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Understanding: ASR -> Beliefs
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Using a CNN to Extract Lexical Features
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CNN is the key component:  it scans each utterance applying 
convolution windows  of 1, 2, 3, 4, … words 
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Understanding: ASR -> Beliefs
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Henderson, M., et al. (2014). Word-Based Dialog State Tracking with Recurrent Neural Networks. 
SigDial 2014, Philadelphia, PA. 
Rojas-Barahona, L., et al. (2016). Exploiting Sentence and Context Representations in Deep Neural 
Models for Spoken Language Understanding. Coling, Osaka, Japan. 
Mrksic, N., et al. (2016) Neural Belief Tracker: Data-Driven Dialogue State Tracking.  arXiv:1606.03777



Generation: actions -> words
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Need to convert abstract system actions to natural language e.g.

<name>
<s>

inform(<name>, <food>)

serves
<name>

<food>
serves

training

inform(name=“The Peking”,
           food=“chinese”) “The Peking serves chinese food”

SC-
LSTM

food
<food>



running

inform(name=<name>,
            food=<food>) “ <name>     serves  <food> food”

Generation: actions -> words

7

Need to convert abstract system actions to natural language e.g.

request(<food>)

you

Solution:  delexicalise the training data, and train a conditional LSTM

SC-
LSTM like?



Semantically constrained LSTM
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Dialog Manager
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Weather Other

Domain

Local Maine

Location

Temp Rain

Weather Condition

Wind b

π

π a Actions:  request, confirm, 
inform, execute, etc

1. Belief state b encodes the state of the dialog, including all relevant 
history. 

2. Belief state is updated every turn of the dialog. 

3. The policy      determines the best action to make at each turn via a 
mapping from the belief state b to actions a.   

4. Every dialog ends with a reward:  +ve for success, -ve for failure.   
Plus a weak -ve reward for every turn to encourage brevity. 

5. Reinforcement Learning is used to find the best policy.

π



Reinforcement Learning
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π (b,a) :!n × A→ [0,1]Policy:

R = r(bτ ,aτ )
τ=1

T

∑Reward: NB: no discounting:

π * = argmax
π E[R |π ]{ }Problem: find



Policy Representation

• Gaussian Processes:  data efficient, includes explicit 
confidence on Q-value.  Can support large n, but 
action space |A| limited.  

• Deep Neural Networks:  scale well on both n and |A|, 
but no built-in confidence measure and poor 
convergence properties.
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π (b,a) :!n × A→ [0,1] n ~ 20 - 100 
|A| ~ 200+



Training Data

• Ideally, train directly on interactions with real users but 
✦ training even a small domain may require around 5k 

dialogues (many in exploration mode) 
✦ reward signal is hard to measure (see later) 

• In practice, train in stages 
✦ initialise with corpus data 
✦ train/test on user simulator 
✦ tune on real users

12



Optimisation Algorithms
• Policy Iteration  

✦ GP Sarsa 
✦ Deep Q-learning 

• Policy Gradient 
✦ Natural Actor Critic 

• “Black box” methods 
✦ Trust Regions

13



1. NN policy:  1 common 32 node tanh hidden layer.  Action outputs encoded via 2 
softmax output partitions and 6 sigmoid partitions 

2. Pre-trained (using SL for NN and prior for GP) on 720 dialogs from Cambridge 
restaurant domain. 

3. Optimised  (using RL) on 5000 simulated dialogues

SL 94.5%
SL+RL 98.2%

NN Policy trained and tested 
on-line with real users.

Simulation Results

NAC trained Neural Net Policy vs GP Policy

Real User Results

Su, P-H, et al.,  Continuously Learning Neural Dialogue Management, arXiv:1606.02689



Curse of Dimensionality
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Domain Complexity

Belief 
Space

Multiple 
Domains

“I am looking for a cheap 
 italian restaurant.”

Single domain 
Simple types

action=search 
venue=restaurant 
price=cheap 
food=italian

Restaurant 
Domain

“Book a table at Nando’s 
 after my meeting with Bill.”

Multi-domain 
Simple types

action=book 
venue=restaurant 
name=Nando’s 
when=?? 
action=lookup 
event=meeting 
attendee=Bill

Restaurant 
Domain
Calendar 
Domain

action=book 
venue=restaurant 
when={time(19:45), 
             date(today+1)}

“Book a table at 
 7:45pm tomorrow.”

Single domain 
Complex types

Multi-domain 
Complex types

“Book a table at Nando’s 
 for 7:45pm tomorrow 
 and invite Bill and John”

action=book 
venue=restaurant 
name = Nando’s 
when={time(19:45), 
             date(today+1)} 
action=create 
event=meeting 
attendees = {“Bill”, “John”}



Bayesian Committee Machines 
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Assume M independent policies and a common belief state

Q1Domain
1

b …

…

argmax
a Q̂(b,a){ }

Q2

Qi

Q̂ = f Q1,...Qi ,...( )
Domain

2

Domain
i

r(b,a)
distribute reward to all committee 
members scaled by contribution 
to actual selected action 
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Example using GP-RL: 

M. Gasic et al (2015). "Policy Committee for Adaptation in Multi-domain Spoken Dialogue Systems." 
IEEE ASRU 2015, Scotsdale, AZ.

Re
w

ar
d

Number of Training Dialogues

Laptop domain trained 
in parallel with Hotels 

and Restaurants

Laptop domain 
trained in isolation

Three domains trained from scratch on 
line both individually and in parallel: 

• Hotel info 
• Restaurant info 
• Laptop product guide

Q = ΣQ Σi
Q( )−1Qi

i=1

M

∑

ΣQ = Σi
Q( )−1 − const

i=1

M

∑⎡
⎣⎢

⎤
⎦⎥

−1

Q̂ ∼ N Q,ΣQ( )
where



Domain Complexity
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Hierarchical Reinforcement Learning
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Hierarchical Deep Reinforcement Learning
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T. Kulkarni et al  (2016). "Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction 
and Intrinsic Motivation." arXiv:1604.06057.

DQNθ
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DQNθ

bt bt+1 bt+N

at at+1

gt gt

at+N

gt gt+N

Top 
meta-level

Subgoal-level
 eg GetTime

Next 
Subgoal



Measuring Success
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Task success is not always obvious….
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Measuring Success
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However, what about the problematic weather query?

π calendar

b1

a1

b2

a2

r1 r2 r3 r4

b3

a3

b4

a4

How can I 
help?

Hows the 
weather in 

Maine

It’ll be fine all 
day in the Bay 

area.

No, Maine

I know your 
name Steve, 
it’s “Steve”.

I want the 
weather in 

Maine!

I dont believe it’s 
raining right now.

System:

User:



On-line Reward Estimation
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On-line Reward and Policy Learning
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On-line Reward and Policy Learning
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P-H. Su et al (2016). "On-line Active Reward Learning for Policy Optimisation in Spoken Dialogue Systems." 
ACL 2016, Berlin.



Summary
• POMDPs and Reinforcement Learning provide a 

powerful mathematical framework for decision 
making in intelligent conversational agents. 

• DNNs provide a flexible building block for all stages 
of the dialogue system pipeline, though training is 
often problematic. 

• Unrestricted conversation is challenging but there 
are several promising approaches to managing 
complexity.  

• For commercially deployed systems, the user is a 
tremendous untapped resource, and Reinforcement 
Learning provides the framework for exploiting it.
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