
The Hidden Information State Approa
h toDialogue ManagementTe
hni
al Report CUED/F-INFENG/TR.544Steve Young (sjy�eng.
am.a
.uk)Jason Williams (jdw30�eng.
am.a
.uk)Jost S
hatzmann (js532�eng.
am.a
.uk)Matt Stuttle (mns25�eng.
am.a
.uk)Karl Weilhammer (kw278�eng.
am.a
.uk)Cambridge University Engineering DepartmentTrumpington Street, Cambridge, CB1 2PZ, EnglandO
tober, 2005
1 Introdu
tionThe stru
ture of a
onventional dialogue system is shown in Fig. 1 both in terms of a blo
k diagramshowing the data
ow, and an in
uen
e diagram showing the dependen
ies from one time slot (i.e.turn) to the next. The pro
essing involved in a single dialog turn pro
eeds as follows. A dialogmanager generates a prompt to the user in the form of a ma
hine dialog a
t Am. This is
onvertedto an a
ousti
 signal Ym and subsequently interpreted by the user as ~Am. The user has a statewhi
h en
odes both a goal to a
hieve Su and the dialog history Sd. On re
eiving, ~Am the userupdates this state and generates a user dialog a
t Au. This is
onverted to an a
ousti
 signal Yuand interpreted by the system's spee
h understanding
omponent to give ~Au. The dialog systemmaintains its own view of the world in state variable Sm. The estimate ~Au is used to update thisestimate of the ma
hine's state and based on this updated estimate, the dialog manager generatesa new ma
hine dialog a
t Am.Although greatly simpli�ed, this des
ription of the dialog turn
y
le applies to nearly all existingsystems. In parti
ular, the information state update approa
h (ISU) to dialog system design
anbe viewed as a dire
t implementation of this model [1℄.However, although it is simple and intuitive, this traditional deterministi
 dialog model hasa number of severe weaknesses. Firstly, and
ru
ially, in real systems, the estimate of the user'sdialog a
t ~Au will be extremely noisy. Hen
e, the system state Sm must be updated based on a\best guess" of Au and sin
e this best guess will often be wrong, the system state
an be easily
orrupted by erroneous information. This will typi
ally lead to misunderstanding and
onfusion,requiring a perhaps lengthy re
overy dialog to repair it. The in
iden
e of this problem
an beredu
ed by making use of a
on�den
e measure output by the spee
h understanding
omponent.This measure provides an estimate of P (~AujYu) whi
h is typi
ally
ompared with a threshold andbased on the result either ~Au is a

epted as true, or it is queried with the user. Unfortunately,however,
on�den
e measures themselves are unreliable, and there is no
lear basis for setting thethreshold.A se
ond problem with the traditional ar
hite
ture is that spee
h understanding errors are notthe only sour
e of un
ertainty: the user's goals and intentions are un
ertain and
an
hange overtime. Thus, a model of the user's goals and intentions must be integrated into the overall dialogmanagement pro
ess. 1

Speech

Understanding

Dialog

Model

Dialog

Manager

Speech

Generation

User

A
u

~

A
m

S
m

A
u

Y
u

Y
m

A
m

~

<
S
u
,
S
d
>

S
m

A
u

A
m

hard-

coded

~

S
m

A
u

A
m

~

deterministic

time t
 time t+1
Figure 1: A traditional Spoken Dialog System along with its
orresponding in
uen
e diagram
A �nal problem with the traditional ar
hite
ture is the determinism itself. In order to im-plement optimal dialog strategies, a system must predi
t the future in order to plan for di�eringeventualities. Sin
e exa
t predi
tion is not possible, su
h plans
an only be probabilisti
 and, aswith the use of
on�den
e thresholds, these
an only be used in a very
rude way by a determin-isti
 de
ision pro
ess. Also, of
ourse, it is very hard to adapt deterministi
 systems from trainingdata, and in pra
ti
e, adaptation is limited to manual system tuning following an o�-line analy-sis of system logs. This pro
ess is labour intensive and
annot be extended to automati
 on-lineadaptation.As has been argued previously, taking a statisti
al approa
h to spoken dialog system designprovides the opportunity for solving many of the above problems in a
exible and prin
ipled way[2℄.Early attempts at using a statisti
al approa
h modelled the dialog system as a Markov de
isionpro
ess (MDP)[3℄. MDPs provide a good statisti
al framework sin
e they allow forward planningand hen
e dialog poli
y optimisation through reinfor
ement learning. However, they su�er froma number of problems. Firstly, and
ru
ially, MDPs assume that the ma
hine state is observable.Hen
e, they
annot a

ount for either the un
ertainty in the user state (Su and Sd in Fig. 1), or theun
ertainty in the de
oded user's dialog a
t (~Au in Fig. 1). Se
ondly, and perhaps less obviously,the MDP approa
h provides a poor interfa
e for integrating heuristi
s. The main problem is thatheuristi
s typi
ally involve making hard de
isions based on the assumed system state. However,in the
ase of an MDP, the assumed system state might be in
orre
t. To deal with this, the statemust be expanded to in
lude
on�den
e measures so that the heuristi
s
an deal expli
itly with theun
ertainty. However, this rapidly leads to an ex
essively large state spa
e and
omplex heuristi
s.A more general alternative to the fully observable MDP is the Partially Observable MDP(POMDP)[4℄. A dialog system based on a POMDP maintains a distribution over all possible states.This distribution is
alled the belief state and dialog poli
ies are based on this belief state ratherthan the true underlying state. The key advantage of the POMDP formalism is that it providesa
omplete and prin
ipled framework for modelling the main sour
es of un
ertainty. Furthermore,when
ast as a so-
alled SDS-POMDP[5, 6℄, the POMDP framework also allows heuristi
s to bein
orporated in a very simple way sin
e the prin
ipal
omponents on whi
h the heuristi
s depend(e.g. Su and Au) are by de�nition assumed to be true. In
omputational terms, this means thatin an MDP heuristi
s are exe
uted on
e per turn but have to be programmed to expli
itly takea

ount of un
ertainty. In a POMDP, heuristi
s are mu
h simpler to program be
ause the stateis assumed
orre
t. They do however have to be exe
uted many times per turn, on
e for ea
hpossible state value.The use of POMDPs for any pra
ti
al system is, however, far from straightforward. Sin
e abelief distribution b of a dis
rete state S of
ardinality n + 1 lies in real-valued n-dimensional2

simplex, a POMDP
an be thought of as an MDP with a
ontinuous state spa
e b 2 <n. Thus,assuming that the POMDP ma
hine has a �nite set of a
tions to sele
t from, a POMDP poli
yis a mapping from partitions in n-dimensional belief spa
e to a
tions. Not surprisingly these areextremely diÆ
ult to
onstru
t and whilst exa
t solution algorithms su
h as the Witness algorithm[7℄ do exist, they rarely s
ale to problems with more than a few states/a
tions. Fortunately, thereare a number of ways of �nding approximate solutions whi
h are suÆ
iently a

urate to yield usefulresults. Firstly, the planning horizon
an be redu
ed to zero su
h that a
tions are sele
ted basedon immediate utilities. This redu
es the POMDP to a greedy de
ision-theoreti

ontroller. It doesnot solve the problem of a

ounting for the future e�e
ts of de
isions, but it does allow for all of thevarious sour
es of un
ertainty to be modelled and a

ounted for in the de
ision making pro
ess[8℄.Se
ondly, approximate solutions su
h as grid-based methods[9℄ and point-based value iteration
an be used [10℄. These allow problems with several hundreds of state/a
tions to be handled, andalthough these are not suÆ
ient by themselves to deal with real world systems, used in
onjun
tionwith state-mapping s
hemes su
h as the summary-POMDP method, they o�er promise of a wayforward[11℄.Whatever approa
h is taken to the
onstru
tion of poli
ies, there is an other fundamentalbarrier to using POMDPs in spoken dialog systems. Real systems deal with real-world knowledgewhi
h is
omplex, hiera
hi
al, and multi-valued. The potential state-spa
e of even a simple travelbooking system is enormous. Furthermore, dialog a
ts
annot easily be enumerated as a simple�nite set. The types of a
t (request, inform, et
) are easily enumerated, but the arguments tosu
h a
ts (names of pla
es, pri
es, dates, et
) are not so simple. Whereas resear
h into MDPswas able to side-step this problem on the grounds that only a few global indi
ators needed tobe modelled[12, 13℄, a
entral
laim of the POMDP approa
h is that it is truly holisti
 and,in parti
ular, propositional
ontent should not be ignored. Thus, whilst POMDPs provide atheoreti
al framework for modelling
omplete dialog systems, what is also needed in pra
ti
e isa framework whi
h
an integrate the appli
able knowledge representations with the appropriatestatisti
al models.This report des
ribes the development of su
h a framework. It is inspired by the informationstate approa
h to dialog system implementation, and hen
e it is
alled the Hidden InformationState (HIS) framework for statisti
al dialog systems. The key idea of the HIS system is that a beliefdistribution over an extremely large state spa
e
an be represented eÆ
iently by grouping statestogether into partitions[14, 15, 16, 17℄. Initially, all states are deemed to be in a single partition withbelief unity. As the dialog progresses, the partitions are split and belief is redistributed amongstthe splits. Eventually, some partitions be
ome very low in
ardinality, and in the limit singletons.A
tion sele
tion is then dominated by these low
ardinality partitions. The overall result is thatfull-s
ale POMDP belief maintenan
e is a
hieved without ever expli
itly
al
ulating the beliefsof (the majority of) irrelevant states. Furthermore, partitions are represented eÆ
iently usingtree stru
tures and these tree stru
tures also provide a very natural representation for real-worldknowledge.The remainder of this report is stru
tured as follows. Se
tion 2 brie
y reviews the generalframework of the Spoken Dialog System POMDP (SDS-POMDP) and se
tion 3 explains how theHIS system �ts into this framework. Se
tion 4 then des
ribes the implementation of the HIS systemin some detail. Se
tion 5 presents the
urrent greedy theoreti
 poli
y implementation, and �nally,se
tion 6 dis
usses future work and
on
lusions.2 The SDS-POMDPThe aim of this se
tion is to review the basi
 POMDP equations and then present a fa
toredform
alled the SDS-POMDP whi
h is suitable for spoken dialogue systems[5, 6℄. This lays thefoundation for des
ribing the HIS model in the following se
tion.3

2.1 Review of POMDPsFormally, a POMDP is de�ned as a tuple fS;Am; T; R;O; Z; �; b0g where S is a set of states; Amis a set of a
tions that the ma
hine may take; T de�nes a transition probability P (s0js; am); Rde�nes the expe
ted (immediate, real-valued) reward r(s; am); O is a set of observations; Z de�nesan observation probability P (o0js0; am); � is a geometri
 dis
ount fa
tor 0 � � � 1; and b0 is aninitial belief state b0(s).The POMDP operates as follows. At ea
h time-step, the ma
hine is in some unobserved states 2 S. Sin
e s is not known exa
tly, a distribution over states is maintained
alled a "beliefstate," b, with initial belief state b0. Thus, the probability of being in state s given belief stateb is b(s). Based on the
urrent belief state b, the ma
hine sele
ts an a
tion am 2 Am, re
eives areward r(s; am), and transitions to a new (unobserved) state s0, where s0 depends only on s andam. The ma
hine then re
eives an observation o0 2 O whi
h is dependent on s0 and am. The beliefdistribution is then updated based on o0 and am.The belief update equations are easily derived using Bayes rule:b0(s0) = P (s0jo0; am; b)= P (o0js0; am; b)P (s0jam; b)P (o0jam; b)= P (o0js0; am; b)Ps2S P (s0jam; b; s)P (sjam; b)P (o0jam; b)= P (o0js0; am)Ps2S P (s0jam; s)b(s)P (o0jam; b)= k � P (o0js0; am)Xs2S P (s0jam; s)b(s) (1)where k is a normalising
onstant. In equation 1, the summation uses the transition probabilityto predi
t ea
h next state s0 as an expe
tation wrt to the belief state over pre
eding states. Theobservation term before the summation weights the predi
tion for ea
h new state s0 based on thelikelihood that the most re
ent observation o0
ould have been generated from s0.Note that the a
tion taken by the ma
hine at ea
h time step depends on the
omplete distribu-tion b. This is often initially a
at distribution re
e
ting ignoran
e. At ea
h time-step, the beliefstate distribution b is updated based on the new observation, and typi
ally this will result in thedistribution \sharpening" around spe
i�
 states.At ea
h time step t, the ma
hine re
eives a reward R(bt; am;t) based on the
urrent belief statebt and the sele
ted a
tion am;t. The
umulative, in�nite horizon, dis
ounted reward is
alled thereturn and it is given by: R = 1Xt=0 �tR(bt; am;t) (2)= 1Xt=0 �tXs2S bt(s)r(s; am;t): (3)Ea
h a
tion am;t is determined by a poli
y �(bt) and it is the goal of the ma
hine to �nd the poli
y�� whi
h maximises the return. Su
h a poli
y is
alled an optimal poli
y. Sin
e belief spa
e is areal-valued simplex, the poli
y
an be viewed as a partitioning of belief spa
e into regions, whereea
h region
orresponds to the single unique a
tion whi
h should be taken if the
urrent beliefstate lies in that region.Finding the optimal poli
y involves using the transition matrix to predi
t the reward expe
tedfrom ea
h state for ea
h possible ma
hine a
tion. This is very similar to the forward-ba
kward4

algorithm of E-M and for regular fully observed Markov De
ision Pro
esses, it is essentially adynami
 programming sear
h over a dis
rete state spa
e. POMDPs solutions are mu
h more
om-plex, however, be
ause the state spa
e is e�e
tively
ontinuous. As mentioned in the introdu
tion,exa
t solution algorithms do exist (e.g. see the Witness Algorithm [7, 4℄) but they
an only handlevery small problems. Fortunately, approximate solutions
an handle signi�
antly larger problems(e.g. Perseus [10℄).For
ases where the model is unknown or there is insuÆ
ient data to estimate a

urately, on-line learning te
hniques analogous to Q-learning are also possible. For example, a
tive learning
an be used to simultaneously update an approximate model whilst optimising the return[18℄.2.2 The SDS-POMDP: a fa
tored POMDP for spoken dialog systemsReferring ba
k to Fig. 1, it
an be seen that the state spa
e represented by the dialog model Smmust entail the user goal and dialog state and sin
e these
annot be observed, Sm must
orrespondto a distribution over those states. In addition, sin
e the last user a
t is also un
ertain, it is
onvenient to in
lude it also within the unobserved state spa
e. This suggests that the state spa
eof a POMDP for dialog systems should be fa
tored as follows. First, the unobserved state isfa
tored into 3
omponents: s = (su; au; sd): (4)The system state Sm then be
omes the belief state b over su, au and sd, i.e.sm = b(su; au; sd): (5)The observation o is the estimate of the user dialog a
t ~au. In the general
ase this will be anN-best list of hypothesised user a
ts, ea
h with an asso
iated probability, i.e.o = [(~a1u; p1); (~a2u; p2); : : : ; (~aNu ; pN)℄ (6)su
h that P (~anu jo) = pn; n = 1 : : : N (7)The transition fun
tion for an SDS-POMDP follows dire
tly by substituting equation 4 into theregular POMDP transition fun
tion and making some reasonable independen
e assumptions, i.e.P (s0js; am) = P (s0u; a0u; s0djsu; au; sd; am)= P (s0ujsu; am)P (a0ujs0u; am)P (s0djs0u; a0u; sd; am) (8)Making similar reasonable independen
e assumptions regarding the observation fun
tion gives,P (o0js0; am) = P (o0js0u; a0u; s0d; am)= P (o0ja0u) (9)This is the observation model.The above fa
toring simpli�es the belief update equation sin
e substituting equation 8 andequation 9 into equation 1 givesb0(s0u; a0u; s0d) = (10)k � P (o0ja0u) Xsu;au;sd P (s0ujsu; am)P (a0ujs0u; am)P (s0djs0u; a0u; sd; am)b(su; au; sd)= k � P (o0ja0u)P (a0ujs0u; am)Xsu P (s0ujsu; am)Xsd P (s0djs0u; a0u; sd; am)Xau b(su; au; sd)= k � P (o0ja0u)| {z }observationmodel P (a0ujs0u; am)| {z }user a
tionmodel Xsu P (s0ujsu; am)| {z }user goalmodel Xsd P (s0djs0u; a0u; sd; am)| {z }dialogmodel b(su; sd) (11)5

As shown by the labelling to equation 11, the probability distribution for a0u is
alled the usera
tion model. It allows the observation probability that is
onditioned on a0u to be s
aled by theprobability that the user would speak a0u given the goal s0u and the last system prompt am. Theuser goal model determines the probability of the user goal swit
hing from su to s0u following thesystem prompt am. Finally, the dialog model represents the transition matrix for the dialog state
omponent. This term provides the primary hook for in
orporating heuristi
s into the system. Inparti
ular, it allows information relating to the dialog history to be maintained su
h as groundingand fo
us.3 The Hidden Information State dialog modelHaving des
ribed the general form of the SDS-POMDP in the previous se
tion, this se
tion derivesa spe
i�
 form of SDS-POMDP
alled the Hidden Information State model.Although the fa
toring introdu
ed in the last se
tion is helpful, the size of the state spa
esneeded to represent real-world dialog systems would qui
kly render a dire
t SDS-POMDP im-plementation intra
table. The dialog state
omponent is
omputed heuristi
ally and as will beexplained later, this results in a relatively small set of dialog states being tra
ked from turn toturn. However, the user goal and a
tion state
omponents require reasonably a

urate distribu-tions to be maintained and this is not easy sin
e the size of the user goal spa
e is enormous andthe user a
tions
annot even be enumerated. The HIS model deals with these two
omponents indi�erent ways.Consider �rst the user a
tion model. As shown by equation 11, the user a
tion
omponentof the state spa
e is memoryless, i.e. the value of the previous user a
tion au is not required toapply the belief update equation. This means that the distribution for a0u
an be approximated by
onsidering just those user a
tion values whi
h are deemed to have non-zero probabilities in the
urrent turn. These will be pre
isely those a
tions whi
h appear in the N-best list of hypothesesfrom the spee
h understanding
omponent. To guard against the
ase of very poor re
ognitionresulting in the
orre
t value of a0u being dropped from the observation altogether, a null a
tion isalways in
luded with a
oor probability representing all of the user a
ts not in the N-best list.1To deal with the user goal
omponent, it is ne
essary to be a little more spe
i�
 about what ismeant by a user goal. The initial target of the HIS model is database inquiry appli
ations su
h astraÆ
 information, tourist information,
ight booking, et
. In this
ontext, a user goal is deemedto be a spe
i�
 entity that the user has in mind. For example, in a tourist information system, theuser might be wishing to �nd a moderately pri
ed restaurant near to the theatre. The user wouldintera
t with the system, e�e
tively re�ning his or her query until an appropriate establishmentwas found. If the user wished to �nd an alternative restaurant, or even something di�erent entirelysu
h as the nearest tube station to the restaurant, this would
onstitute a new goal. In the HISsystem, the duration of a dialog is de�ned as being the intera
tion needed to satisfy a single goal.Hen
e by de�nition, the user goal model simpli�es trivially to a delta fun
tion, i.e.P (s0ujsu) = Æ(s0u; su): (12)Substituting equation 12 into equation 11 givesb0(s0u; a0u; s0d) = k � P (o0ja0u)P (a0ujs0u; am)Xsd P (s0djs0u; a0u; sd; am)b(s0u; sd) (13)To further simplify belief updating, it will be assumed that at any time t, Su
an be dividedinto a number of equivalen
e
lasses where the members of ea
h
lass are tied together and areindistinguishable. These equivalen
e
lasses will be
alled partitions of user goal spa
e. Initially,1Note that in the
ontext of a POMDP-based spoken dialog system, the terms user a
t and user a
tion aresynonymous. 6

all states su 2 Su are in a single partition p0. As the dialog progresses, this root partition isrepeatedly split into smaller partitions. This splitting is binaryp! fp0; p� p0g with probability P (p0jp): (14)Sin
e multiple splits
an o

ur at ea
h time step, this binary split assumption pla
es no restri
tionon the possible re�nement of partitions from one turn to the next.Given that user goal spa
e is partitioned in this way, beliefs
an be
omputed based on partitionsof Su rather than on the individual states of Su. Initially the belief state is justb0(p0) = 1: (15)Whenever a partition p is split, its belief mass is reallo
ated a

ording to equation 14, i.e.b(p0) = P (p0jp)b(p) and b(p� p0) = (1� P (p0jp))b(p) (16)Note that this splitting of the belief mass is simply a reallo
ation of existing mass, it is not a beliefupdate. It will be referred to as belief re�nement.The belief update equation for a partitioned state spa
e is easily derived from the non-partitioned
ase. Let partition p0
onsist of states fs0ujs0u 2 p0g, then summing both sides of equation 13 overall fs0ug gives,b0(p0; a0u; s0d) = k � P (o0ja0u) Xs0u2p0 P (a0ujs0u; am)Xsd P (s0djs0u; a0u; sd; am)b(s0u; sd) (17)As a dialog progresses, the user goal partitions are split repeatedly to ensure that everything whi
hhas been mentioned so far in the dialog is expli
itly represented in the partitions. This being so,it is reasonable to assume that P (a0ujs0u; am) = P (a0ujp0; am) (18)and P (s0djs0u; a0u; sd; am) = P (s0djp0; a0u; sd; am) (19)Hen
e, using these simplifying assumptions and equation 16, equation 17 be
omesb0(p0; a0u; s0d) = k � P (o0ja0u)P (a0ujp0; am)Xsd P (s0djp0; a0u; sd; am) Xs0u2p0 b(s0u; sd)= k � P (o0ja0u)P (a0ujp0; am)Xsd P (s0djp0; a0u; sd; am)b(p0; sd)= k � P (o0ja0u)| {z }observationmodel P (a0ujp0; am)| {z }user a
tmodel Xsd P (s0djp0; a0u; sd; am)| {z }dialogmodel P (p0jp)b(p; sd)| {z }beliefre�nement (20)where p is the parent of p0. Equation 20 is the belief update equation for the HIS model, it isshown in the form of an in
uen
e diagram in Fig. 2. Note that in this diagram the dotted arrowsrepresent the in
uen
e of am and au on the re�nement of p0 but not on its update i.e. they in
uen
ethe splitting of p0 but not its
onditional probability.As shown by the labelling on equation 20, the HIS update equation depends on four probabilitydistributions:1. Observation Model - this is approximated by the N-best probability from the spee
h under-standing
omponent P (o0ja0u) � k0 � P (a0ujo) (21)7

O

P

S
d

A
u

U

O

P

S
d

A
u

U

A
m

Immediate

utility

O

P

S
d

A
u

U

O

P

U

A
m

maximise

U

N
-Best list

of A
u

S
d

A
u

A
m

refine event space

split

Figure 2: In
uen
e diagram for the Hidden Information State dialog model2. User A
t Model - this is
omposed of two parts: the bigram probability of the
urrent usera
t type given the pre
eding system a
t type, and a probability denoting the degree to whi
hthe
urrent user a
t is
onsistent with the given partition p0. Thus,P (a0ujp0; am) � P (T (a0u)jT (am))P (M(a0u)jp0) (22)where T (a) denotes the type of the dialog a
t a, for example, the type of the a
t \in-form(food=Indian)" is inform. There are a total of 12 di�erent dialog a
t types supportedby the HIS model and these are des
ribed in detail se
tion 4.3. M(a) denotes whether ornot the dialog a
t a mat
hes the
urrent partition p0. The �rst
omponent
an be estimatedfrom a dialog
orpus, the se
ond
omponent is set to 1 if the a
t mat
hes and zero otherwise.3. Dialog Model - this is entirely heuristi
.P (s0djp0; a0u; sd; am) = 1 i� s0d is
onsistent with p0; a0u; sd; am (23)= 0 otherwise (24)The way that this is
omputed in the HIS model is des
ribed in se
tion 4.5.4. Belief Re�nement - this depends on the ontology rules used to de�ne the appli
ation domain.User goals are built using probabilisti

ontext free rules, with rule probabilities set a priori.If the sequen
e of rules r1; r2; : : : ; rk is used to split partition p into sub-partition p0, thebelief re�nement probability is P (p0jp) = kYi=1P (ri) (25)where P (r) is the prior probability of rule r. This pro
ess is des
ribed in more detail inse
tion 4.2.Having des
ribed the mathemati
al basis of the HIS model, the remainder of this report des
ribesits spe
i�
 implementation. 8

4 Implementation of the HIS ModelThis se
tion des
ribes a spe
i�
 implementation of the HIS model. It begins with a high leveloverview of how the model operates. It then des
ribes ea
h of the main
omponents in more detail.4.1 Overview of HIS Model OperationBefore des
ribing the details of the HIS system, it will be helpful to give a brief overview of theprin
iple data stru
tures and the overall operation. As shown in Fig. 3, the inputs to the system
onsist of an observation from the user and the previous system a
t. The observation from the usertypi
ally
onsists of an N-best list of user a
ts, ea
h tagged with their relative probability. Theuser goal is represented by a set of bran
hing tree stru
tures ea
h of whi
h initially
onsist of justa single node. These tree stru
tures
an be grown downwards by applying ontology rules whi
hdes
ribe the appli
ation domain. For example, there might be a rule whi
h states that a venue
anbe either a hotel, a restaurant or a bar. In ea
h
ase, the derived venues will have further nodesdes
ribing features of that type of venue. Ambiguity is represented by allowing nodes to expandinto multiple alternatives. Ea
h distin
t tree forms a partition of user goal spa
e as des
ribedin se
tion 3. The initial single tree node represents a single partition with belief unity. As thetrees are grown, the partitions are repeatedly split allowing the belief assignment to be re�ned.Eventually, the hope is that a single
omplete tree will be formed whi
h represents the a
tual user'sgoal and that this tree has a high belief.The tree growing pro
ess is driven entirely by the dialog a
ts ex
hanged between the systemand the user. Every turn, the previous system a
t and ea
h input user a
t is mat
hed against everypartition in the bran
hing tree stru
ture. If a mat
h
an be found then it is re
orded. Otherwise theontology rules are s
anned to see if the tree representing that partition
an be extended to enablethe a
t to mat
h. For example, if the a
t was request(ensuite), and the partition represented thehigher level node venue, then the venue node would be extended to a hotel node with asso
iatedproperties, one of whi
h would be ensuite. The request(ensuite) a
t would then mat
h. Notehowever that an ontology rule
an be used to extend a spe
i�
 node just on
e. This ensures thatall partitions are unique and there are no dupli
ates.On
e the mat
hing and partition splitting is
omplete, all the partitions are res
anned andwhere possible ea
h hypothesised input user a
t is atta
hed to ea
h partition. Similarly the systema
t is atta
hed to ea
h partition (not shown in the �gure). The
ombination of a partition and aninput user a
t (p; au) forms a partial hypothesis and the user a
t model probability is
al
ulatedas in equation 22.As explained above, partitions are grown based entirely on dialog a
t inputs. If the user (or thesystem) mentions a node su
h as ensuite this will
ause other nodes to be
reated. The groundingstatus of ea
h tree node is re
orded in a dialog state data stru
ture. Sin
e the grounding statusof a tree node
an be un
ertain, any (p; au) pair
an have multiple dialog states atta
hed to it.However, unlike the user a
t
omponent of the state whi
h is memoryless, the dialog
omponentsd evolves as the dialog progresses. Thus, at the beginning of ea
h dialog
y
le, the various dialogstate instan
es are atta
hed dire
tly to the partitions. On
e the input user a
ts have been atta
hedto the partitions, the
urrent dialog states are extended to represent the new information in thedialog a
ts. At this point, the dialog state probabilities given by equation 24 are
omputed. Atthe end of the turn, identi
al dialog states atta
hed to the same partition
an be merged2 readyfor the next
y
le.Every triple (p; au; sd) represents a single dialog hypothesis hk. The belief in ea
h hk is
om-puted using equation 20 and the
omplete set of values b(hk) represents the
urrent estimate ofthe POMDP belief state. However, unlike a full POMDP, the
urrent version of the HIS modeldoes not do forward planning. Instead, ea
h hypothesis hk is examined and all possible systemdialog a
ts are generated. All of these
andidate system dialog a
ts are
olle
ted together into a2This merging operation is not essential and is not a
tually done in the
urrent implementation9

1

Observation

From

User

Ontology Rules

2

N

u
a

m
a
~
From

System

1

1

2

2

2

1

d
s

2

d
s

1

d
s

2

d
s

3

d
s

1

u
p

2

u
p

3

u
p

Propose

Candidate

System

Acts

2
h

3
h

4
h

5
h

Compute

Utilities
 {
}
{
 }
)
|
(
U

Argmax

Expected

Utility

1
h

Application

Database

1

2

2

2

1
p

2
p

3
p

~
a
u

~
a
u

~
a
u

~
a
u

~
a
u

~
a
u

~
a
u

*
~
a
m

i
a
m
i
a
m
 k
h
k
 U
h
b
)
|
(
)
(
 i
a
m
 k
h
 }

k

{
i

max
arg

Figure 3: Overview of the HIS System operationpool faimg and the
onditional utility U(aimjhk)
al
ulated for ea
h. The expe
ted utility of ea
h
andidate
an then be
omputed and the
andidate with the maximum utility
hosen as the nextsystem move. am = argmaxi (Xk b(hk)U(aimjhk)) (26)The details of how
andidate system a
ts are generated and utilities are
al
ulated are given laterin se
tion 5.4.2 User Goal Trees and Ontology RulesUser goals are represented by a bran
hing tree stru
ture whose hierar
hy re
e
ts both the naturalstru
ture of the data and a natural order in whi
h to introdu
e the individual
on
epts into a
onversation. User goal trees are
onstru
ted from four types of tree node:1.
lass nodes - these have non-terminal o�spring. Con
eptually a
lass node represents aninstan
e of a type, and the o�spring of the node denote the members of that type.2. lexi
al nodes - these have only terminal o�spring i.e. atoms.3. sub
lass nodes - these have no o�spring. They a
t like a tag to the parent node indi
atinga parti
ular
avour of that
lass. They are provided mainly for notational
onvenien
e,espe
ially in the way that database entitities are de�ned.4. atomi
 nodes - these are the o�spring of lexi
al nodes. They represent a
tual values su
h asHotel Grand, Jazz, yes, 27, et
.An example of a fully expanded user goal tree is shown in Fig. 4. This example is a simpli�edrepresentation of a restaurant. The top level node represents an arbitrary entity. It has a sub
lassvenue and
orresponding sub
lass members type, name, and lo
ation. These members are generi
10

for any kind of venue (e.g. restaurant, bar, hotel, et
). In this
ase, the type is a restaurant withrestaurant-spe
i�

lass members food, musi
 and de
or. The lo
ation is spe
i�ed as a spe
i�
address and therefore has a street member. It
ould have been spe
i�ed by some other meanssu
h as nearto, gridref, et
, and these would be alternate sub
lasses of lo
ation.
entity

venue
 type
 name

restaurant
 food
 music

location

Italian
 Toni's

address
 street

Main Street
Jazz

class
 subclass

lexical
 atom

Node Types

decor

Roman
Figure 4: Example Fully Expanded User Goal TreeUser goal trees are built using a set of rules whi
h adhere to the syntax set out in Fig. 53. Asan example, the rules set out in Fig. 6 des
ribe the restaurant goal des
ribed above. There are twobasi
 forms of rules:
lass de�nition rules and lexi
al de�nition rules. The basi
 fun
tion of theseshould be
lear from the table, however, some of the details require further explanation.Firstly, the members of a
lass
an have an optional \+" or \-" spe
i�er indi
ating that thenode is primarily sele
tional or informational, respe
tively. These markers are optional and onlyin
uen
e the sele
tion of system responses. The plus spe
i�er indi
ates that a value is normallyrequired for that member in order to identify the requested entity. Conversely, the minus spe
i�erindi
ates that the member will rarely be spe
i�ed by the user to identify the entity but does
ontain information that the user may wish to know about on
e the entity has been sele
ted. Inthe example rules, the food type is marked with a \+" sin
e it is frequently spe
i�ed by users inorder to identify a suitable restaurant, whereas the de
or is marked with a \-" sin
e it is rarelyspe
i�ed by users when sear
hing for an appropriate restaurant. It might, however, be requiredon
e a
andidate restaurant has been lo
ated.Se
ondly, note that in the left hand side of
lass de�nition rules, a simple name
an be quali�edusing a dotted path notation. This is provided as a
onvenien
e to allow generi
 labels su
h asname to be used in di�erent
ontexts, and then spe
i�
 instan
es identi�ed. In the example, thelexi
al de�nition for name is quali�ed by venue to distinguish it from other types of name.Thirdly, a
lass de�nition rule
an have simple equality
onstraints applied to its members. Forexample, in a travel booking system, a route might be spe
i�ed asroute -> singleleg(frompla
e,topla
e) [topla
e != frompla
e℄;In this
ase, any partition whi
h instantiates the frompla
e and topla
e members with the samevalue will be marked as in
onsistent and its belief will be set to zero.Finally, all rules
an have a probability assigned to them. Where no probability is given, thenequal probability is assumed. These probabilities represent prior knowledge. In the example, thevenue type is restaurant with probability 0.35. This would re
e
t the fa
t that in pra
ti
e whenusers want to lo
ate a venue, 35% of the time they require a restaurant. As explained in se
tion 4.4,these prior probabilities are used to reallo
ate belief mass when a partition is split.3Atomi
 names
ontaining non-alphadigit
hara
ters must be en
losed in double quotes11

ruleset = ruledef";" { ruledef ";" } {dbasefile}ruledef =
lassdef | lexdef
lassdef =
lassinst "->" [sub
lass℄ [
lassbody℄ [
ond℄ [prob℄
lassbody = "(" [opt℄ member { "," [opt℄ member } ")"lexdef =
lassinst "=" "(" atom[prob℄ {"|" atom[prob℄ ")"prob = "{" float "}"
ond = "["
lassinst op
lassinst "℄"opt = "-" | "+"
lassinst = name {"." name}member = namesub
lass = nameatom = nameop = "==" | "!="dbasefile = "+" "filename"Figure 5: Syntax of HIS Ontology Rulesentity -> venue(type,name,lo
ation) {0.2};type -> restaurant(+food,musi
,-de
or) {0.35}lo
ation -> addr(street) {0.8};venue.name = ("Toni's","Qui
k Bite",);food = (Italian,Chinese,English, ...);musi
 = (Jazz,Pop,Folk, ...);de
or = (Traditional,Roman,ArtDe
o,...street = ("Main Street", "Market Square", ...);Figure 6: Example of using Ontology RulesThe ontology rules de�ned above des
ribe the stru
ture of the data. The data itself must bestored in a se
ond �le in the form of entity de�nitions, where ea
h entity
onsists of a list ofattribute value pairs. An example entity de�nition is shown in Fig. 7. Entity de�nitions mustbegin with an id attribute and should normally in
lude name and type attributes. All remainingattribute-value pairs are arbitrary but must be
onsistent with the rules. For example, all valuesmust appear in at least one lexi
al de�nition4.id("R23")name("Toni's")type("restaurant")food("Italian")addr("Main Street")near("Cinema")phone("2095252")de
or("Roman") Figure 7: Example Database Entity De�nitionThe HIS system attempts to interpret attribute value pairs in a
exible way. For example,given the lo
ation rule in Fig. 6, an address
ould be spe
i�ed by any of: addr("Main Street"),4Numbers are dealt with as a spe
ial
ase 12

acttype
([
q
 .] a [= x] ,)

item

qualifier
 name
 value

Figure 8: Stru
ture of a Dialog A
tlo
ation("Main Street") or street("Main Street"). Note, however, that if there was also arule su
h aslo
ation -> nearto(street);then the latter two forms would be ambiguous.4.3 Dialog A
tsAs shown in Fig 8, a dialog a
t
onsists of a type and a list of zero or more name=value pairsreferred to as items. An item name refers to a node in a user goal tree, it
an be a simple nameor a quali�ed name where the quali�er is either the name of the parent node or the name of theparent's sub
lass, if any. There may be zero or many items in a single a
t, and the interpretationdepends on the a
t type of whi
h there are 15 in total.The full set of a
ts supported by the HIS system is summarised in Table 1. The meaning ofea
h a
t should be
lear from the table, but the following ampli�es a number of important points.Firstly, the HIS system does not support multiple dialog a
ts in a single turn. Thus, forexample, ifU: inform(food=Italian)U: inform(musi
=Jazz)is input to the system, it is interpreted asU: inform(food=Italian) {0.5}U: inform(musi
=Jazz) {0.5}i.e. the user said either that the food is Italian or that the musi
 is Jazz with equal probability.To
onvey both pie
es of information in a single turn, an inform a
t with two items must be used,i.e. U: inform(food=Italian, musi
=Jazz)In some
ases, items are treated di�erently depending on their position in the item list. Forexample,S:
onfreq(type=restaurant,food)is a request to
on�rm that the required type is restaurant and then request a value for food. Ifthe response wasU: affirm(type=restaurant, food=Italian)this would
on�rm the type and provide the required food information. In fa
t,U: affirm(food=Italian)would have the same e�e
t sin
e the sequen
e 13

A
t System User Des
riptionhello() p p start dialogbye() p p end dialoginform(a=x,b=y,...) p p give information a=x, b=y, ...request(a,b,...) p p request values for a,b, ...
on�rm(a=x,b=y,..) p �
on�rm a=x,b=y,..
onfreq(a=x,..,
=z, d) p �
on�rm a=x,..,
=z and request value of dsele
t(a=x,b=y) p � sele
t either a=x or b=yaÆrm() � p simple yesaÆrm(a=x,b=y,...) � p
on�rm a=x and give further info b=y, ...negate() � p simple nonegate(a=x,b=y,...) � p no, a=x and give further info b=y, ...repeat() p p request to repeat last a
treqalts() � p request alternative goalreqalts(a=x,..) � p request alt with new informationnull() p p null a
t - does nothingTable 1: Supported Dialog A
tsS:
onfirm(type=restaurant)U: affirm()is identi
al toS:
onfirm(type=restaurant)U: affirm(type=restaurant)If negate is used, however, the �rst item is always taken to be a
orre
tion thus the responseU: negate(food=Russian)would be interpreted as \No, the food is not Italian, it is Russian".When an a
t is pro
essed by the HIS system, its items are mat
hed against the user goal tree.If a value is given, then an item
an only mat
h if there is an atomi
 leaf node with the same valueand its parent (or the sub
lass of its parent) mat
hes the name of the name=value pair. If no valueis given then the name must mat
h a node in the tree. If the name is quali�ed, then the quali�ermust mat
h the parent (or the sub
lass of the parent) of the mat
hed node.User dialog a
ts are presented to the system as lists of alternatives. Ea
h alternative
an havea probability atta
hed to it. All a
ts without probabilities are assumed equally likely and assignedprobabilities so as to make the total sum to one. Every input list must in
lude a null dialog a
twith a non-zero probability. If no null a
t is in
luded, the system inserts one.4.4 Partitions and Partition SplittingSe
tion 4.2 explained how a single user goal is en
oded in a bran
hing tree stru
ture. In fa
t, theHIS system maintains a forest of partially and fully-expanded trees. Ea
h partially expanded treerepresents a partition of equivalent user goal states. Ea
h fully expanded tree is also a partition,but it is a singleton partition i.e., it en
odes a single user goal state.This forest of trees is stored in su
h a way that no partition is dupli
ated, and the sum of theprobability of all partitions is always unity. As shown in Fig. 9(a), at system start up the usergoal forest
onsists of a single node
alled task. This single partition p has belief b(p) = 1 andit represents all possible user goals. Sin
e this node is built by default, all appli
ation rule setsmust start with rules to expand this node. Thus, in pra
ti
e, the rule set shown in Fig. 6 must beaugmented by a rule su
h as: 14

entity

0.8

entity

0.2

venue
 type
 name
 location

task

0.7

task

0.3

P1

find

P2

P3

(
c
)

(b)

entity

task

0.7

task

0.3

P1

find

P2

(a)

task

1.0

P1
 b=1.0

b=0.7

b=0.3

b=0.24

b=0.7

b=0.06
Figure 9: Example of Partition Splitting
15

task -> find(entity) {0.3};whi
h expresses the prior knowledge that 30% of the time, a user will wish to �nd something (e.g.a hotel, a restaurant et
). Fig. 9(b) shows what happens when this rule is applied. The tasknode is split into two parallel nodes and the probability mass is divided in proportion to the priorprobability of applying the rule. The result is two partitions with beliefs b = 0:7 and b = 0:3respe
tively. Suppose now that the rule for entity in Fig. 6 is applied, partition 2 is split to forma new partition and the belief mass is divided again. The result is as shown in Fig. 9(
). And sothe pro
ess
ontinues. The result in this
ase is three partitions whi
h
an be des
ribed via theirleaf nodes asP1: task {0.70}P2: find(entity){0.24}P3: find(venue(type,name,lo
ation)){0.06}where the belief in ea
h partition is shown in bra
es and always sums to one. Note that theseprior beliefs give relatively high weight to unexpanded nodes be
ause they represent the largestequivalen
e sets. However, on
e belief updating o

urs, this situation is qui
kly reversed sin
e theeviden
e typi
ally supports only the more spe
i�
 partitions.The above explains how partitions are split but not when. In fa
t partition splitting is entirelyon demand and it is driven by the items in the input user and system dialog a
ts. Referringba
k to Fig. 3, the �rst stage of the dialog
y
le is to mat
h the items of all of the input usera
ts and the previous system a
t against all of the existing partitions. Note that the a
t type isnot relevant here sin
e the goal is simply to expand the partitions suÆ
iently to mat
h as manyas possible of the input a
t items. Ea
h item of ea
h a
t is taken in turn and applied againstea
h existing partition. If the item mat
hes the partition, then the result is re
orded and nothingfurther happens. If however the item does not mat
h, then the ontology rules are s
anned and thesystem tests to see whether the
urrent partition
ould be extended suÆ
iently to allow the itemto mat
h. If it
on
ludes that a mat
h is possible, then the partition is extended and a mat
h isre
orded. For example, if the user goal forest was as shown in Fig. 9(b) at the point when the item(musi
=Jazz) was re
eived, then the system would determine that a mat
h
ould be a
hievedby �rst expanding the entity node using the �rst rule in Fig. 6. This node is referred to as theexpansion node. The newly
reated o�spring of the expansion node in
ludes a type node and this
an be expanded using the se
ond rule in Fig. 6. Finally, expanding the lexi
al node musi
 toderive the atomi
 node Jazz would allow the required mat
h. Having determined that it is indeedpossible to
onstru
t a mat
hing subtree whi
h if atta
hed to the expansion node would supportan item mat
h, then that mat
hing subtree is
reated.The detailed implementation of this splitting pro
ess needs to
onsider a number of subtleties.Firstly, in order to ensure that all partitions are unique, a rule must be applied to a node only on
e.This is implemented by atta
hing to ea
h expanded node, a referen
e to the rule used to expandit. It is then simple to
he
k whether or not a rule has been applied before to that node, and ifit has, the rule
annot be applied again. Se
ondly, when node expansion results in multiple levelsof rule appli
ation, then new subtree nodes will be
reated with probability less than one. In ea
hsu
h
ase, a new parallel node must be
reated to hold the unused probability mass. Ea
h newnode
reated in this way
reates a new partition. An example of this is shown in Fig. 9 where theexpansion of partition P1:task to give partition P3:find(venue(type,name,lo
ation)) resultsin an intermediate partition P2:find(entity) being
reated. In the further expansion neededto a

ommodate the item (musi
=Jazz), the expansion of the type node with probability 0.35to restaurant would leave a parallel type node with probability 0.65 and this would form yetanother partition.Finally, as an a
t item is tested against su

essive partitions, there may be other partitionswhi
h have not yet been examined but whi
h share the same expansion node. Ea
h of these as yetunexamined partitions, must be
loned and the expansion node repla
ed by the leaf nodes of themat
hing subtree. For example, in Fig. 10, there are two partitions16

music

venue

type

restaurant
 food

music

decor

Italian

Jazz

find

entity

food

New matching

subtree
 to

attach to

food

Figure 10: Splitting a Partition with a Shared Expansion NodePx: find(venue(restaurant(food,musi
,de
or)))Py: find(venue(restaurant(food,musi
(Jazz),de
or)))If now the item food=Italian is mat
hed against Py, then a new partitionPyy: find(venue(restaurant(food(Italian),musi
(Jazz),de
or)))is
reated. However, the expansion node food is shared with Px, and hen
e a further partitionPxx: find(venue(restaurant(food(Italian),musi
,de
or)))must also be
reated.4.5 Constru
ting Hypotheses and the Dialog stateThe previous subse
tions have explained how partitions are grown as a side e�e
t of attemptingto mat
h dialog a
t items. On
e all input items have been pro
essed and all possible mat
hesmade, the next step is to
onstru
t a new set of updated beliefs for the
urrent dialog turn. Asindi
ated by Fig. 3, belief update is implemented by building an expli
it list of hypotheses whereea
h hypothesis
orresponds to one possible
ombination of p0, a0u and s0d in the left hand side ofequation 20. At the start of ea
h turn, ea
h partition p has atta
hed to it a list of possible dialogstate re
ords sd where ea
h
ombination fp; sdg
orresponds to the �nal term in equation 20.The dialog state re
ords information about the dialog history whi
h is relevant to the de
isionmaking pro
ess. In the
urrent HIS system, this information
onsists of a
ount of the number oftimes a user goal node is referen
ed by the system and a
ount of the number of times a user goalnode is referen
ed by the user. In future systems, this information will very likely be augmented.Indeed, the dialog state is an ideal pla
e to embed heuristi
 knowledge into the system sin
ethe a
tual probability fun
tion P (s0djp0; a0u; sd; am) is deterministi
 and it is
onditioned on thefull system state spa
e and the pre
eding dialog a
ts. From the programming perspe
tive, thistranslates into a fun
tion whi
h has all available infomation in its inputs and whi
h returns 0 or 1.17

type

food
 music

Italian
 Jazz

p'

S: inform(music=Jazz)

U: request(food)

S: inform(music=Jazz)

U: repeat()

food: s(0); u(0)->u(1)

music: s(1)->s(2); u(0)

Jazz: s(0)->s(1); u(0)

food: s(0); u(2)->u(3)

music: s(0)->s(1); u(0)

Jazz: s(0)->s(1); u(0)

food: s(0); u(0)

music: s(1)->s(2); u(0)

Jazz: s(0)->s(1); u(0)

food: s(0); u(2)

music: s(0)->s(1); u(0)

Jazz: s(0)->s(1); u(0)

a
~

u

2

1
a
~

u

d
s
11

d
s
12

d
s
21

d
s
22

a
m

a
m

Figure 11: Example HypothesesDuring partition splitting, ea
h derived partition inherits the full set of dialog state re
ordsfrom its parent partition. This generates the set fp0; sdg with re�ned beliefs P (p0jp)b(p; sd). Newhypotheses are then
onstru
ted by atta
hing all mat
hing user a
ts a0u to ea
h re�ned partition.For ea
h user a
t, all of the dialog state re
ords atta
hed to that partition are
opied and atta
hedto the user a
t. This generates all possible
ombinations of p0, a0u and sd. The partitions sd areupdated and new beliefs b(p0; a0u; s0d) = b(hk) are
al
ulated a

ording to equation 20.Figure 11 illustrates hypothesis updating in more detail. In this example, the system hadpreviously output inform(musi
=Jazz) and the user's response was either request(food) orrepeat(). Previously there were two dialog states hypothesised for the given fragment of partitionp0 and after
ompleting the turn, there are four distin
t dialog states. This expansion o

ursbe
ause the alternate user a
ts referen
e di�erent elements in p0 su
h that the user
ount for thefood node is in
remented in one
ase and not the other.5 A Greedy Theoreti
 Poli
yAs noted in the introdu
tion and summarised in Figure 3, the
urrent HIS system depends on agreedy theoreti
 poli
y i.e. a poli
y based on the
omputation of immediate rewards or utilitiesrather than in the
ase of a full POMDP where poli
ies are based on expe
ted future rewards.The greedy poli
y is implemented as follows. Firstly, every hypothesis hk is s
anned andall possible system a
ts are proposed. Se
ondly, the
andidate system a
ts are pooled and alldupli
ates removed. Next a utility U(aimjhk) is
omputed for ea
h
andidate system a
t aim givenhypothesis hk. The utility of ea
h
andidate system a
t is then averaged a
ross all hypotheses (i.e.beliefs), and the a
t with the highest expe
ted utility is sele
ted for output, i.e.~a�m = argmaxi (Xk b(hk)U(aimjhk)) (27)5.1 Generating Candidate System A
tsThe generation of
andidate system a
ts is rule based. Firstly, the terminals of ea
h hypothesis areused as sear
h keys into the database. If the number of mat
hing entities is exa
tly one5, then the5In future versions of the system, this will be in
reased to a small number of
andidate entities to provide theuser with a
hoi
e. 18

entity is bound to that hypothesis. If the number of mat
hing entities is zero then the hypothesis ismarked as overspe
i�ed and never
onsidered again. For ea
h hypothesis, the following generationrules are then applied:� if the partition is bound to an entity, then for every attribute value pair a = v in that entitywhi
h has never been mentioned before, propose the a
t inform(a=v).� if the partition is bound to an entity and all terminal values have been instantiated andmentioned to the user at least on
e, propose the a
t bye().� if the partition is not bound to any entity, s
an leaves and if any non-atomi
 leaf a is markedas a sele
t key (i.e. it was marked with a \+" in the ontology rules), then propose the a
trequest(a).� if the partition is not bound to any entity and there are no sele
t keys, then for every non-atomi
 leaf a propose the a
t request(a).� if the partition is bound to an entity, then for every atomi
 leaf value v with a user
ount ofjust 1 and with parent or sub
lass a, propose the a
t
on�rm(a=v).After the above single item
andidate system a
ts have been generated, the pool is res
anned andmultiple item a
ts are generated. For example, if two
on�rm a
ts refer to di�ering values v1 andv2 of the same attribute a, then sele
t(a=v1,a=v2) is generated.5.2 Computing UtilitiesGiven a spe
i�
 hypothesis, the utility of a
andidate system a
t with respe
t to that hypothesisis
omputed as follows. Firstly, four heuristi
 metri
s are
omputed:risk - this measure is based on the ratio of the number of
on�rmed terminals to the total numberof instantiated terminals where a terminal is judged to have been
on�rmed if its user
ountis greater than 1.progress - this measure is based on the distan
e to go in terms of terminal instantiation beforethe partition will bind with a unique entity in the database.relevan
e - this attempts to measure the relevan
e of the proposed system a
t given the hypoth-esised user a
t and the partition information. It is a
t dependent and entirely heuristi
.
ontinuity - this measure is a
ombination of two sub-measures: the degree to whi
h the
andidatesystem a
t is in fo
us with respe
t to the previous user a
t and the bigram probability ofthe system a
t type given the previous user a
t type. The �rst sub-measure depends onlyon the items in the system a
t and it is
omputed by
ounting the
ommon an
estors inthe partition tree of the system a
t items and the user a
t items. The se
ond sub-measuredepends only on the a
t types.On
e these four measures have been
omputed, the utility of a
andidate system a
t aim given thehypothesis hk is
al
ulated by:U(aimjhk) = �risk[t℄ � risk + �prog [t℄ � prog + �relev [t℄ � relev + �
ont[t℄ �
ont (28)where t is the type of aim. � is an array of a
t type dependent weights whi
h allow di�erentemphasis to be pla
ed on di�erent types of system a
t. For example, �risk is negative for
on�rma
ts and positive for inform a
ts, thus en
ouraging
aution when the risk is high.19

6 Con
lusions and Further WorkThis report has outlined a new framework
alled the Hidden Information State (HIS) model fordesigning and implementing spoken dialog systems. The model is based on the SDS-POMDP butit avoids the usual
omputational issues asso
iated with POMDPs by partitioning the spa
e of usergoals into a small number of equivalen
e
lasses. Probabilisti

ontext-free ontology rules are usedto des
ribe the iterative splitting of partitions to eventually form unique goal states. By
omputingbeliefs on partitions rather than the underlying states, belief monitoring remains tra
table evenfor
omplex real-world systems.This initial version of the HIS system relies on several hand-
rafted probability tables. The nextphase of the development will in
lude training these tables from data and performing
omparitiveevaluations of the system using a hand-
rafted system as the baseline.In addition to the need for proper training, there is also an outstanding problem relating topriors. In the
urrent system, priors are represented by the probabilities of
ontext-free rewriterules. These rules are
ontext independent and take no a

ount of the very limited number of a
tualdatabase entities available to mat
h the fully expanded user goal trees. The net e�e
t is that themodel underestimates prior probabilities, espe
ially the probabilities of singleton partitions. Thisproblem is
urrently mitigated by
ooring expansion rule probabilities but this is a very
rudesolution and it needs improving.The
urrent system is also limited to handling a single stati
 user goal. Further work is neededto expand the framework to support
hanging user goals.Overall the HIS system is believed to represent a major step in solving the problem of s
aling-up SDS-POMDPs to handle real world appli
ations. The next major step is to �nd methods of
onstru
ting eÆ
ient poli
ies whi
h in
orporate planning and this is the topi
 of future resear
h.In the meantime, armed with a utility-based greedy theoreti
 planning algorithm, the inherentrobustness of the HIS model to understanding errors should enable it to
ompete with and perhapsex
eed the performan
e of existing dialog systems, even without the bene�t of a globally optimisedPOMDP poli
y.Referen
es[1℄ S Larsson and D Traum. Information State and Dialogue Management in the TRINDI Dia-logue Move Engine Toolkit. Natural Language Engineering, pages 323{340, 2000.[2℄ SJ Young. Talking to Ma
hines (Statisti
ally Speaking). In Int Conf Spoken Language Pro-
essing, Denver, Colorado, 2002.[3℄ E Levin, R Piera

ini, and W E
kert. A Sto
hasti
 Model of Human-Ma
hine Intera
tion forLearning Dialog Strategies. IEEE Trans Spee
h and Audio Pro
essing, 8(1):11{23, 2000.[4℄ LP Kaelbling, ML Littman, and AR Cassandra. Planning and A
ting in Partially ObservableSto
hasti
 Domains. Arti�
ial Intelligen
e, 101:99{134, 1998.[5℄ JD Williams, P Poupart, and SJ Young. Fa
tored Partially Observable Markov De
ision Pro-
esses for Dialogue Management. In 4th Workshop on Knowledge and Reasoning in Pra
ti
alDialogue Systems, Edinburgh, 2005.[6℄ JD Williams, P Poupart, and SJ Young. Partially Observable Markov De
ision Pro
esseswith Continuous Observations for Dialogue Management. In 6th SIGdial Workshop on DIS-COURSE and DIALOGUE, Lisbon, 2005.[7℄ ML Littman. The Witness Algorithm: solving partially observable Markov de
ision pro
esses.Te
hni
al report, Brown University, De
ember 1994 1994.20

[8℄ T Paek and E Horvitz. Conversation as A
tion Under Un
ertainty. In Pro
eedings of theSixteenth Conferen
e on Un
ertainty in Arti�
ial Intelligen
e, pages 455{464, Stanford, CA,2000. Morgan Kaufmann.[9℄ B Zhang, Q Cai, J Mao, and B Guo. Planning and A
ting under Un
ertainty: A New Modelfor Spoken Dialogue System. In Pro
 17th Conf on Un
ertainty in AI, Seattle, 2001.[10℄ MTJ Spaan and N Vlassis. Perseus: randomized point-based value iteration for POMDPs.Te
hni
al report, Universiteit van Amsterdam, 2004.[11℄ JD Williams and SJ Young. S
aling up POMDPs for Dialogue Management: the SummaryPOMDP Method. In IEEE workshop on Automati
 Spee
h Re
ognition and Understanding(ASRU2005), Puerto Ri
o, 2005.[12℄ S Singh, DJ Litman, M Kearns, and M Walker. Optimizing Dialogue Management with Rein-for
ement Learning: Experiments with the NJFun System. J Arti�
ial Intelligen
e Resear
h,16:105{133, 2002.[13℄ K S
he�er and SJ Young. Automati
 Learning of Dialogue Strategy using Dialogue Simulationand Reinfor
ement Learning. In HLT 2002, San Diego, USA, 2002.[14℄ AWMoore and CG Atkeson. The Parti-gameAlgorithm for Variable Resolution Reinfor
ementLearning in Multidimensional State-spa
es. In SJ Hanson, JD Cowan, and CL Gi, editors,Advan
es in Neural Information Pro
essing Systems. Morgan Kaufmann, 1994.[15℄ AK M
Callum. Reinfor
ement Learning with Sele
tive Per
eption and Hidden State. PhDthesis, University of Ro
hester, 1995.[16℄ WTB Uther and MM Veluso. Tree Based Dis
retization for Continuous State Spa
e Reinfor
e-ment Learning. In Pro
eedings of the Fifteenth National Conferen
e on Arti�
ial Intelligen
e,pages 769{775, 1998.[17℄ MJ Ko
henderfer and G Hayes. Adaptive Partitioning of State Spa
es using De
ision Graphsfor Real-Time Modeling and Planning. In Workshop on Planning and Learning in A PrioriUnknown or Dynami
 Domains, IJCAI-05, Edinburgh, 2005.[18℄ R Jaulmes, J Pineau, and D Pre
up. A
tive Learning in Partially Observable Markov De
isionPro
esses. In European Conferen
e on Ma
hine Learning (ECML), Porto, Portugal, 2005.

21

