Globally Normalized Model for Statistical Speech Synthesis

Heiga ZEN

Toshiba Research Europa Ltd.
Cambridge Research Lab.

Speech Synthesis Seminar Series @ CUED, Cambridge, UK
January 26th, 2011
Outline

Trajectory HMM
- Speech parameter generation
- Derivation of trajectory HMM
- Relationship between parameter generation & trajectory HMM
- Trajectory HMM as globally normalized model
- Parameter estimation

Min generation error (MGE) training & trajectory HMM
- Relationship
- Properties of MGE

(If time remains) Product of Experts (PoE)
- Combination of multiple AMs as PoE
- PoE & trajectory HMM
HMM-based speech synthesis system

Training part
- Speech signal
- Spectral parameter extraction
- Spectral parameters
- Context-dependent HMMs & state duration models
- Training HMMs
 - Excitation parameter extraction
 - Excitation parameters
- Labels

Synthesis part
- TEXT
- Text analysis
- Labels
- Excitation parameters
- Excitation generation
- Spectral parameters
- Synthesis Filter
 - Excitation
- SYNTHESIZED SPEECH
 - Parameter generation from HMMs
 - Spectral parameters
Speech parameter generation algorithm

Determine a speech parameter vector sequence that maximizes its output probability given label l & HMM λ

\[\hat{o} = \arg \max_o p(o \mid l, \lambda) \]
\[= \arg \max_o \sum_{q} p(o \mid q, \lambda)p(q \mid l, \lambda) \]
\[= \arg \max_{o,q} p(o \mid q, \lambda)p(q \mid l, \lambda) \]
\[\hat{q} = \arg \max_q p(q \mid l, \lambda) \]
\[\hat{o} = \arg \max_o p(o \mid \hat{q}, \lambda) \]
Output prob of o given l & HMM λ

$$p(o \mid l, \lambda) = \sum_{q} p(o \mid q, \lambda) P(q \mid l, \lambda)$$

state-output

$$p(o \mid q, \lambda) = \prod_{t=1}^{T} \mathcal{N}(o_t ; \mu_{qt}, \Sigma_{qt}) \quad \leftarrow \text{single Gaussian}$$

$$= \mathcal{N} \left(\begin{bmatrix} o_1 \\ o_2 \\ \vdots \\ o_T \end{bmatrix} ; \begin{bmatrix} \mu_{q_1} \\ \mu_{q_2} \\ \vdots \\ \mu_{q_T} \end{bmatrix}, \begin{bmatrix} \Sigma_{q_1} & \Sigma_{q_2} & \cdots & 0 \\ \Sigma_{q_2} & \Sigma_{q_T} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \Sigma_{q_T} \end{bmatrix} \right)$$

$$= \mathcal{N}(o ; \mu_q, \Sigma_q) \quad \text{diagonal}$$
Generated trajectory

\[\hat{o} = \arg\max_o p(o \mid \hat{q}, \hat{\lambda}) \]

\[= \arg\max_o \mathcal{N}(o ; \mu_{\hat{q}}, \Sigma_{\hat{q}}) \]

\[= \mu_{\hat{q}} \iff \text{mean vector sequence} \]
Relationship between o and c

$$O_t = \begin{bmatrix} C_t \\ \Delta C_t \end{bmatrix} \iff \text{static}$$

$$\Delta C_t = C_t - C_{t-1}$$

\[
\begin{array}{ccccccc}
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
C_{t-1} & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\Delta C_{t-1} & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
C_t & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\Delta C_t & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
C_{t+1} & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\Delta C_{t+1} & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\end{array}
\]

\[
\begin{array}{ccccccc}
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & -I & I & 0 & 0 & \cdots & \vdots \\
\vdots & I & -I & 0 & 0 & \cdots & \vdots \\
\vdots & -I & I & 0 & 0 & \cdots & \vdots \\
\vdots & I & -I & I & 0 & \cdots & \vdots \\
\vdots & -I & I & I & 0 & \cdots & \vdots \\
\vdots & I & -I & I & I & \cdots & \vdots \\
\vdots & -I & I & I & I & \cdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\end{array}
\]

\[
\begin{array}{ccccccc}
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\end{array}
\]

\[
\begin{array}{ccccccc}
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\end{array}
\]

Static vs. Dynamic
Speech parameter generation algorithm

\[\hat{o} = \arg \max_{o} p(o \mid \hat{q}, \hat{\lambda}) \bigg|_{o=Wc} \]

\[= \arg \max_{o} \mathcal{N}(o \mid \mu_{\hat{q}}, \Sigma_{\hat{q}}) \bigg|_{o=Wc} \]

\[\Downarrow \]

\[\hat{c} = \arg \max_{c} \mathcal{N}(Wc \mid \mu_{\hat{q}}, \Sigma_{\hat{q}}) \]

\[\Downarrow \]

\[W^{\top} \Sigma_{q}^{-1} W \hat{c} = W^{\top} \Sigma_{q}^{-1} \mu_{q} \]
Generated trajectory

Static

Dynamic

Mean

Variance

\(c\)
Inconsistency between training & synthesis

Training & synthesis parts are inconsistent

- Training part
 * Baum-Welch training
 * Labels are often given manually
 * Model training model w/o dynamic feature constraints

- Synthesis part
 * Viterbi (single-path) approximation
 * Labels are often given automatically (by text analysis)
 * Parameter generation w/ dynamic feature constraints

How about introducing dyn feature constraints to training?
Output prob of o given l & HMM λ

$$p(o \mid l, \lambda) = \sum_{\forall q} p(o \mid q, \lambda) P(q \mid l, \lambda)$$

(state-output) (state-transition)

$$p(o \mid q, \lambda) = \prod_{t=1}^{T} \mathcal{N}(o_t \mid \mu_{q_t}, \Sigma_{q_t}) \quad \Leftarrow \text{single Gaussian}$$

$$= \mathcal{N} \left(\begin{bmatrix} o_1 \\ o_2 \\ \vdots \\ o_T \end{bmatrix} ; \begin{bmatrix} \mu_{q_1} \\ \mu_{q_2} \\ \vdots \\ \mu_{q_T} \end{bmatrix} , \begin{bmatrix} \Sigma_{q_1} & \Sigma_{q_2} & \cdots & 0 \\ 0 & \Sigma_{q_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \Sigma_{q_T} \end{bmatrix} \right)$$

$$= \mathcal{N}(o \mid \mu_q, \Sigma_q)$$

TOSHIBA
Leading Innovation
Inconsistency in HMM w/ dynamic features

Under \(o = Wc \)

\[
p(o \mid q, \lambda) = \mathcal{N}(Wc ; \mu_q, \Sigma_q) \Rightarrow \text{incorrect!}
\]

Why?

\[
\int_c \mathcal{N}(Wc ; \mu_q, \Sigma_q) dc \neq 1 \Rightarrow \text{integral over } c \text{ must be 1 to be a valid PDF}
\]

Why does this happen?

Static features \(\Rightarrow \) random variables

Dynamic features \(\Rightarrow \) Not random variables!!
Normalization

Normalized to achieve valid PDF

\[Z_q = \int_c \mathcal{N}(Wc; \mu_q, \Sigma_q) \, dc \]
\[= \frac{\sqrt{(2\pi)^{MT} |P_q|}}{\sqrt{(2\pi)^{2MT} |\Sigma_q|}} \exp \left\{ -\frac{1}{2} \left(\mu_q^\top \Sigma_q^{-1} \mu_q - r_q^\top P_q r_q \right) \right\} \]

\[\mathcal{N}(Wc; \mu_q, \Sigma_q) \Rightarrow \text{invalid PDF!} \]
\[\frac{1}{Z_q} \mathcal{N}(Wc; \mu_q, \Sigma_q) \Rightarrow \text{valid PDF!!} \]
Definition of trajectory HMM

Use normalized Gaussian \(\Rightarrow\) trajectory HMM is defined

\[
p(c \mid l, \lambda) = \sum_{q} p(c \mid q, \lambda) P(q \mid l, \lambda)
\]

\[
p(c \mid q, \lambda) = \frac{1}{Z_q} \mathcal{N}(Wc ; \mu_q, \Sigma_q) \leftarrow \text{normalized Gaussian}
\]

\[
= \mathcal{N}(c ; \bar{c}_q, P_q) \leftarrow \text{Gaussian over } c
\]

\[
R_q \bar{c}_q = r_q
\]

\[
R_q = W^\top \Sigma_q^{-1} W = P_q^{-1}
\]

\[
r_q = W^\top \Sigma_q^{-1} \mu_q
\]
Mean & variance

⇒ varies in a state

Frame correlation

⇒ captured by P_q

Covariance matrix P_q
Trajectory HMM & speech parameter generation

Mean vector of trajectory HMM

\[W^\top \Sigma_q^{-1} W \bar{c}_q = W^\top \Sigma_q^{-1} \mu_q \]

Trajectory by speech parameter generation algorithm

\[W^\top \Sigma_q^{-1} W \hat{c} = W^\top \Sigma_q^{-1} \mu_q \]

⇒ they are identical
Trajectory HMM as globally normalized model

HMM ⇒ locally (frame-level) normalized model

\[
p(o \mid q, \lambda) = \prod_{t=1}^{T} p(o_t \mid q_t, \lambda)
\]

\[
= \prod_{t=1}^{T} \mathcal{N}(o_t ; \mu_{q_t}, \Sigma_{q_t})
\]

Trajectory HMM ⇒ globally (utt-level) normalized model

\[
p(c \mid q, \lambda) = \frac{1}{Z_q} \mathcal{N}(Wc ; \mu_q, \Sigma_q)
\]

\[
= \frac{1}{Z_q} \prod_{t=1}^{T} \mathcal{N} \left(\begin{bmatrix} c_t^\top & \Delta c_t^\top \end{bmatrix}^\top ; \mu_{q_t}, \Sigma_{q_t} \right)
\]
Estimating trajectory HMM parameters

ML estimation of trajectory HMM

\[\hat{\lambda} = \arg \max_\lambda p(c \mid l, \lambda) \]

Locally normalized model

Parameter estimation for each state can be done separately

Globally normalized model

Parameter estimation of all states have to be done jointly

\[\mu = [\mu_1^\top, \mu_2^\top, \ldots, \mu_N^\top]^\top : \text{all mean vectors} \]

\[\phi = [\Sigma_1^{-1}, \Sigma_2^{-1}, \ldots, \Sigma_N^{-1}] : \text{all precision matrices} \]
Parameter update formulae

\[\sum_{q} p(q \mid c, \lambda') S_q^{\top} \Sigma_q^{-1} WP_q W^{\top} \Sigma_q^{-1} S_q \mu \]

\[= \sum_{q} p(q \mid c, \lambda') S_q^{\top} \Sigma_q^{-1} W c \]

mean vectors \Rightarrow closed form

\[\frac{\partial Q(\lambda, \lambda')}{\partial \phi} = \sum_{q} p(q \mid c, \lambda') \left\{ \frac{1}{2} S_q^{\top} \text{diag}^{-1} \left(WP_q W^{\top} - W cc^{\top} W^{\top} \right) + W \bar{c}_q \bar{c}_q^{\top} W^{\top} + \mu_q c^{\top} W^{\top} + W c \mu_q^{\top} - \mu_q \bar{c}_q^{\top} W^{\top} - W \bar{c}_q \mu_q^{\top} \right\} \]

covariance matrices \Rightarrow numerical optimization
Drawback of trajectory HMM training

Exact EM is intractable
- Computing posterior prob of q is intractable
- Single-path (Viterbi) or Monte Carlo approximation

Exact tree-based clustering is also intractable
- Splitting one nodes affects the other nodes
- Trees built for HMMs are often used

Computationally & memory intensive
- High dimensional matrix operations
- Numerical optimization
Effect of parameter reestimation

Training data
- Mean sequence of the HMM
- Mean sequence of the trajectory HMM (w/o update)
- Mean sequence of the trajectory HMM (with update)
Outline

Trajectory HMM
- Speech parameter generation
- Derivation of trajectory HMM
- Relationship between parameter generation & trajectory HMM
- Trajectory HMM as globally normalized model
- Parameter estimation

Min generation error (MGE) training & trajectory HMM
- Relationship
- Properties of MGE

(If time remains) Product of Experts (PoE)
- Combination of multiple AMs as PoE
- PoE & trajectory HMM
ML training & MGE training w/ Euclidean dist \([Wu;'06]\)

\[\hat{\lambda}_{ML} = \arg \max_{\lambda} p(c \mid q, \lambda)\]

\[= \arg \max_{\lambda} \mathcal{N}(c ; \bar{c}_q, P_q)\]

\[\hat{\lambda}_{MGE} = \arg \min_{\lambda} \mathcal{E}(c ; q, \lambda)\]

\[= \arg \min_{\lambda} \|c - \bar{c}_q\|_2 \quad \Leftarrow \text{MMSE estimation}\]

\[= \arg \max_{\lambda} \mathcal{N}(c ; \bar{c}_q, I) \quad \Leftarrow \text{Identity covariance matrix}\]
Performance of ML & MGE w/ Euc is similar, why?

⇒ Due to speech parameter generation algorithm

\[
\hat{c}_{\text{ML}} = \arg\max_c p \left(c \mid \hat{q}, \lambda_{\text{ML}} \right) \\
= \arg\max_c \mathcal{N} \left(c \mid \bar{c}_q, P_{\hat{q}} \right) \\
= \bar{c}_q
\]

\[
\hat{c}_{\text{MGE}} = \arg\max_c p \left(c \mid \hat{q}, \lambda_{\text{MGE}} \right) \\
= \arg\max_c \mathcal{N} \left(c \mid \bar{c}_q, I \right) \\
= \bar{c}_q
\]
Random sampling from ML & MGE w/ Euc distance

ML

\[\tilde{c}_{\text{ML}} \sim \mathcal{N} (\bar{c}_q, P_q) \]

⇒ Temporal correlations will be kept

MGE

\[\tilde{c}_{\text{MGE}} \sim \mathcal{N} (\bar{c}_q, I) \]

⇒ Temporal correlations will be discarded
MGE training & trajectory HMM (5)

Which is better, ML or MGE?

- w/ parameter generation, MGE is more reasonable
 * MGE $\Rightarrow \mu$ & Σ to represent mean trajectory
 * ML $\Rightarrow \mu$ for mean trajectory, Σ for mean trj & temporal cov
 \Rightarrow MGE can focus on modeling mean trajectory

- w/ random sampling, ML is more reasonable
 * MGE ignores temporal correlations
 * ML models temporal correlations
Summary

Trajectory HMM
- Derived from HMM w/ dynamic feature constraints
- Can be viewed as a globally normalized model
- All states need to be estimated jointly
- Generated params = mean vector of trajectory HMM

MGE training
- MGE w/ Euclid distance = MMSE estimation of trajectory HMM
- w/ speech parameter generation algorithm (ML parm gen)
 ⇒ ML & MGE work similarly
- w/ random sampling
 ⇒ MGE won't work well
Outline

Trajectory HMM
- Speech parameter generation
- Derivation of trajectory HMM
- Relationship between parameter generation & trajectory HMM
- Trajectory HMM as globally normalized model
- Parameter estimation

Min generation error (MGE) training & trajectory HMM
- Relationship
- Properties of MGE

(If time remains) Product of Experts (PoE)
- Combination of multiple AMs as PoE
- PoE & trajectory HMM
Combination of multiple acoustic models

Combine multiple AMs to reduce over-smoothing

* Training; estimate multiple-level AMs \textit{individually}

\[\hat{\lambda}_i = \operatorname{arg\ max}_{\lambda_i} p \left(f_i(c) \mid \lambda_i \right) \quad i = 1, \ldots, M \]

* Synthesis; generate \(c \) that \textit{jointly} maximize output probs from AMs

\[\hat{c} = \operatorname{arg\ max}_c \sum_{i=1}^{M} \alpha_i \log p(f_i(c) \mid \hat{\lambda}_i) \]

* Feature function, \(f_i(c) \), extracts acoustic feats for \(i \)-th AM from \(c \)
 - e.g., dynamic feats, DCT, average, summation, global variance

* Parameters of AMs, \(\lambda_i \), are trained \textit{independently}

 \[\rightarrow \text{Use weights to control balance among AMs} \]

* Weights, \(\alpha_i \), are determined by \textit{held-out data} (or tuned manually)
Mixture model vs Product model

Mixture of experts

\[p(c | \lambda_1, \ldots, \lambda_M) = \frac{1}{Z} \sum_{i=1}^{M} \alpha_i p(f_i(c) | \lambda_i) \]

* Data is generated from *union* of experts
* Robust for modeling data with many variations
* GMM → Mixture of Gaussians

Product of experts [Hinton;'02]

\[p(c | \lambda_1, \ldots, \lambda_M) = \frac{1}{Z} \prod_{i=1}^{M} \{p(f_i(c) | \lambda_i)\}^{\alpha_i} \]

* Data is generated from *intersection* of experts
* Efficient for modeling data with many constraints
* PoG → Product of Gaussians
Combination of multiple AMs can be viewed as PoE

\[\hat{c} = \arg \max_c p(c \mid \lambda_1, \ldots, \lambda_M) = \arg \max_c \frac{1}{Z} \prod_{i=1}^{M} \{p(f_i(c) \mid \lambda_i)\}^{\alpha_i} \]

\[= \arg \max_c \prod_{i=1}^{M} \{p(f_i(c) \mid \lambda_i)\}^{\alpha_i} = \arg \max_c \sum_{i=1}^{M} \alpha_i \log p(f_i(c) \mid \lambda_i) \]

* Generating \(c \) from combination of multiple AMs
 → Equivalent to generating \(c \) from PoE consisting of AMs

* Regarding combination of multiple AMs as PoE
 → \textit{Jointly} estimate multiple AMs

\[\{\hat{\lambda}_1, \ldots, \hat{\lambda}_M\} = \arg \max_{\lambda_1, \ldots, \lambda_M} \frac{1}{Z} \prod_{i=1}^{M} \{p(f_i(c) \mid \lambda_i)\}^{\alpha_i} \]
Product of Gaussians

Product of Gaussians (PoG)

\[p(c | \lambda_1, \ldots, \lambda_M) = \frac{1}{Z} \prod_{i=1}^{M} \mathcal{N}(f_i(c) ; \mu_i, \Sigma_i) \]

* Special case of PoE; All experts are Gaussian
* If all feature functions are linear
 - PoG also becomes Gaussian
 - Normalization constant

\[Z = \int \prod_{i=1}^{M} \mathcal{N}(f_i(c) ; \mu_i, \Sigma_i) \, dc \]

can be computed in **closed form**
Trajectory HMM as product of Gaussians

Trajectory HMM can be viewed as PoG [Williams;'05, Zen;'07]

\[
p(c \mid \lambda) = \sum_{q} p(c \mid q, \lambda) p(q \mid \lambda)
\]

\[
p(c \mid q, \lambda) = \mathcal{N}(c; \bar{c}_q, P_q) = \frac{1}{Z_q} \mathcal{N}(Wc; \mu_q, \Sigma_q)
\]

\[
\begin{align*}
\mathcal{N} & (\mu_q, \Sigma_q) & \quad Wc & \quad W & \quad c \\
\vdots & & \vdots & \vdots & \vdots \\
\mu_{q_{t-1}}^{(0)} & \Sigma_{q_{t-1}}^{(0)} & \rightarrow & c_{t-1} & 0 & I & 0 & 0 & \ldots \\
\mu_{q_t}^{(1)} & \Sigma_{q_t}^{(1)} & \rightarrow & \Delta c_{t-1} & -I & I & 0 & 0 & \ldots \\
\mu_{q_{t+1}}^{(0)} & \Sigma_{q_{t+1}}^{(0)} & \rightarrow & c_t & 0 & 0 & I & 0 & \ldots \\
\mu_{q_{t+1}}^{(1)} & \Sigma_{q_{t+1}}^{(1)} & \rightarrow & \Delta c_t & 0 & -I & I & 0 & \ldots \\
\mu_{q_{t+2}}^{(0)} & \Sigma_{q_{t+2}}^{(0)} & \rightarrow & c_{t+1} & 0 & 0 & 0 & I & \ldots \\
\mu_{q_{t+2}}^{(1)} & \Sigma_{q_{t+2}}^{(1)} & \rightarrow & \Delta c_{t+1} & 0 & 0 & 0 & -I & I & \ldots \\
\vdots & & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots
\end{align*}
\]
Trajectory HMM as product of Gaussians

Trajectory HMM can be viewed as PoG [Williams;'05, Zen;'07]

\[p(c \mid \lambda) = \sum_{q} p(c \mid q, \lambda) p(q \mid \lambda) \]

\[p(c \mid q, \lambda) = \mathcal{N}(c; \bar{c}_q, P_q) = \frac{1}{Z_q} \mathcal{N}(Wc; \mu_q, \Sigma_q) \]

\[= \frac{1}{Z_q} \prod_{t=1}^{T} \prod_{d=0}^{2} \mathcal{N}\left(f_t^{(d)}(c); \mu_{qt}^{(d)}, \Sigma_{qt}^{(d)}\right) \]

\[f_t^{(d)}(c) : d\text{-th dyn feat at frame } t \]

\[Z_q = \int \prod_{t=1}^{T} \prod_{d=0}^{2} \mathcal{N}\left(f_t^{(d)}(c); \mu_{qt}^{(d)}, \Sigma_{qt}^{(d)}\right) dc \]

* Experts are Gaussians, feature functions are dynamic features
* Gaussian experts are multiplied over time
Linear feature function with Gaussian experts

Combining multiple AMs as PoE

* Multiple-level AMs often use linear feature functions w/ Gaussians
 - DCT [Latorre;'08, Qian;'09], average [Wang;'08], sum [Ling;'06, Gao;'08]
* PoEs become the same form as trajectory HMM
 → Training algorithm for trajectory HMM are applicable

Example: state & phoneme duration models [Ling;'06]

\[
p(d | \lambda) = \frac{1}{Z} \mathcal{N}(Wd; \mu, \Sigma)
= \frac{1}{Z} \prod_{i=1}^{P} \prod_{j=1}^{N_i} \mathcal{N}(d_{ij}; \xi_{ij}, \sigma_{ij}) \times \prod_{k=1}^{P} \mathcal{N}(p_k; \nu_k, \omega_k)
\]

\[
d_{ij} : \text{duration of state } j \text{ in phoneme } i
\]
General PoE (non-linear feat or non-Gaussian)

General form of PoE

\[p (c \mid \lambda_1, \ldots, \lambda_M) = \frac{1}{Z} \prod_{i=1}^{M} \{p (f_i(c) \mid \lambda_i)\}^{\alpha_i} \]

* Feature functions can be non-linear, experts can be non-Gaussian
* Normalization term has no closed form
* Training is complex, usually normalization term is approximated

Example: **global variance (GV)** [Toda;'07]

\[p (c \mid q, \lambda, \lambda_{GV}) = \frac{1}{Z_q} \mathcal{N} (c ; \bar{c}_q, P_q)^{\alpha} \mathcal{N} (f_v(c) ; \mu_v, \Sigma_v) \]

\[f_v(c) = \frac{1}{T} \sum_{t=1}^{T} \text{diag} \left[(c_t - \bar{c})(c_t - \bar{c})^\top \right] : \text{intra-utt variance, quadratic} \]
Contrastive divergence learning [Hinton;'02]

* Training algorithm for general PoE
* Combination of sampling & gradient methods

1. Draw J samples from PoE

$$c^{(j)} \sim p(c \mid \lambda) \quad j = 1, \ldots, J \quad \lambda = \{\lambda_1, \ldots, \lambda_M\}: \text{PoE model params}$$

2. Compute approximated derivative of log likelihood w.r.t. λ

$$\frac{\partial \log p(c \mid \lambda)}{\partial \lambda} \approx \left\langle \frac{\partial \log p(c \mid \lambda)}{\partial \lambda} \right\rangle_p^0 - \left\langle \frac{\partial \log p(c \mid \lambda)}{\partial \lambda} \right\rangle_p^J$$

expectation over data expectation over samples

3. Update model params using gradient method

$$\lambda' = \lambda - \eta \cdot \left(\left\langle \frac{\partial \log p(c \mid \lambda)}{\partial \lambda} \right\rangle_p^0 - \left\langle \frac{\partial \log p(c \mid \lambda)}{\partial \lambda} \right\rangle_p^J \right)$$

$$\lambda = \lambda'$$

4. Iterate 1-3 until converge
Experimental conditions

* Training data; 2,469 utterances
* Development data; 137 utterances
 - Used to optimize weights in conventional method
 - Weights were optimized to minimize RMSE by grid search
 - Baseline & proposed method did not use development data
* Almost the same training setup as Nitech-HTS 2005 [Zen;'06]
* Test data; 137 utterances
* State, phone, & syllable-level models were clustered individually
 - # of leaf nodes
 * state; 607, phoneme; 1,364, syllable; 281
Experimental Results

Duration prediction results (RMSE in frame (rel imp))

<table>
<thead>
<tr>
<th>Model</th>
<th>Phoneme</th>
<th>Syllable</th>
<th>Pause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline (st)</td>
<td>5.08 (ref)</td>
<td>8.98 (ref)</td>
<td>35.0 (ref)</td>
</tr>
<tr>
<td>uPoE (st*ph)</td>
<td>4.62 (9.1%)</td>
<td>8.13 (9.5%)</td>
<td>31.8 (9.1%)</td>
</tr>
<tr>
<td>uPoE (stphsyl)</td>
<td>4.62 (9.1%)</td>
<td>8.11 (9.7%)</td>
<td>31.8 (9.1%)</td>
</tr>
<tr>
<td>PoE (st*ph)</td>
<td>4.60 (9.4%)</td>
<td>8.04 (10.5%)</td>
<td>31.9 (8.9%)</td>
</tr>
<tr>
<td>PoE (stphsyl)</td>
<td>4.57 (10.0%)</td>
<td>8.02 (10.7%)</td>
<td>31.9 (8.9%)</td>
</tr>
</tbody>
</table>

st; state only, st*ph; state & phoneme, st*ph*syl; state, phoneme, & syllable
uPoE; individually trained multiple-level duration models with optimized weights
PoE; jointly estimated multiple-level duration models
Experiment - Global Variance as PoE

Experimental conditions

* Training data; 2,469 utterances
 - Training data was split into mini-batch (250 utterances)
 - 10 MCMC sampling at each contrastive divergence learning
 * Hybrid Monte Carlo with 20 leap-frog steps
 * Leap-frog size was adjusted adaptively
 - Learning rate was annealed at every 2,000 iterations
 - Momentum method was used to accelerate learning
 - Context-dependent logarithmic GV w/o silence was used

* Test sentences; 70 sentences
 - Paired comparison test, # of subjects 7 (native English speaker)
 - 30 sentences per subject
Experimental Results

Paired comparison test result

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>PoE</th>
<th>No preference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>17.1</td>
<td>32.4</td>
<td>50.5</td>
</tr>
</tbody>
</table>

Baseline; conventional (not jointly estimated) GV
PoE; proposed (jointly estimated) GV

Difference was statistically significant at \(p < 0.05 \) level
Summary

Statistical parametric synthesis based on PoE
- Combination of multiple-level AMs is formulated as PoE
- Jointly estimate multiple-level AMs as PoE
 * Linear feature function with Gaussian experts
 → Can be estimated in the same way as trajectory HMM
 * Non-linear feature function and/or non-Gaussian experts
 → Contrastive divergence learning
- Experiments
 * Jointly estimating multiple AMs as PoE improved performance
References

[Williams;'05] C. Williams, "How to pretend that correlated variables are independent by using difference observations," Neural Computation, vol. 17, no. 1, pp. 1--6, 2005.