
Context adaptive training with factorized decision
trees for HMM-based statistical parametric speech

synthesis

Kai Yu a, Heiga Zen b, François Mairesse a and Steve Young a

aMachine Intelligence Lab, Cambridge University Engineering Department, Cambridge,
CB2 1PZ, U.K.

bToshiba Research Europe Ltd., Cambridge Research Laboratory, Cambridge, CB4 0GZ,
U.K.

Abstract

To achieve natural high quality synthesized speech in HMM-based speech synthesis, the
effective modelling of complex acoustic and linguistic contexts is critical. Traditional ap-
proaches use context-dependent HMMs with decision tree based parameter clustering to
model the full combinatorial of contexts. However, weak contexts, such as word-level em-
phasis in natural speech, are difficult to capture using this approach. Also, due to combi-
natorial explosion, incorporating new contexts within the traditional framework may easily
lead to the problem of insufficient data coverage. To effectively model weak contexts and
reduce the data sparsity problem, different types of contexts should be treated indepen-
dently. Context adaptive training provides a structured framework for this whereby stan-
dard HMMs represent normal contexts and transforms represent the additional effects of
weak contexts. In contrast to speaker adaptive training in speech recognition, separate de-
cision trees have to be built for different types of context factors. This paper describes
the general framework of context adaptive training and investigates three concrete forms:
MLLR, CMLLR and CAT based systems. Experiments on a word-level emphasis synthesis
task show that all context adaptive training approaches can outperform the standard full-
context-dependent HMM approach. However, the MLLR based system achieved the best
performance.
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1 Introduction

Statistical parametric speech synthesis [1] based on hidden Markov models (HMMs)
[2] has grown in popularity in recent years. Based on the source-filter model as-
sumption, phonetic and prosodic information are assumed to be conveyed in the
spectral and excitation parameters. These spectral features, such as cepstral coeffi-
cients or line spectral pairs, and excitation features, such as fundamental frequency
(also referred to as F0) and aperiodicities, can be extracted from a waveform using
standard analysis techniques [3, 4]. A unified HMM framework may then be used
to simultaneously model these parameters, where the spectrum and fundamental
frequency are modelled as separate streams reflecting the fact that they are largely
uncorrelated. 1 In the synthesis stage, given the context-dependent phoneme se-
quence generated from text analysis, a series of HMMs are concatenated and the
speech features, spectrum and F0 parameters, are generated from the resulting com-
posite HMM under consistency constraints required between static and dynamic
features [5]. These speech parameters can then be converted to a waveform using a
synthesis filter [6].

It is well known that the spectral and prosodic features of a particular phone in
human speech are not only determined by the individual phonetic content, but also
heavily affected by various background events associated with the phone. The back-
ground events which can affect the acoustic realization of a phone are referred to
as its contexts. Compared to speech recognition, speech synthesis requires a much
larger and more complex set of contexts to be represented in order to achieve high
quality synthesized speech. Widely used contexts for speech synthesis include

• Identity of neighboring phones to the central phone. Normally, two phones to
the left and the right of the center phone are considered as phonetic neighboring
contexts.
• Position of phones, syllables, words, phrases with respect to higher level units.
• Number of phones, syllables, words, phrases with respect to higher level units.
• Syllable stress and accent status.
• Linguistic role, such as part-of-speech tag.

A number of other contexts, such as emotion, emphasis, etc. have also been used in
HMM-based speech synthesis. To allow flexible modelling, even the center phone
is regarded as context rather than the underlying distinct acoustic unit as in speech
recognition. In a typical HMM-based speech synthesis system, there are normally
around 50 different types of contexts. Compared to a typical tri-phone speech
recognition system where there are only 2 types of contexts (left and right neigh-
boring phones), this number is significantly larger. Hence, effective modelling of
these complex context dependencies consequently becomes one of the most critical

1 Other information such as an aperiodic component may also be modelled using addi-
tional streams within the HMM framework.
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problems for HMM-based speech synthesis.

The traditional approach to handling complex contexts is to use a distinct HMM for
each individual combination of possible contexts, referred to as a context-dependent
HMM. The amount of available training data is normally not sufficient for robustly
estimating all context-dependent HMMs since there is rarely sufficient data to cover
all of the context combinations required. To address these problems, top-down de-
cision tree based context clustering is widely used [7]. In this approach, the states
of the context-dependent HMMs are grouped into “clusters” and the distribution
parameters within each cluster are shared. The assignment of HMMs to clusters is
performed by examining the context combination of each HMM through a binary
decision tree, where one context-related yes/no question is associated with each
non-leaf node. The number of clusters, namely the number of leaf nodes, deter-
mines the model complexity. The decision tree is constructed by sequentially se-
lecting the questions which yield the largest likelihood increase of the training data.
The size of the tree is controlled using a pre-determined threshold of likelihood in-
crease or by introducing a model complexity penalty, such as the Bayesian informa-
tion criterion (BIC) [8] or minimum description length (MDL) criterion [9]. With
the use of context questions and state parameter sharing, the unseen contexts and
data sparsity problems are effectively addressed. As the method has been success-
fully used in speech recognition, HMM-based speech synthesis naturally employs
a similar approach to model very rich contexts. Compared to speech recognition,
however, one decision tree is constructed for each stream at each state position to
yield more flexibility.

Although context-dependent HMMs with decision tree-based state (stream) clus-
tering can effectively model strong contextual effects, it is less able to model weak
contexts, such as word-level emphasis in natural speech [10], because weak con-
texts have less influence on the likelihood of the data. When pooled with other more
influential contexts, they are rarely selected during the decision tree construction.
Consequently, the set of final clustered context-dependent HMMs has a poor rep-
resentation of these contexts. One approach to address this problem is to split the
decision tree construction into two stages. In the first stage, a decision tree is con-
structed using only the weak context questions. In the second stage, the remaining
questions are used to further extend the decision tree [10]. Although this approach
can effectively exploit weak context questions, it fragments the training data and
leads to a reduction in the amount of the data that can be used in clustering the other
contexts. Consequently, the quality of synthesized speech is degraded.

In this paper, an alternative approach, context adaptive training with factorized de-
cision trees is presented for weak context modelling. In this approach, two separate
sets of parameters are used to model the weak contexts and the normal contexts
(such as phone or position) respectively. Standard HMM parameters are used for
normal contexts, while a set of transforms are estimated for weak contexts. Full
context-dependent HMMs are then constructed using the HMM parameters for nor-
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mal contexts transformed by the weak-context specific transformations. Standard
adaptive training techniques [11–13] can be used to perform interleaved updates
of the two sets of model parameters. However, compared to adaptive training for
speech recognition, in addition to the structured HMM representation using two
sets of parameters, context adaptive training also requires changing the decision
tree clustering process due to the nature of contexts being adapted. Factorized de-
cision trees are used to fulfill this requirement. The basic idea is to construct de-
cision trees for weak and normal contexts individually and then combine them to
construct a structured common decision tree to represent the full context informa-
tion [10, 14–17]. This paper describes the general framework of context adaptive
training with factorized decision trees and investigates three specific implemen-
tations of systems: maximum likelihood linear regression (MLLR), constrained
MLLR and cluster adaptive training (CAT). The effectiveness of these systems is
evaluated on a synthesis task which requires that a specific word in the sentence is
emphasized.

The rest of the paper is structured as follows. Section 2 describes the general frame-
work of context adaptive training with factorized decision trees. Section 3 discusses
concrete forms and implementation issues. Experimental results are given in sec-
tion 4, followed by conclusions in section 5.

2 Context adaptive training with factorized decision tree

As discussed in section 1, full context-dependent HMMs may not effectively cap-
ture weak contexts and a two-pass decision tree fragments the data remaining for
the normal contexts. Context adaptive training is proposed here to address these
problems.

Adaptive training has been widely used in automatic speech recognition (ASR) to
build compact acoustic models on non-homogeneous data [11–13]. A set of trans-
forms are trained to represent different acoustic conditions, and canonical context-
dependent HMMs represent the pure speech variabilities. The HMMs for a partic-
ular acoustic condition are constructed by adapting the canonical HMMs using the
corresponding transforms. The two sets of parameters, transforms and HMMs, are
updated in an interleaved fashion. Each update is done holding the other set of pa-
rameters fixed. When adaptive training is used in ASR, the acoustic conditions are
normally defined for complete data blocks, such as speaker or noise environment.
Recently, this adaptive training framework has also been used to model phonetic
contexts [18, 19]. To obtain robust transform estimations, a regression tree is usu-
ally constructed to allow a group of Gaussian components to share a transform [20].
It is also possible to use a decision tree as the regression tree to determine transform
sharing structure. The leaf nodes of the regression tree are referred to as regression
base classes. Assuming there is only one Gaussian in each clustered state rc, the
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adapted Gaussian parameters can be represented as

Λ̂rc = Frt

(
Λrc

)
s.t. rc ⊆ rt (1)

where Λrc is the Gaussian parameter set of state cluster rc, Λ̂ denotes the adapted
parameters, Frt(·) is the transform associated with regression base class rt. When
modelling a range of acoustic conditions using adaptive training, transforms and
canonical HMMs always use the same state tying structure. Hence, rc, as the atomic
cluster for adaptation, is always a subset of any transform regression base class rt.

In contrast to ASR, contexts in HMM-based speech synthesis are much more com-
plex as described in section 1. There are many factors which may affect the acoustic
realization of phones. The prior knowledge of those factors form the questions used
in the decision tree based state clustering procedure. Due to the nature of the fac-
tors, some questions are highly correlated, for example, the phonetic broad class
questions and the syllable questions. However, other sets of questions are relatively
weakly correlated, such as the phonetic broad class questions and the emphasis
questions. The factors corresponding to the sets of questions can be regarded as
independent. Also as mentioned before, the effect of weak contexts may not be
found if they are pooled together with strong contexts during decision tree based
clustering. It is important that weak contexts appear in the atomic state (stream)
clusters for effective modelling. Therefore, not only the model parameter represen-
tation, but also the decision tree clustering process needs to be factorized in context
adaptive training.

The idea of using factorized decision trees was used for acoustic modelling in
recognition and synthesis [14–16] but has not been investigated within the frame-
work of adaptive training until recently [10, 17]. In context adaptive training, the
main purpose of constructing factorized decision trees is to fully model both sets
of contexts and define atomic adaptation units where both normal and weak con-
texts can apply their effects. To achieve this goal, rather than pooling all context
questions together to construct a single decision tree, two decision trees are built,
with normal context questions (e.g. phone and position questions) and weak context
questions (in this paper word-level emphasis) respectively. They are then combined
to form a larger common decision tree by intersecting the leaf nodes. Taking word-
level emphasis as the weak contexts and phonetic/position contexts as the normal
contexts, the construction of the common decision tree is illustrated in figure 1.

The leaf nodes re and rp are the final state (stream) clusters for emphasis and
normal decision trees respectively, each of which is a set of shared clustered states.

re = {θ1, · · · , θNe} rp = {θ1, · · · , θNp} (2)

where θ is a distinct state corresponding to a specific context dependent model. The
leaf nodes of the combined decision tree, rc correspond to the intersections of the
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Fig. 1. Combination of normal and emphasis decision trees

leaf nodes of the emphasis decision tree re and the normal decision tree rp, i.e.

rc = {θ1, · · · , θNc} s.t. θi ∈ re and θi ∈ rp i = 1, · · · , Nc (3)

Hence, rc are atomic units for adaptation, on which re and rp will both have effect.
Assuming there are Ne and Np clustered states from the emphasis tree and normal
decision tree respectively, the combined decision tree could have up to Ne × Np

different context-dependent states. This structured representation is therefore more
compact than direct full context-dependent modelling. With this factorized repre-
sentation, both sets of contexts can make full use of all training data and can be
extensively explored. Hence weak contexts can be effectively modelled without
additionally fragmenting the training data.

Once the combined decision tree is constructed, the state output distributions, a
single Gaussian in this paper, within rc are tied. The Gaussian parameters can then
be represented using a structured form similar to adaptive training

Λ̂rc = Fre

(
Λrp

)
s.t. rc = rp ∩ re (4)

where re are the regression base classes, which are equivalent to the leaf nodes of
the emphasis decision tree. Compared to equation (1), equation (4) has a different
constraint on the regression base class. Due to the factorized decision tree cluster-
ing, re is not a subset of rp, and hence not the atomic state cluster. Instead, the
intersections of re and rp, i.e., rc, are used as atomic parameter sharing units.

In adaptive training, both the transform and the canonical HMM may take various
forms. Linear transforms [12, 21] and cluster adaptive training [13] are the two
main categories. Equation (4) shows the general form of linear transform based
context adaptive training. Cluster-based context adaptive training has the general
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form shown in equation (5):

Λ̂rc = Frt

(
Λrp ,Λre

)
s.t. rc = rp ∩ re rc ⊆ rt (5)

Here, the canonical model is a multiple-cluster Gaussian and the transform com-
prises the interpolation weights between the clusters. The multiple-cluster Gaussian
for state rc consists of cluster bases from different context groups rp and re. Adap-
tation may then be performed on an additional full context specific regression class
rt constructed from the atomic state clusters rc.

3 Implementation of context adaptive training

Section 2 has described the general framework of context adaptive training with
factorized decision trees. This section will discuss concrete forms of context adap-
tive training and some implementation issues. In all derivations, single Gaussians
with diagonal covariance matrices will be assumed, which is the widely used setup
in HMM-based speech synthesis. The generalization to Gaussian mixture models
is trivial and will not be explicitly discussed. As in HMM-based speech synthesis,
spectrum and F0 are normally modelled using separate streams and factorized de-
cision trees are then built for each corresponding stream. The discussion below will
focus on the single stream case for clarity.

3.1 MLLR based approach

Maximum likelihood linear regression (MLLR) [21] is a widely used type of trans-
formation in speech recognition and synthesis. When single Gaussian distributions
are used, the index of each distinct Gaussian, m, is equivalent to the index of the
atomic state cluster rc. For notational clarity, m will therefore be used instead of
rc in the following derivations. In MLLR based context adaptive training, the mean
and covariance of Gaussian component m are represented by

µ̂m = Are(m)µrp(m) + bre(m) = Wre(m)ξrp(m)

Σ̂m = Σrp(m) (6)

where rp(m) and re(m) respectively represent the leaf nodes of normal and weak
context decision trees to which component m belongs. Are and bre are weak-
context transform parameters andµrp and Σrp are Gaussian parameters correspond-
ing to the normal contexts. ξrp = [µ>rp 1]

> is the extended mean vector of leaf node
rp while Wre = [Are bre ] is the extended transform associated with leaf node re.
From equation (6), the parameters of the combined leaf node cannot be directly
estimated. Instead, they are constructed using two sets of parameters with differ-
ent state clustering structures. With this factorized representation, the estimation of
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the transform parameters for cluster re(m) and the Gaussian parameters for cluster
rp(m) must be interleaved. The detailed procedure is as follows:

(1) Construct factorized decision trees for normal contexts (rp) and emphasis con-
texts (re). Let m = re(m) ∩ rp(m) be the atomic state cluster (also atomic
Gaussian in the single Gaussian case).

(2) Get initial parameters of the atomic Gaussians from state clustering using nor-
mal decision tree and let µ̂m = µrp(m).

(3) Estimate Wre given the current model parameters µrp(m) and Σrp(m). This is
the standard MLLR estimate [21]. The dth row of Wre , w>re,d, is estimated as

wre,d = G−1re,d
kre,d (7)

where the sufficient statistics for the dth row are given by

Gre,d=
∑
t

∑
m∈re

γm(t)

σ
rp(m)
dd

ξrp(m)ξ
>
rp(m) (8)

kre,d=
∑
t

∑
m∈re

γm(t)ot,d

σ
rp(m)
dd

ξrp(m) (9)

where ot,d is the dth element of observation vector ot, σ
rp(m)
dd is the dth diagonal

element of Σrp(m), rp(m) is the leaf node of the normal decision tree to which
Gaussian component m belongs, γm(t) is the posterior for Gaussian compo-
nent m at time t which is calculated using the forward-backward algorithm
with the parameters from equation (6).

(4) Estimate µrp given the emphasis transform parameters Wre . This is similar to
the mean update in speaker adaptive training [22]. Given the sufficient statis-
tics

Grp =
∑
t

∑
m∈rp

γm(t)A
>
re(m)Σ

−1
m Are(m)

krp =
∑
t

∑
m∈rp

γm(t)A
>
re(m)Σ

−1
m

(
ot − bre(m)

)

the new mean is then estimated by

µrp = G−1rp
krp (10)

(5) Given the updated mean µrp and transform Wre , perform context adaptation
to get µ̂m using equation (6).

(6) The re-estimation of Σrp is then performed using the standard covariance up-
date formula with the adapted µ̂m. Here, the statistics are accumulated for
each leaf node rp rather than each individual component m.

Σrp = diag
(∑

t,m∈rp γm(t)(ot − µ̂m)(ot − µ̂m)>∑
t,m∈rp γm(t)

)
(11)
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where γm(t) is calculated using µ̂m constructed from the new estimate of µrp

and Wre . It is worth noting that since data sufficiency is guaranteed during
decision tree clustering for the normal context features, sharing covariance
matrices within the leaf node rp will ensure robust estimation of the covari-
ance matrices.

(7) Go to step 3 until convergence.

3.2 CMLLR based approach

Instead of MLLR, constrained MLLR (CMLLR) [12] can also be used to represent
weak contexts. With CMLLR, both mean and covariance are adapted using the
same linear transform as shown below

µ̂m = A′re(m)µrp(m) − b′re(m)

Σ̂m = A′re(m)Σrp(m)A
′>
re(m) (12)

One advantage of using CMLLR is that CMLLR can be rewritten as a feature trans-
form, which is represented as

ô(m) = Are(m)o + bre(m) (13)

where Are(m) = A′−1re(m)
and bre(m) = A′−1re(m)

b′re(m) are the feature transforms depen-
dent on specific Gaussian groups, ô(m) is the adapted observation to calculate the
likelihood of o with respect to Gaussian component m. The update formulae for
µrp and Σrp then take the standard form except that the adapted observations must
be used and the statistics are accumulated for rp rather than the individual Gaussian
components m. As in the MLLR case, the update formulae for CMLLR are similar
to the standard update formulae in [12] except that the statistics are accumulated
for re. The overall procedure for CMLLR based context adaptive training is the
same as for the MLLR case in section 3.1. Similarly, since the variance is shared at
the rp level, there is no data sparsity issue for the covariance matrices update.

3.3 CAT based approach

The third implementation uses cluster adaptive training (CAT) [13]. As multiple-
cluster HMMs are used here, the general form of equation (5) is used. In CAT based
context adaptive training, the mean and covariance of Gaussian component m are
represented by

µ̂m = λ
(p)
rt(m)

µrp(m) + λ
(e)
rt(m)

µre(m) =Mmλrt(m)

Σ̂m = Σrp(m) (14)
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where Mm = [µrp(m) µre(m)] is the matrix representation of the two mean basis
vectors for component m, µre(m) is the weak-context basis, λrt(m) = [λ

(p)
rt(m)

λ
(e)
rt(m)

]>

is the weight vector for component m, and λ(p)rt(m)
and λ(e)rt(m)

are weights for µrp(m)

and µre(m), respectively. Similar to MLLR based context adaptive training, the esti-
mation of the interpolation weights and Gaussian parameters must be interleaved.
The difference here is mainly the initialization and parameter update formula. The
detailed procedure is as follows:

(1) Get initial parameters of µrp and Σrp from state clustering using the normal
decision trees. Let µre = 0 and λ(p)rt

= λ(e)rt
= 1.

(2) Estimate µrp and µre jointly given the current model parameters. Due to the
intersection of µrp and µre , the update formulae of cluster mean vectors for
multiple-cluster HMMs in [13] must be modified [17]. Here, the mean vectors
of all leaf nodes of both decision trees must be updated simultaneously.

µ̂ = G−1k (15)

where

µ̂ =
[
µ̂>rp=1 . . . µ̂

>
rp=N(p) µ̂

>
re=1 . . . µ̂

>
re=N(e)

]>
k =

[
k>rp=1 . . .k

>
rp=N(p) k>re=1 . . .k

>
re=N(e)

]>

G =



Grp=1 0 Grp=1,re=1 . . . Grp=1,re=N(e)

. . . ... . . . ...

0 Grp=N(p) Grp=N(p),re=1 . . . Grp=N(p),re=N(e)

Gre=1,rp=1 . . . Gre=1,rp=N(p) Gre=1 0
... . . . ... . . .

Gre=N(e),rp=1 . . . Gre=N(e),rp=N(p) 0 Gre=N(e)


Grp =

∑
t

∑
m∈rp

γm(t)λ
(p)
rt(m)

Σ−1rp(m)
λ
(p)
rt(m)

Gre =
∑
t

∑
m∈re

γm(t)λ
(e)
rt(m)

Σ−1rp(m)
λ
(e)
rt(m)

Grp,re =
∑
t

∑
m∈rp∩re

γm(t)λ
(p)
rt(m)

Σ−1rp(m)
λ
(e)
rt(m)

= G>re,rp

krp =
∑
t

∑
m∈rp

γm(t)λ
(p)
rt(m)

Σ−1rp(m)
ot

kre =
∑
t

∑
m∈re

γm(t)λ
(e)
rt(m)

Σ−1rp(m)
ot

Here rp = n and re = m denotes n-th and m-th leaf nodes of normal and
emphasis decision trees, respectively, and N (p) and N (e) correspond to the
total numbers of leaf nodes of normal and emphasis decision trees. G is the
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sufficient statistics accumulated for the meta mean vector µ̂.
(3) Given the updated mean, Σrp is re-estimated using the standard covariance

update formula as in equation (11).
(4) Given the updated mean and covariance, λrt is estimated as

λrt = G−1rt
krt (16)

Grt =
∑
t

∑
m∈rt

γm(t)M
>
mΣ−1rp(m)

Mm (17)

krt =
∑
m∈rt

M>
mΣ−1rp(m)

∑
t

γm(t)ot (18)

where γm(t) is calculated using µ̂m constructed from the new estimate of
µrp , µre , and Σrp . Grt and krt are sufficient statistics accumulated for all
Gaussians within the regression baseclass rt.

(5) Go to step 2 until convergence.

As the cluster mean vectors, covariance matrices, and interpolation weights are
shared at rp, re, and rt levels, respectively, there is no data sparsity issue for up-
dating these parameters.

3.4 State clustering in context adaptive training

The previous sections have discussed the training procedure of MLLR, CMLLR
and CAT based context adaptive training. Factorization of the decision trees also
impacts on the clustering process itself since the structured Gaussian parameter
representation complicates the computation of the data likelihood.

The basic idea of decision tree based state clustering is to use a binary decision tree,
in which a question is attached to each non-leaf node, to assign the state distribution
of every possible full context HMM model to a state cluster [7]. As discussed be-
fore, the tree is built using a top-down sequential optimization procedure. All states
are pooled in the root node and then the node is split into two by finding a context
question which partitions the states in the parent node so as to give the maximum
likelihood increase. When using a single Gaussian as the state output distribution
and assuming that tying states does not change the frame/state alignment, then con-
sidering that the Gaussian parameters µ(θ) and Σ(θ) are ML estimates, the log
likelihood of a set of states θ can be represented as

L(θ)=
∑
t

∑
θ∈θ

γθ(ot) logN
(
ot;µ(θ),Σ(θ)

)
(19)

=−γ(θ)
2

(
log |Σ(θ)|+D log(2π) +D

)
(20)

where D is the data dimension, γ(θ) and Σ(θ) are the total occupancy and the
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covariance matrix of the pooled state respectively:

γ(θ)=
∑
θ∈θ

(∑
t

γθ(ot)
)

(21)

Σ(θ)=
∑
θ∈θ

(∑
t

γθ(ot)
)(
µ>θ µθ + Σθ

)
. (22)

Equations (20) and (22) rely on the fact that µθ and Σθ are standard ML estimates.

When using a structured context adaptive training representation, there are two sets
of parameters to be clustered: transform and Gaussian parameters, resulting in two
or more decision trees. There are three ways to build these trees

• Independent construction assumes that the factorized decision trees are inde-
pendent of each other and are therefore built separately. This is an approxima-
tion which is simple and efficient to implement. It results in a factorization that
is purely dependent on the different sets of context questions used during the
decision tree construction.
• Dependent construction builds the factorized decision trees one-by-one. Each

tree is built assuming that the remaining parameter sets and the sharing structure
are fixed. An iterative process must be used in this case with all parameters being
re-estimated after every split.
• Simultaneous construction builds all factorized decision trees in one go. At

each split, all trees are optimized inter-dependently until the stopping criterion is
met.

The choice of tree building strategy depends on the trade-off between computa-
tional cost and model accuracy. For context adaptive training, equations (20) and
(22) do not hold naturally for either transform or Gaussian parameters due to the
structured parameter representation. As the two sets of parameters are dependent
on each other, dependent or simultaneous construction will involve re-estimation
of both sets of parameters at each split. This will result in very high computational
cost, especially for linear transform based approaches. Hence, in this paper, in-
dependent construction is employed. In the case of cluster-based context adaptive
training, dependent and simultaneous constructions of cluster-dependent decision
trees have been derived [17, 23]. However, in this paper, independent construction
is employed for consistency.

In HMM-based speech synthesis, the decision tree based state clustering is usually
performed twice to get better state/stream clustering structure. The general proce-
dure is as below:

(1) Train mono-phone HMMs and construct untied full context dependent HMMs
(2) Perform one Expectation Maximization (EM) re-estimation of the untied full

context dependent HMMs
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(3) Perform state/stream clustering given the state alignment and the parameters
of the untied model in step 2 [7]

(4) Perform several iterations of EM re-estimation of the clustered HMMs
(5) Untie the clustered HMMs and perform one further EM re-estimation to get

updated parameters of the untied full context dependent HMMs
(6) Perform state/stream clustering given the state alignment and the parameters

of the untied model in step 5 [7]
(7) Perform several iterations of EM re-estimation of the clustered HMMs

Due to the structured modelling of context adaptive training, not only the EM re-
estimation of step 4 and step 7 involves two sets of model parameters, the con-
struction of the second untied full context HMMs in step 5 also needs to take into
account both sets of parameters. In this paper, a common procedure is used for step
5. The clustered HMMs are first untied and during re-estimation context transforms
are applied as the HMM model re-estimation in step 4. The statistics are then ac-
cumulated at untied state/stream level and used to reestimate the single Gaussian
parameters for each untied state/stream 2 .

4 Experiments

4.1 Experimental conditions

The context adaptive training techniques were evaluated in a natural word level em-
phasis synthesis task [10]. The training data is a subset of the male English voice
with a Scottish accent (awb) in the CMU ARCTIC speech database [25]. One judge
annotated the 597 utterances of the set A of the dataset, by labelling the word(s)
that were perceived as the focus of the utterance based on the natural emphasis of
the speaker. 3 It is worth noting that there was no intention of collecting speech
with emphasis during the construction of the ARCTIC speech database, hence, it
does not contain strong stylistic variation. The emphasis labels were given to the
naturally emphasized words (e.g., content words) as well as involuntary fluctua-
tions of the speaker. The judge labelled 2.32 emphasized words per utterance on
average (26.3% of the words). In order to assess the reliability of the annotation, a
second judge annotated a subset of 50 utterances of the 597 sentences. This yielded
an agreement of 1.04 words per utterance on average, and a disagreement of 1.52
words on average. 4 This suggests that the natural emphasis information obtained
from a human judge is highly subjective. However, most of the disagreements were

2 In the CAT case, as the target single Gaussian only has one mean vector, two-model
re-estimation is needed to change the HMM structure [24].
3 Available at http://mi.eng.cam.ac.uk/˜farm2/emphasis.
4 Cohen’s Kappa cannot be used here because the phrases are not distinct elements.
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due to a difference of granularity when labelling emphasis, as there was an overlap
for 72% of the utterances. This shows that there exists consistent rough agreement
over natural emphasis. Though emphasis is likely to be harder to capture when it
is not explicitly generated in natural speech, techniques that can extract the em-
phasis component from natural data can significantly reduce the cost of stylistic
modelling.

Altogether four systems were built, three context adaptive training systems as de-
scribed in section 3 and a standard full context-dependent HMM system which uses
both normal and emphasis contexts in state clustering. 5 All systems were built us-
ing a modified version of the HMM-based speech synthesis toolkit (HTS) [26].
The HMM with globally tied distribution (HMM-GTD) technique for logF0 mod-
elling [27] was used as it yielded better speech quality. Six emphasis contexts were
used to form questions for emphasis decision tree construction. 6 They (including
one more question about inexistence of emphasis) include

(1) Whether the previous, the current and the next words are emphasized
(2) Whether the previous and the next words are emphasized
(3) Whether the previous and the current words are emphasized
(4) Whether the next word is emphasized
(5) Whether the previous word is emphasized
(6) Whether the current word is emphasized
(7) Whether none of the previous, the current and the next words is emphasized

The static feature set comprised 25 mel-cepstral coefficients [28] including the
zero-th coefficients, logF0 and aperiodic energy components in five frequency
bands (0 to 1, 1 to 2, 2 to 4, 4 to 6 and 6 to 8 kHz). All features were extracted using
STRAIGHT [3]. A five state, left-to-right HMM structure with no skip transitions
was used. During HMM training, the stream weight for the aperiodic component
was set to zero. Hence, the forward-backward alignment depends only on the spec-
tral and F0 features. Statistics for updating parameters of aperiodic components
were however collected and their parameters were updated in the standard way.
The MDL criterion was used to stop growing the decision trees. The MLLR and
the CMLLR systems used block diagonal transforms (3 blocks) for the spectrum
and full transforms for logF0 and aperiodic component features. The CAT system
used fixed global weights (∀mλrt(m) = [1.0 1.0]>) to interpolate mean vectors of
normal and emphasis contexts. In this paper, context adaptive training techniques
were only applied to the spectrum, logF0 and aperiodic components, while dura-
tion was still modelled using standard full context-dependent HMMs. The speech

5 The purpose of this experiment is to compare different approaches for complex context
modelling. Though emphasis word adaptation can be an alternative approach for emphasis
synthesis as shown in [10], it is not a generally applicable approach for modelling complex
contexts, such as phone positions. Hence, it is not considered in this paper.
6 Each emphasis related question consists of one emphasis context feature and one normal
context feature. This will lead to powerful transforms as the number of transforms is large.
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parameter generation algorithm considering global variance [29] was used during
synthesis.

4.2 Experimental results

A subjective listening test was performed to measure the ability to convey word-
level emphasis. For each system, 10 utterances in the tourist information domain
were first generated without any emphasized words. The same utterances were gen-
erated again but with one word emphasized, forming 10 contrasting pairs (e.g.,
‘Char Sue is an expensive Chinese restaurant’). The words to emphasize were se-
lected randomly from the content words in the sentence which carry semantic infor-
mation. The contrasting waveform pairs from the four systems were then provided
to listeners. Hence, altogether each listeners listened to 40 contrasting utterance
pairs. When perceiving a difference of emphasis, the listener was asked to select
the word that carried the emphasis, otherwise to indicate that there is no perceiv-
able emphasis. Altogether 14 listeners, 7 native and 7 non-native, participated in
the test. The performance of emphasized word detection is shown in table 1.

System # Det Rec (%) Pre (%) F -measure

GMM 2.0 20.0 53.8 0.29

MLLR 4.7 47.1 68.0 0.56

CMLLR 3.2 32.1 68.2 0.44

CAT 2.9 28.6 69.0 0.40
Table 1
Average number of correctly detected emphasized words and Recall, Precision and F -
measure of emphasis detection.

The row labelled GMM in table 1 is the standard full context-dependent system.
It can be observed that all context adaptive training systems obtained better em-
phasis detection performance than the standard full context-dependent HMMs. A
pair-wise two-tailed Student’s t-test was performed to evaluate the statistical dif-
ference of the average number of correctly detected emphasized words 7 . It was
found that the improvements of the context adaptive training systems compared
to the standard system were all significant at the 95% confidence level. Amongst
the different forms of context adaptive training, the MLLR system achieved the
best performance while the CMLLR and the CAT systems were similar. As there
is only one emphasized word per utterance, the recall rate of emphasis detection

7 If the word selected by the listener is the one actually being emphasized by the synthesis
system, it is regarded as a correctly detected emphasized word. Selection of either the
wrong emphasized word selection or selecting the no emphasis option is regarded as a
detection error
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is proportional to the number of detected emphasized words. As for precision, all
context adaptive training approaches outperformed standard full context modelling
and there is no significant difference between the different types of transformation.
Due to the difference in recall rate, the F -measure for the MLLR-based approach
performs the best overall.

Model complexity may be one reason for the performance difference between con-
text adaptive training systems. Emphasis is mainly carried by logF0 features and
the number of logF0 states in the factorized decision trees are shown in table 2. 8

System #rp #re #rc = rp ∩ re #para (×103)

GMM 2286 — 13.7

MLLR 2445 2988 17739 48.7

CMLLR 1959 2458 13361 40.1

CAT 2402 2894 16307 23.1
Table 2
Number of logF0 states in the factorized decision trees.

In table 2, rp and re are the numbers of clustered states in the normal and empha-
sis decision trees of the logF0 stream, respectively. rc is the set of leaf nodes of
the intersection of the two trees, which is the number of atomic units for adapta-
tion. The last column gives the total number of free parameters, consisting of both
HMM and transform parameters. For comparison, the number of parameters of the
standard GMM system is also shown where there is only one set of parameters
(context-dependent HMMs). Due to the structured modelling which makes uses of
additional parameters, all context adaptively trained systems have more parameters.
It is worth noting that due to the use of regression base classes during the estimation
of MLLR and CMLLR, the actual number of emphasis transforms is smaller than
the number of emphasis decision tree leaf nodes (#re). It can also be observed that
the CAT system has far fewer parameters than the MLLR system. This is mainly
because global weights are used and there is only one basis vector associated with
each emphasis state re. This significant reduction of parameters may then limit its
power to transform normal contexts to full contexts. In contrast, there is no large
difference in the number of parameters between the CMLLR system and the MLLR
system. The performance degradation may therefore come from other aspect.

It can be observed that the numbers of the clustered states of the CMLLR system
are much smaller than the MLLR and the CAT system. This implies there might
be some issue related to the clustering process. As described in section 3.4, a com-
mon state/stream clustering procedure was used for all systems in this paper. At
the second stage, the untied full context model was estimated given the adapted

8 The ordering of complexity for spectrum and aperiodic component features are similar
to those shown for F0 in table 2.
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model parameters. However, in the CMLLR case, since it is implemented as a fea-
ture transform, the parameter estimation also used the transformed observations in
equation (13). When multiple regression base classes are used, the determinants
of different CMLLR transforms may then affect the likelihood calculation using
equation (20) during state clustering. It was found that after the second state clus-
tering stage, the MLLR system received an increased number of clustered states,
while the CMLLR system received a notable decrease. This shows that the effect
of feature transform determinants cannot be ignored and is likely to be the main
reason for the performance difference between the CMLLR and the MLLR system.
Alternative state clustering procedure for feature-based context transforms will be
investigated in future work.

5 Conclusions

This paper has described a context adaptive training framework for modeling com-
plex contexts in HMM-based speech synthesis. Two sets of parameters are con-
structed to represent the different context groups (normal and weak emphasis con-
texts in this paper) and are estimated inter-dependently. In contrast to adaptive train-
ing for speech recognition, decision tree clustering must be modified for context
adaptive training in order to avoid data sparsity issues and to ensure that weak
contexts are not overwhelmed by the strong contexts. In this paper, this problem
has been solved using a novel factorized decision tree approach whereby separate
decision trees are built for the normal and the weak contexts. Context adaptation
is then performed for the intersections of the two trees. This approach allows for
fine-grained control of any dimension of interest, which is important for expressive
TTS in order to make spoken language interfaces better able to convey the linguis-
tic and social cues required in normal human-human conversation. Three forms
of context adaptive training systems, MLLR, CMLLR and CAT, have been inves-
tigated. Experiments using a word-level emphasis synthesis task have shown that
context adaptive training significantly outperforms standard full context HMMs
with the MLLR system showing the best performance overall. The results presented
were, however, based on the use of a simple independent factorized state cluster-
ing scheme and it is possible that the approximations involved may compromise
performance. Future work will therefore investigate the impact of using dependent
and simultaneous state clustering schemes. Also, whether to associate a particular
context factor to the base HMMs or to the transforms is an open problem for future
research.
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