopted in which the language model proba-
termnoderefers to a network node corresponding to  pjjity is taken to be the maximum possible prob-
a single HMM state. These nodes correspond to ei- apility given the set of possible following words.
As tokens move through the tree-structured word

. For computational efficiency, only tokens which
Y have some likelihood of being on the best path
should be propagated. Thus, every propagation
cycle, the log probability of the most likely to-
ken is recorded. All tokens whose probabilities
fall more than a constant below this are deleted.
This results in a so-calledleam searctand the
constant is called theeam width

. However, sharing initial phones makes it impos-
sible to apply an exact language model probabil-
ity during word-external token propagation since
the identity of the following word is not known.

80ften referred to as thecore
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graph, the set of possible next words reduces alt word-end tokens are recorded. For the simple

each phone transition and the language modsghgle-token Viterbi scheme, the quality of lattices
probability can be updated with a more accuraigenerated in this way will be poor because many of
estimate. the close matching second best paths will have been

. . . pruned by exercising the dynamic programming prin-

4. The HMMs linked into the recognition networkeinie -~ The multiple token decoder does not suffer

should be context dependent and for best P&fom this problem, especially if it is used with a rela-
formancg, this _depe_ndenc_y shoqld span W(_)'ﬂfely short-span bigram language model.
boundaries. At first sight this requires a massive . .
expansion of the network, but in fact a compact Lattices are extremely flexible. Fo_r example, the_y
static network representation of cross-word trican be rescored by using them as an input recognition
. : network and they can be expanded to allow rescor-
phones is possible [26]. . .
ing by a higher order language model. They can
5. The dynamic programming principle relies oralso be compacted into a very efficient representation
the principle that the optimal path at any nodealled aconfusion netwofl80, 31]. This is illustrated
can be extended knowing only the state infoiin Fig 9 part (b) where the “-" arc labels indicate
mation given at that node. The use @fgram null transitions. In a confusion network, the nodes
language models causes a problem here singe longer correspond to discrete points in time, in-
unique network nodes would be needed to dististead they simply enforce word sequence constraints.
guish all possibleV — 1 word histories and for Thus, parallel arcs in the confusion network do not
large vocabulary decoders this is not tractableecessarily correspond to the same acoustic segment.
Thus, the algorithm given in Fig 7 will only work However, it is assumed that most of the time the over-
for bigram language models. A simple way tdap is sufficient to enable parallel arcs to be regarded
solve this problem is to store multiple tokens iras competing hypotheses. A confusion network has
each state thereby allowing paths with differinghe property that for every path through the original
histories to “stay alive” in parallel. Token prop-lattice, there exists a corresponding path through the
agation now requires a merge and sort operati@onfusion network. Each arc in the confusion net-
which although computationally expensive camwork carries the posterior probability of the corre-
be made tractable. sponding wordw. This is computed by finding the

The ab q - fal bulary d link probability of w in the lattice using a forward-
€ above description of a large vocabulary 0§y, oy\yarg procedure, summing over all occurrences
coder covers all of the essential elements needed

; . ! . L dP.w and then normalising so that all competing word
recognise continuous speech in re_aI time using Justa.q i the confusion network sum to one. Confusion
single pass over the data. For off-line batch transcripe, .\ s can be used for minimum word-error de-

tion of speeph, significant |m.provem(.ants n accuraQ:yoding, to provide confidence scores and for merging
can be achieved by performing multiple passes ov

the data. To make this possible, the decoder m ﬁ{ectciJ(l)J:]péJ)ts of different decoders [32, 33, 34, 35] (see
be capable of generating and saving multiple recog- '

nition hypotheses. A compact and efficient structure Finally, it shoulq _be noted that all of t'he aboye
for doing this is thevord latticg27, 28, 29]. relates to one specific approach to decoding. If sim-

A d latii ists of t of nod le Viterbi decoding was the only requirement, then
» word fattice consists of a Set ol N0des Teprep . o \yoyld be little variation amongst decoder im-
senting points in time and a set of spanning arcs re

i 4 hvooth N le i sh ementations. However, the requirement to support
resenting word Nypotn€Ses. An example IS SNOWN (g v o1 context-dependent acoustic models and
Fig 9 part (a). In addition to the word ids shown iNg

the i h | inf i ng span language models has led to a variety of de-
€ liguré, each arc can aiso carry score informa '%'fgn strategies. For example, rather than have multi-

such as the acoustic and language model scores. ll.g tokens, the network state can be dynamically ex-

tices are generated via the mechanism for recordifig 1.+ 1o explicitly represent the currently hypoth-

word boundary information outlined in Fig 7, excepf ; :
. N 1R sised cross-word acoustic and long-span language
that instead of recording just the best token which 19 g-sp guag

actually propagated to following word entry nodes, odel contexts [36, 37]. These dynamic network
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decoders are more flexible than static network deterelV,. is the word sequence given by the tran-
coders, but they are harder to implement efficientlgcription of ther’th training sentence andAyy,. is
Recent advances in weighted finite-state transdudbe corresponding composite HMM synthesised by
technology offer the possibility of integrating all ofconcatenating phone models (denotedchyn sec-
the required information (acoustic models, pronunciion 2.2). This objective function can be maximised
ation, language model probabilities, etc) into a sirstraightforwardly using a version of EM known as
gle very large but highly optimised network) [38].the Baum-Welch algorithm [42]. This involves it-
This approach offers both flexibility and efficiencyeratively finding the probability of state-component
and is therefore extremely useful for both researatcupation for each frame of training data using
and practical applications. a forward-backward algorithm, and then computing

A completely different approach to decoding igveighted averages. For example, defining the fol-
to avoid the breadth-first strategy altogether and uséo4ving “counts”
depth-first strategy. This givesrise to a class of recog-

T,
nisers calledstack decoders Stack decoders were er (M) = ZVT’ )y (15)
popular in the very early developments of ASR since " I “
they can be very efficient. However, they require dy-
namic networks and their run-time search charactetd -
istcs can be difficult to control [39, 40]. . ~ o,

139, 401 Dh(M) = 3 7(® (16)
t=1 M

3. HMM-BASED ACOUSTIC MODELLING  wherev7,, (¢) is the probability of the model occu-
pying mixture component: in state;j at timet given
The key feature of the HMM-based speech recogriraining sentenc#’,. and modelM, then the updated
tion architecture described in the preceding sectionfi@ean estimate is given by ML as
the use of diagonal covariance multiple component R
mixture Gaussians for modelling the spectral distri- A 2r=1 O (Mw, ) (17)
butions of the speech feature vectors. If speech really e re (Mw,)
did have the statistics assumed by these HMMs and i
if there was sufficient training data, then the mod:€: the average of the sum of the data weighted by
els estimated using maximum likelihood would b&e model component occupancy.
optimal in the sense of minimum variance and zero The key problem with the ML objective function
bias [41]. However, since this is not the case, thereithat it simply fits the model to the training data and
scope for improving performance both by using alteit takes no account of the model’s ability to discrim-
native parameter estimation schemes and by imprdgate. An alternative objective function is to max-
ing the models. In this section, both of these aspedise the conditional likelihood using the Maximum
of HMM design will be discussed. Firstly, discrimi-Mutual Information (MMI) criterion [41, 43]
native training is described and then methods of im- R
proved covariance modelling will be explored. Fam () =3 log pA(Y [ Mw, )p(W,.))
— 7w a(Yr Mw)p(W))
(18)
Here the numerator is the likelihood of the data given
he correct word sequend®, whilst the denomina-
or is the total likelihood of the data given all possi-
elg‘le word sequencdd’. Thus, the objective function
IS maximised by making the correct model sequence
likely and all other model sequences unlikely. It is
R therefore discriminative. Note also that it incorpo-
Fur(\) = Z log px(Y | M) (14) rates the effect of the language model and hence more
! closely represents recognition conditions.

3.1. Discriminative Training

Standard maximum likelihood training attempts t
find a parameter set which maximises the log like-
lihood of the training data, i.e. for training sentenc
Y, ... Yy, the objective function is

r=1
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There is no simple EM-based re-estimatiostate-component alignments are recomputed every 3
scheme for (18), however, there is an approximate 4 iterations. The word-level lattices are typically
scheme known as the Extended Baum-Welch algbeld fixed throughout the training process.
rithm in which Stabl“ty is achieved for the parameter The constantD must be chosen to be |arge
updates by adding a constanto both the numerator enough to ensure convergence but small enough to
and denominator. For example, (17) in the eXtend@ﬁsure acceptably fast training. In practifeis cho-

scheme becomes sen to ensure that variance updates are positive and
R r r it is normall ifi h phone or ian
) S {07, (Moum) — 07, (Maen)} + Dpe, ['[421 ormally set specific to each phone or Gaussia
jm R r T |
2= (Mnum) = T, (Maen)} + D MMI training can provide consistent perfor-

_ ) _ mance improvements compared to similar systems
where Mnum is the combined acoustic and languaggained with ML [46]. However, it can be argued

model used to compute the numerator of (18), anf,t it places too much emphasis on training utter-
Maen is the combined acoustic and language modgf,ces which have a low posterior probability and not
y;ed to compute the denominator. In the latter Ca%hough weight on training utterances near the de-
it is understood that the counts 87, (Maen) @€ ¢ision boundary as in for example Minimum Clas-
summed over all word sequences. For large vocalWfication Error (MCE) training [47]. MCE, how-
lary continuous speech, this is approximated by cOmgyer, focuses on overall sentence-level accuracy, and
puting lattices and summing over all lattice arcs. Aln is not appropriate for lattice-based training of large
thou_gh the numerator counts can be computed asdfstems. Minimum Phone Error (MPE) training ad-
ML, in practice, the numerator counts are also CONesses this issue by attempting to maximise the pos-

puted using lattices since this provides a conveni€glior ytterance probability scaled by tRaw Phone
way to take account of multiple pronunC|at|ons[44]Accuracy(RpA) [48]

As can be seen, counts in the numerator are reduced

if there are similar confusing counts in the denomina- R

tor. The constanD acts like an interpolation weight £pe(\) = 3 2w PAY | Mw)p(W)RPAW, W)
between the new estimate and the existing estimate. = 2w PA(Y o [Mw)p(W)

In a little more detail, the MMI training process is (20)
as follows. Numerator and denominator lattices aMshere as in lattice-based MMI training, the sums
generated for every training utterance usitg,.m ©Vverw are taken over all word sequences appearing
andMgen, respectivelyMn,m comprises the currentin the lattice generated b¥1¢en The RPA is a mea-
phone models integrated into a graph of alternativiire of the number of phones accurately transcribed
word pronunciations, antM gen Comprises the nor- in each word string hypothesli@’. Given the times of
mal recogniser set-up with two exceptions. Firstifhe phone boundaries, each phonélinis matched
a weaker language model is used. Typically the lagainst the corresponding time segment in the tran-
tices are generated using a bigram language mod@eériptiontV;.. If the phones are the same, the RPA is
and then rescored using a unigram [45]. Secondificremented by the percentage overlap, otherwise it
the likelihoods of the acoustic models are scaldd decremented by the percentage overlap. Parameter
by the inverse of the normal LM scale factor [46]OPtimisation is similar to the MMI process described
Both of these modifications have been found to irRbove except that the counts are computed only on
crease the number of confusions in the denomindle denominator lattice. The numerator lattice pro-
tor lattice, thereby improving subsequent generaliseides only the transcriptions needed for determining
tion. Once the word level lattices have been gendhe RPA. Essentially, the counts are composed from
ated, a Viterbi decode is performed on each lattidBe occupation probabilities scaled by the RPA. If
arc to obtain a phone-level segmentation. Forwartley are positive, they contribute to the numerator
backward is then applied to obtain the componefftfms in the update equations, and if they are neg-
level counts and the model parameters re-estimat@dve, they contribute to the denominator terms (see
using (19) (and similar formulae for the variancek48] for details).
and mixture weights). This process is iterated and the The generalisation capabilities of discrimina-
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tively trained systems can be improved by interpddence, a single STC matrix can be viewed as a linear
lating with ML. For example, the H-criterion inter-transform applied in feature space. The component
polates objective functionseFum + (1 — «)Fu.  parameterg,,, andy,, represent the means and vari-
[49]. However, choosing an optimal value faris ances in the transformed space and can be estimated
difficult and the effectiveness of the technique dean the normal way by simply transforming the train-
creases with increasing training data [50]. A morig data. The STC matrix itself can be efficiently esti-
effective technique id-smoothingwhich increases mated using a row by row iterative scheme. Further-
the weight of the numerator counts depending on timeore it is not necessary during training to store the
amount of data available for each Gaussian compfedl covariance statistics at the component level. In-
nent [48]. This is done by scaling the numeratstead, an interleaved scheme can be used in which the
countsl';,, (Mnum) and®?’,, (Mnum) by A matrix statistics are updated on one pass through
the training data, and then the component parame-
14— (21) ters are estimated on the next pass §5This can be
2o F§m(Mnum) integrated into thenixing-upoperation described in
section 2.2. For example, a typical training scheme
might start with a single Gaussian system and an

T

wherer is a constant (typically about 50). Asin-

creases from zero, more weightis givento ML. - jgentity A matrix. The system is then iteratively re-
fined by reestimating the component parameters, up-
3.2. CovarianceModelling dating theA matrix, and mixing-up until the required

number of Gaussians per state is achieved. As well as
An alternative way of improving the acoustic modhaving a single globall matrix, the Gaussian com-
els is to allow them to more closely match the trugonents can be clustered and assigned Ameatrix
distribution of the data. The baseline acoustic moger cluster. For example, there could be ohena-
els outlined in section 2.2 use mixtures of diagonalix per phone or per state depending on the amount
covariance Gaussians chosen as a compromise §ftraining data available and the acceptable number
tween complexity and modelling accuracy. Nevebf parameters. Overall, the use of STC can be ex-
theless, the data is clearly not diagonal and hengected to reduce word error rates by around 5% to
finding some way of improving the covariance modi0% compared to the baseline system. In addition to
elling is desirable. In general the use of full covariSTC, other types of structured covariance modelling
ance Gaussians in large vocabulary systems wouldipelude factor-analysed HMMs [52], sub-space con-
impractical due to the sheer size of the model’set strained precision and means (SPAM) [53], and EM-
However, the use of shared structuredcovariance LLT [54].
representations allow covariance modelling to be im- |+ can pe shown [51] that simultaneous opti-
proved with very little overhead in terms of memoryyisation of the full set of STC parameters (i.e.
and computational load. {A, u,,, ¥m}) is equivalent to maximising the auxil-

One the simplest and most effective structureidry equation
covariance representations is the Semi-Tied Covari-
. : 2
ance (STC) matrix [51]. STC models the covariance Oste =3 n(t)log < |A| >
t,m

of them’th Gaussian component as diagl A W (m) AT)]

S = AT, (A7HT 22 (24)
{ ) (22) where

wherey,,, is the component specific diagonal covari- _ _ T

ance andA is the STC matrix shared by all compo- Wm — 22 Y (O ()T (1) (25)

nents. If the componentmean, = A, then com- > ()

ponent likelihoods can be computed by
and whereg,,(t) = y(t) — 4,,. If each Gaus-

N(y; fx,,, im) = AN (Ay; p,,, Xm) (23) sian component is regarded as a class, e is

7Although given enough data it can be done [11] 8The means can in fact be updated on both passes.
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the within class covariance and it can be shown thation caused by the environment and the physical
(24) is the maximum likelihood solution to a gencharacteristics of the speaker.

eralised form of linear discriminant analysis called

Heteroscedastic LDA (HLDA) in which class covari- . -

ances are not constrained to be equal [55]. The matfly: Mean and Variance Normalisation

A can th'erefqre pe.regarded asa feature space Ua}gan normalisation removes the average feature
form which discriminates Gaussian components ar\llg

thi ¢ impl tension by whitk | lue and since most front-end feature sets are de-
IS SUgQests a simple extension by whrtlean also yjyeq from log spectra, this has the effect of reduc-
perform a subspace projection, i.e.

ing sensitivity to channel variation. Cepstral variance

Ay i normalisation scales each individual feature coeffi-
9=Ay = {A [p] } = [ Jp] } (26) cient to have a unit variance and empirically this has

ld=p¥ Yia-rl been found to reduce sensitivity to additive noise[57].
where the d-dimensional feature space is divided into
p usefuldimensions and — p nuisancedimensions. For transcription applications where multiple
The matrixA(, projectsy into a p-dimensional sub- passes over the data are possible, the necessary mean
space which is modelled by the diagonal Gaussiamd variance statistics should be computed over the
mixture components of the acoustic models. THengest possible segment of speech for which the
d — p nuisance dimensions are modelled by a globapeaker and environment conditions are constant. For
non-discriminating Gaussian. Equation 24 can therexample, in broadcast news transcription this will be

fore be factored as a speaker segment and in telephone transcription it
will be a whole side of a conversation. Note that for
Quioa = Y Ym(t) real time systems which operate in a single continu-
t,m ous pass over the data, the mean and variance statis-
|A? tics must be computed as running averages.
log - -
|diag( Ay W(M>A[7;])||d|ag(A[d,p] TAf’;ip]ﬂ

27) 4.2. Gaussianization

whereT is the global covariance of the training dataGiven that normalising the first and second order
The forms of equations (24) and (27) are similar arfatistics yields improved performance, an obvious
the optimal value ford;, can be estimated by theextension is to normalise the higher order statistics
same row_by-row iteration used in the STC case. so that the features are Gaussian distributed. This

For application to LVCSRy can be constructed so-calledGaussianizatioris performed by finding a

either by concatenating successive feature vectors,t s_formz — ¢(y)' on a per element ba3|sz such t'ha}t
) is Gaussian. One simple way to achieve this is

as is common in HTK-based systems, the standdf > i S .

39-element feature vector comprised of static PL estimate a cumulative distribution function (cdf)

coefficients plus their 1st and 2nd derivatives are au r each feature element

mented by the 3rd derivatives and then projected back N

into 39 dimensions usmgfﬂ_) X 52 H_LI_DA transfgrm. Foly) = — Z h(y —y;) = rank(y;)/N  (28)
Finally note that, as with semi-tied covariances, N &~

multiple HLDA transforms can be used to allow the

full acoustic space to be covered by a set of pieceherey;..yy are the data to be normalised.) is

wise linear projections [56]. the step function andunk(y;) is the rank ofy; when
the data are sorted. The required transformation is
then
4. NORMALISATION )
! (rcmj/;(%)) (29)

Normalisation attempts to condition the incoming
speech signal in order to minimise the effects of varwhere®(-) is the cdf of a Gaussian [58].
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One difficulty with this approach is that whenthe  For very large systems, the overhead incurred
normalisation data set is small the cdf estimate cdrom iteratively computing the optimal VTLN pa-
be noisy. An alternative approach is to estimate aameters can be considerable. An alternative is to
M component Gaussian mixture model (GMM) ompproximate the effect of VTLN by a linear trans-
the data and then use this to approximate the cdf[58rm. The advantage of this approach is that the op-
that is timal transformation parameters can be determined

v M from the auxiliary function in a single pass over the
a=27 ( / > emlN (y;um,a,i)dy) (30) datal6s].
—00 1 VTLN is particularly effective for telephone
9 ) speech where speakers can be clearly identified. It
where,, ando;, are the mean and variance of thes o5 effective for other applications such as broad-

m'th GMM component. This results in @ Smoothef,st news transcription where speaker changes must
and more compact representation of the Gaussianiggsinferred from the data.

tion transformation[60].

4.3. Vocal Tract Length Normalisation 5. ADAPTATION

Variations in vocal tract length cause formant fre-

quencies to shift in frequency in an approxima’[e|9\ fundamental idea in statistical pattern classification

linear fashion. Thus, one simple form of noriS that the training data should adequately represent
malisation is to linearly scale the filter bank centhe test data, otherwise a mis-match will occur and

tre frequencies within the front-end feature extra¢ecognition accuracy will be degraded. In the case of
tor to approximate a canonical formant frequencsiPeech recognition, there will always be new speak-
scaling[61]. This is called/ocal Tract Length Nor- €rs who are poorly represented by the training data,
malisation (VTLN) and new hitherto unseen environments. The solution

To implement VTLN two issues need to be agto these problems isdaptation Adaptation allows a

dressed: definition of the scaling function and estfMall amount of data from a target speaker to be used

mation of the appropriate scaling function paramég transform an acoustic model set to make it more

ters for each speaker. Early attempts at VTLN usétPSely match that speaker. It can be used both in
a simple linear mapping but as shown in Fig. 10@ aining to make more specific and/or more compact

this results in a problem at high frequencies whef&c09nition sets and it can be used in recognition to
female voices have no information in the upper frer_educe mismatch and the consequent recognition er-

quency band and male voices have the upper fié's:

quency band truncated. This can be mitigated by us- There are varying styles of adapation which affect
ing a piece-wise linear function of the form showrpoth the possible applications and the method of im-
in Fig. 10(b)[57]. Alternatively, a bilinear trans-Plementation. Firstly, adaptation cansagervisedn
form can be used[62]. Parameter estimation is pakthich case accurate transcriptions are available for
formed using a grid search plotting log likelihood#ll of the adaptation data, or it can besupervised
against parameter values. Once the optimal valuéswhich case the required transcriptions must be hy-
for all training speakers have been computed, tfi®thesised. Secondly, adaptation canrmeemental
training data is normalised and the acoustic moded§ batch-mode In the former case, adaptation data
re-estimated. This is repeated until the VTLN paranfecomes available in stages, for example, as is the
eters have stabilised. Note here that when comparié@se for a spoken dialogue system when a new caller
log likelihoods resulting from differing VTLN trans- comes on the line. In batch-mode, all of the adapta-
formationS, the Jacobean of the transform shouﬂﬂ)n data is available from the start as is the case in
strictly be included. This is however very comple®ff-line transcription.

to estimate and since the application of mean and This section describes the main approaches to
variance normalisation will reduce the affect of thimdaptation and its application in both recognition and
approximation, it is usually ignored. training.
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5.1. Maximum A Posteriori (M AP) Adaptation 5.2. ML-based Linear Transforms

Given some adaptation da¥4,..Y  and amodei An alternative approach to adaptation is to build a

with parameters,, MAP-based parameter estimatiors€t of linear transforms to map an existing model set
seeks to maximise the following objective function, into a new adapted model set such that the likelihood

of the adaptation data is maximised. This is called
Maximum Likelihood Linear Regression(MLL&)d
unlike MAP, it is particularly suited to unsupervised
incremental adaptation.

There are two main variants of MLLR: un-
. . . L .__constrained and constrained[67]. In unconstrained
Comparing this with the ML objection function [67]

. ; ) L .MLLR, separate transforms are trained for the means
given in (14), it can be seen that the likelihood IS nd variar?ces !

weighted by the prior. The choice of distribution
for this prior is problematic since there is no con- . _ ~ b: S —pgy. gT (33
jugate prior density for a continuous Gaussian mix- 7™ Hjm + 3 7 7 (33)

ture HMM. However, if the mixture weights andynhe formulae for constrained MLLR (CMLLR) are
Gaussian component parameters are assumed Q& tical except thaty = H. The maximum likeli-
independent, then a finite mixture density of thgyoq estimation formulae are given in [68]. Whereas
form pp(c;) [1,, pw (#4;m, Xjm) can be used wherenere are closed-form solutions for unconstrained
pp(.) is a Dirichlet distribution over the vector of\; | R “the constrained case is similar to the semi-
mixture weightsc; andpyw (.) is a normal-Wishart ieq covariance transform discussed in section 3.2
density. It can then be shown that this leads t0 pgnq requires an iterative solution. However, CMLLR
rameter estimation formulae of the form has other advantages as discussed in section 5.3 be-
low. Linear tranforms can also be estimated using
) T + Zle @;m(/\/{wr) discriminative criteria [69, 70, 71].
jm = -t ZR I (M) (32) The key to the power of the MLLR adaptation
r=1"jm W, : .
approach is that a single transform mattx can
be shared across a set of Gaussian mixture com-
wherep;,,, is the prior mean and is a parameter ponents. When the amount of adaptation data is
of pw (.) which is normally determined empirically.|imited, a global transform can be shared across all
Similar, though rather more complex, formulae cagaussians in the system. As the amount of data in-
be derived for the variances and mixture weights [64"}9&595, the HMM state components can be grouped
Comparing (32) with (17), it can be seen thainto classes with each class having its own transform.
MAP adapation effectively interpolates the originals the amount of data increases further, the number
prior parameter values with those that would be olef classes and therefore transforms increases corre-
tained from the adaptation data alone. As the amowgondingly leading to better and better adaptation.

of adaptation data increases, the parameters tend The number of transforms to use for any Specific
asymptotically to the adaptation domain. This is a dgdaptation set can be determined automatically using
sirable property and it makes MAP especially usefi regression class treas illustrated in fig 11. Each
for porting a well-trained model set to a new domaiRode represents a regression class i.e. a set of Gaus-
for which there is only a limited amount of data.  sian components which will share a single transform.
A major drawback of MAP adaptation is that ev-The total occupation count associated with any node
ery Gaussian component is updated individually. If the tree can easily be computed since the counts
the adaptation data is sparse, then many of the mode¢ known at the leaf nodes. Then, for a given set of
parameters will not be updated. Various attemptslaptation data, the tree is descended and the most
have been made to overcome this (e.g. [65, 66]) bspecific set of nodes is selected for which there is
MAP nevertheless remains ill-suited for rapid incresufficient data (for example, the shaded nodes in the
mental adaptation. figure).

R
Fump(A) = > logp(Y [Mw,)p(A)  (31)

r=1
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When used in unsupervised mode, MLLR is
normally applied iteratively[72]. First, the un- T
known test speech is recognised, then the hypothes: _ r (1) Ts—17, 70 _ 3.(r)
sised transcription is used to estimate MLLR transg”"(M) N ;%m(t)G im (Yt —0)
forms. The test speech is then re-recognised using the B (J§44)
adapted models. This is repeated until convergenceijigy
achieved. A refinement of this is to use recognition
lattices in place of the 1-best hypothesis to accumu- I . () T o(r)
late the adaptation statistics. This approach is morel jm (M) = Y 7}, ()G T8 @
robust to recognition errors and avoids the need to t=1

re-recognise the data since the lattice can simply b .
rescore%[73]. PY WhereG(™, b is the transform for the speaker ut-

tering training sentence. The mean is then esti-
mated using (17) as normal.

Rather than modifying the statistics, the use of
CMLLR allows adaptive training to be simplified fur-
) o ther and allows combined mean and variance adap-
5.3. AdaptiveTraining tation. Similar to the case for semi-tied covariances,
the CMLLR transformed likelihood can be computed
Ideally, an acoustic model set should encode jusimply by regarding it as a feature space transforma-
those dimensions which allow the different classes t®n, i.e. for any mixture componet of state;
be discriminated. However, in the case of speaker in- R 1
dependent (_SI) speech recognition, the training dat(y; Ejrs Xjm) = @J\/(G Yy —b); Hojms Xjm)
necessarily includes a large number of speakers and
hence acoustic models trained directly on this set will N - (36)
heref;,, and;,, are the transformed means and

have to “waste” a large number of parameters encod- . g
ing the variablity between speakers rather than tp{gnance%asbm.é%)_ (Wlth_MIIj%). Thuls abS_AtT SB{.S'
variability between spoken words which is the tru £m can be bullt using simply by iterating

aim etween the estimation of the canonical model using

. ._estimation of the transformed training data and the

One way to overcome this is to replace the single, 1 <rorms using the canonical model.
S| model set with a cluster of more specific models Finallv. note that SAT trained tems incur th
where each model can be trained on more homoge- , 'Y, Note tha ained systems incur the

nous data. This is calle@luster Adaptive Train- roblem that they can only be used once transforms

ing (CAT) At recognition time, a linear combinationhave been. estlmated for .the test data. Thus,. an S|
of models is selected where the set of interpolati odel setis typlcally_re_talned to generate the initial
weights, in effect, forms a speaker specific transfor pothes!sed transcription or lattice needed to com-
[74, 75, 76]. More recently discriminative techniqueBUte the first set of transforms.

have been applied to CAT with some success [77].

An alternative approach to CAT is to use adap- 6. MULTI-PASSRECOGNITION
tation to transform each training set speaker to form ARCHITECTURES
a canonical model. This is calléspeaker Adaptive
Training (SAT)and the conceptual schema for this iThe previous sections have reviewed some of the ba-
shown in Fig. 12 [78]. When only mean transformasic techniques available for both training and adapt-
tions are used, SAT is straightforward. A transforrimng a HMM-based recognition system. In general,
is estimated for each speaker, and then the paramaey particular combination of model set and adap-
ters of the canonical model set are estimated by mation technique will have slightly different charac-
ifying the statistics to account for the tranform. Foteristics and make different errors. Furthermore, if
example, to estimate the canonical model means, e outputs of these systems are converted to confu-
counts in (15) and (16) are modified as follows:  sion networks as explained in section 2.4, then it is

(35)

M
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straightforward to combine the confusion networkeates are now well below 20%. Similarly, broadcast
and then select the word sequence with the overakkws transcription has improved from around 30%
maximum posterior likelihood. Thus, modern tranWER in 1997 to below 15% today.

scription systems typically utilise multiple modelsets  pespite their dominance and the continued rate
and make multiple passes over the data. of improvement, many argue that the HMM architec-
A typical architecture is shown in Fig. 13. A firstture is fundamentally flawed and performance must
pass is made over the data using a relatively simple &ymptote. Of course, this is undeniably true since
model set. The 1-best output from this pass is used have in our own heads an existence proof. How-
to perform a first round of adaptation. The adaptesler, no good alternative to the HMM has been found
models are then used to generate lattices using abagit. In the meantime, the performance asymptote
bigram or trigram word-based language model. Onseems to be still some way away.
the lattices have been generated, a range of more
complex models and adaptation techniques can be
applied in parallel to provide candidate output con-

fusion networks from which the best word sequenc .
is extracted. These 3rd pass models may include M(TL” ‘IlléE?Ea.kr?;'nggigjr;?:snsspy;i? anadns(?g\]/r?glnlg\:g-

and MPE trained systems, Sl and SAT trained mod- cessing23(1):24-29, 1975.
els, triphone and quinphone models, lattice-based ) ) »
MLLR, CMLLR, 4-gram language models interpo- [2] F .Je]m_ek. Continuous Speech Recognition by
lated with class-ngrams and many other variants. For ~Statistical Methods. Proc IEEE 64(4):532—
examples of recent large-scale transcription systems 556, 1976.
see [11, 60, 79]. [3] BT Lowerre. The Harpy Speech Recognition
The gains obtained from this type of system com-  SystemPhD thesis, Carnegie Mellon, 1976.
bination can vary but overall performance is more ro{4] LR Rabiner, B-H Juang, SE Levinson, and
bust across a range of task domains. Finally, note that MM Sondhi. Recognition of Isolated Digits Us-
adaptation can work more effectively if the required ~ ing HMMs with Continuous Mixture Densities.
hypothesised transcriptions are generated by a differ- ATT Technical J64(6):1211-1233, 1985.
ent system. Thus, cross adaptation is also an increafs] LR Rabiner. A Tutorial on Hidden Markov
ingly popular architectural option. Models and Selected Applications in Speech
Recognition.Proc IEEE, 77(2):257-286, 1989.
PJ Price, W Fisher, J Bernstein, and DS Pallet.
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Figure 6: Basic Recognition Network

end;

Put a start token < log(1), 0 > in network entry node;
Put null tokens < log(0), ® > in all other nodes;
for eachtime ¢t = 1to 7' do

— word internal token propagation

for each non-entry node j do

MazP = log(0);
for each predecessor node i do
Temp token Q = Q;;
Q.LogP +=log(asj) [+ log(b;(y:)) if 7 emitting J;
If Q.LogP > MaxP then
QR =Q; MaxP = Q.LogP;
end;

end;

Copy tokens from word internal exits to following entries;
— word external token propagation

for each word w with entry node j do

MazP = log(0);
for each predecessor word u with exit node i do
Temp token Q = Qq;
Q.LogP += alog p(w|u) + 3;
If Q.LogP > MaxP then
Qj =Q; MazP = Q.LogP; v =u
end;
— Record word boundary decision
Create a record R;
R.Q = Qj; Rt =t; Rword = /;
Q.link =7 R;

end;
Put null token in network entry node;

Token in network exit state at time 7' represents the best path;

Figure 7: Basic Token Passing Algorithm
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