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1 IntrodutionThe struture of a onventional dialogue system is shown in Fig. 1 both in terms of a blok diagramshowing the data ow, and an inuene diagram showing the dependenies from one time slot (i.e.turn) to the next. The proessing involved in a single dialog turn proeeds as follows. A dialogmanager generates a prompt to the user in the form of a mahine dialog at Am. This is onvertedto an aousti signal Ym and subsequently interpreted by the user as ~Am. The user has a statewhih enodes both a goal to ahieve Su and the dialog history Sd. On reeiving, ~Am the userupdates this state and generates a user dialog at Au. This is onverted to an aousti signal Yuand interpreted by the system's speeh understanding omponent to give ~Au. The dialog systemmaintains its own view of the world in state variable Sm. The estimate ~Au is used to update thisestimate of the mahine's state and based on this updated estimate, the dialog manager generatesa new mahine dialog at Am.Although greatly simpli�ed, this desription of the dialog turn yle applies to nearly all existingsystems. In partiular, the information state update approah (ISU) to dialog system design anbe viewed as a diret implementation of this model [1℄.However, although it is simple and intuitive, this traditional deterministi dialog model hasa number of severe weaknesses. Firstly, and ruially, in real systems, the estimate of the user'sdialog at ~Au will be extremely noisy. Hene, the system state Sm must be updated based on a\best guess" of Au and sine this best guess will often be wrong, the system state an be easilyorrupted by erroneous information. This will typially lead to misunderstanding and onfusion,requiring a perhaps lengthy reovery dialog to repair it. The inidene of this problem an beredued by making use of a on�dene measure output by the speeh understanding omponent.This measure provides an estimate of P ( ~AujYu) whih is typially ompared with a threshold andbased on the result either ~Au is aepted as true, or it is queried with the user. Unfortunately,however, on�dene measures themselves are unreliable, and there is no lear basis for setting thethreshold.A seond problem with the traditional arhiteture is that speeh understanding errors are notthe only soure of unertainty: the user's goals and intentions are unertain and an hange overtime. Thus, a model of the user's goals and intentions must be integrated into the overall dialogmanagement proess. 1
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A �nal problem with the traditional arhiteture is the determinism itself. In order to im-plement optimal dialog strategies, a system must predit the future in order to plan for di�eringeventualities. Sine exat predition is not possible, suh plans an only be probabilisti and, aswith the use of on�dene thresholds, these an only be used in a very rude way by a determin-isti deision proess. Also, of ourse, it is very hard to adapt deterministi systems from trainingdata, and in pratie, adaptation is limited to manual system tuning following an o�-line analy-sis of system logs. This proess is labour intensive and annot be extended to automati on-lineadaptation.As has been argued previously, taking a statistial approah to spoken dialog system designprovides the opportunity for solving many of the above problems in a exible and prinipled way[2℄.Early attempts at using a statistial approah modelled the dialog system as a Markov deisionproess (MDP)[3℄. MDPs provide a good statistial framework sine they allow forward planningand hene dialog poliy optimisation through reinforement learning. However, they su�er froma number of problems. Firstly, and ruially, MDPs assume that the mahine state is observable.Hene, they annot aount for either the unertainty in the user state (Su and Sd in Fig. 1), or theunertainty in the deoded user's dialog at ( ~Au in Fig. 1). Seondly, and perhaps less obviously,the MDP approah provides a poor interfae for integrating heuristis. The main problem is thatheuristis typially involve making hard deisions based on the assumed system state. However,in the ase of an MDP, the assumed system state might be inorret. To deal with this, the statemust be expanded to inlude on�dene measures so that the heuristis an deal expliitly with theunertainty. However, this rapidly leads to an exessively large state spae and omplex heuristis.A more general alternative to the fully observable MDP is the Partially Observable MDP(POMDP)[4℄. A dialog system based on a POMDP maintains a distribution over all possible states.This distribution is alled the belief state and dialog poliies are based on this belief state ratherthan the true underlying state. The key advantage of the POMDP formalism is that it providesa omplete and prinipled framework for modelling the main soures of unertainty. Furthermore,when ast as a so-alled SDS-POMDP[5, 6℄, the POMDP framework also allows heuristis to beinorporated in a very simple way sine the prinipal omponents on whih the heuristis depend(e.g. Su and Au) are by de�nition assumed to be true. In omputational terms, this means thatin an MDP heuristis are exeuted one per turn but have to be programmed to expliitly takeaount of unertainty. In a POMDP, heuristis are muh simpler to program beause the stateis assumed orret. They do however have to be exeuted many times per turn, one for eahpossible state value.The use of POMDPs for any pratial system is, however, far from straightforward. Sine abelief distribution b of a disrete state S of ardinality n + 1 lies in real-valued n-dimensional2



simplex, a POMDP an be thought of as an MDP with a ontinuous state spae b 2 <n. Thus,assuming that the POMDP mahine has a �nite set of ations to selet from, a POMDP poliyis a mapping from partitions in n-dimensional belief spae to ations. Not surprisingly these areextremely diÆult to onstrut and whilst exat solution algorithms suh as the Witness algorithm[7℄ do exist, they rarely sale to problems with more than a few states/ations. Fortunately, thereare a number of ways of �nding approximate solutions whih are suÆiently aurate to yield usefulresults. Firstly, the planning horizon an be redued to zero suh that ations are seleted basedon immediate utilities. This redues the POMDP to a greedy deision-theoreti ontroller. It doesnot solve the problem of aounting for the future e�ets of deisions, but it does allow for all of thevarious soures of unertainty to be modelled and aounted for in the deision making proess[8℄.Seondly, approximate solutions suh as grid-based methods[9℄ and point-based value iterationan be used [10℄. These allow problems with several hundreds of state/ations to be handled, andalthough these are not suÆient by themselves to deal with real world systems, used in onjuntionwith state-mapping shemes suh as the summary-POMDP method, they o�er promise of a wayforward[11℄.Whatever approah is taken to the onstrution of poliies, there is an other fundamentalbarrier to using POMDPs in spoken dialog systems. Real systems deal with real-world knowledgewhih is omplex, hierahial, and multi-valued. The potential state-spae of even a simple travelbooking system is enormous. Furthermore, dialog ats annot easily be enumerated as a simple�nite set. The types of at (request, inform, et) are easily enumerated, but the arguments tosuh ats (names of plaes, pries, dates, et) are not so simple. Whereas researh into MDPswas able to side-step this problem on the grounds that only a few global indiators needed tobe modelled[12, 13℄, a entral laim of the POMDP approah is that it is truly holisti and,in partiular, propositional ontent should not be ignored. Thus, whilst POMDPs provide atheoretial framework for modelling omplete dialog systems, what is also needed in pratie isa framework whih an integrate the appliable knowledge representations with the appropriatestatistial models.This report desribes the development of suh a framework. It is inspired by the informationstate approah to dialog system implementation, and hene it is alled the Hidden InformationState (HIS) framework for statistial dialog systems. The key idea of the HIS system is that a beliefdistribution over an extremely large state spae an be represented eÆiently by grouping statestogether into partitions[14, 15, 16, 17℄. Initially, all states are deemed to be in a single partition withbelief unity. As the dialog progresses, the partitions are split and belief is redistributed amongstthe splits. Eventually, some partitions beome very low in ardinality, and in the limit singletons.Ation seletion is then dominated by these low ardinality partitions. The overall result is thatfull-sale POMDP belief maintenane is ahieved without ever expliitly alulating the beliefsof (the majority of) irrelevant states. Furthermore, partitions are represented eÆiently usingtree strutures and these tree strutures also provide a very natural representation for real-worldknowledge.The remainder of this report is strutured as follows. Setion 2 briey reviews the generalframework of the Spoken Dialog System POMDP (SDS-POMDP) and setion 3 explains how theHIS system �ts into this framework. Setion 4 then desribes the implementation of the HIS systemin some detail. Setion 5 presents the urrent greedy theoreti poliy implementation, and �nally,setion 6 disusses future work and onlusions.2 The SDS-POMDPThe aim of this setion is to review the basi POMDP equations and then present a fatoredform alled the SDS-POMDP whih is suitable for spoken dialogue systems[5, 6℄. This lays thefoundation for desribing the HIS model in the following setion.3



2.1 Review of POMDPsFormally, a POMDP is de�ned as a tuple fS;Am; T; R;O; Z; �; b0g where S is a set of states; Amis a set of ations that the mahine may take; T de�nes a transition probability P (s0js; am); Rde�nes the expeted (immediate, real-valued) reward r(s; am); O is a set of observations; Z de�nesan observation probability P (o0js0; am); � is a geometri disount fator 0 � � � 1; and b0 is aninitial belief state b0(s).The POMDP operates as follows. At eah time-step, the mahine is in some unobserved states 2 S. Sine s is not known exatly, a distribution over states is maintained alled a "beliefstate," b, with initial belief state b0. Thus, the probability of being in state s given belief stateb is b(s). Based on the urrent belief state b, the mahine selets an ation am 2 Am, reeives areward r(s; am), and transitions to a new (unobserved) state s0, where s0 depends only on s andam. The mahine then reeives an observation o0 2 O whih is dependent on s0 and am. The beliefdistribution is then updated based on o0 and am.The belief update equations are easily derived using Bayes rule:b0(s0) = P (s0jo0; am; b)= P (o0js0; am; b)P (s0jam; b)P (o0jam; b)= P (o0js0; am; b)Ps2S P (s0jam; b; s)P (sjam; b)P (o0jam; b)= P (o0js0; am)Ps2S P (s0jam; s)b(s)P (o0jam; b)= k � P (o0js0; am)Xs2S P (s0jam; s)b(s) (1)where k is a normalising onstant. In equation 1, the summation uses the transition probabilityto predit eah next state s0 as an expetation wrt to the belief state over preeding states. Theobservation term before the summation weights the predition for eah new state s0 based on thelikelihood that the most reent observation o0 ould have been generated from s0.Note that the ation taken by the mahine at eah time step depends on the omplete distribu-tion b. This is often initially a at distribution reeting ignorane. At eah time-step, the beliefstate distribution b is updated based on the new observation, and typially this will result in thedistribution \sharpening" around spei� states.At eah time step t, the mahine reeives a reward R(bt; am;t) based on the urrent belief statebt and the seleted ation am;t. The umulative, in�nite horizon, disounted reward is alled thereturn and it is given by: R = 1Xt=0 �tR(bt; am;t) (2)= 1Xt=0 �tXs2S bt(s)r(s; am;t): (3)Eah ation am;t is determined by a poliy �(bt) and it is the goal of the mahine to �nd the poliy�� whih maximises the return. Suh a poliy is alled an optimal poliy. Sine belief spae is areal-valued simplex, the poliy an be viewed as a partitioning of belief spae into regions, whereeah region orresponds to the single unique ation whih should be taken if the urrent beliefstate lies in that region.Finding the optimal poliy involves using the transition matrix to predit the reward expetedfrom eah state for eah possible mahine ation. This is very similar to the forward-bakward4



algorithm of E-M and for regular fully observed Markov Deision Proesses, it is essentially adynami programming searh over a disrete state spae. POMDPs solutions are muh more om-plex, however, beause the state spae is e�etively ontinuous. As mentioned in the introdution,exat solution algorithms do exist (e.g. see the Witness Algorithm [7, 4℄) but they an only handlevery small problems. Fortunately, approximate solutions an handle signi�antly larger problems(e.g. Perseus [10℄).For ases where the model is unknown or there is insuÆient data to estimate aurately, on-line learning tehniques analogous to Q-learning are also possible. For example, ative learningan be used to simultaneously update an approximate model whilst optimising the return[18℄.2.2 The SDS-POMDP: a fatored POMDP for spoken dialog systemsReferring bak to Fig. 1, it an be seen that the state spae represented by the dialog model Smmust entail the user goal and dialog state and sine these annot be observed, Sm must orrespondto a distribution over those states. In addition, sine the last user at is also unertain, it isonvenient to inlude it also within the unobserved state spae. This suggests that the state spaeof a POMDP for dialog systems should be fatored as follows. First, the unobserved state isfatored into 3 omponents: s = (su; au; sd): (4)The system state Sm then beomes the belief state b over su, au and sd, i.e.sm = b(su; au; sd): (5)The observation o is the estimate of the user dialog at ~au. In the general ase this will be anN-best list of hypothesised user ats, eah with an assoiated probability, i.e.o = [(~a1u; p1); (~a2u; p2); : : : ; (~aNu ; pN )℄ (6)suh that P (~anu jo) = pn; n = 1 : : : N (7)The transition funtion for an SDS-POMDP follows diretly by substituting equation 4 into theregular POMDP transition funtion and making some reasonable independene assumptions, i.e.P (s0js; am) = P (s0u; a0u; s0djsu; au; sd; am)= P (s0ujsu; am)P (a0ujs0u; am)P (s0djs0u; a0u; sd; am) (8)Making similar reasonable independene assumptions regarding the observation funtion gives,P (o0js0; am) = P (o0js0u; a0u; s0d; am)= P (o0ja0u) (9)This is the observation model.The above fatoring simpli�es the belief update equation sine substituting equation 8 andequation 9 into equation 1 givesb0(s0u; a0u; s0d) = (10)k � P (o0ja0u) Xsu;au;sd P (s0ujsu; am)P (a0ujs0u; am)P (s0djs0u; a0u; sd; am)b(su; au; sd)= k � P (o0ja0u)P (a0ujs0u; am)Xsu P (s0ujsu; am)Xsd P (s0djs0u; a0u; sd; am)Xau b(su; au; sd)= k � P (o0ja0u)| {z }observationmodel P (a0ujs0u; am)| {z }user ationmodel Xsu P (s0ujsu; am)| {z }user goalmodel Xsd P (s0djs0u; a0u; sd; am)| {z }dialogmodel b(su; sd) (11)5



As shown by the labelling to equation 11, the probability distribution for a0u is alled the useration model. It allows the observation probability that is onditioned on a0u to be saled by theprobability that the user would speak a0u given the goal s0u and the last system prompt am. Theuser goal model determines the probability of the user goal swithing from su to s0u following thesystem prompt am. Finally, the dialog model represents the transition matrix for the dialog stateomponent. This term provides the primary hook for inorporating heuristis into the system. Inpartiular, it allows information relating to the dialog history to be maintained suh as groundingand fous.3 The Hidden Information State dialog modelHaving desribed the general form of the SDS-POMDP in the previous setion, this setion derivesa spei� form of SDS-POMDP alled the Hidden Information State model.Although the fatoring introdued in the last setion is helpful, the size of the state spaesneeded to represent real-world dialog systems would quikly render a diret SDS-POMDP im-plementation intratable. The dialog state omponent is omputed heuristially and as will beexplained later, this results in a relatively small set of dialog states being traked from turn toturn. However, the user goal and ation state omponents require reasonably aurate distribu-tions to be maintained and this is not easy sine the size of the user goal spae is enormous andthe user ations annot even be enumerated. The HIS model deals with these two omponents indi�erent ways.Consider �rst the user ation model. As shown by equation 11, the user ation omponentof the state spae is memoryless, i.e. the value of the previous user ation au is not required toapply the belief update equation. This means that the distribution for a0u an be approximated byonsidering just those user ation values whih are deemed to have non-zero probabilities in theurrent turn. These will be preisely those ations whih appear in the N-best list of hypothesesfrom the speeh understanding omponent. To guard against the ase of very poor reognitionresulting in the orret value of a0u being dropped from the observation altogether, a null ation isalways inluded with a oor probability representing all of the user ats not in the N-best list.1To deal with the user goal omponent, it is neessary to be a little more spei� about what ismeant by a user goal. The initial target of the HIS model is database inquiry appliations suh astraÆ information, tourist information, ight booking, et. In this ontext, a user goal is deemedto be a spei� entity that the user has in mind. For example, in a tourist information system, theuser might be wishing to �nd a moderately pried restaurant near to the theatre. The user wouldinterat with the system, e�etively re�ning his or her query until an appropriate establishmentwas found. If the user wished to �nd an alternative restaurant, or even something di�erent entirelysuh as the nearest tube station to the restaurant, this would onstitute a new goal. In the HISsystem, the duration of a dialog is de�ned as being the interation needed to satisfy a single goal.Hene by de�nition, the user goal model simpli�es trivially to a delta funtion, i.e.P (s0ujsu) = Æ(s0u; su): (12)Substituting equation 12 into equation 11 givesb0(s0u; a0u; s0d) = k � P (o0ja0u)P (a0ujs0u; am)Xsd P (s0djs0u; a0u; sd; am)b(s0u; sd) (13)To further simplify belief updating, it will be assumed that at any time t, Su an be dividedinto a number of equivalene lasses where the members of eah lass are tied together and areindistinguishable. These equivalene lasses will be alled partitions of user goal spae. Initially,1Note that in the ontext of a POMDP-based spoken dialog system, the terms user at and user ation aresynonymous. 6



all states su 2 Su are in a single partition p0. As the dialog progresses, this root partition isrepeatedly split into smaller partitions. This splitting is binaryp! fp0; p� p0g with probability P (p0jp): (14)Sine multiple splits an our at eah time step, this binary split assumption plaes no restritionon the possible re�nement of partitions from one turn to the next.Given that user goal spae is partitioned in this way, beliefs an be omputed based on partitionsof Su rather than on the individual states of Su. Initially the belief state is justb0(p0) = 1: (15)Whenever a partition p is split, its belief mass is realloated aording to equation 14, i.e.b(p0) = P (p0jp)b(p) and b(p� p0) = (1� P (p0jp))b(p) (16)Note that this splitting of the belief mass is simply a realloation of existing mass, it is not a beliefupdate. It will be referred to as belief re�nement.The belief update equation for a partitioned state spae is easily derived from the non-partitionedase. Let partition p0 onsist of states fs0ujs0u 2 p0g, then summing both sides of equation 13 overall fs0ug gives,b0(p0; a0u; s0d) = k � P (o0ja0u) Xs0u2p0 P (a0ujs0u; am)Xsd P (s0djs0u; a0u; sd; am)b(s0u; sd) (17)As a dialog progresses, the user goal partitions are split repeatedly to ensure that everything whihhas been mentioned so far in the dialog is expliitly represented in the partitions. This being so,it is reasonable to assume that P (a0ujs0u; am) = P (a0ujp0; am) (18)and P (s0djs0u; a0u; sd; am) = P (s0djp0; a0u; sd; am) (19)Hene, using these simplifying assumptions and equation 16, equation 17 beomesb0(p0; a0u; s0d) = k � P (o0ja0u)P (a0ujp0; am)Xsd P (s0djp0; a0u; sd; am) Xs0u2p0 b(s0u; sd)= k � P (o0ja0u)P (a0ujp0; am)Xsd P (s0djp0; a0u; sd; am)b(p0; sd)= k � P (o0ja0u)| {z }observationmodel P (a0ujp0; am)| {z }user atmodel Xsd P (s0djp0; a0u; sd; am)| {z }dialogmodel P (p0jp)b(p; sd)| {z }beliefre�nement (20)where p is the parent of p0. Equation 20 is the belief update equation for the HIS model, it isshown in the form of an inuene diagram in Fig. 2. Note that in this diagram the dotted arrowsrepresent the inuene of am and au on the re�nement of p0 but not on its update i.e. they inuenethe splitting of p0 but not its onditional probability.As shown by the labelling on equation 20, the HIS update equation depends on four probabilitydistributions:1. Observation Model - this is approximated by the N-best probability from the speeh under-standing omponent P (o0ja0u) � k0 � P (a0ujo) (21)7
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Figure 2: Inuene diagram for the Hidden Information State dialog model2. User At Model - this is omposed of two parts: the bigram probability of the urrent userat type given the preeding system at type, and a probability denoting the degree to whihthe urrent user at is onsistent with the given partition p0. Thus,P (a0ujp0; am) � P (T (a0u)jT (am))P (M(a0u)jp0) (22)where T (a) denotes the type of the dialog at a, for example, the type of the at \in-form(food=Indian)" is inform. There are a total of 12 di�erent dialog at types supportedby the HIS model and these are desribed in detail setion 4.3. M(a) denotes whether ornot the dialog at a mathes the urrent partition p0. The �rst omponent an be estimatedfrom a dialog orpus, the seond omponent is set to 1 if the at mathes and zero otherwise.3. Dialog Model - this is entirely heuristi.P (s0djp0; a0u; sd; am) = 1 i� s0d is onsistent with p0; a0u; sd; am (23)= 0 otherwise (24)The way that this is omputed in the HIS model is desribed in setion 4.5.4. Belief Re�nement - this depends on the ontology rules used to de�ne the appliation domain.User goals are built using probabilisti ontext free rules, with rule probabilities set a priori.If the sequene of rules r1; r2; : : : ; rk is used to split partition p into sub-partition p0, thebelief re�nement probability is P (p0jp) = kYi=1P (ri) (25)where P (r) is the prior probability of rule r. This proess is desribed in more detail insetion 4.2.Having desribed the mathematial basis of the HIS model, the remainder of this report desribesits spei� implementation. 8



4 Implementation of the HIS ModelThis setion desribes a spei� implementation of the HIS model. It begins with a high leveloverview of how the model operates. It then desribes eah of the main omponents in more detail.4.1 Overview of HIS Model OperationBefore desribing the details of the HIS system, it will be helpful to give a brief overview of thepriniple data strutures and the overall operation. As shown in Fig. 3, the inputs to the systemonsist of an observation from the user and the previous system at. The observation from the usertypially onsists of an N-best list of user ats, eah tagged with their relative probability. Theuser goal is represented by a set of branhing tree strutures eah of whih initially onsist of justa single node. These tree strutures an be grown downwards by applying ontology rules whihdesribe the appliation domain. For example, there might be a rule whih states that a venue anbe either a hotel, a restaurant or a bar. In eah ase, the derived venues will have further nodesdesribing features of that type of venue. Ambiguity is represented by allowing nodes to expandinto multiple alternatives. Eah distint tree forms a partition of user goal spae as desribedin setion 3. The initial single tree node represents a single partition with belief unity. As thetrees are grown, the partitions are repeatedly split allowing the belief assignment to be re�ned.Eventually, the hope is that a single omplete tree will be formed whih represents the atual user'sgoal and that this tree has a high belief.The tree growing proess is driven entirely by the dialog ats exhanged between the systemand the user. Every turn, the previous system at and eah input user at is mathed against everypartition in the branhing tree struture. If a math an be found then it is reorded. Otherwise theontology rules are sanned to see if the tree representing that partition an be extended to enablethe at to math. For example, if the at was request(ensuite), and the partition represented thehigher level node venue, then the venue node would be extended to a hotel node with assoiatedproperties, one of whih would be ensuite. The request(ensuite) at would then math. Notehowever that an ontology rule an be used to extend a spei� node just one. This ensures thatall partitions are unique and there are no dupliates.One the mathing and partition splitting is omplete, all the partitions are resanned andwhere possible eah hypothesised input user at is attahed to eah partition. Similarly the systemat is attahed to eah partition (not shown in the �gure). The ombination of a partition and aninput user at (p; au) forms a partial hypothesis and the user at model probability is alulatedas in equation 22.As explained above, partitions are grown based entirely on dialog at inputs. If the user (or thesystem) mentions a node suh as ensuite this will ause other nodes to be reated. The groundingstatus of eah tree node is reorded in a dialog state data struture. Sine the grounding statusof a tree node an be unertain, any (p; au) pair an have multiple dialog states attahed to it.However, unlike the user at omponent of the state whih is memoryless, the dialog omponentsd evolves as the dialog progresses. Thus, at the beginning of eah dialog yle, the various dialogstate instanes are attahed diretly to the partitions. One the input user ats have been attahedto the partitions, the urrent dialog states are extended to represent the new information in thedialog ats. At this point, the dialog state probabilities given by equation 24 are omputed. Atthe end of the turn, idential dialog states attahed to the same partition an be merged2 readyfor the next yle.Every triple (p; au; sd) represents a single dialog hypothesis hk. The belief in eah hk is om-puted using equation 20 and the omplete set of values b(hk) represents the urrent estimate ofthe POMDP belief state. However, unlike a full POMDP, the urrent version of the HIS modeldoes not do forward planning. Instead, eah hypothesis hk is examined and all possible systemdialog ats are generated. All of these andidate system dialog ats are olleted together into a2This merging operation is not essential and is not atually done in the urrent implementation9
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Figure 3: Overview of the HIS System operationpool faimg and the onditional utility U(aimjhk) alulated for eah. The expeted utility of eahandidate an then be omputed and the andidate with the maximum utility hosen as the nextsystem move. am = argmaxi (Xk b(hk)U(aimjhk)) (26)The details of how andidate system ats are generated and utilities are alulated are given laterin setion 5.4.2 User Goal Trees and Ontology RulesUser goals are represented by a branhing tree struture whose hierarhy reets both the naturalstruture of the data and a natural order in whih to introdue the individual onepts into aonversation. User goal trees are onstruted from four types of tree node:1. lass nodes - these have non-terminal o�spring. Coneptually a lass node represents aninstane of a type, and the o�spring of the node denote the members of that type.2. lexial nodes - these have only terminal o�spring i.e. atoms.3. sublass nodes - these have no o�spring. They at like a tag to the parent node indiatinga partiular avour of that lass. They are provided mainly for notational onveniene,espeially in the way that database entitities are de�ned.4. atomi nodes - these are the o�spring of lexial nodes. They represent atual values suh asHotel Grand, Jazz, yes, 27, et.An example of a fully expanded user goal tree is shown in Fig. 4. This example is a simpli�edrepresentation of a restaurant. The top level node represents an arbitrary entity. It has a sublassvenue and orresponding sublass members type, name, and loation. These members are generi10



for any kind of venue (e.g. restaurant, bar, hotel, et). In this ase, the type is a restaurant withrestaurant-spei� lass members food, musi and deor. The loation is spei�ed as a spei�address and therefore has a street member. It ould have been spei�ed by some other meanssuh as nearto, gridref, et, and these would be alternate sublasses of loation.
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Main StreetJazz
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lexical atom

Node Types

decor

RomanFigure 4: Example Fully Expanded User Goal TreeUser goal trees are built using a set of rules whih adhere to the syntax set out in Fig. 53. Asan example, the rules set out in Fig. 6 desribe the restaurant goal desribed above. There are twobasi forms of rules: lass de�nition rules and lexial de�nition rules. The basi funtion of theseshould be lear from the table, however, some of the details require further explanation.Firstly, the members of a lass an have an optional \+" or \-" spei�er indiating that thenode is primarily seletional or informational, respetively. These markers are optional and onlyinuene the seletion of system responses. The plus spei�er indiates that a value is normallyrequired for that member in order to identify the requested entity. Conversely, the minus spei�erindiates that the member will rarely be spei�ed by the user to identify the entity but doesontain information that the user may wish to know about one the entity has been seleted. Inthe example rules, the food type is marked with a \+" sine it is frequently spei�ed by users inorder to identify a suitable restaurant, whereas the deor is marked with a \-" sine it is rarelyspei�ed by users when searhing for an appropriate restaurant. It might, however, be requiredone a andidate restaurant has been loated.Seondly, note that in the left hand side of lass de�nition rules, a simple name an be quali�edusing a dotted path notation. This is provided as a onveniene to allow generi labels suh asname to be used in di�erent ontexts, and then spei� instanes identi�ed. In the example, thelexial de�nition for name is quali�ed by venue to distinguish it from other types of name.Thirdly, a lass de�nition rule an have simple equality onstraints applied to its members. Forexample, in a travel booking system, a route might be spei�ed asroute -> singleleg(fromplae,toplae) [toplae != fromplae℄;In this ase, any partition whih instantiates the fromplae and toplae members with the samevalue will be marked as inonsistent and its belief will be set to zero.Finally, all rules an have a probability assigned to them. Where no probability is given, thenequal probability is assumed. These probabilities represent prior knowledge. In the example, thevenue type is restaurant with probability 0.35. This would reet the fat that in pratie whenusers want to loate a venue, 35% of the time they require a restaurant. As explained in setion 4.4,these prior probabilities are used to realloate belief mass when a partition is split.3Atomi names ontaining non-alphadigit haraters must be enlosed in double quotes11



ruleset = ruledef";" { ruledef ";" } {dbasefile}ruledef = lassdef | lexdeflassdef = lassinst "->" [sublass℄ [lassbody℄ [ond℄ [prob℄lassbody = "(" [opt℄ member { "," [opt℄ member } ")"lexdef = lassinst "=" "(" atom[prob℄ {"|" atom[prob℄ ")"prob = "{" float "}"ond = "[" lassinst op lassinst "℄"opt = "-" | "+"lassinst = name {"." name}member = namesublass = nameatom = nameop = "==" | "!="dbasefile = "+" "filename"Figure 5: Syntax of HIS Ontology Rulesentity -> venue(type,name,loation) {0.2};type -> restaurant(+food,musi,-deor) {0.35}loation -> addr(street) {0.8};venue.name = ("Toni's","Quik Bite", ....);food = (Italian,Chinese,English, ...);musi = (Jazz,Pop,Folk, ...);deor = (Traditional,Roman,ArtDeo,...street = ("Main Street", "Market Square", ...);Figure 6: Example of using Ontology RulesThe ontology rules de�ned above desribe the struture of the data. The data itself must bestored in a seond �le in the form of entity de�nitions, where eah entity onsists of a list ofattribute value pairs. An example entity de�nition is shown in Fig. 7. Entity de�nitions mustbegin with an id attribute and should normally inlude name and type attributes. All remainingattribute-value pairs are arbitrary but must be onsistent with the rules. For example, all valuesmust appear in at least one lexial de�nition4.id("R23")name("Toni's")type("restaurant")food("Italian")addr("Main Street")near("Cinema")phone("2095252")deor("Roman") Figure 7: Example Database Entity De�nitionThe HIS system attempts to interpret attribute value pairs in a exible way. For example,given the loation rule in Fig. 6, an address ould be spei�ed by any of: addr("Main Street"),4Numbers are dealt with as a speial ase 12



acttype( [q . ]  a  [ = x] , .... )
item

qualifier name value

Figure 8: Struture of a Dialog Atloation("Main Street") or street("Main Street"). Note, however, that if there was also arule suh asloation -> nearto(street);then the latter two forms would be ambiguous.4.3 Dialog AtsAs shown in Fig 8, a dialog at onsists of a type and a list of zero or more name=value pairsreferred to as items. An item name refers to a node in a user goal tree, it an be a simple nameor a quali�ed name where the quali�er is either the name of the parent node or the name of theparent's sublass, if any. There may be zero or many items in a single at, and the interpretationdepends on the at type of whih there are 15 in total.The full set of ats supported by the HIS system is summarised in Table 1. The meaning ofeah at should be lear from the table, but the following ampli�es a number of important points.Firstly, the HIS system does not support multiple dialog ats in a single turn. Thus, forexample, ifU: inform(food=Italian)U: inform(musi=Jazz)is input to the system, it is interpreted asU: inform(food=Italian) {0.5}U: inform(musi=Jazz) {0.5}i.e. the user said either that the food is Italian or that the musi is Jazz with equal probability.To onvey both piees of information in a single turn, an inform at with two items must be used,i.e. U: inform(food=Italian, musi=Jazz)In some ases, items are treated di�erently depending on their position in the item list. Forexample,S: onfreq(type=restaurant,food)is a request to on�rm that the required type is restaurant and then request a value for food. Ifthe response wasU: affirm(type=restaurant, food=Italian)this would on�rm the type and provide the required food information. In fat,U: affirm(food=Italian)would have the same e�et sine the sequene 13



At System User Desriptionhello() p p start dialogbye() p p end dialoginform(a=x,b=y,...) p p give information a=x, b=y, ...request(a,b,...) p p request values for a,b, ...on�rm(a=x,b=y,..) p � on�rm a=x,b=y,..onfreq(a=x,..,=z, d) p � on�rm a=x,..,=z and request value of dselet(a=x,b=y) p � selet either a=x or b=yaÆrm() � p simple yesaÆrm(a=x,b=y,...) � p on�rm a=x and give further info b=y, ...negate() � p simple nonegate(a=x,b=y,...) � p no, a=x and give further info b=y, ...repeat() p p request to repeat last atreqalts() � p request alternative goalreqalts(a=x,..) � p request alt with new informationnull() p p null at - does nothingTable 1: Supported Dialog AtsS: onfirm(type=restaurant)U: affirm()is idential toS: onfirm(type=restaurant)U: affirm(type=restaurant)If negate is used, however, the �rst item is always taken to be a orretion thus the responseU: negate(food=Russian)would be interpreted as \No, the food is not Italian, it is Russian".When an at is proessed by the HIS system, its items are mathed against the user goal tree.If a value is given, then an item an only math if there is an atomi leaf node with the same valueand its parent (or the sublass of its parent) mathes the name of the name=value pair. If no valueis given then the name must math a node in the tree. If the name is quali�ed, then the quali�ermust math the parent (or the sublass of the parent) of the mathed node.User dialog ats are presented to the system as lists of alternatives. Eah alternative an havea probability attahed to it. All ats without probabilities are assumed equally likely and assignedprobabilities so as to make the total sum to one. Every input list must inlude a null dialog atwith a non-zero probability. If no null at is inluded, the system inserts one.4.4 Partitions and Partition SplittingSetion 4.2 explained how a single user goal is enoded in a branhing tree struture. In fat, theHIS system maintains a forest of partially and fully-expanded trees. Eah partially expanded treerepresents a partition of equivalent user goal states. Eah fully expanded tree is also a partition,but it is a singleton partition i.e., it enodes a single user goal state.This forest of trees is stored in suh a way that no partition is dupliated, and the sum of theprobability of all partitions is always unity. As shown in Fig. 9(a), at system start up the usergoal forest onsists of a single node alled task. This single partition p has belief b(p) = 1 andit represents all possible user goals. Sine this node is built by default, all appliation rule setsmust start with rules to expand this node. Thus, in pratie, the rule set shown in Fig. 6 must beaugmented by a rule suh as: 14
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task -> find(entity) {0.3};whih expresses the prior knowledge that 30% of the time, a user will wish to �nd something (e.g.a hotel, a restaurant et). Fig. 9(b) shows what happens when this rule is applied. The tasknode is split into two parallel nodes and the probability mass is divided in proportion to the priorprobability of applying the rule. The result is two partitions with beliefs b = 0:7 and b = 0:3respetively. Suppose now that the rule for entity in Fig. 6 is applied, partition 2 is split to forma new partition and the belief mass is divided again. The result is as shown in Fig. 9(). And sothe proess ontinues. The result in this ase is three partitions whih an be desribed via theirleaf nodes asP1: task {0.70}P2: find(entity){0.24}P3: find(venue(type,name,loation)){0.06}where the belief in eah partition is shown in braes and always sums to one. Note that theseprior beliefs give relatively high weight to unexpanded nodes beause they represent the largestequivalene sets. However, one belief updating ours, this situation is quikly reversed sine theevidene typially supports only the more spei� partitions.The above explains how partitions are split but not when. In fat partition splitting is entirelyon demand and it is driven by the items in the input user and system dialog ats. Referringbak to Fig. 3, the �rst stage of the dialog yle is to math the items of all of the input userats and the previous system at against all of the existing partitions. Note that the at type isnot relevant here sine the goal is simply to expand the partitions suÆiently to math as manyas possible of the input at items. Eah item of eah at is taken in turn and applied againsteah existing partition. If the item mathes the partition, then the result is reorded and nothingfurther happens. If however the item does not math, then the ontology rules are sanned and thesystem tests to see whether the urrent partition ould be extended suÆiently to allow the itemto math. If it onludes that a math is possible, then the partition is extended and a math isreorded. For example, if the user goal forest was as shown in Fig. 9(b) at the point when the item(musi=Jazz) was reeived, then the system would determine that a math ould be ahievedby �rst expanding the entity node using the �rst rule in Fig. 6. This node is referred to as theexpansion node. The newly reated o�spring of the expansion node inludes a type node and thisan be expanded using the seond rule in Fig. 6. Finally, expanding the lexial node musi toderive the atomi node Jazz would allow the required math. Having determined that it is indeedpossible to onstrut a mathing subtree whih if attahed to the expansion node would supportan item math, then that mathing subtree is reated.The detailed implementation of this splitting proess needs to onsider a number of subtleties.Firstly, in order to ensure that all partitions are unique, a rule must be applied to a node only one.This is implemented by attahing to eah expanded node, a referene to the rule used to expandit. It is then simple to hek whether or not a rule has been applied before to that node, and ifit has, the rule annot be applied again. Seondly, when node expansion results in multiple levelsof rule appliation, then new subtree nodes will be reated with probability less than one. In eahsuh ase, a new parallel node must be reated to hold the unused probability mass. Eah newnode reated in this way reates a new partition. An example of this is shown in Fig. 9 where theexpansion of partition P1:task to give partition P3:find(venue(type,name,loation)) resultsin an intermediate partition P2:find(entity) being reated. In the further expansion neededto aommodate the item (musi=Jazz), the expansion of the type node with probability 0.35to restaurant would leave a parallel type node with probability 0.65 and this would form yetanother partition.Finally, as an at item is tested against suessive partitions, there may be other partitionswhih have not yet been examined but whih share the same expansion node. Eah of these as yetunexamined partitions, must be loned and the expansion node replaed by the leaf nodes of themathing subtree. For example, in Fig. 10, there are two partitions16
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Figure 10: Splitting a Partition with a Shared Expansion NodePx: find(venue(restaurant(food,musi,deor)))Py: find(venue(restaurant(food,musi(Jazz),deor)))If now the item food=Italian is mathed against Py, then a new partitionPyy: find(venue(restaurant(food(Italian),musi(Jazz),deor)))is reated. However, the expansion node food is shared with Px, and hene a further partitionPxx: find(venue(restaurant(food(Italian),musi,deor)))must also be reated.4.5 Construting Hypotheses and the Dialog stateThe previous subsetions have explained how partitions are grown as a side e�et of attemptingto math dialog at items. One all input items have been proessed and all possible mathesmade, the next step is to onstrut a new set of updated beliefs for the urrent dialog turn. Asindiated by Fig. 3, belief update is implemented by building an expliit list of hypotheses whereeah hypothesis orresponds to one possible ombination of p0, a0u and s0d in the left hand side ofequation 20. At the start of eah turn, eah partition p has attahed to it a list of possible dialogstate reords sd where eah ombination fp; sdg orresponds to the �nal term in equation 20.The dialog state reords information about the dialog history whih is relevant to the deisionmaking proess. In the urrent HIS system, this information onsists of a ount of the number oftimes a user goal node is referened by the system and a ount of the number of times a user goalnode is referened by the user. In future systems, this information will very likely be augmented.Indeed, the dialog state is an ideal plae to embed heuristi knowledge into the system sinethe atual probability funtion P (s0djp0; a0u; sd; am) is deterministi and it is onditioned on thefull system state spae and the preeding dialog ats. From the programming perspetive, thistranslates into a funtion whih has all available infomation in its inputs and whih returns 0 or 1.17
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Figure 11: Example HypothesesDuring partition splitting, eah derived partition inherits the full set of dialog state reordsfrom its parent partition. This generates the set fp0; sdg with re�ned beliefs P (p0jp)b(p; sd). Newhypotheses are then onstruted by attahing all mathing user ats a0u to eah re�ned partition.For eah user at, all of the dialog state reords attahed to that partition are opied and attahedto the user at. This generates all possible ombinations of p0, a0u and sd. The partitions sd areupdated and new beliefs b(p0; a0u; s0d) = b(hk) are alulated aording to equation 20.Figure 11 illustrates hypothesis updating in more detail. In this example, the system hadpreviously output inform(musi=Jazz) and the user's response was either request(food) orrepeat(). Previously there were two dialog states hypothesised for the given fragment of partitionp0 and after ompleting the turn, there are four distint dialog states. This expansion oursbeause the alternate user ats referene di�erent elements in p0 suh that the user ount for thefood node is inremented in one ase and not the other.5 A Greedy Theoreti PoliyAs noted in the introdution and summarised in Figure 3, the urrent HIS system depends on agreedy theoreti poliy i.e. a poliy based on the omputation of immediate rewards or utilitiesrather than in the ase of a full POMDP where poliies are based on expeted future rewards.The greedy poliy is implemented as follows. Firstly, every hypothesis hk is sanned andall possible system ats are proposed. Seondly, the andidate system ats are pooled and alldupliates removed. Next a utility U(aimjhk) is omputed for eah andidate system at aim givenhypothesis hk. The utility of eah andidate system at is then averaged aross all hypotheses (i.e.beliefs), and the at with the highest expeted utility is seleted for output, i.e.~a�m = argmaxi (Xk b(hk)U(aimjhk)) (27)5.1 Generating Candidate System AtsThe generation of andidate system ats is rule based. Firstly, the terminals of eah hypothesis areused as searh keys into the database. If the number of mathing entities is exatly one5, then the5In future versions of the system, this will be inreased to a small number of andidate entities to provide theuser with a hoie. 18



entity is bound to that hypothesis. If the number of mathing entities is zero then the hypothesis ismarked as overspei�ed and never onsidered again. For eah hypothesis, the following generationrules are then applied:� if the partition is bound to an entity, then for every attribute value pair a = v in that entitywhih has never been mentioned before, propose the at inform(a=v).� if the partition is bound to an entity and all terminal values have been instantiated andmentioned to the user at least one, propose the at bye().� if the partition is not bound to any entity, san leaves and if any non-atomi leaf a is markedas a selet key (i.e. it was marked with a \+" in the ontology rules), then propose the atrequest(a).� if the partition is not bound to any entity and there are no selet keys, then for every non-atomi leaf a propose the at request(a).� if the partition is bound to an entity, then for every atomi leaf value v with a user ount ofjust 1 and with parent or sublass a, propose the at on�rm(a=v).After the above single item andidate system ats have been generated, the pool is resanned andmultiple item ats are generated. For example, if two on�rm ats refer to di�ering values v1 andv2 of the same attribute a, then selet(a=v1,a=v2) is generated.5.2 Computing UtilitiesGiven a spei� hypothesis, the utility of a andidate system at with respet to that hypothesisis omputed as follows. Firstly, four heuristi metris are omputed:risk - this measure is based on the ratio of the number of on�rmed terminals to the total numberof instantiated terminals where a terminal is judged to have been on�rmed if its user ountis greater than 1.progress - this measure is based on the distane to go in terms of terminal instantiation beforethe partition will bind with a unique entity in the database.relevane - this attempts to measure the relevane of the proposed system at given the hypoth-esised user at and the partition information. It is at dependent and entirely heuristi.ontinuity - this measure is a ombination of two sub-measures: the degree to whih the andidatesystem at is in fous with respet to the previous user at and the bigram probability ofthe system at type given the previous user at type. The �rst sub-measure depends onlyon the items in the system at and it is omputed by ounting the ommon anestors inthe partition tree of the system at items and the user at items. The seond sub-measuredepends only on the at types.One these four measures have been omputed, the utility of a andidate system at aim given thehypothesis hk is alulated by:U(aimjhk) = �risk[t℄ � risk + �prog [t℄ � prog + �relev [t℄ � relev + �ont[t℄ � ont (28)where t is the type of aim. � is an array of at type dependent weights whih allow di�erentemphasis to be plaed on di�erent types of system at. For example, �risk is negative for on�rmats and positive for inform ats, thus enouraging aution when the risk is high.19



6 Conlusions and Further WorkThis report has outlined a new framework alled the Hidden Information State (HIS) model fordesigning and implementing spoken dialog systems. The model is based on the SDS-POMDP butit avoids the usual omputational issues assoiated with POMDPs by partitioning the spae of usergoals into a small number of equivalene lasses. Probabilisti ontext-free ontology rules are usedto desribe the iterative splitting of partitions to eventually form unique goal states. By omputingbeliefs on partitions rather than the underlying states, belief monitoring remains tratable evenfor omplex real-world systems.This initial version of the HIS system relies on several hand-rafted probability tables. The nextphase of the development will inlude training these tables from data and performing omparitiveevaluations of the system using a hand-rafted system as the baseline.In addition to the need for proper training, there is also an outstanding problem relating topriors. In the urrent system, priors are represented by the probabilities of ontext-free rewriterules. These rules are ontext independent and take no aount of the very limited number of atualdatabase entities available to math the fully expanded user goal trees. The net e�et is that themodel underestimates prior probabilities, espeially the probabilities of singleton partitions. Thisproblem is urrently mitigated by ooring expansion rule probabilities but this is a very rudesolution and it needs improving.The urrent system is also limited to handling a single stati user goal. Further work is neededto expand the framework to support hanging user goals.Overall the HIS system is believed to represent a major step in solving the problem of saling-up SDS-POMDPs to handle real world appliations. The next major step is to �nd methods ofonstruting eÆient poliies whih inorporate planning and this is the topi of future researh.In the meantime, armed with a utility-based greedy theoreti planning algorithm, the inherentrobustness of the HIS model to understanding errors should enable it to ompete with and perhapsexeed the performane of existing dialog systems, even without the bene�t of a globally optimisedPOMDP poliy.Referenes[1℄ S Larsson and D Traum. Information State and Dialogue Management in the TRINDI Dia-logue Move Engine Toolkit. Natural Language Engineering, pages 323{340, 2000.[2℄ SJ Young. Talking to Mahines (Statistially Speaking). In Int Conf Spoken Language Pro-essing, Denver, Colorado, 2002.[3℄ E Levin, R Pieraini, and W Ekert. A Stohasti Model of Human-Mahine Interation forLearning Dialog Strategies. IEEE Trans Speeh and Audio Proessing, 8(1):11{23, 2000.[4℄ LP Kaelbling, ML Littman, and AR Cassandra. Planning and Ating in Partially ObservableStohasti Domains. Arti�ial Intelligene, 101:99{134, 1998.[5℄ JD Williams, P Poupart, and SJ Young. Fatored Partially Observable Markov Deision Pro-esses for Dialogue Management. In 4th Workshop on Knowledge and Reasoning in PratialDialogue Systems, Edinburgh, 2005.[6℄ JD Williams, P Poupart, and SJ Young. Partially Observable Markov Deision Proesseswith Continuous Observations for Dialogue Management. In 6th SIGdial Workshop on DIS-COURSE and DIALOGUE, Lisbon, 2005.[7℄ ML Littman. The Witness Algorithm: solving partially observable Markov deision proesses.Tehnial report, Brown University, Deember 1994 1994.20
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