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Almost all present day continuous speech recog-
nition (CSR) systems are based on Hidden Markov
Models (HMMs). Although the fundamentals of
HMM-based CSR have been understood for several
decades, there has been steady progress in refining
the technology both in terms of reducing the impact
of the inherent assumptions, and in adapting the mod-
els for specific applications and environments. The
aim of this chapter is to review the core architecture
of a HMM-based CSR system and then outline the
major areas of refinement incorporated into modern-
day systems.

1. INTRODUCTION

Automatic continuous speech recognition (CSR) is
sufficiently mature that a variety of real world ap-
plications are now possible including command and
control, dictation, transcription of recorded speech
and interactive spoken dialogues. This chapter de-
scribes the statistical models that underlie current-
day systems: specifically, the hidden Markov model
(HMM) and its related technologies.

The foundations of modern HMM-based contin-
uous speech recognition technology were laid down
in the 1970’s by groups at Carnegie-Mellon, IBM
and Bell Labs [1, 2, 3]. Reflecting the compu-
tational power of the time, initial development in
the 1980’s focussed on whole word small vocabu-
lary applications[4, 5]. In the early 90’s, attention
switched to continuous speaker-independent recog-
nition. Starting with the artificial 1000 wordRe-
source Managementtask [6], the technology devel-
oped rapidly and by the mid-1990’s, reasonable ac-
curacy was being achieved for unrestricted dictation.

Much of this development was driven by a series
of DARPA and NSA programmes[7] which set ever
more challenging tasks culminating most recently in
systems for multilingual transcription of broadcast
news programmes[8] and for spontaneous telephone
conversations[9].

Although the basic framework for CSR has not
changed significantly in the last ten years, the de-
tailed modelling techniques developed within this
framework have evolved to a state of considerable
sophistication (e.g. [10, 11]). The result has been
steady and significant progress and it is the aim of
this chapter to describe the main techniques by which
this has been achieved. Many research groups have
contributed to this progress, and each will typically
have their own architectural perspective. For the sake
of logical coherence, the presentation given here is
somewhat biassed towards the architecture developed
at Cambridge and supported by the HTK Software
Toolkit[12]1.

The chapter is organised as follows. In section 2,
the core architecture of a typical HMM-based recog-
niser is described [13]. Subsequent sections then de-
scribe the various improvements which have been
made to this core over recent years. Section 3 dis-
cusses methods of HMM parameter estimation and
issues relating to improved covariance modelling.
In sections 4 and 5, methods of normalisation and
adaptation are described which allow HMM-based
acoustic models to more accurately represent specific
speakers and environments. Finally in section 6, the
multi-pass architecture refinements adopted by mod-
ern transcription system is described. The chapter
concludes in section 7 with some general observa-

1Available for free download athtk.eng.cam.ac.uk
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tions and conclusions.

2. ARCHITECTURE OF A HMM-BASED
RECOGNISER

The principal components of a large vocabulary con-
tinuous speech recogniser are illustrated in Fig 1.
The input audio waveform from a microphone is con-
verted into a sequence of fixed size acoustic vectors
Y = y1..yT in a process called feature extraction.
The decoder then attempts to find the sequence of
wordsW = w1 . . . wK which is most likely to have
generatedY , i.e. the decoder tries to find

Ŵ = argmax
W

{p(W |Y )} (1)

However, sincep(W |Y ) is difficult to model directly,
Bayes’ Rule is used to transform (1) into the equiva-
lent problem of finding:

Ŵ = argmax
W

{p(Y |W )p(W )}. (2)

The likelihoodp(Y |W ) is determined by anacous-
tic modeland the priorp(W ) is determined by alan-
guage model.2 The basic unit of sound represented
by the acoustic model is thephone. For example, the
word “bat” is composed of three phones /b/ /ae/ /t/.
About 40 such phones are required for English.

For any givenW , the corresponding acoustic
model is synthesised by concatenating phone models
to make words as defined by a pronunciation dictio-
nary. The parameters of these phone models are esti-
mated from training data consisting of speech wave-
forms and their orthographic transcriptions. The lan-
guage model is typically anN -gram model in which
the probability of each word is conditioned only on
its N − 1 predecessors. TheN -gram parameters are
estimated by counting N-tuples in appropriate text
corpora. The decoder operates by searching through
all possible word sequences using pruning to re-
move unlikely hypotheses thereby keeping the search
tractable. When the end of the utterance is reached,

2In practice, the acoustic model is not normalised and the lan-
guage model is often scaled by an empirically determined constant
and a word insertion penalty is added i.e. in the log domain the to-
tal likelihood is calculated aslog p(Y |W ) + αp(W ) + β|W |
whereα is typically in the range 8 to 20 andβ is typically in the
range 0 to -20.

the most likely word sequence is output. Alterna-
tively, modern decoders can generate lattices contain-
ing a compact representation of the most likely hy-
potheses.

The following sections describe these processes
and components in more detail.

2.1. Feature Extraction

The feature extraction stage seeks to provide a com-
pact encoding of the speech waveform. This encod-
ing should minimise the information loss and provide
a good match with the distributional assumptions
made by the acoustic models. Feature vectors are
typically computed every 10ms using an overlapping
analysis window of around 25ms. One of the sim-
plest and most widely used encoding schemes uses
Mel-Frequency Cepstral Coefficients (MFCCs)[14].
These are generated by applying a truncated cosine
transformation to a log spectral estimate computed
by smoothing an FFT with around 20 frequency bins
distributed non-linearly across the speech spectrum.
The non-linear frequency scale used is called aMel
Scaleand it approximates the response of the hu-
man ear. The cosine transform is applied in order
to smooth the spectral estimate and decorrelate the
feature elements.

Further psychoacoustic constraints are incorpo-
rated into a related encoding calledPerceptual Linear
Prediction (PLP)[15]. PLP computes linear predic-
tion coefficients from a perceptually weighted non-
linearly compressed power spectrum and then trans-
forms the linear prediction coefficients to cepstral co-
efficients. In practice, PLP can give small improve-
ments over MFCCs, especially in noisy environments
and hence it is the preferred encoding for many sys-
tems.

In addition to the spectral coefficients, first order
(delta) and second-order (delta-delta) regression co-
efficients are often appended in a heuristic attempt
to compensate for the conditional independence as-
sumption made by the HMM-based acoustic models.
The final result is a feature vector whose dimension-
ality is typically around 40 and which has been par-
tially but not fully decorrelated.
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2.2. HMM Acoustic Models

As noted above, the spoken words inW are decom-
posed into a sequence of basic sounds calledbase
phones. To allow for possible pronunciation varia-
tion, the likelihoodp(Y |W ) can be computed over
multiple pronunciations3

p(Y |W ) =
∑

Q

p(Y |Q)p(Q|W ) (3)

Each Q is a sequence of word pronunciations
Q1 . . .QK where each pronunciation is a sequence
of base phonesQk = q

(k)
1 q

(k)
2 . . .. Then

p(Q|W ) =

K
∏

k=1

p(Qk|wk) (4)

wherep(Qk|wk) is the probability that wordwk is
pronounced by base phone sequenceQk. In practice,
there will only be a very small number of possible
Qk for eachwk making the summation in (3) easily
tractable.

Each base phoneq is represented by a continuous
density hidden Markov model (HMM) of the form
illustrated in Fig 2 with transition parameters{aij}
and output observation distributions{bj()}. The lat-
ter are typically mixtures of Gaussians

bj(y) =

M
∑

m=1

cjmN (y; µjm, Σjm) (5)

whereN denotes a normal distribution with mean
µjm and covarianceΣjm, and the number of compo-
nentsM is typically in the range 10 to 20. Since the
dimensionality of the acoustic vectorsy is relatively
high, the covariances are usually constrained to be
diagonal. The entry and exit states arenon-emitting
and they are included to simplify the process of con-
catenating phone models to make words.

Given the composite HMMQ formed by con-
catenating all of its constituent base phones then the
acoustic likelihood is given by

p(Y |Q) =
∑

X

p(X, Y |Q) (6)

3Recognizers often approximate this by amaxoperation so that
alternative pronunciations can be decoded as though they were al-
ternative word hypotheses.

whereX = x(0)..x(T ) is a state sequence through
the composite model and

p(X, Y |Q) = ax(0),x(1)

T
∏

t=1

bx(t)(yt)ax(t),x(t+1)

(7)
The acoustic model parameters{aij} and{bj()}

can be efficiently estimated from a corpus of training
utterances using Expection-Maximisation (EM)[16].
For each utterance, the sequence of baseforms is
found and the corresponding composite HMM con-
structed. A forward-backward alignment is used to
compute state occupation probabilities (the E-step)
and the means and covariances are then estimated
via simple weighted averages (the M-step)[12, Ch
7]. This iterative process can be initialised by as-
signing the global mean and covariance of the data to
all Gaussian components and setting all transitition
probabilities to be equal. This gives a so-calledflat
start model. The number of component Gaussians in
any mixture can easily be increased by cloning, per-
turbing the means and then re-estimating using EM.

This approach to acoustic modelling is often re-
ferred to as thebeads-on-a-stringmodel, so-called
because all speech utterances are represented by con-
catenating a sequence of phone models together.
The major problem with this is that decomposing
each vocabulary word into a sequence of context-
independent base phones fails to capture the very
large degree of context-dependent variation that ex-
ists in real speech. For example, the base form pro-
nunciations for “mood” and “cool” would use the
same vowel for “oo”, yet in practice the realisations
of “oo” in the two contexts are very different due to
the influence of the preceding and following conso-
nant. Context independent phone models are referred
to asmonophones.

A simple way to mitigate this problem is to use
a unique phone model for every possible pair of left
and right neighbours. The resulting models are called
triphonesand if there areN base phones, there are
logically N3 potential triphones. To avoid the result-
ing data sparsity problems, the complete set oflog-
ical triphonesL can be mapped to a reduced set of
physical modelsP by clustering and tying together
the parameters in each cluster. This mapping pro-
cess is illustrated in Fig 3 and the parameter tying
is illustrated in Fig 4 where the notation x-q+y de-
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notes the triphone corresponding to phone q spoken
in the context of a preceding phone x and a following
phone y. The base phone pronunciations Q are de-
rived by simple look-up from the pronunciation dic-
tionary, these are then mapped to logical phones ac-
cording to the context, finally the logical phones are
mapped to physical models. Notice that the context-
dependence spreads across word boundaries and this
is essential for capturing many important phonologi-
cal processes. For example, the [p] in “stop that” has
its burst suppressed by the following consonant.

The clustering of logical to physical models typi-
cally operates at the state-level rather than the model
level since it is simpler and it allows a larger set
of physical models to be robustly estimated. The
choice of which states to tie is made using decision
trees[17]. Each state position4 of each phoneq has
a binary tree associated with it. Each node of the
tree carries a question regarding the context. To clus-
ter statei of phoneq, all statesi of all of the log-
ical models derived fromq are collected into a sin-
gle pool at the root node of the tree. Depending on
the answer to the question at each node, the pool of
states is successively split until all states have trick-
led down to leaf nodes. All states in each leaf node
are then tied to form a physical model. The ques-
tions at each node are selected from a predetermined
set to maximize the likelihood of the training data
given the final set of state-tyings. If the state output
distributions are single component Gaussians and the
state occupation counts are known, then the increase
in likelihood achieved by splitting the Gaussians at
any node can be calculated simply from the counts
and model parameters without reference to the train-
ing data. Thus, the decision trees can be grown very
efficiently using a greedy iterative node splitting al-
gorithm. Fig 5 illustrates this tree-based clustering.
In the figure, the logical phones s-aw+n and t-aw+n
will both be assigned to leaf node 3 and hence they
will share the same central state of the representative
physical model.5

The partitioning of states using phonetically-
driven decision trees has several advantages. In par-
ticular, logical models which are required but were
not seen at all in the training data can be easily syn-

4invariably each phone model has three states
5The total number of tied-states in a large vocabulary speaker

independent system typical ranges between 1000 and 5000 states

thesised. One disadvantage is that the partitioning
can be rather coarse. This problem can be reduced
using so-calledsoft-tying[18]. In this scheme, a post-
processing stage groups each state with its one or
two nearest neighbours and pools all of their Gaus-
sians. Thus, the single Gaussian models are con-
verted to mixture Gaussian models whilst holding the
total number of Gaussians in the system constant.

To summarise, the core acoustic models of a
modern speech recogniser is typically comprised of
a set of tied-state mixture Gaussian HMM-based
acoustic models. This core is commonly built in the
following steps[12, Ch 3]:

1. A flat-start monophone set is created in which
each base phone is a monophone single-
Gaussian HMM with means and covariances
equal to the mean and covariance of the training
data.

2. The parameters of the single-Gaussian mono-
phones are iteratively re-estimated using 3 or 4
iterations of EM.

3. Each single Gaussian monophone q is cloned
once for each distinct triphone x-q+y that ap-
pears in the training data.

4. The set of training data single-Gaussian tri-
phones is iteratively re-estimated using EM and
the state occupation counts of the last iteration
are saved.

5. A decision tree is created for each state in each
base phone, the single-Gaussian triphones are
mapped into a smaller set of tied-state triphones
and iteratively re-estimated using EM.

6. Mixture components are iteratively split and re-
estimated until performance peaks on a held-out
development set.

The final result is the required tied-state context-
dependent mixture Gaussian acoustic model set.
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2.3. N -gram Language Models

The prior probability of a word sequenceW =
w1..wK required in (2) is given by

p(W ) =

K
∏

k=1

p(wk|wk−1, . . . , w1) (8)

For large vocabulary recognition, the conditioning
word history in (8) is usually truncated toN − 1
words to form anN -gram language model

p(W ) =

K
∏

k=1

p(wk|wk−1, wk−2, . . . , wk−N+1) (9)

whereN is typically in the range 2 to 4. TheN -
gram probabilities are estimated from training texts
by countingN -gram occurrences to form maximum
likelihood (ML) parameter estimates. For example,
let C(wk−2wk−1wk) represent the number of occur-
rences of the three wordswk−2wk−1wk and similarly
for C(wk−2wk−1), then

p(wk|wk−1, wk−2) ≈
C(wk−2wk−1wk)

C(wk−2wk−1)
(10)

The major problem with this simple ML estimation
scheme is data sparsity. This can be mitigated by a
combination of discounting and backing-off, known
asKatz smoothing[19]

p(wk|wk−1, wk−2)

=
C(wk−2wk−1wk)

C(wk−2wk−1)
if C > C′

= d
C(wk−2wk−1wk)

C(wk−2wk−1)
if 0 < C ≤ C′

= α(wk−1, wk−2) p(wk|wk−1) otherwise (11)

whereC′ is a count threshold,d is a discount coeffi-
cient andα is a normalisation constant. Thus, when
the N -gram count exceeds some threshold, the ML
estimate is used. When the count is small the same
ML estimate is used but discounted slightly. The dis-
counted probability mass is then distributed to the un-
seenN -grams which are approximated by a weighted
version of the corresponding bigram. This idea can
be applied recursively to estimate any sparseN -gram
in terms of a set of back-off weights andN−1-grams.

The discounting coefficient is based on the Turing-
Good estimated = (r +1)nr+1/rnr wherenr is the
number ofN -grams that occur exactlyr times in the
training data. Although Katz smoothing is effective,
there are now known to be variations which work bet-
ter. In particular, Kneser-Ney smoothing consistently
outperforms Katz on most tasks [20, 21].

An alternative approach to robust language model
estimation is to use class-based models in which for
every wordwk there is a corresponding classck [22,
23]. Then,

p(W ) =

K
∏

k=1

p(wk|ck)p(ck|ck−1, . . . , ck−N+1)

(12)
As for word based models, the classN -gram proba-
bilities are estimated using ML but since there are far
fewer classes (typically a few hundred) data sparsity
is much less of an issue. The classes themselves are
chosen to optimise the likelihood of the training set
assuming a bigram class model. It can be shown that
when a word is moved from one class to another, the
change in perplexity depends only on the counts of a
relatively small number of bigrams. Hence, an itera-
tive algorithm can be implemented which repeatedly
scans through the vocabulary, testing each word to
see if moving it to some other class would increase
the likelihood [24].

In practice it is found that for reasonably sized
training sets, an effective language model for large
vocabulary applications consists of a word-based tri-
gram or 4-gram interpolated with a class-based tri-
gram.

2.4. Decoding and Lattice Generation

As noted in the introduction to this section, the
most likely word sequencêW given a sequence of
feature vectorsY = y1..yT is found by search-
ing all possible state sequences arising from all
possible word sequences for the sequence which
was most likely to have generated the observed
data Y . An efficient way to solve this problem
is to use dynamic programming. Letφj(t) =
maxX {p(y1, . . . ,yt, x(t) = j|M)} i.e. the maxi-
mum probability of observing the partial sequence
y1..yt and then being in statej at time t given the
modelM. This probability can be efficiently com-
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puted using the Viterbi algorithm

φj(t) = max
i

{φi(t − 1)aij} bj(yt) (13)

It is initialised by settingφj(t) to 1 for the ini-
tial state and 0 for all other states. The probabil-
ity of the most likely word sequence is then given
by maxj{φj(T )} and if every maximisation decision
is recorded, a traceback will yield the required best
matching state/word sequence.

In practice, a direct implementation of the above
algorithm becomes unmanageably complex for con-
tinuous speech where the topology of the models, the
language model constraints and the need to bound
the computation must all be taken account of. For-
tunately, much of this complexity can be abstracted
away by a simple change in viewpoint.

First, the HMM topology can be made explicit
by constructing a recognition network. For task ori-
ented applications, this network can represent the ut-
terances that the user is allowed to say i.e. it can rep-
resent a recognition grammar. For large vocabulary
applications, it will typically consist of all vocabu-
lary words in parallel in a loop. In both cases, words
are represented by a sequence of phone models as de-
fined by the pronunciation dictionary (see Fig 6), and
each phone model consists of a sequence of states as
indicated by the inset. If a word has several pronun-
ciations as in the general case described by (3), they
are simply placed in parallel.

Given this network, at any timet in the search, a
single hypothesis consists of a path through the net-
work representing an alignment of states with feature
vectorsy1..yt, starting in the initial state and ending
at statej, and having a log likelihoodlog φj(t). This
path can be made explicit via the notion of atoken
consisting of a pair of values< logP, link > where
logP is the log likelihood6 and link is a pointer to
a record of history information [25]. Each network
node corresponding to each HMM state can store a
single token and recognition proceeds by propagat-
ing these tokens around the network.

The basic Viterbi algorithm given above can now
be recast for continuous speech recognition as theTo-
ken Passingalgorithm shown in outline in Fig 7. The
termnoderefers to a network node corresponding to
a single HMM state. These nodes correspond to ei-

6Often referred to as thescore

ther entry states, emitting states or exit states. Es-
sentially, tokens are passed from node to node and at
each transition the token score is updated.

When a token transitions from the exit of a word
to the start of the next word, its score is updated
by the language model probability plus any word in-
sertion penalty. At the same time the transition is
recorded in a recordR containing a copy of the token,
the current time and identity of the preceding word.
The link field of the token is then updated to point
to the recordR. As each token proceeds through the
network it accumulates a chain of these records. The
best token at timeT in a valid network exit node can
then be examined and traced back to recover the most
likely word sequence and the boundary times.

The above Token Passing algorithm and associ-
ated recognition network is an exact implementation
of the dynamic programming principle embodied in
(13). To convert this to a practical decoder for speech
recognition, the following steps are required:

1. For computational efficiency, only tokens which
have some likelihood of being on the best path
should be propagated. Thus, every propagation
cycle, the log probability of the most likely to-
ken is recorded. All tokens whose probabilities
fall more than a constant below this are deleted.
This results in a so-calledbeam searchand the
constant is called thebeam width.

2. As a consequence of beam search, 90% of the
computation is actually spent on the first two
phones of every word, after that most of the to-
kens fall outside of the beam and are pruned.
To exploit this, the recognition network should
betree-structuredso that word initial phones are
shared (see Fig 8).

3. However, sharing initial phones makes it impos-
sible to apply an exact language model probabil-
ity during word-external token propagation since
the identity of the following word is not known.
Simply delaying the application of the language
model until the end of the following word is not
an option since that would make pruning inef-
fective. Instead, an incremental approach must
be adopted in which the language model proba-
bility is taken to be the maximum possible prob-
ability given the set of possible following words.
As tokens move through the tree-structured word
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graph, the set of possible next words reduces at
each phone transition and the language model
probability can be updated with a more accurate
estimate.

4. The HMMs linked into the recognition network
should be context dependent and for best per-
formance, this dependency should span word
boundaries. At first sight this requires a massive
expansion of the network, but in fact a compact
static network representation of cross-word tri-
phones is possible [26].

5. The dynamic programming principle relies on
the principle that the optimal path at any node
can be extended knowing only the state infor-
mation given at that node. The use ofN -gram
language models causes a problem here since
unique network nodes would be needed to distin-
guish all possibleN − 1 word histories and for
large vocabulary decoders this is not tractable.
Thus, the algorithm given in Fig 7 will only work
for bigram language models. A simple way to
solve this problem is to store multiple tokens in
each state thereby allowing paths with differing
histories to “stay alive” in parallel. Token prop-
agation now requires a merge and sort operation
which although computationally expensive can
be made tractable.

The above description of a large vocabulary de-
coder covers all of the essential elements needed to
recognise continuous speech in real time using just a
single pass over the data. For off-line batch transcrip-
tion of speech, significant improvements in accuracy
can be achieved by performing multiple passes over
the data. To make this possible, the decoder must
be capable of generating and saving multiple recog-
nition hypotheses. A compact and efficient structure
for doing this is theword lattice[27, 28, 29].

A word lattice consists of a set of nodes repre-
senting points in time and a set of spanning arcs rep-
resenting word hypotheses. An example is shown in
Fig 9 part (a). In addition to the word ids shown in
the figure, each arc can also carry score information
such as the acoustic and language model scores. Lat-
tices are generated via the mechanism for recording
word boundary information outlined in Fig 7, except
that instead of recording just the best token which is
actually propagated to following word entry nodes,

all word-end tokens are recorded. For the simple
single-token Viterbi scheme, the quality of lattices
generated in this way will be poor because many of
the close matching second best paths will have been
pruned by exercising the dynamic programming prin-
ciple. The multiple token decoder does not suffer
from this problem, especially if it is used with a rela-
tively short-span bigram language model.

Lattices are extremely flexible. For example, they
can be rescored by using them as an input recognition
network and they can be expanded to allow rescor-
ing by a higher order language model. They can
also be compacted into a very efficient representation
called aconfusion network[30, 31]. This is illustrated
in Fig 9 part (b) where the “-” arc labels indicate
null transitions. In a confusion network, the nodes
no longer correspond to discrete points in time, in-
stead they simply enforce word sequence constraints.
Thus, parallel arcs in the confusion network do not
necessarily correspond to the same acoustic segment.
However, it is assumed that most of the time the over-
lap is sufficient to enable parallel arcs to be regarded
as competing hypotheses. A confusion network has
the property that for every path through the original
lattice, there exists a corresponding path through the
confusion network. Each arc in the confusion net-
work carries the posterior probability of the corre-
sponding wordw. This is computed by finding the
link probability of w in the lattice using a forward-
backward procedure, summing over all occurrences
of w and then normalising so that all competing word
arcs in the confusion network sum to one. Confusion
networks can be used for minimum word-error de-
coding, to provide confidence scores and for merging
the outputs of different decoders [32, 33, 34, 35] (see
section 6).

Finally, it should be noted that all of the above
relates to one specific approach to decoding. If sim-
ple Viterbi decoding was the only requirement, then
there would be little variation amongst decoder im-
plementations. However, the requirement to support
cross-word context-dependent acoustic models and
long span language models has led to a variety of de-
sign strategies. For example, rather than have multi-
ple tokens, the network state can be dynamically ex-
panded to explicitly represent the currently hypoth-
esised cross-word acoustic and long-span language
model contexts [36, 37]. These dynamic network
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decoders are more flexible than static network de-
coders, but they are harder to implement efficiently.
Recent advances in weighted finite-state transducer
technology offer the possibility of integrating all of
the required information (acoustic models, pronunci-
ation, language model probabilities, etc) into a sin-
gle very large but highly optimised network) [38].
This approach offers both flexibility and efficiency
and is therefore extremely useful for both research
and practical applications.

A completely different approach to decoding is
to avoid the breadth-first strategy altogether and use a
depth-first strategy. This gives rise to a class of recog-
nisers calledstack decoders. Stack decoders were
popular in the very early developments of ASR since
they can be very efficient. However, they require dy-
namic networks and their run-time search character-
istcs can be difficult to control [39, 40].

3. HMM-BASED ACOUSTIC MODELLING

The key feature of the HMM-based speech recogni-
tion architecture described in the preceding section is
the use of diagonal covariance multiple component
mixture Gaussians for modelling the spectral distri-
butions of the speech feature vectors. If speech really
did have the statistics assumed by these HMMs and
if there was sufficient training data, then the mod-
els estimated using maximum likelihood would be
optimal in the sense of minimum variance and zero
bias [41]. However, since this is not the case, there is
scope for improving performance both by using alter-
native parameter estimation schemes and by improv-
ing the models. In this section, both of these aspects
of HMM design will be discussed. Firstly, discrimi-
native training is described and then methods of im-
proved covariance modelling will be explored.

3.1. Discriminative Training

Standard maximum likelihood training attempts to
find a parameter setλ which maximises the log like-
lihood of the training data, i.e. for training sentences
Y 1 . . . Y R, the objective function is

FML (λ) =

R
∑

r=1

log pλ(Y r|MWr
) (14)

whereWr is the word sequence given by the tran-
scription of ther’th training sentence andMWr

is
the corresponding composite HMM synthesised by
concatenating phone models (denoted byQ in sec-
tion 2.2). This objective function can be maximised
straightforwardly using a version of EM known as
the Baum-Welch algorithm [42]. This involves it-
eratively finding the probability of state-component
occupation for each frame of training data using
a forward-backward algorithm, and then computing
weighted averages. For example, defining the fol-
lowing “counts”

Θr
jm(M) =

Tr
∑

t=1

γr
jm(t)yr

t

∣

∣

∣

∣

∣

M

(15)

and

Γr
jm(M) =

Tr
∑

t=1

γr
jm(t)

∣

∣

∣

∣

∣

M

(16)

whereγr
jm(t) is the probability of the model occu-

pying mixture componentm in statej at timet given
training sentenceY r and modelM, then the updated
mean estimate is given by ML as

µ̂jm =

∑R

r=1 Θr
jm(MWr

)
∑R

r=1 Γr
jm(MWr

)
(17)

i.e. the average of the sum of the data weighted by
the model component occupancy.

The key problem with the ML objective function
is that it simply fits the model to the training data and
it takes no account of the model’s ability to discrim-
inate. An alternative objective function is to max-
imise the conditional likelihood using the Maximum
Mutual Information (MMI) criterion [41, 43]

FMMI (λ) =

R
∑

r=1

log
pλ(Y r|MWr

)p(Wr))
∑

W pλ(Y r|MW )p(W ))

(18)
Here the numerator is the likelihood of the data given
the correct word sequenceWr whilst the denomina-
tor is the total likelihood of the data given all possi-
ble word sequencesW . Thus, the objective function
is maximised by making the correct model sequence
likely and all other model sequences unlikely. It is
therefore discriminative. Note also that it incorpo-
rates the effect of the language model and hence more
closely represents recognition conditions.
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There is no simple EM-based re-estimation
scheme for (18), however, there is an approximate
scheme known as the Extended Baum-Welch algo-
rithm in which stability is achieved for the parameter
updates by adding a constantD to both the numerator
and denominator. For example, (17) in the extended
scheme becomes

µ̂jm =

∑R

r=1{Θ
r
jm(Mnum) − Θr

jm(Mden)} + Dµjm
∑R

r=1{Γ
r
jm(Mnum) − Γr

jm(Mden)} + D
(19)

whereMnum is the combined acoustic and language
model used to compute the numerator of (18), and
Mden is the combined acoustic and language model
used to compute the denominator. In the latter case,
it is understood that the counts inΘr

jm(Mden) are
summed over all word sequences. For large vocabu-
lary continuous speech, this is approximated by com-
puting lattices and summing over all lattice arcs. Al-
though the numerator counts can be computed as in
ML, in practice, the numerator counts are also com-
puted using lattices since this provides a convenient
way to take account of multiple pronunciations[44].
As can be seen, counts in the numerator are reduced
if there are similar confusing counts in the denomina-
tor. The constantD acts like an interpolation weight
between the new estimate and the existing estimate.

In a little more detail, the MMI training process is
as follows. Numerator and denominator lattices are
generated for every training utterance usingMnum

andMden, respectively.Mnum comprises the current
phone models integrated into a graph of alternative
word pronunciations, andMden comprises the nor-
mal recogniser set-up with two exceptions. Firstly,
a weaker language model is used. Typically the lat-
tices are generated using a bigram language model
and then rescored using a unigram [45]. Secondly,
the likelihoods of the acoustic models are scaled
by the inverse of the normal LM scale factor [46].
Both of these modifications have been found to in-
crease the number of confusions in the denomina-
tor lattice, thereby improving subsequent generalisa-
tion. Once the word level lattices have been gener-
ated, a Viterbi decode is performed on each lattice
arc to obtain a phone-level segmentation. Forward-
backward is then applied to obtain the component
level counts and the model parameters re-estimated
using (19) (and similar formulae for the variances
and mixture weights). This process is iterated and the

state-component alignments are recomputed every 3
or 4 iterations. The word-level lattices are typically
held fixed throughout the training process.

The constantD must be chosen to be large
enough to ensure convergence but small enough to
ensure acceptably fast training. In practice,D is cho-
sen to ensure that variance updates are positive and
it is normally set specific to each phone or Gaussian
[46].

MMI training can provide consistent perfor-
mance improvements compared to similar systems
trained with ML [46]. However, it can be argued
that it places too much emphasis on training utter-
ances which have a low posterior probability and not
enough weight on training utterances near the de-
cision boundary as in for example Minimum Clas-
sification Error (MCE) training [47]. MCE, how-
ever, focuses on overall sentence-level accuracy, and
it is not appropriate for lattice-based training of large
systems. Minimum Phone Error (MPE) training ad-
dresses this issue by attempting to maximise the pos-
terior utterance probability scaled by theRaw Phone
Accuracy(RPA) [48]

FMPE(λ) =
R
∑

r=1

∑

W pλ(Y r|MW )p(W )RPA(W, Wr)
∑

W pλ(Y r|MW )p(W )

(20)
where as in lattice-based MMI training, the sums
overW are taken over all word sequences appearing
in the lattice generated byMden. The RPA is a mea-
sure of the number of phones accurately transcribed
in each word string hypothesisW . Given the times of
the phone boundaries, each phone inW is matched
against the corresponding time segment in the tran-
scriptionWr. If the phones are the same, the RPA is
incremented by the percentage overlap, otherwise it
is decremented by the percentage overlap. Parameter
optimisation is similar to the MMI process described
above except that the counts are computed only on
the denominator lattice. The numerator lattice pro-
vides only the transcriptions needed for determining
the RPA. Essentially, the counts are composed from
the occupation probabilities scaled by the RPA. If
they are positive, they contribute to the numerator
terms in the update equations, and if they are neg-
ative, they contribute to the denominator terms (see
[48] for details).

The generalisation capabilities of discrimina-



Springer Handbook on Speech Processing and Speech Communication 10

tively trained systems can be improved by interpo-
lating with ML. For example, the H-criterion inter-
polates objective functions:αFMMI + (1 − α)FML

[49]. However, choosing an optimal value forα is
difficult and the effectiveness of the technique de-
creases with increasing training data [50]. A more
effective technique isI-smoothingwhich increases
the weight of the numerator counts depending on the
amount of data available for each Gaussian compo-
nent [48]. This is done by scaling the numerator
countsΓr

jm(Mnum) andΘr
jm(Mnum) by

1 +
τ

∑

r Γr
jm(Mnum)

(21)

whereτ is a constant (typically about 50). Asτ in-
creases from zero, more weight is given to ML.

3.2. Covariance Modelling

An alternative way of improving the acoustic mod-
els is to allow them to more closely match the true
distribution of the data. The baseline acoustic mod-
els outlined in section 2.2 use mixtures of diagonal
covariance Gaussians chosen as a compromise be-
tween complexity and modelling accuracy. Never-
theless, the data is clearly not diagonal and hence
finding some way of improving the covariance mod-
elling is desirable. In general the use of full covari-
ance Gaussians in large vocabulary systems would be
impractical due to the sheer size of the model set7.
However, the use of shared orstructuredcovariance
representations allow covariance modelling to be im-
proved with very little overhead in terms of memory
and computational load.

One the simplest and most effective structured
covariance representations is the Semi-Tied Covari-
ance (STC) matrix [51]. STC models the covariance
of them’th Gaussian component as

Σ̂m = A−1Σm(A−1)T (22)

whereΣm is the component specific diagonal covari-
ance andA is the STC matrix shared by all compo-
nents. If the component meanµm = Aµ̂m then com-
ponent likelihoods can be computed by

N (y; µ̂m, Σ̂m) = |A|N (Ay; µm, Σm) (23)

7Although given enough data it can be done [11]

Hence, a single STC matrix can be viewed as a linear
transform applied in feature space. The component
parametersµm andΣm represent the means and vari-
ances in the transformed space and can be estimated
in the normal way by simply transforming the train-
ing data. The STC matrix itself can be efficiently esti-
mated using a row by row iterative scheme. Further-
more it is not necessary during training to store the
full covariance statistics at the component level. In-
stead, an interleaved scheme can be used in which the
A matrix statistics are updated on one pass through
the training data, and then the component parame-
ters are estimated on the next pass [51]8. This can be
integrated into themixing-upoperation described in
section 2.2. For example, a typical training scheme
might start with a single Gaussian system and an
identity A matrix. The system is then iteratively re-
fined by reestimating the component parameters, up-
dating theA matrix, and mixing-up until the required
number of Gaussians per state is achieved. As well as
having a single globalA matrix, the Gaussian com-
ponents can be clustered and assigned oneA matrix
per cluster. For example, there could be oneA ma-
trix per phone or per state depending on the amount
of training data available and the acceptable number
of parameters. Overall, the use of STC can be ex-
pected to reduce word error rates by around 5% to
10% compared to the baseline system. In addition to
STC, other types of structured covariance modelling
include factor-analysed HMMs [52], sub-space con-
strained precision and means (SPAM) [53], and EM-
LLT [54].

It can be shown [51] that simultaneous opti-
misation of the full set of STC parameters (i.e.
{A, µm, Σm}) is equivalent to maximising the auxil-
iary equation

QSTC =
∑

t,m

γm(t) log

(

|A|2

|diag(A W (m)AT )|

)

(24)
where

W (m) =

∑

t γm(t)ȳm(t)ȳm(t)T

∑

t γm(t)
(25)

and whereȳm(t) = y(t) − µ̂m. If each Gaus-
sian component is regarded as a class, thenW (m) is

8The means can in fact be updated on both passes.
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the within class covariance and it can be shown that
(24) is the maximum likelihood solution to a gen-
eralised form of linear discriminant analysis called
Heteroscedastic LDA (HLDA) in which class covari-
ances are not constrained to be equal [55]. The matrix
A can therefore be regarded as a feature space trans-
form which discriminates Gaussian components and
this suggests a simple extension by whichA can also
perform a subspace projection, i.e.

ŷ = Ay =

[

A[p]y

A[d−p]y

]

=

[

ŷ[p]

ŷ[d−p]

]

(26)

where the d-dimensional feature space is divided into
p usefuldimensions andd − p nuisancedimensions.
The matrixA[p] projectsy into a p-dimensional sub-
space which is modelled by the diagonal Gaussian
mixture components of the acoustic models. The
d − p nuisance dimensions are modelled by a global
non-discriminating Gaussian. Equation 24 can there-
fore be factored as

QHLDA =
∑

t,m

γm(t)

log

(

|A|2

|diag(A[p] W (m)AT
[p])||diag(A[d−p] TAT

[d−p])|

)

(27)

whereT is the global covariance of the training data.
The forms of equations (24) and (27) are similar and
the optimal value forA[p] can be estimated by the
same row-by-row iteration used in the STC case.

For application to LVCSR,y can be constructed
either by concatenating successive feature vectors, or
as is common in HTK-based systems, the standard
39-element feature vector comprised of static PLP
coefficients plus their 1st and 2nd derivatives are aug-
mented by the 3rd derivatives and then projected back
into 39 dimensions using a39×52 HLDA transform.

Finally note that, as with semi-tied covariances,
multiple HLDA transforms can be used to allow the
full acoustic space to be covered by a set of piece-
wise linear projections [56].

4. NORMALISATION

Normalisation attempts to condition the incoming
speech signal in order to minimise the effects of vari-

ation caused by the environment and the physical
characteristics of the speaker.

4.1. Mean and Variance Normalisation

Mean normalisation removes the average feature
value and since most front-end feature sets are de-
rived from log spectra, this has the effect of reduc-
ing sensitivity to channel variation. Cepstral variance
normalisation scales each individual feature coeffi-
cient to have a unit variance and empirically this has
been found to reduce sensitivity to additive noise[57].

For transcription applications where multiple
passes over the data are possible, the necessary mean
and variance statistics should be computed over the
longest possible segment of speech for which the
speaker and environment conditions are constant. For
example, in broadcast news transcription this will be
a speaker segment and in telephone transcription it
will be a whole side of a conversation. Note that for
real time systems which operate in a single continu-
ous pass over the data, the mean and variance statis-
tics must be computed as running averages.

4.2. Gaussianization

Given that normalising the first and second order
statistics yields improved performance, an obvious
extension is to normalise the higher order statistics
so that the features are Gaussian distributed. This
so-calledGaussianizationis performed by finding a
transformz = φ(y), on a per element basis, such that
p(z) is Gaussian. One simple way to achieve this is
to estimate a cumulative distribution function (cdf)
for each feature elementy

F0(y) =
1

N

N
∑

i=1

h(y − yi) = rank(yi)/N (28)

wherey1..yN are the data to be normalised,h(.) is
the step function andrank(yi) is the rank ofyi when
the data are sorted. The required transformation is
then

zi = Φ−1

(

rank(yi)

N

)

(29)

whereΦ(·) is the cdf of a Gaussian [58].
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One difficulty with this approach is that when the
normalisation data set is small the cdf estimate can
be noisy. An alternative approach is to estimate an
M component Gaussian mixture model (GMM) on
the data and then use this to approximate the cdf[59],
that is

zi = Φ−1

(

∫ yi

−∞

M
∑

m=1

cmN (y; µm, σ2
m)dy

)

(30)

whereµm andσ2
m are the mean and variance of the

m’th GMM component. This results in a smoother
and more compact representation of the Gaussianiza-
tion transformation[60].

4.3. Vocal Tract Length Normalisation

Variations in vocal tract length cause formant fre-
quencies to shift in frequency in an approximately
linear fashion. Thus, one simple form of nor-
malisation is to linearly scale the filter bank cen-
tre frequencies within the front-end feature extrac-
tor to approximate a canonical formant frequency
scaling[61]. This is calledVocal Tract Length Nor-
malisation (VTLN).

To implement VTLN two issues need to be ad-
dressed: definition of the scaling function and esti-
mation of the appropriate scaling function parame-
ters for each speaker. Early attempts at VTLN used
a simple linear mapping but as shown in Fig. 10(a)
this results in a problem at high frequencies where
female voices have no information in the upper fre-
quency band and male voices have the upper fre-
quency band truncated. This can be mitigated by us-
ing a piece-wise linear function of the form shown
in Fig. 10(b)[57]. Alternatively, a bilinear trans-
form can be used[62]. Parameter estimation is per-
formed using a grid search plotting log likelihoods
against parameter values. Once the optimal values
for all training speakers have been computed, the
training data is normalised and the acoustic models
re-estimated. This is repeated until the VTLN param-
eters have stabilised. Note here that when comparing
log likelihoods resulting from differing VTLN trans-
formations, the Jacobean of the transform should
strictly be included. This is however very complex
to estimate and since the application of mean and
variance normalisation will reduce the affect of this
approximation, it is usually ignored.

For very large systems, the overhead incurred
from iteratively computing the optimal VTLN pa-
rameters can be considerable. An alternative is to
approximate the effect of VTLN by a linear trans-
form. The advantage of this approach is that the op-
timal transformation parameters can be determined
from the auxiliary function in a single pass over the
data[63].

VTLN is particularly effective for telephone
speech where speakers can be clearly identified. It
is less effective for other applications such as broad-
cast news transcription where speaker changes must
be inferred from the data.

5. ADAPTATION

A fundamental idea in statistical pattern classification
is that the training data should adequately represent
the test data, otherwise a mis-match will occur and
recognition accuracy will be degraded. In the case of
speech recognition, there will always be new speak-
ers who are poorly represented by the training data,
and new hitherto unseen environments. The solution
to these problems isadaptation. Adaptation allows a
small amount of data from a target speaker to be used
to transform an acoustic model set to make it more
closely match that speaker. It can be used both in
training to make more specific and/or more compact
recognition sets and it can be used in recognition to
reduce mismatch and the consequent recognition er-
rors.

There are varying styles of adapation which affect
both the possible applications and the method of im-
plementation. Firstly, adaptation can besupervisedin
which case accurate transcriptions are available for
all of the adaptation data, or it can beunsupervised
in which case the required transcriptions must be hy-
pothesised. Secondly, adaptation can beincremental
or batch-mode. In the former case, adaptation data
becomes available in stages, for example, as is the
case for a spoken dialogue system when a new caller
comes on the line. In batch-mode, all of the adapta-
tion data is available from the start as is the case in
off-line transcription.

This section describes the main approaches to
adaptation and its application in both recognition and
training.
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5.1. Maximum A Posteriori (MAP) Adaptation

Given some adaptation dataY 1..Y R and a modelM
with parametersλ, MAP-based parameter estimation
seeks to maximise the following objective function,

FMAP(λ) =
R
∑

r=1

log p(Y r|MWr
)p(λ) (31)

Comparing this with the ML objection function
given in (14), it can be seen that the likelihood is
weighted by the prior. The choice of distribution
for this prior is problematic since there is no con-
jugate prior density for a continuous Gaussian mix-
ture HMM. However, if the mixture weights and
Gaussian component parameters are assumed to be
independent, then a finite mixture density of the
form pD(cj)

∏

m pW (µjm, Σjm) can be used where
pD(.) is a Dirichlet distribution over the vector of
mixture weightscj andpW (.) is a normal-Wishart
density. It can then be shown that this leads to pa-
rameter estimation formulae of the form

µ̂jm =
τµjm +

∑R

r=1 Θr
jm(MWr

)

τ +
∑R

r=1 Γr
jm(MWr

)
(32)

whereµjm is the prior mean andτ is a parameter
of pW (.) which is normally determined empirically.
Similar, though rather more complex, formulae can
be derived for the variances and mixture weights [64]

Comparing (32) with (17), it can be seen that
MAP adapation effectively interpolates the original
prior parameter values with those that would be ob-
tained from the adaptation data alone. As the amount
of adaptation data increases, the parameters tend
asymptotically to the adaptation domain. This is a de-
sirable property and it makes MAP especially useful
for porting a well-trained model set to a new domain
for which there is only a limited amount of data.

A major drawback of MAP adaptation is that ev-
ery Gaussian component is updated individually. If
the adaptation data is sparse, then many of the model
parameters will not be updated. Various attempts
have been made to overcome this (e.g. [65, 66]) but
MAP nevertheless remains ill-suited for rapid incre-
mental adaptation.

5.2. ML-based Linear Transforms

An alternative approach to adaptation is to build a
set of linear transforms to map an existing model set
into a new adapted model set such that the likelihood
of the adaptation data is maximised. This is called
Maximum Likelihood Linear Regression(MLLR)and
unlike MAP, it is particularly suited to unsupervised
incremental adaptation.

There are two main variants of MLLR: un-
constrained and constrained[67]. In unconstrained
MLLR, separate transforms are trained for the means
and variances,

µ̂jm = Gµjm + b; Σ̂jm = HΣjmHT (33)

The formulae for constrained MLLR (CMLLR) are
identical except thatG = H . The maximum likeli-
hood estimation formulae are given in [68]. Whereas
there are closed-form solutions for unconstrained
MLLR, the constrained case is similar to the semi-
tied covariance transform discussed in section 3.2
and requires an iterative solution. However, CMLLR
has other advantages as discussed in section 5.3 be-
low. Linear tranforms can also be estimated using
discriminative criteria [69, 70, 71].

The key to the power of the MLLR adaptation
approach is that a single transform matrixG can
be shared across a set of Gaussian mixture com-
ponents. When the amount of adaptation data is
limited, a global transform can be shared across all
Gaussians in the system. As the amount of data in-
creases, the HMM state components can be grouped
into classes with each class having its own transform.
As the amount of data increases further, the number
of classes and therefore transforms increases corre-
spondingly leading to better and better adaptation.

The number of transforms to use for any specific
adaptation set can be determined automatically using
a regression class treeas illustrated in fig 11. Each
node represents a regression class i.e. a set of Gaus-
sian components which will share a single transform.
The total occupation count associated with any node
in the tree can easily be computed since the counts
are known at the leaf nodes. Then, for a given set of
adaptation data, the tree is descended and the most
specific set of nodes is selected for which there is
sufficient data (for example, the shaded nodes in the
figure).
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When used in unsupervised mode, MLLR is
normally applied iteratively[72]. First, the un-
known test speech is recognised, then the hypothe-
sised transcription is used to estimate MLLR trans-
forms. The test speech is then re-recognised using the
adapted models. This is repeated until convergence is
achieved. A refinement of this is to use recognition
lattices in place of the 1-best hypothesis to accumu-
late the adaptation statistics. This approach is more
robust to recognition errors and avoids the need to
re-recognise the data since the lattice can simply be
rescored[73].

5.3. Adaptive Training

Ideally, an acoustic model set should encode just
those dimensions which allow the different classes to
be discriminated. However, in the case of speaker in-
dependent (SI) speech recognition, the training data
necessarily includes a large number of speakers and
hence acoustic models trained directly on this set will
have to “waste” a large number of parameters encod-
ing the variablity between speakers rather than the
variability between spoken words which is the true
aim.

One way to overcome this is to replace the single
SI model set with a cluster of more specific models
where each model can be trained on more homoge-
nous data. This is calledCluster Adaptive Train-
ing (CAT). At recognition time, a linear combination
of models is selected where the set of interpolation
weights, in effect, forms a speaker specific transform
[74, 75, 76]. More recently discriminative techniques
have been applied to CAT with some success [77].

An alternative approach to CAT is to use adap-
tation to transform each training set speaker to form
a canonical model. This is calledSpeaker Adaptive
Training (SAT)and the conceptual schema for this is
shown in Fig. 12 [78]. When only mean transforma-
tions are used, SAT is straightforward. A transform
is estimated for each speaker, and then the parame-
ters of the canonical model set are estimated by mod-
ifying the statistics to account for the tranform. For
example, to estimate the canonical model means, the
counts in (15) and (16) are modified as follows:

Θr
jm(M) =

Tr
∑

t=1

γr
jm(t)G(r) T Σ−1

jm(yr
t − b(r))

∣

∣

∣

∣

∣

M

(34)
and

Γr
jm(M) =

Tr
∑

t=1

γr
jm(t)G(r) T Σ−1

jmG(r)

∣

∣

∣

∣

∣

M

(35)

whereG(r), b(r) is the transform for the speaker ut-
tering training sentencer. The mean is then esti-
mated using (17) as normal.

Rather than modifying the statistics, the use of
CMLLR allows adaptive training to be simplified fur-
ther and allows combined mean and variance adap-
tation. Similar to the case for semi-tied covariances,
the CMLLR transformed likelihood can be computed
simply by regarding it as a feature space transforma-
tion, i.e. for any mixture componetm of statej

N (y; µ̂jm, Σ̂jm) =
1

|G|
N (G−1(y − b); µjm, Σjm)

(36)
whereµ̂jm andΣ̂jm are the transformed means and
variances as in (33) (withG = H)). Thus a SAT sys-
tem can be built using CMMLR simply by iterating
between the estimation of the canonical model using
estimation of the transformed training data and the
transforms using the canonical model.

Finally, note that SAT trained systems incur the
problem that they can only be used once transforms
have been estimated for the test data. Thus, an SI
model set is typically retained to generate the initial
hypothesised transcription or lattice needed to com-
pute the first set of transforms.

6. MULTI-PASS RECOGNITION
ARCHITECTURES

The previous sections have reviewed some of the ba-
sic techniques available for both training and adapt-
ing a HMM-based recognition system. In general,
any particular combination of model set and adap-
tation technique will have slightly different charac-
teristics and make different errors. Furthermore, if
the outputs of these systems are converted to confu-
sion networks as explained in section 2.4, then it is
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straightforward to combine the confusion networks
and then select the word sequence with the overall
maximum posterior likelihood. Thus, modern tran-
scription systems typically utilise multiple model sets
and make multiple passes over the data.

A typical architecture is shown in Fig. 13. A first
pass is made over the data using a relatively simple SI
model set. The 1-best output from this pass is used
to perform a first round of adaptation. The adapted
models are then used to generate lattices using a basic
bigram or trigram word-based language model. Once
the lattices have been generated, a range of more
complex models and adaptation techniques can be
applied in parallel to providen candidate output con-
fusion networks from which the best word sequence
is extracted. These 3rd pass models may include ML
and MPE trained systems, SI and SAT trained mod-
els, triphone and quinphone models, lattice-based
MLLR, CMLLR, 4-gram language models interpo-
lated with class-ngrams and many other variants. For
examples of recent large-scale transcription systems
see [11, 60, 79].

The gains obtained from this type of system com-
bination can vary but overall performance is more ro-
bust across a range of task domains. Finally, note that
adaptation can work more effectively if the required
hypothesised transcriptions are generated by a differ-
ent system. Thus, cross adaptation is also an increas-
ingly popular architectural option.

7. CONCLUSIONS

This chapter has reviewed the core architecture of
a HMM-based CSR system and outlined the ma-
jor areas of refinement incorporated into modern-
day systems. Diagonal covariance continuous den-
sity HMMs are based on the premise that each in-
put frame is independent, its components are decor-
related and have Gaussian distributions. Since none
of these assumptions are true, the various refine-
ments described above can all be viewed as attempts
to reduce the impact of these false assumptions.
Whilst many of the techniques are quite complex,
they are nevertheless effective and overall substantial
progress has been made. For example, error rates on
the transcription of conversational telephone speech
were around 45% in 1995. Today, with the benefit of
more data, and the refinements described above, error

rates are now well below 20%. Similarly, broadcast
news transcription has improved from around 30%
WER in 1997 to below 15% today.

Despite their dominance and the continued rate
of improvement, many argue that the HMM architec-
ture is fundamentally flawed and performance must
asymptote. Of course, this is undeniably true since
we have in our own heads an existence proof. How-
ever, no good alternative to the HMM has been found
yet. In the meantime, the performance asymptote
seems to be still some way away.
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Figure 1: Architecture of a HMM-based Recogniser
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Figure 2: HMM-based Phone Model
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Figure 3: Context Dependent Phone Modelling
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Figure 6: Basic Recognition Network

Put a start token < log(1), ∅ > in network entry node;
Put null tokens < log(0), ∅ > in all other nodes;
for each time t = 1 to T do

– word internal token propagation
for each non-entry node j do

MaxP = log(0);
for each predecessor node i do

Temp token Q = Qi;
Q.LogP += log(aij) [+ log(bj(yt)) if j emitting ];
If Q.LogP > MaxP then

Qj = Q; MaxP = Q.LogP ;
end;

end;
Copy tokens from word internal exits to following entries;
– word external token propagation
for each word w with entry node j do

MaxP = log(0);
for each predecessor word u with exit node i do

Temp token Q = Qi;
Q.LogP += α log p(w|u) + β;
If Q.LogP > MaxP then

Qj = Q; MaxP = Q.LogP ; u′ = u

end;
– Record word boundary decision
Create a record R;
R.Q = Qj ; R.t = t; R.word = u′;
Q.link =↑ R;

end;
Put null token in network entry node;

end;
Token in network exit state at time T represents the best path;

Figure 7: Basic Token Passing Algorithm
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Figure 8: Tree-Structured Recognition Network
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Figure 10: Vocal Tract Length Normalisation
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Figure 13: Multi-pass/System Combination Architecture
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