
14 INGENIA  INGENIA ISSUE 54 MARCH 2013  15 

Talking  
To Machines

With the introduction of voice-driven personal assistants such as 
Apple’s Siri and Google Now, speech recognition appears to have 
finally made it into the mainstream. Professor Steve Young FREng 
of the University of Cambridge’s Information Engineering 
Division, reviews the progress over the last few years that has 
made these applications possible and considers the impact  
that future development will have on our ability to communicate 
with machines.

Speech recognition programs 
have become an increasingly 
large part of our daily lives.  
Paying for parking meters by 
phone and being guided to 
selected company departments 
by an automated voice is 
becoming more common.  
Voice-controlled interfaces can 
now be found in an increasing 
number of environments:  
mobile phones, televisions,  
and even cars.

There are various software 
products that allow users to 
dictate to their computer and 
have their words converted 
to text in a word processed or 
email document.  There are 
some very successful programs 
that have been developed for 
specific business settings, such 
as medical or legal transcription.  
People with disabilities that 
prevent them from typing 
have also embraced speech 
recognition systems. 

The core technology that 
makes this possible is automatic 
speech recognition (ASR).  This 
is the process whereby the 
speech waveform captured by 
a microphone is automatically 
converted into a sequence of 
words.  Given the sophistication 
of modern pattern recognition 
technology, this might seem 
to be a relatively simple task.  
However, in spite of the major 
progress that has been made 
over the last decade, there is still 
quite a way to go before speech 
recognition will be 100% reliable.  

speech 
recogniTion
Speech is made up of a 
sequence of words where each 
word consists of a sequence 
of basic sounds, which speech 
technology engineers refer to 
as ‘phones’. In English, about 
40 phones are required to 

speech recognisers not only 
have to classify each individual 
sound, they also have to find  
the location of each sound in 
the waveform.  

Human listeners effortlessly 
decode these potentially 
confusing sequences of sounds 
by exploiting their knowledge 
of vocabulary, syntax, semantics 
and common-sense reasoning.  
In contrast, automatic speech 
recognisers’ knowledge is 
represented in the form of two 
probability distributions: an 
‘acoustic model’ which provides 
the likelihood that an utterance 
corresponds to a given word 
sequence and a ‘language 
model’ which provides the prior 
probability of what is said.  The 
acoustic model is composed of 
a set of distributions defining 
the probability of every possible 
sound/phone spoken in every 
possible context and the acoustic 
likelihood of a matching word 
sequence is formed from the 
product of the probabilities 
corresponding to each of 
the constituent phones.   The 
language model is composed 
of a set of distributions defining 
the probability of every possible 
word given its immediate 
predecessors and the prior 
probability is formed from the 
product of the probabilities of 
each actual word in the given 
sequence.  The problem of 
actually recognising speech is 
then reduced to the problem of 
finding the word sequence that 

construct every word in the 
language.  With the phrase 
“I need a hotel”, for example,  
the word “need” consists of three 
phones /n/, /ee/, and /d/.  Speech 
recognition is difficult because 
the choice and realisation of 
each phone is variable.  The 
same words spoken by different 
speakers can vary dramatically, 
and even the same speaker will 
pronounce the same phone 
differently in differing contexts.  
For example, the /ee/ sound in 
“need” is acoustically different 
from the /ee/ sound in words 
such “seem”, and “keel”.  Phones 
also change with speaking style 
(fast versus slow, casual versus 
dictation), mood and physical 
state (such as having a cold).  

For the receiver, background 
noise and varying channel 
characteristics add further 
confusion.  In addition, there are 
no acoustic cues which signal 
phone or word boundaries.  So © Brem Stoker/Shutterstock
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maximizes the probability of the 
product of the acoustic likelihood 
and the prior probability – see 
Analysis of a phrase.

Model 
developMenT
These models are surprisingly 
effective.  Their strength lies 
in the fact that they can both 
be trained automatically from 
data. Given a large database 
of utterances spoken by many 
speakers and the corresponding 
word level transcriptions, an 
automatic speech recogniser 
can easily find the location of 
the phone boundaries and then 
use the speech vectors aligned 
to each phone to update the 
parameters of the acoustic 
model.  Thus, by iterating across 
large amounts of transcribed 
speech data, the recogniser 
can develop more accurate 
models covering a wide range of 
speakers.  Similarly, given a large 
text archive, the probability of 
any word given its predecessors 
can be estimated by counting 
the number of times that 
the word occurs with those 
predecessors in the archive.

These basic elements of an 
automatic speech recogniser 
were established more than 
30 years ago.  However, achieving 
acceptable performance on 
natural speech has proved to 
be a significant engineering 
challenge. To cover the nuances 
of language, the acoustic model 

must consider each of the 40 
or so phones in around 1,000 
different contexts resulting in 
nearly 10 million parameters in 
total.  These phone models must 
be robust in order to tolerate 
extraneous noise and adapt 
automatically to speaker-specific 
variations, requiring complex 
mathematical modelling.  

Unrestricted vocabulary 
systems are typically built 
up using approximately 
1,000 hours of speech, equating 
to 10,000 spectral training 
vectors per phone model.  
If each phone model is trained 
separately, then it is relatively 
simple to split the development 
over large arrays of computer 
servers to achieve acceptable 
throughput.  However, the 
most recent systems are trained 
‘discriminatively’ which involves 
training multiple models in 
parallel and forcing the system 
to choose one in preference 
to all of the others.  This 
simultaneous training means 
that each phone model requires 
access in principle to all of the 
data at once.  It is much harder 
to run systems in parallel and 
this has led to the recent trend 
to exploit banks of graphical 
processing units to achieve the 
necessary throughput.   

Building a language  
model is equally challenging. 
A typical model will have around 
100 million parameters and it 
will require at least 1,000 million 
words of representative text 
to train.  Current performance 
has been achieved therefore 
by combining sophisticated 
machine learning techniques 
with large-scale software 

engineering. The accuracy of 
speech recognition is measured 
by the number of mistakes made 
for every 100 words analysed.  
Typical word error rates are now 
between 3 and 8% for clean, 
carefully spoken speech, rising to 
20% or greater for conversational 
speech in noisy environments.

role of The 
inTerneT
Until recently, speech 
recognition has been limited 
to relatively few languages 
(primarily English), and rather 
specific applications such as 
medical dictation where it is 
relatively straightforward to 
collect sufficient representative 
training data and provide the 
computing power needed to 
run the recogniser.  Dictating 
directly onto a patient database, 

Figure 1 – Client-server recognition architecture.  User speech is recognised 
locally and remotely.  If the local recogniser is confident in the result, the 
remote transcription request is aborted.  Otherwise, the phone waits 
for the server to reply.  When ‘conf’ (confidence) =1, the recogniser is 
certain.  Confidence scores are used to avoid the system being confused by  
transcriptions which have many errors in them. In either event, the speech 
can be stored in a database and used to iteratively update the remote server’s 
recognition models

analysis of a phrase
Box (a) shows the waveform corresponding to the phrase “I need a hotel” and box (b) shows the 
segments corresponding to each basic sound or phone.  A speech recogniser computes the spectrum 
of the speech every 10 milliseconds and box (c) shows the resulting spectral analysis and the 
corresponding acoustic probabilities calculated using the recogniser’s acoustic model.  Box (d) shows 
the words and the corresponding prior probability computed using the recogniser’s language model.  
The product of both sets of probabilities gives the likelihood P(X|W)P(W) that the given waveform 
corresponds to the utterance “I need a hotel”.  Notice that the probabilities of the individual spectra 
xt are dependent on the assumed sound sk to which they belong.  Similarly, the probabilities of the 
individual words are dependent on their predecessors, for example, the probability of the word “hotel” 
is dependent on the preceding words “need a”.  Of course, the recogniser does not in practice know 
what words were spoken or where the phone boundaries are so it cannot compute these probabilities 
directly.  Instead it uses efficient search techniques to compute the probabilities of all possible word 
sequences and all possible phone alignments until it finds the word sequence W which maximizes 
P(X|W)P(W). This most likely word sequence W is then output by the speech recogniser – which in this 
case will be the four words “I need a hotel”.
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By iterating across large amounts of transcribed speech data, the recogniser 
can develop more accurate models covering a wide range of speakers

 Voice recognition software in apps and mobile phones allows users to search and interrogate the web © Peter Da Silva
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rather than via recording 
equipment and a secretary, 
saves about a day in updating 
records.  Now, the rapid growth 
and speed of the internet is 
changing the way speech-
based systems are deployed 
and expanding their potential 
to embrace new languages and 
applications.

Consider the typical 
configuration of a personal 
assistant application running 
on a smartphone.  If the user 
asks the question “Where is 
Paris?”, the waveform is passed 
to a small local recogniser 
running on the phone which 
is configured with a modest 
vocabulary to answer common 
questions relating to the built-in 
apps such as phone, contacts 
and calendar.  At the same 
time, the waveform is sent to a 
remote server running a much 
more powerful large vocabulary 
recogniser.  If the local 
recogniser is confident in its 
response, then the transcription 
request to the remote server 
is aborted since it is no longer 
needed.  If trust in the local 
recognition is low, then the 
phone waits to receive the reply 
from the server – see Figure 1.

This organisation has a 
number of advantages.  It allows 
fast response to common user 
requests while at the same 
time it avoids the limitations 
and frustrations of poor and 
limited speech recognition 
capability.  The ability to transmit 
audio around the planet with 
minimal latency is a relatively 
new phenomenon and it is this 
that makes the client-server 
architecture shown in Figure 1 

viable and popular.
Another advantage of this 
architecture is that every speech 
waveform which goes to the 
remote server can be analysed 
and stored in a database.  The 
data can be then used to 
improve the performance of 
the system.  Thus, a supplier can 
offer a service in a language 
or dialect for which there is 
little training data, and then 
rapidly collect data from users 
and repeatedly retrain the 
system.  Modern active learning 
techniques allow training to use 
a mixture of hand-transcribed 
and automatically transcribed 
data.  The former used to be 
very expensive to produce, but 
here again the ubiquity of the 
internet has provided a solution.   
With a well-designed web 
interface, crowdsourcing sites 
such as Amazon Mechanical 
Turk can now provide a way to 
get simple repetitive tasks such 
as high-volume data annotation 
performed very quickly at low 
cost.  The net result is that users 
see a rapid improvement in 
performance while the costs to 
the supplier of data collection 
and system improvement are 
much reduced.   

UndersTanding 
speech
The ability to translate speech 
into digital text enables users 
to dictate messages and 
search the web and these 
are now standard features 
of both iPhone and Android 
smartphones. However, more 
sophisticated applications 
require the ability to actually 

understand the meaning of 
the words.  In order to respond 
to a spoken command such 
as “Arrange a meeting with 
Mike Monday at four” it is 
necessary to identify “Arrange 
a meeting” as being the 
action, “with Mike” as being an 
attendee and “Monday at four” 
as being the time.  Since the 
recogniser cannot determine 
capitalisation from the acoustic 
signal alone, the attendee could 
also be someone called “Mike 
Monday” and the time could 
be “at four” implying at 4pm 
today.  Understanding speech 
therefore requires decoding the 
phrasal structure, mapping the 
phrases to actions and entities, 
and resolving ambiguities. 

This is done by using 
statistical techniques which 
automatically apply mappings 
from words to application level 
semantics.  These systems have 
the added benefit of resolving 
ambiguous interpretations 
by simply selecting the most 
frequently occurring option in 
the training data.  Thus, in the 
example above, a statistical 
understanding component 
would probably identify Monday 
as part of a time simply because 
the phrase “Monday at …” will be 
very common in the data – see 
Statistical speech understanding. 

As with speech recognition, 
large amounts of data are 
required for training statistical 
classifiers.  However, if the 
application runs on a client–
server architecture, user 
utterances can be collected and 
then manually annotated by 
crowd-sourced transcribers.   For 
understanding more general 

queries such as “Find me a movie 
by the director of Titanic”, web 
queries provide an alternative 
source of training data because 
users usually respond to the 
results of a typed search 
query by clicking on the most 
relevant result.  Given sufficient 
numbers of these query-click 
pairs and access to an ontology 
(a tree structure defining the 
semantic relationship between 
words) such as DBpedia.org, 
it is possible to automatically 
learn mappings from phrases to 
actions and entities.

spoken dialogUe 
sysTeMs
Whether rule-based or data 
driven, the combination of 
speech recognition and speech 
understanding provides all 
that is required to implement 
the current generation of 
smartphone-based personal 
assistant.  The user speaks to the 
device and the system attempts 
to understand what is said.  If 
it can interpret the utterance 
as a command, it executes it; 
otherwise it passes the word 
string to a search or query 
engine which operates exactly 
the same as if the command  
had been typed.

The current generation 
of personal assistants needs 
to be improved.  If words are 
misrecognised or the user’s 
intention cannot be understood, 
the interaction fails.  These 
personal assistants are really 
just input devices; they do 
not collaborate with the user 
to help achieve their goal.  As 
illustrated by the following 

example, collaborative problem-
solving requires a dialogue 
both to understand the user’s 
requirements and to seek an 
acceptable solution.  

User: Find me somewhere to get  
some lunch.

System:  Any preferences?

User: Thai would be good, otherwise 
Chinese.

System: The nearest Thai restaurant is in 
Soho, but you have a meeting at 2pm.

User:  Hmm, thanks for the reminder.   
Is there anything nearer?

System: There is a reasonable Chinese 
restaurant about 5 minutes away.

User: Ok, book a table and give me 
directions.

Spoken dialogue systems extend 
basic speech understanding 
by including a mechanism 
for tracking the user’s beliefs 
and intentions with a decision 
component to determine 
how to respond to the user 
in order to help achieve the 
required goal.  Current spoken 
dialogue systems are rule-
based and are limited to very 
simple applications.  They 
are very fragile in the face of 
recognition errors and have to 
be laboriously programmed for 
each new situation.  As with 
understanding, the solution is 
to move away from rules, to 
learning from data.  However, 
this is not a straightforward 

sTaTisTical speech UndersTanding
A classifier, typically a support vector machine, is created for every 
possible semantic element and trained to recognise that element 
whenever it appears in a spoken phrase. The speech is converted 
to a set of features such as a vector containing the counts of all 
1,2, and 3 word sequences (called N-grams) in the utterance, and 
these features are then input to a bank of classifiers.  Each classifier 
is trained to recognise a single unique action or entity.   When 
an utterance is input to this system, the set of positive classifier 
outputs are combined to construct the required semantics.

This type of brute force approach is surprisingly effective.  Not 
only is it robust to speech recognition errors, ungrammatical input 
and ambiguity, it can also learn to correct commonly occurring 
errors.  If the training data contains examples of the error along 
with the corrected output, the relevant classifiers will learn to 
output the correct semantics even when the error occurs.

Feature 
Extraction

make_appointment

cancel_appointmment

……

attendee=Mike

when=monday_4pm

……

make_appointment 
(attendee=Mike, 

when=monday_4pm)

a spoken dialogUe sysTeM Using 
reinforceMenT learning
The user’s beliefs and intentions are modeled probabilistically using 
a Bayesian belief network.  For example, in a restaurant information 
system, the network would comprise of a random variable for each 
possible attribute of a restaurant such as food type, price range 
and location.  As the user discusses the type of restaurant they 
are looking for, the probabilities of each of the possible attributes 
are updated using Bayesian inference.  The system’s responses are 
generated according to a policy which is a stochastic (statistical) 
mapping from beliefs to actions.  The system receives positive 
feedback from the user and adjusts the mapping to maximise the 
reward.  Over time the system learns to react optimally even when 
the speech recognition accuracy is poor.

Speech 
understanding

Speech 
generation

Stochastic 
Policy

Reward

Bayesian belief 
network

User

System 
dialog acts

System 
dialog acts

maximise

beliefs

actionsThe ability to translate speech into digital text 
enables users to dictate messages and search 
the web and these are now standard features 
of both iPhone and Android smartphones.
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pattern recognition problem; 
rather, it is a problem of planning 
under uncertainty and it requires 
a branch of mathematics called 
‘reinforcement learning’ to solve 
it – see A spoken dialogue system 
using reinforcement learning.

A telephone-based system 
has recently been built using 
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this approach at Cambridge 
University to help users find 
restaurants in the city.  Starting 
from scratch, the system learned 
how to respond at every turn 
by interacting with users and 
asking them at the end of 
each call whether or not they 
were successful.  By giving the 

system positive feedback for 
success and negative feedback 
for failure, learning progressed 
rapidly and the system achieved 
a 97% success rate after 1,000 
dialogues, which is comparable 
to a human operator.

inTegraTing  
The inTerneT
Recent developments in 
machine learning and the 
emergence of smart devices 
connected to a global high-
speed network open the door to 
much richer and more accessible 
interaction with machines and 
information.  The key will be to 
build systems that learn and 
adapt from experience.  Once 
the need for human experts to 

hand-craft applications for each 
new domain and language is 
removed, the roll-out of speech-
based interfaces will accelerate.  
Core speech recognition 
performance will continue 
to improve incrementally as 
statistical models of acoustics 
and language improve and 
training data sets grow ever 
larger.  However, the key 
engineering challenge is to 
find effective ways to draw 
together the vast quantities of 
data embedded in the internet 
so that machines can associate 
meanings with the words we 
speak and learn to use the 
power of natural conversation to 
explore and exploit information. 

Future generations of 
personal assistant will then do 
much more than provide an 
alternative to typing, tapping 
and swiping.  They will become 
more and more intelligent, able 
to hold conversations, recognise 
tones of voice, learn the user’s 
likes and dislikes, provide 
information and undertake 
simple tasks such as organising 
meetings, ordering goods and 
chasing customers for payment.  

Ultimately the social 
impact may be profound.  For 
example, specialist automated 
health-care assistants could 
give personalised guidance to 
the elderly and infirm, greatly 
reducing the burden on national 
health systems. Advice will be on 
hand to anyone on any topic; all 
they will have to do is ask.

Listen to:
www.bbc.co.uk/programmes/
b01phlgn

Toyota includes voice recognition technology in its most recent vehicles, accessible via the steering wheel.  The system 
allows natural speech rather than needing to memorise and recite specific preset commands.  It is linked to various 
multimedia functions including satnav and phone © Toyota
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