The Hidden Information State Approach to
Dialogue Management

Technical Report CUED /F-INFENG /TR.544

Steve Young (sjy@eng.cam.ac.uk)
Jason Williams (jdw30@eng.cam.ac.uk)
Jost Schatzmann (js532@eng.cam.ac.uk)
Matt Stuttle (mns25@eng.cam.ac.uk)
Karl Weilhammer (kw278@eng.cam.ac.uk)

Cambridge University Engineering Department
Trumpington Street, Cambridge, CB1 2PZ, England

October, 2005

1 Introduction

The structure of a conventional dialogue system is shown in Fig. 1 both in terms of a block diagram
showing the data flow, and an influence diagram showing the dependencies from one time slot (i.e.
turn) to the next. The processing involved in a single dialog turn proceeds as follows. A dialog
manager generates a prompt to the user in the form of a machine dialog act A,,. This is converted
to an acoustic signal Y, and subsequently interpreted by the user as A,,. The user has a state
which encodes both a goal to achieve S, and the dialog history Sq. On receiving, A,, the user
updates this state and generates a user dialog act A,. This is converted to an acoustic signal Y,
and interpreted by the system’s speech understanding component to give A,. The dialog system
maintains its own view of the world in state variable S,,. The estimate fiu is used to update this
estimate of the machine’s state and based on this updated estimate, the dialog manager generates
a new machine dialog act A,,.

Although greatly simplified, this description of the dialog turn cycle applies to nearly all existing
systems. In particular, the information state update approach (ISU) to dialog system design can
be viewed as a direct implementation of this model [1].

However, although it is simple and intuitive, this traditional deterministic dialog model has
a number of severe weaknesses. Firstly, and crucially, in real systems, the estimate of the user’s
dialog act A, will be extremely noisy. Hence, the system state Sy, must be updated based on a
“best guess” of A, and since this best guess will often be wrong, the system state can be easily
corrupted by erroneous information. This will typically lead to misunderstanding and confusion,
requiring a perhaps lengthy recovery dialog to repair it. The incidence of this problem can be
reduced by making use of a confidence measure output by the speech understanding component.
This measure provides an estimate of P(A,|Y,) which is typically compared with a threshold and
based on the result either A, is accepted as true, or it is queried with the user. Unfortunately,
however, confidence measures themselves are unreliable, and there is no clear basis for setting the
threshold.

A second problem with the traditional architecture is that speech understanding errors are not
the only source of uncertainty: the user’s goals and intentions are uncertain and can change over
time. Thus, a model of the user’s goals and intentions must be integrated into the overall dialog
management process.

Yu | Speech Ay Dialog
| Understanding Model

Au J Sm
User [<S,,Sq4>
Y

Speech _ |An Dialog
Y Generation | Manager
m

Am

An

<
<

time t+1

Figure 1: A traditional Spoken Dialog System along with its corresponding influence diagram

A final problem with the traditional architecture is the determinism itself. In order to im-
plement optimal dialog strategies, a system must predict the future in order to plan for differing
eventualities. Since exact prediction is not possible, such plans can only be probabilistic and, as
with the use of confidence thresholds, these can only be used in a very crude way by a determin-
istic decision process. Also, of course, it is very hard to adapt deterministic systems from training
data, and in practice, adaptation is limited to manual system tuning following an off-line analy-
sis of system logs. This process is labour intensive and cannot be extended to automatic on-line
adaptation.

As has been argued previously, taking a statistical approach to spoken dialog system design
provides the opportunity for solving many of the above problems in a flexible and principled way|[2].
Early attempts at using a statistical approach modelled the dialog system as a Markov decision
process (MDP)[3]. MDPs provide a good statistical framework since they allow forward planning
and hence dialog policy optimisation through reinforcement learning. However, they suffer from
a number of problems. Firstly, and crucially, MDPs assume that the machine state is observable.
Hence, they cannot account for either the uncertainty in the user state (S, and S, in Fig. 1), or the
uncertainty in the decoded user’s dialog act (Au in Fig. 1). Secondly, and perhaps less obviously,
the MDP approach provides a poor interface for integrating heuristics. The main problem is that
heuristics typically involve making hard decisions based on the assumed system state. However,
in the case of an MDP, the assumed system state might be incorrect. To deal with this, the state
must be expanded to include confidence measures so that the heuristics can deal explicitly with the
uncertainty. However, this rapidly leads to an excessively large state space and complex heuristics.

A more general alternative to the fully observable MDP is the Partially Observable MDP
(POMDP)[4]. A dialog system based on a POMDP maintains a distribution over all possible states.
This distribution is called the belief state and dialog policies are based on this belief state rather
than the true underlying state. The key advantage of the POMDP formalism is that it provides
a complete and principled framework for modelling the main sources of uncertainty. Furthermore,
when cast as a so-called SDS-POMDP/5, 6], the POMDP framework also allows heuristics to be
incorporated in a very simple way since the principal components on which the heuristics depend
(e.g. Sy and A,) are by definition assumed to be true. In computational terms, this means that
in an MDP heuristics are executed once per turn but have to be programmed to explicitly take
account of uncertainty. In a POMDP, heuristics are much simpler to program because the state
is assumed correct. They do however have to be executed many times per turn, once for each
possible state value.

The use of POMDPs for any practical system is, however, far from straightforward. Since a
belief distribution b of a discrete state S of cardinality n + 1 lies in real-valued n-dimensional

simplex, a POMDP can be thought of as an MDP with a continuous state space b € R". Thus,
assuming that the POMDP machine has a finite set of actions to select from, a POMDP policy
is a mapping from partitions in n-dimensional belief space to actions. Not surprisingly these are
extremely difficult to construct and whilst exact solution algorithms such as the Witness algorithm
[7] do exist, they rarely scale to problems with more than a few states/actions. Fortunately, there
are a number of ways of finding approximate solutions which are sufficiently accurate to yield useful
results. Firstly, the planning horizon can be reduced to zero such that actions are selected based
on immediate utilities. This reduces the POMDP to a greedy decision-theoretic controller. It does
not solve the problem of accounting for the future effects of decisions, but it does allow for all of the
various sources of uncertainty to be modelled and accounted for in the decision making process[8].
Secondly, approximate solutions such as grid-based methods[9] and point-based value iteration
can be used [10]. These allow problems with several hundreds of state/actions to be handled, and
although these are not sufficient by themselves to deal with real world systems, used in conjunction
with state-mapping schemes such as the summary-POMDP method, they offer promise of a way
forward[11].

Whatever approach is taken to the construction of policies, there is an other fundamental
barrier to using POMDPs in spoken dialog systems. Real systems deal with real-world knowledge
which is complex, hierachical, and multi-valued. The potential state-space of even a simple travel
booking system is enormous. Furthermore, dialog acts cannot easily be enumerated as a simple
finite set. The types of act (request, inform, etc) are easily enumerated, but the arguments to
such acts (names of places, prices, dates, etc) are not so simple. Whereas research into MDPs
was able to side-step this problem on the grounds that only a few global indicators needed to
be modelled[12, 13], a central claim of the POMDP approach is that it is truly holistic and,
in particular, propositional content should not be ignored. Thus, whilst POMDPs provide a
theoretical framework for modelling complete dialog systems, what is also needed in practice is
a framework which can integrate the applicable knowledge representations with the appropriate
statistical models.

This report describes the development of such a framework. It is inspired by the information
state approach to dialog system implementation, and hence it is called the Hidden Information
State (HIS) framework for statistical dialog systems. The key idea of the HIS system is that a belief
distribution over an extremely large state space can be represented efficiently by grouping states
together into partitions[14, 15, 16, 17]. Initially, all states are deemed to be in a single partition with
belief unity. As the dialog progresses, the partitions are split and belief is redistributed amongst
the splits. Eventually, some partitions become very low in cardinality, and in the limit singletons.
Action selection is then dominated by these low cardinality partitions. The overall result is that
full-scale POMDP belief maintenance is achieved without ever explicitly calculating the beliefs
of (the majority of) irrelevant states. Furthermore, partitions are represented efficiently using
tree structures and these tree structures also provide a very natural representation for real-world
knowledge.

The remainder of this report is structured as follows. Section 2 briefly reviews the general
framework of the Spoken Dialog System POMDP (SDS-POMDP) and section 3 explains how the
HIS system fits into this framework. Section 4 then describes the implementation of the HIS system
in some detail. Section 5 presents the current greedy theoretic policy implementation, and finally,
section 6 discusses future work and conclusions.

2 The SDS-POMDP

The aim of this section is to review the basic POMDP equations and then present a factored
form called the SDS-POMDP which is suitable for spoken dialogue systems[5, 6]. This lays the
foundation for describing the HIS model in the following section.

2.1 Review of POMDPs

Formally, a POMDP is defined as a tuple {S, 4,,,T, R, O, Z,\, by} where S is a set of states; A4,,
is a set of actions that the machine may take; T' defines a transition probability P(s'|s,am); R
defines the expected (immediate, real-valued) reward r(s, a,,); O is a set of observations; Z defines
an observation probability P(o'|s', an); A is a geometric discount factor 0 < A < 1; and by is an
initial belief state bg(s).

The POMDP operates as follows. At each time-step, the machine is in some unobserved state
s € S. Since s is not known exactly, a distribution over states is maintained called a ”belief
state,” b, with initial belief state bg. Thus, the probability of being in state s given belief state
b is b(s). Based on the current belief state b, the machine selects an action a,, € A,,, receives a
reward 7 (s, a.,), and transitions to a new (unobserved) state s’, where s’ depends only on s and
am- The machine then receives an observation o' € O which is dependent on s’ and a,,. The belief
distribution is then updated based on o' and a,,.

The belief update equations are easily derived using Bayes rule:

b'(s'y = P(s'0,am,b)
P(d'|s',am,b)P(s'|am,b)
P(o'|am,b)
P(0'[s", am,b) Y 5 P(8'|am, b, 8) P(8]am,b)
P(o'|am,b)
P(o']s",am) 3o yes P(8'|am, 5)b(s)
P(d'|am,b)
= k-P(o'|s',am)ZP(S'|am,s)b(s) (1)

seS

where k is a normalising constant. In equation 1, the summation uses the transition probability
to predict each next state s’ as an expectation wrt to the belief state over preceding states. The
observation term before the summation weights the prediction for each new state s’ based on the
likelihood that the most recent observation o' could have been generated from s’.

Note that the action taken by the machine at each time step depends on the complete distribu-
tion b. This is often initially a flat distribution reflecting ignorance. At each time-step, the belief
state distribution b is updated based on the new observation, and typically this will result in the
distribution “sharpening” around specific states.

At each time step ¢, the machine receives a reward R(b;, anm ;) based on the current belief state
b; and the selected action a,;. The cumulative, infinite horizon, discounted reward is called the
return and it is given by:

R = iAtR(bt,am) (2)
= Z/\tht(s)r(s,am,t). (3)
t=0 seS

Each action a,, ; is determined by a policy 7(b;) and it is the goal of the machine to find the policy
m* which maximises the return. Such a policy is called an optimal policy. Since belief space is a
real-valued simplex, the policy can be viewed as a partitioning of belief space into regions, where
each region corresponds to the single unique action which should be taken if the current belief
state lies in that region.

Finding the optimal policy involves using the transition matrix to predict the reward expected
from each state for each possible machine action. This is very similar to the forward-backward

algorithm of E-M and for regular fully observed Markov Decision Processes, it is essentially a
dynamic programming search over a discrete state space. POMDPs solutions are much more com-
plex, however, because the state space is effectively continuous. As mentioned in the introduction,
exact solution algorithms do exist (e.g. see the Witness Algorithm [7, 4]) but they can only handle
very small problems. Fortunately, approximate solutions can handle significantly larger problems
(e.g. Perseus [10]).

For cases where the model is unknown or there is insufficient data to estimate accurately, on-
line learning techniques analogous to Q-learning are also possible. For example, active learning
can be used to simultaneously update an approximate model whilst optimising the return[18].

2.2 The SDS-POMDP: a factored POMDP for spoken dialog systems

Referring back to Fig. 1, it can be seen that the state space represented by the dialog model S,
must entail the user goal and dialog state and since these cannot be observed, S,, must correspond
to a distribution over those states. In addition, since the last user act is also uncertain, it is
convenient to include it also within the unobserved state space. This suggests that the state space
of a POMDP for dialog systems should be factored as follows. First, the unobserved state is
factored into 3 components:

s = (Su,0u,84)- (4)
The system state Sy, then becomes the belief state b over s,, a, and sq, i.e.
sm = b(su; @y, sa)- (5)

The observation o is the estimate of the user dialog act a,. In the general case this will be an
N-best list of hypothesised user acts, each with an associated probability, i.e.

o = [(ai=p1)=(divp2)="'=(duN=pN)] (6)
such that
P(aylo) = pn, n=1...N (7)

The transition function for an SDS-POMDP follows directly by substituting equation 4 into the
regular POMDP transition function and making some reasonable independence assumptions, i.e.

P(s'|s,am) = P(sy,a,, 85y, u,Sd, am)
= P(sy|su, am)P(ay|sy, am) P(sylsy, ay: sa, am) (8)
Making similar reasonable independence assumptions regarding the observation function gives,
P(ds' am) = P(ds),a., s, am)
= P(d|a,) (9)
This is the observation model.

The above factoring simplifies the belief update equation since substituting equation 8 and
equation 9 into equation 1 gives

b,(siualuvsld) = (10)
EoP@I) S PUsh 50 am) Plallsy an) PSS!, 505 m)b(50, s 50)

SusQuySd

k'P(Ol‘a;)P(auS;aam)ZP(S;‘SUaam)ZP(SId‘S;aa;an:am)Zb(smauasd)
Su Sd Ay

vl

= k- P(d|a},) f(aus;,am)JZf(s;|su,amzzg)(s:j|sz,az,sd,am)b(su,sd) (11)
N’ ~~ ~~ 5a

observation user action ' user goal dialog
model model model model

As shown by the labelling to equation 11, the probability distribution for a!, is called the user
action model. It allows the observation probability that is conditioned on a!, to be scaled by the
probability that the user would speak al, given the goal s!, and the last system prompt a,,. The
user goal model determines the probability of the user goal switching from s, to s}, following the
system prompt a,,. Finally, the dialog model represents the transition matrix for the dialog state
component. This term provides the primary hook for incorporating heuristics into the system. In
particular, it allows information relating to the dialog history to be maintained such as grounding
and focus.

3 The Hidden Information State dialog model

Having described the general form of the SDS-POMDP in the previous section, this section derives
a specific form of SDS-POMDP called the Hidden Information State model.

Although the factoring introduced in the last section is helpful, the size of the state spaces
needed to represent real-world dialog systems would quickly render a direct SDS-POMDP im-
plementation intractable. The dialog state component is computed heuristically and as will be
explained later, this results in a relatively small set of dialog states being tracked from turn to
turn. However, the user goal and action state components require reasonably accurate distribu-
tions to be maintained and this is not easy since the size of the user goal space is enormous and
the user actions cannot even be enumerated. The HIS model deals with these two components in
different ways.

Consider first the user action model. As shown by equation 11, the user action component
of the state space is memoryless, i.e. the value of the previous user action a, is not required to
apply the belief update equation. This means that the distribution for a!, can be approximated by
considering just those user action values which are deemed to have non-zero probabilities in the
current turn. These will be precisely those actions which appear in the N-best list of hypotheses
from the speech understanding component. To guard against the case of very poor recognition
resulting in the correct value of a!, being dropped from the observation altogether, a null action is
always included with a floor probability representing all of the user acts not in the N-best list.!

To deal with the user goal component, it is necessary to be a little more specific about what is
meant by a user goal. The initial target of the HIS model is database inquiry applications such as
traffic information, tourist information, flight booking, etc. In this context, a user goal is deemed
to be a specific entity that the user has in mind. For example, in a tourist information system, the
user might be wishing to find a moderately priced restaurant near to the theatre. The user would
interact with the system, effectively refining his or her query until an appropriate establishment
was found. If the user wished to find an alternative restaurant, or even something different entirely
such as the nearest tube station to the restaurant, this would constitute a new goal. In the HIS
system, the duration of a dialog is defined as being the interaction needed to satisfy a single goal.
Hence by definition, the user goal model simplifies trivially to a delta function, i.e.

P(s,[5u) = 0(8y 5u)- (12)
Substituting equation 12 into equation 11 gives

b,(szuaiusld) = k'P(O’|a;)P(auS;7am)ZP(SId|5;va;75d=am)b(S;=Sd) (13)

Sd

To further simplify belief updating, it will be assumed that at any time ¢, S, can be divided
into a number of equivalence classes where the members of each class are tied together and are
indistinguishable. These equivalence classes will be called partitions of user goal space. Initially,

INote that in the context of a POMDP-based spoken dialog system, the terms user act and user action are
Ssynonymous.

all states s, € S, are in a single partition pg. As the dialog progresses, this root partition is
repeatedly split into smaller partitions. This splitting is binary

p—{p,p-p'} with probability P(p'|p). (14)

Since multiple splits can occur at each time step, this binary split assumption places no restriction
on the possible refinement of partitions from one turn to the next.

Given that user goal space is partitioned in this way, beliefs can be computed based on partitions
of S, rather than on the individual states of S,. Initially the belief state is just

bo(po) = 1. (15)
Whenever a partition p is split, its belief mass is reallocated according to equation 14, i.e.
b(p') =P p)b(p) and b(p—p') = (1 - P(p'[p))b(p) (16)

Note that this splitting of the belief mass is simply a reallocation of existing mass, it is not a belief
update. It will be referred to as belief refinement.

The belief update equation for a partitioned state space is easily derived from the non-partitioned
case. Let partition p' consist of states {s}|s!, € p'}, then summing both sides of equation 13 over
all {s],} gives,

V(' ay,sy) = k-P(dla,) Y Plalls,, am) ZP (salSu: s Sa, am)b(sy, sa) (17)
s’ ep’

As a dialog progresses, the user goal partitions are split repeatedly to ensure that everything which
has been mentioned so far in the dialog is explicitly represented in the partitions. This being so,
it is reasonable to assume that

P(a, |5y, am) = P(ay|p', am) (18)

and
P(Sld‘siuaiusmam) :P(Sld‘pl:aiusmam) (19)
Hence, using these simplifying assumptions and equation 16, equation 17 becomes

V' (', ay;sa) = k-P(day)P(a,lp', am) ZP (s4lps alys sa,am) D bs
s’ ep’

= k-P(O'\aL)P(aLIP',am)ZP(SQIP’,GL,Sd,am)b(p,Sd)

Sd

= ko Pa) Playlp,am)) Y P(sylp' ay. sa,am) P(p'|p)b)b(p. sa) (20)

Sd

observation user act dialog belief
model model model refinement

where p is the parent of p’. Equation 20 is the belief update equation for the HIS model, it is
shown in the form of an influence diagram in Fig. 2. Note that in this diagram the dotted arrows
represent the influence of a,, and a,, on the refinement of p’ but not on its update i.e. they influence
the splitting of p’ but not its conditional probability.

As shown by the labelling on equation 20, the HIS update equation depends on four probability
distributions:

1. Observation Model - this is approximated by the N-best probability from the speech under-
standing component

P(d|a,) =~ k'-P(ay,lo) (21)

Immediate
utility

@ refine event space
i Sq
S — A
@U maximise
N : U
N-Best list
of Au ¥ v

(©) ©

Figure 2: Influence diagram for the Hidden Information State dialog model

2. User Act Model - this is composed of two parts: the bigram probability of the current user
act type given the preceding system act type, and a probability denoting the degree to which
the current user act is consistent with the given partition p'. Thus,

P(aylp'sam) ~ P(T(a,)|T (am))P(M(a,)|p) (22)

where 7T (a) denotes the type of the dialog act a, for example, the type of the act “in-
form(food=Indian)” is inform. There are a total of 12 different dialog act types supported
by the HIS model and these are described in detail section 4.3. M(a) denotes whether or
not the dialog act a matches the current partition p’. The first component can be estimated
from a dialog corpus, the second component is set to 1 if the act matches and zero otherwise.

3. Dialog Model - this is entirely heuristic.

P(sylp',al,, s4,am) = 1 iff s}, is consistent with p’, a.,, s4, am (23)
=0 otherwise (24)

The way that this is computed in the HIS model is described in section 4.5.

4. Belief Refinement - this depends on the ontology rules used to define the application domain.
User goals are built using probabilistic context free rules, with rule probabilities set a priori.
If the sequence of rules ri,rs,...,r; is used to split partition p into sub-partition p’, the
belief refinement probability is

k

P'lp) =] P(rs) (25)

i=1

where P(r) is the prior probability of rule r. This process is described in more detail in
section 4.2.

Having described the mathematical basis of the HIS model, the remainder of this report describes
its specific implementation.

4 Implementation of the HIS Model

This section describes a specific implementation of the HIS model. It begins with a high level
overview of how the model operates. It then describes each of the main components in more detail.

4.1 Overview of HIS Model Operation

Before describing the details of the HIS system, it will be helpful to give a brief overview of the
principle data structures and the overall operation. As shown in Fig. 3, the inputs to the system
consist of an observation from the user and the previous system act. The observation from the user
typically consists of an N-best list of user acts, each tagged with their relative probability. The
user goal is represented by a set of branching tree structures each of which initially consist of just
a single node. These tree structures can be grown downwards by applying ontology rules which
describe the application domain. For example, there might be a rule which states that a venue can
be either a hotel, a restaurant or a bar. In each case, the derived venues will have further nodes
describing features of that type of venue. Ambiguity is represented by allowing nodes to expand
into multiple alternatives. Each distinct tree forms a partition of user goal space as described
in section 3. The initial single tree node represents a single partition with belief unity. As the
trees are grown, the partitions are repeatedly split allowing the belief assignment to be refined.
Eventually, the hope is that a single complete tree will be formed which represents the actual user’s
goal and that this tree has a high belief.

The tree growing process is driven entirely by the dialog acts exchanged between the system
and the user. Every turn, the previous system act and each input user act is matched against every
partition in the branching tree structure. If a match can be found then it is recorded. Otherwise the
ontology rules are scanned to see if the tree representing that partition can be extended to enable
the act to match. For example, if the act was request (ensuite), and the partition represented the
higher level node venue, then the venue node would be extended to a hotel node with associated
properties, one of which would be ensuite. The request (ensuite) act would then match. Note
however that an ontology rule can be used to extend a specific node just once. This ensures that
all partitions are unique and there are no duplicates.

Once the matching and partition splitting is complete, all the partitions are rescanned and
where possible each hypothesised input user act is attached to each partition. Similarly the system
act is attached to each partition (not shown in the figure). The combination of a partition and an
input user act (p,a,) forms a partial hypothesis and the user act model probability is calculated
as in equation 22.

As explained above, partitions are grown based entirely on dialog act inputs. If the user (or the
system) mentions a node such as ensuite this will cause other nodes to be created. The grounding
status of each tree node is recorded in a dialog state data structure. Since the grounding status
of a tree node can be uncertain, any (p,a,) pair can have multiple dialog states attached to it.
However, unlike the user act component of the state which is memoryless, the dialog component
sq evolves as the dialog progresses. Thus, at the beginning of each dialog cycle, the various dialog
state instances are attached directly to the partitions. Once the input user acts have been attached
to the partitions, the current dialog states are extended to represent the new information in the
dialog acts. At this point, the dialog state probabilities given by equation 24 are computed. At
the end of the turn, identical dialog states attached to the same partition can be merged® ready
for the next cycle.

Every triple (p, ay, sq) represents a single dialog hypothesis hy. The belief in each hy is com-
puted using equation 20 and the complete set of values b(hy) represents the current estimate of
the POMDP belief state. However, unlike a full POMDP, the current version of the HIS model
does not do forward planning. Instead, each hypothesis hj is examined and all possible system
dialog acts are generated. All of these candidate system dialog acts are collected together into a

2This merging operation is not essential and is not actually done in the current implementation

Observation

OntologI Rules

Propose
Compute Candidate

Argmax
Expected

arg max a i Utilit ; Utilities i System
L DYTCSCINTS) (L (TRRT i
k

Figure 3: Overview of the HIS System operation

pool {a!,} and the conditional utility U(a’,|hy) calculated for each. The expected utility of each
candidate can then be computed and the candidate with the maximum utility chosen as the next
system move.

Gy = ATgMAax {Z b(hk)U(afnhk)} (26)
k

The details of how candidate system acts are generated and utilities are calculated are given later
in section 5.

4.2 User Goal Trees and Ontology Rules

User goals are represented by a branching tree structure whose hierarchy reflects both the natural
structure of the data and a natural order in which to introduce the individual concepts into a
conversation. User goal trees are constructed from four types of tree node:

1. class nodes - these have non-terminal offspring. Conceptually a class node represents an
instance of a type, and the offspring of the node denote the members of that type.

2. lexical nodes - these have only terminal offspring i.e. atoms.

3. subclass nodes - these have no offspring. They act like a tag to the parent node indicating
a particular flavour of that class. They are provided mainly for notational convenience,
especially in the way that database entitities are defined.

4. atomic nodes - these are the offspring of lexical nodes. They represent actual values such as
Hotel Grand, Jazz, yes, 27, etc.

An example of a fully expanded user goal tree is shown in Fig. 4. This example is a simplified
representation of a restaurant. The top level node represents an arbitrary entity. It has a subclass
venue and corresponding subclass members type, name, and location. These members are generic

10

for any kind of venue (e.g. restaurant, bar, hotel, etc). In this case, the type is a restaurant with
restaurant-specific class members food, music and decor. The location is specified as a specific
address and therefore has a street member. It could have been specified by some other means
such as nearto, gridref, etc, and these would be alternate subclasses of location.

subclass
/ lexical ; atom

Node Types

00

venue
restaurant

street

Y Y
| Italian ” Jazz || Roman | | Toni's | |Main Street |

Figure 4: Example Fully Expanded User Goal Tree

User goal trees are built using a set of rules which adhere to the syntax set out in Fig. 5. As
an example, the rules set out in Fig. 6 describe the restaurant goal described above. There are two
basic forms of rules: class definition rules and lexical definition rules. The basic function of these
should be clear from the table, however, some of the details require further explanation.

Firstly, the members of a class can have an optional “4” or “” specifier indicating that the
node is primarily selectional or informational, respectively. These markers are optional and only
influence the selection of system responses. The plus specifier indicates that a value is normally
required for that member in order to identify the requested entity. Conversely, the minus specifier
indicates that the member will rarely be specified by the user to identify the entity but does
contain information that the user may wish to know about once the entity has been selected. In
the example rules, the food type is marked with a “+” since it is frequently specified by users in
order to identify a suitable restaurant, whereas the decor is marked with a “” since it is rarely
specified by users when searching for an appropriate restaurant. It might, however, be required
once a candidate restaurant has been located.

Secondly, note that in the left hand side of class definition rules, a simple name can be qualified
using a dotted path notation. This is provided as a convenience to allow generic labels such as
name to be used in different contexts, and then specific instances identified. In the example, the
lexical definition for name is qualified by venue to distinguish it from other types of name.

Thirdly, a class definition rule can have simple equality constraints applied to its members. For
example, in a travel booking system, a route might be specified as

route -> singleleg(fromplace,toplace) [toplace != fromplace];

In this case, any partition which instantiates the fromplace and toplace members with the same
value will be marked as inconsistent and its belief will be set to zero.

Finally, all rules can have a probability assigned to them. Where no probability is given, then
equal probability is assumed. These probabilities represent prior knowledge. In the example, the
venue type is restaurant with probability 0.35. This would reflect the fact that in practice when
users want to locate a venue, 35% of the time they require a restaurant. As explained in section 4.4,
these prior probabilities are used to reallocate belief mass when a partition is split.

3 Atomic names containing non-alphadigit characters must be enclosed in double quotes

11

ruleset = ruledef";" { ruledef ";" } {dbasefile}

ruledef = classdef | lexdef

classdef = classinst "->" [subclass] [classbody] [cond] [prob]
classbody = " (" [opt] member { "," [opt] member } ")"

lexdef = classinst "=" "(" atom[prob] {"|" atom[prob] ")"
prob = "{" float "}"

cond = "[" classinst op classinst "]"

Opt = n_n | nyn

classinst = name {"." name}

member = name

subclass = name

atom = name

op = N==n | nyp=n

dbasefile = "+" "filename"

Figure 5: Syntax of HIS Ontology Rules

entity -> venue(type,name,location) {0.2};

type -> restaurant (+food,music,-decor) {0.35}
location -> addr(street) {0.8};

venue.name = ("Toni’s","Quick Bite",);

food = (Italian,Chinese,English, ...);

music = (Jazz,Pop,Folk, ...);

decor = (Traditional,Roman,ArtDeco,...

street = ("Main Street", "Market Square", ...);

Figure 6: Example of using Ontology Rules

The ontology rules defined above describe the structure of the data. The data itself must be
stored in a second file in the form of entity definitions, where each entity consists of a list of
attribute value pairs. An example entity definition is shown in Fig. 7. Entity definitions must
begin with an id attribute and should normally include name and type attributes. All remaining
attribute-value pairs are arbitrary but must be consistent with the rules. For example, all values
must appear in at least one lexical definition?.

id("R23")

name ("Toni’s")
type("restaurant")
food("Italian")
addr ("Main Street")
near ("Cinema")
phone ("2095252")
decor ("Roman")

Figure 7: Example Database Entity Definition

The HIS system attempts to interpret attribute value pairs in a flexible way. For example,
given the location rule in Fig. 6, an address could be specified by any of: addr("Main Street"),

4Numbers are dealt with as a special case

12

qualifier name value

acttype(l[q .]‘ a f:x] ,‘....)

item

Figure 8: Structure of a Dialog Act

location("Main Street'") or street("Main Street'"). Note, however, that if there was also a
rule such as

location -> nearto(street);

then the latter two forms would be ambiguous.

4.3 Dialog Acts

As shown in Fig 8, a dialog act consists of a type and a list of zero or more name=value pairs
referred to as items. An item name refers to a node in a user goal tree, it can be a simple name
or a qualified name where the qualifier is either the name of the parent node or the name of the
parent’s subclass, if any. There may be zero or many items in a single act, and the interpretation
depends on the act type of which there are 15 in total.

The full set of acts supported by the HIS system is summarised in Table 1. The meaning of
each act should be clear from the table, but the following amplifies a number of important points.

Firstly, the HIS system does not support multiple dialog acts in a single turn. Thus, for
example, if

U: inform(food=Italian)
U: inform(music=Jazz)

is input to the system, it is interpreted as

U: inform(food=Italian) {0.5}
U: inform(music=Jazz) {0.5%}

i.e. the user said either that the food is Italian or that the music is Jazz with equal probability.
To convey both pieces of information in a single turn, an inform act with two items must be used,
i.e.

U: inform(food=Italian, music=Jazz)

In some cases, items are treated differently depending on their position in the item list. For
example,

S: confreq(type=restaurant,food)

is a request to confirm that the required type is restaurant and then request a value for food. If
the response was

U: affirm(type=restaurant, food=Italian)
this would confirm the type and provide the required food information. In fact,
U: affirm(food=Italian)

would have the same effect since the sequence

13

Act System | User | Description
hello() start dialog
bye() end dialog

give information a=x, b=y, ...

request values for a,b, ...

confirm a=x,b=y,..

confirm a=x,..,c=z and request value of d
select either a=x or b=y

inform(a=x,b=y,...)
request(a,b,...)
confirm(a=x,b=y,..)
confreq(a=x,..,c=z, d)
select(a=x,b=y)

affirm() simple yes

affirm(a=x,b=y,...) confirm a=x and give further info b=y, ...
negate() simple no

negate(a=x,b=y,...) no, a=x and give further info b=y, ...
repeat() request to repeat last act

reqalts request alternative goal

()
(a= request alt with new information
null act - does nothing

reqalts(a=x,..)

null()

LUX XX XX XL L <

LU X X X <

Table 1: Supported Dialog Acts

S: confirm(type=restaurant)
U: affirm()

is identical to

S: confirm(type=restaurant)
U: affirm(type=restaurant)

If negate is used, however, the first item is always taken to be a correction thus the response
U: negate(food=Russian)

would be interpreted as “No, the food is not Italian, it is Russian”.

When an act is processed by the HIS system, its items are matched against the user goal tree.
If a value is given, then an item can only match if there is an atomic leaf node with the same value
and its parent (or the subclass of its parent) matches the name of the name=value pair. If no value
is given then the name must match a node in the tree. If the name is qualified, then the qualifier
must match the parent (or the subclass of the parent) of the matched node.

User dialog acts are presented to the system as lists of alternatives. Each alternative can have
a probability attached to it. All acts without probabilities are assumed equally likely and assigned
probabilities so as to make the total sum to one. Every input list must include a null dialog act
with a non-zero probability. If no null act is included, the system inserts one.

4.4 Partitions and Partition Splitting

Section 4.2 explained how a single user goal is encoded in a branching tree structure. In fact, the
HIS system maintains a forest of partially and fully-expanded trees. Each partially expanded tree
represents a partition of equivalent user goal states. Each fully expanded tree is also a partition,
but it is a singleton partition i.e., it encodes a single user goal state.

This forest of trees is stored in such a way that no partition is duplicated, and the sum of the
probability of all partitions is always unity. As shown in Fig. 9(a), at system start up the user
goal forest consists of a single node called task. This single partition p has belief b(p) = 1 and
it represents all possible user goals. Since this node is built by default, all application rule sets
must start with rules to expand this node. Thus, in practice, the rule set shown in Fig. 6 must be
augmented by a rule such as:

14

=
| | - 0_'2 : P2 | p=0.24
CBYIEVCED Y-

Figure 9: Example of Partition Splitting

15

task -> find(entity) {0.3};

which expresses the prior knowledge that 30% of the time, a user will wish to find something (e.g.
a hotel, a restaurant etc). Fig. 9(b) shows what happens when this rule is applied. The task
node is split into two parallel nodes and the probability mass is divided in proportion to the prior
probability of applying the rule. The result is two partitions with beliefs b = 0.7 and b = 0.3
respectively. Suppose now that the rule for entity in Fig. 6 is applied, partition 2 is split to form
a new partition and the belief mass is divided again. The result is as shown in Fig. 9(c). And so
the process continues. The result in this case is three partitions which can be described via their
leaf nodes as

P1: task {0.70%}
P2: find(entity){0.24}
P3: find(venue(type,name,location)){0.06}

where the belief in each partition is shown in braces and always sums to one. Note that these
prior beliefs give relatively high weight to unexpanded nodes because they represent the largest
equivalence sets. However, once belief updating occurs, this situation is quickly reversed since the
evidence typically supports only the more specific partitions.

The above explains how partitions are split but not when. In fact partition splitting is entirely
on demand and it is driven by the items in the input user and system dialog acts. Referring
back to Fig. 3, the first stage of the dialog cycle is to match the items of all of the input user
acts and the previous system act against all of the existing partitions. Note that the act type is
not relevant here since the goal is simply to expand the partitions sufficiently to match as many
as possible of the input act items. Each item of each act is taken in turn and applied against
each existing partition. If the item matches the partition, then the result is recorded and nothing
further happens. If however the item does not match, then the ontology rules are scanned and the
system tests to see whether the current partition could be extended sufficiently to allow the item
to match. If it concludes that a match is possible, then the partition is extended and a match is
recorded. For example, if the user goal forest was as shown in Fig. 9(b) at the point when the item
(music=Jazz) was received, then the system would determine that a match could be achieved
by first expanding the entity node using the first rule in Fig. 6. This node is referred to as the
expansion node. The newly created offspring of the expansion node includes a type node and this
can be expanded using the second rule in Fig. 6. Finally, expanding the lexical node music to
derive the atomic node Jazz would allow the required match. Having determined that it is indeed
possible to construct a matching subtree which if attached to the expansion node would support
an item match, then that matching subtree is created.

The detailed implementation of this splitting process needs to consider a number of subtleties.
Firstly, in order to ensure that all partitions are unique, a rule must be applied to a node only once.
This is implemented by attaching to each expanded node, a reference to the rule used to expand
it. It is then simple to check whether or not a rule has been applied before to that node, and if
it has, the rule cannot be applied again. Secondly, when node expansion results in multiple levels
of rule application, then new subtree nodes will be created with probability less than one. In each
such case, a new parallel node must be created to hold the unused probability mass. Each new
node created in this way creates a new partition. An example of this is shown in Fig. 9 where the
expansion of partition P1:task to give partition P3:find(venue(type,name,location)) results
in an intermediate partition P2:find(entity) being created. In the further expansion needed
to accommodate the item (music=Jazz), the expansion of the type node with probability 0.35
to restaurant would leave a parallel type node with probability 0.65 and this would form yet
another partition.

Finally, as an act item is tested against successive partitions, there may be other partitions
which have not yet been examined but which share the same expansion node. Each of these as yet
unexamined partitions, must be cloned and the expansion node replaced by the leaf nodes of the
matching subtree. For example, in Fig. 10, there are two partitions

16

New matching
subtree to .~

attach to .~ Jazz

Italian

Figure 10: Splitting a Partition with a Shared Expansion Node

Px: find(venue(restaurant(food,music,decor)))
Py: find(venue(restaurant(food,music(Jazz),decor)))

If now the item food=Italian is matched against Py, then a new partition
Pyy: find(venue(restaurant (food(Italian) ,music(Jazz),decor)))

is created. However, the expansion node food is shared with Px, and hence a further partition
Pxx: find(venue(restaurant(food(Italian) ,music,decor)))

must also be created.

4.5 Constructing Hypotheses and the Dialog state

The previous subsections have explained how partitions are grown as a side effect of attempting
to match dialog act items. Once all input items have been processed and all possible matches
made, the next step is to construct a new set of updated beliefs for the current dialog turn. As
indicated by Fig. 3, belief update is implemented by building an explicit list of hypotheses where
each hypothesis corresponds to one possible combination of p', a!, and s} in the left hand side of
equation 20. At the start of each turn, each partition p has attached to it a list of possible dialog
state records s4 where each combination {p, s4} corresponds to the final term in equation 20.
The dialog state records information about the dialog history which is relevant to the decision
making process. In the current HIS system, this information consists of a count of the number of
times a user goal node is referenced by the system and a count of the number of times a user goal
node is referenced by the user. In future systems, this information will very likely be augmented.
Indeed, the dialog state is an ideal place to embed heuristic knowledge into the system since
the actual probability function P(s}|p',a),, sq,am) is deterministic and it is conditioned on the
full system state space and the preceding dialog acts. From the programming perspective, this
translates into a function which has all available infomation in its inputs and which returns 0 or 1.

17

food: s(0); u(0)->u(1)

1 music: s(1)->s(2); u(0)

3 Jazz: s(0)->s(1); u(0

a al /azz S(0)>5(1):u0)
321

S: inform(music=Jazz) d food: s(0); u(2)->u3)
U: request(food) Lg———music: s(0)->s(1);

am a'u 532 food: s(0); u(0)
S: inform(music=Jazz) [€————music: (1)->s(2); u(0)

U: repeat() Jazz: 5(0)->s(1); u(0)
food: s(0); u(2)
2| music: s(0)->s(1); u(0)

SS Jazz: s(0)->s(1); u(0)

Figure 11: Example Hypotheses

During partition splitting, each derived partition inherits the full set of dialog state records
from its parent partition. This generates the set {p', sq} with refined beliefs P(p'|p)b(p, sq). New
hypotheses are then constructed by attaching all matching user acts a!, to each refined partition.
For each user act, all of the dialog state records attached to that partition are copied and attached
to the user act. This generates all possible combinations of p', al, and s4. The partitions s4 are
updated and new beliefs b(p', al,, s;) = b(hy) are calculated according to equation 20.

Figure 11 illustrates hypothesis updating in more detail. In this example, the system had
previously output inform(music=Jazz) and the user’s response was either request(food) or
repeat (). Previously there were two dialog states hypothesised for the given fragment of partition
p' and after completing the turn, there are four distinct dialog states. This expansion occurs
because the alternate user acts reference different elements in p’ such that the user count for the
food node is incremented in one case and not the other.

5 A Greedy Theoretic Policy

As noted in the introduction and summarised in Figure 3, the current HIS system depends on a
greedy theoretic policy i.e. a policy based on the computation of immediate rewards or utilities
rather than in the case of a full POMDP where policies are based on expected future rewards.

The greedy policy is implemented as follows. Firstly, every hypothesis hj is scanned and
all possible system acts are proposed. Secondly, the candidate system acts are pooled and all
duplicates removed. Next a utility U(a’,|hy) is computed for each candidate system act a!, given
hypothesis hy. The utility of each candidate system act is then averaged across all hypotheses (i.e.
beliefs), and the act with the highest expected utility is selected for output, i.e.

3

k

at, = argrinax{Zb(hk)U(ath)} (27)

5.1 Generating Candidate System Acts

The generation of candidate system acts is rule based. Firstly, the terminals of each hypothesis are
used as search keys into the database. If the number of matching entities is exactly one®, then the

5Tn future versions of the system, this will be increased to a small number of candidate entities to provide the
user with a choice.

18

entity is bound to that hypothesis. If the number of matching entities is zero then the hypothesis is
marked as overspecified and never considered again. For each hypothesis, the following generation
rules are then applied:

e if the partition is bound to an entity, then for every attribute value pair a = v in that entity
which has never been mentioned before, propose the act inform(a=v).

e if the partition is bound to an entity and all terminal values have been instantiated and
mentioned to the user at least once, propose the act bye().

e if the partition is not bound to any entity, scan leaves and if any non-atomic leaf a is marked
as a select key (i.e. it was marked with a “+” in the ontology rules), then propose the act
request(a).

e if the partition is not bound to any entity and there are no select keys, then for every non-
atomic leaf a propose the act request(a).

e if the partition is bound to an entity, then for every atomic leaf value v with a user count of
just 1 and with parent or subclass a, propose the act confirm(a=v).

After the above single item candidate system acts have been generated, the pool is rescanned and
multiple item acts are generated. For example, if two confirm acts refer to differing values v; and
vg of the same attribute a, then select(a=v1l,a=v2) is generated.

5.2 Computing Utilities

Given a specific hypothesis, the utility of a candidate system act with respect to that hypothesis
is computed as follows. Firstly, four heuristic metrics are computed:

risk - this measure is based on the ratio of the number of confirmed terminals to the total number
of instantiated terminals where a terminal is judged to have been confirmed if its user count
is greater than 1.

progress - this measure is based on the distance to go in terms of terminal instantiation before
the partition will bind with a unique entity in the database.

relevance - this attempts to measure the relevance of the proposed system act given the hypoth-
esised user act and the partition information. It is act dependent and entirely heuristic.

continuity - this measure is a combination of two sub-measures: the degree to which the candidate
system act is in focus with respect to the previous user act and the bigram probability of
the system act type given the previous user act type. The first sub-measure depends only
on the items in the system act and it is computed by counting the common ancestors in
the partition tree of the system act items and the user act items. The second sub-measure
depends only on the act types.

Once these four measures have been computed, the utility of a candidate system act a!, given the
hypothesis hy is calculated by:

U(al |hr) = apisk[t] * risk + Qprog[t] * Prog + Qretey [t] * relev + aeony[t] * cont (28)

where t is the type of al,. «a is an array of act type dependent weights which allow different
emphasis to be placed on different types of system act. For example, a,;s is negative for confirm
acts and positive for inform acts, thus encouraging caution when the risk is high.

19

6 Conclusions and Further Work

This report has outlined a new framework called the Hidden Information State (HIS) model for
designing and implementing spoken dialog systems. The model is based on the SDS-POMDP but
it avoids the usual computational issues associated with POMDPs by partitioning the space of user
goals into a small number of equivalence classes. Probabilistic context-free ontology rules are used
to describe the iterative splitting of partitions to eventually form unique goal states. By computing
beliefs on partitions rather than the underlying states, belief monitoring remains tractable even
for complex real-world systems.

This initial version of the HIS system relies on several hand-crafted probability tables. The next
phase of the development will include training these tables from data and performing comparitive
evaluations of the system using a hand-crafted system as the baseline.

In addition to the need for proper training, there is also an outstanding problem relating to
priors. In the current system, priors are represented by the probabilities of context-free rewrite
rules. These rules are context independent and take no account of the very limited number of actual
database entities available to match the fully expanded user goal trees. The net effect is that the
model underestimates prior probabilities, especially the probabilities of singleton partitions. This
problem is currently mitigated by flooring expansion rule probabilities but this is a very crude
solution and it needs improving.

The current system is also limited to handling a single static user goal. Further work is needed
to expand the framework to support changing user goals.

Overall the HIS system is believed to represent a major step in solving the problem of scaling-
up SDS-POMDPs to handle real world applications. The next major step is to find methods of
constructing efficient policies which incorporate planning and this is the topic of future research.
In the meantime, armed with a utility-based greedy theoretic planning algorithm, the inherent
robustness of the HIS model to understanding errors should enable it to compete with and perhaps
exceed the performance of existing dialog systems, even without the benefit of a globally optimised
POMDP policy.

References

[1] S Larsson and D Traum. Information State and Dialogue Management in the TRINDI Dia-
logue Move Engine Toolkit. Natural Language Engineering, pages 323-340, 2000.

[2] SJ Young. Talking to Machines (Statistically Speaking). In Int Conf Spoken Language Pro-
cessing, Denver, Colorado, 2002.

[3] E Levin, R Pieraccini, and W Eckert. A Stochastic Model of Human-Machine Interaction for
Learning Dialog Strategies. IEEE Trans Speech and Audio Processing, 8(1):11-23, 2000.

[4] LP Kaelbling, ML Littman, and AR Cassandra. Planning and Acting in Partially Observable
Stochastic Domains. Artificial Intelligence, 101:99-134, 1998.

[5] JD Williams, P Poupart, and SJ Young. Factored Partially Observable Markov Decision Pro-
cesses for Dialogue Management. In 4th Workshop on Knowledge and Reasoning in Practical
Dialogue Systems, Edinburgh, 2005.

[6] JD Williams, P Poupart, and SJ Young. Partially Observable Markov Decision Processes
with Continuous Observations for Dialogue Management. In 6th SIGdial Workshop on DIS-
COURSE and DIALOGUE, Lisbon, 2005.

[7] ML Littman. The Witness Algorithm: solving partially observable Markov decision processes.
Technical report, Brown University, December 1994 1994.

20

(8]

[12]

[15]

[16]

[17]

[18]

T Paek and E Horvitz. Conversation as Action Under Uncertainty. In Proceedings of the
Sixteenth Conference on Uncertainty in Artificial Intelligence, pages 455-464, Stanford, CA,
2000. Morgan Kaufmann.

B Zhang, Q Cai, J Mao, and B Guo. Planning and Acting under Uncertainty: A New Model
for Spoken Dialogue System. In Proc 17th Conf on Uncertainty in Al Seattle, 2001.

MTJ Spaan and N Vlassis. Perseus: randomized point-based value iteration for POMDPs.
Technical report, Universiteit van Amsterdam, 2004.

JD Williams and SJ Young. Scaling up POMDPs for Dialogue Management: the Summary
POMDP Method. In IEEE workshop on Automatic Speech Recognition and Understanding
(ASRU2005), Puerto Rico, 2005.

S Singh, DJ Litman, M Kearns, and M Walker. Optimizing Dialogue Management with Rein-
forcement Learning: Experiments with the NJFun System. J Artificial Intelligence Research,
16:105-133, 2002.

K Scheffler and SJ Young. Automatic Learning of Dialogue Strategy using Dialogue Simulation
and Reinforcement Learning. In HLT 2002, San Diego, USA, 2002.

AW Moore and CG Atkeson. The Parti-game Algorithm for Variable Resolution Reinforcement
Learning in Multidimensional State-spaces. In SJ Hanson, JD Cowan, and CL Gi, editors,
Advances in Neural Information Processing Systems. Morgan Kaufmann, 1994.

AK McCallum. Reinforcement Learning with Selective Perception and Hidden State. PhD
thesis, University of Rochester, 1995.

WTB Uther and MM Veluso. Tree Based Discretization for Continuous State Space Reinforce-
ment Learning. In Proceedings of the Fifteenth National Conference on Artificial Intelligence,
pages 769-775, 1998.

MJ Kochenderfer and G Hayes. Adaptive Partitioning of State Spaces using Decision Graphs
for Real-Time Modeling and Planning. In Workshop on Planning and Learning in A Priori
Unknown or Dynamic Domains, IJCAI-05, Edinburgh, 2005.

R Jaulmes, J Pineau, and D Precup. Active Learning in Partially Observable Markov Decision
Processes. In European Conference on Machine Learning (ECML), Porto, Portugal, 2005.

21

