Task-oriented Neural Dialogue Systems

Apple, 08/03/2017
Tsung-Hsien (Shawn) Wen
Outline

- Intro
- Neural Dialogue Systems
- Wizard-of-Oz Data Collection
- Experiments
- Conclusion
Outline

- **Intro**
- Neural Dialogue Systems
- Wizard-of-Oz Data Collection
- Experiments
- Conclusion
The two paradigms

M: Hello, welcome to the Cambridge dialogue system, What kind of food would you like?
H: Yeah I want to find a restaurant that serves European food.
M: Hotel du Vin and Bistro is a nice place. It serves European food.
H: Uh what is the address and phone number?
M: Hotel du Vin and Bistro is a nice place. Their address is XXX and their phone is YYY.
H: Thank you goodbye.
M: Thank you for using this system.

[Su et al, 2016]

A: How old are you ?
B: I’m 16. Why are you asking ?
A: I thought you were 12.
B: What made you think so ?
A: I don’t know what you are talking about.
B: You don’t know what you are saying.

[Li et al, 2016]
The two paradigms

- Task-Oriented Dialogue Systems
 - Goal-oriented
 - Require precise understanding, hard to collect data.
 - Modular, highly handcrafted, restricted ability, but meaningful/useful systems.

- Chat-based Conversational Agents
 - Chit-chat (non-goal).
 - Vast amount of data (but probably not helpful).
 - End-to-end, highly data-driven, but meaningless/inappropriate responses, unreliable systems.

- Can we train a useful (complete tasks) dialogue system directly from data?
- How can we collect the data to train this model?
Outline

- Intro
- Neural Dialogue Systems
- Wizard-of-Oz Data Collection
- Experiments
- Conclusion & Discussion
Traditional Dialogue Systems

- Speech Recognition
- Language Understanding
- Language Generation
- Dialogue Manager
- Dialogue System
- KB
- Web
Can I have Korean. Little Seoul serves great Korean.
Can I have `<v.food>`?

`<v.name>` serves great `<v.food>`.

Intent Network

Can I have <v.food>

Generation Network

<v.name> serves great <v.food>.

 Intent Network

Can I have <v.food>

Generation Network

<v.name> serves great <v.food>

Language Grounding

Belief Tracker

Can I have korean

Korean 0.7
British 0.2
French 0.1

Jordan RNN-CNN belief trackers

British French Korean ... Chinese

Value-specific delex. ngram placeholder

Slot delex. ngram feature

Pad zeros to have the same length

Memorise the delex. position

Delexicalised CNN

1st conv. 2nd conv. 3rd conv. max-pool avg-pool

Henderson et al, 2014

Output layer

Hidden layer

Turn t

Input layer

sentence representation
Jordan RNN-CNN belief trackers

Delexicalised CNN

User turn t

Delexicalised CNN

System turn t-1

Output layer

Hidden layer

Input layer

sentence representation

(I, want v.food, s.food, <nil>)
Can I have <v.food>

Intent Network

<\textit{v.name}> serves great <v.food>.

Generation Network

Language Grounding

Can I have Korean food?

Database Accessing

MySQL query: "Select * where food=Korean"

Intent Network

Can I have <v.food>

Belief Tracker

<BeliefTracker: 0.7 Korean 0.2 British 0.1 French>

Generation Network

<v.name> serves great <v.food>.

Can I have <v.food>

Decision Making

<v.name> serves great <v.food>.

MySQL query: “Select * where food=Korean”

DB pointer

Outline

- Intro
- Neural Dialogue Systems
- **Wizard-of-Oz Data Collection**
- Experiments
- Conclusion
Hi, I want a cheap Korean restaurant.

What area are you looking for?
Hi, I want a **cheap Korean restaurant**.

What area are you looking for?

Somewhere in the north.

Little Seoul is nice one in the north.

<table>
<thead>
<tr>
<th>What user wants?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food</td>
</tr>
<tr>
<td>Price</td>
</tr>
<tr>
<td>Area</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Search Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Little Seoul</td>
</tr>
</tbody>
</table>
Hi, I want a **cheap Korean restaurant**.

What **area** are you looking for?

Somewhere in the **north**.

Little Seoul is nice one in the north.

What is the **phone number**?

Its phone number is **01223456789**.
Hi, I want a cheap Korean restaurant.

What area are you looking for?

Somewhere in the north.

Little Seoul is nice one in the north.

What is the phone number?

Its phone number is 01223456789.

Thank you very much, good bye.

Thank you for using the system.
Hi, I want a cheap Korean restaurant.

What area are you looking for?

Somewhere in the north.

Little Seoul is nice one in the north.

What is the phone number?

Its phone number is 01223456789.

Thank you very much, good bye.

Thank you for using the system.
Wizard of Oz Data Collection

- Online parallel version of WOZ on MTurk
 - Randomly hire a worker to be user/wizard.
 - Task: Enter an appropriate response for one turn.
 - Repeat the process until all dialogues are finished.

- Example user page

Task 02004: You are looking for and it should serve *gastropub food*. You don’t care about the *price range*. You want to know the *address*.

Info Desk: Hello, welcome to the Cambridge restaurant system. You can ask for restaurants by area, price range or food type. How may I help you?
Customer: I want a gastropub food
Info Desk: There are 4 restaurants serving gastropub food, what price range do you want?

[Next turn]

Customer: (Your response)

I *don’t* care about the price range, just give me the address please.
Wizard of Oz Data Collection

Example wizard page

Info Desk: Hello, welcome to the Cambridge restaurant system. You can ask for restaurants by area, price range or food type. How may I help you?
Customer: I want a gastropub food
Info Desk: There are 4 restaurants serving gastropub food, what price range do you want?
Customer: I don't care

Please modify the following answers based on the latest customer response:

- What does user want?
 What is the food type the user wants? gastropub
 What is the area the user wants? not mentioned
 What is the price range the user wants? don't care

- What does user ask?
 Is the user asking for food type of an offered venue? No
 Is the user asking for price range of an offered venue? No
 Is the user asking for area of an offered venue? No
 Is the user asking for postcode of an offered venue? No
 Is the user asking for phone number of an offered venue? No
 Is the user asking for address of an offered venue? No
 Is the user mentioning any restaurant names? No

Info Desk: (Your response)
I would recommend backstreet bistro, a great gastropub restaurant in the centre. do you want their phone number? end-of-dialogue

<table>
<thead>
<tr>
<th>Name</th>
<th>Food</th>
<th>Area</th>
<th>Price Range</th>
<th>Phone</th>
<th>Address</th>
<th>Postcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>backstreet bistro</td>
<td>gastropub</td>
<td>centre</td>
<td>expensive</td>
<td>01223 308306</td>
<td>2 Storton Street City Centre</td>
<td>C.B 1, 2 Q.A</td>
</tr>
<tr>
<td>royal standard</td>
<td>gastropub</td>
<td>east</td>
<td>expensive</td>
<td>01223 247877</td>
<td>290 Mill Road City Centre</td>
<td>C.B 1, 3 N.L</td>
</tr>
<tr>
<td>the cow pizza kitchen</td>
<td>gastropub</td>
<td>centre</td>
<td>moderate</td>
<td>01223 308871</td>
<td>Corn Exchange Street</td>
<td>C.B 2, 3 Q.F</td>
</tr>
<tr>
<td>and bar</td>
<td></td>
<td></td>
<td></td>
<td>--</td>
<td>34 - 35 Green Street</td>
<td>C.B 2, 3 J.U</td>
</tr>
<tr>
<td>nil</td>
<td>gastropub</td>
<td>nil</td>
<td></td>
<td>nil</td>
<td>nil</td>
<td>nil</td>
</tr>
<tr>
<td>nil</td>
<td>nil</td>
<td>nil</td>
<td></td>
<td>nil</td>
<td>nil</td>
<td>nil</td>
</tr>
<tr>
<td>nil</td>
<td>nil</td>
<td>nil</td>
<td></td>
<td>nil</td>
<td>nil</td>
<td>nil</td>
</tr>
</tbody>
</table>
CamRest676 dataset

- **Ontology:**
 - Cambridge restaurant domain, 99 venues.
 - 3 informable slots: area, price range, food type
 - 3 requestable slots: address, phone, postcode

- **Dataset**
 - 676 dialogues, ~2750 turns
 - 3000 HITS, takes 3 days, costs ~400 USD
 - Data cleaning takes 2-3 days for one person

Link: https://www.repository.cam.ac.uk/handle/1810/260970
Outline

- Intro
- Neural Dialogue Systems
- Wizard-of-Oz Data Collection
- Experiments
- Conclusion
Experiments

- Experimental details
 - Train/valid/test: 3/1/1
 - SGD, l2 regularisation, early stopping, gradient clip=1
 - Hidden size = 50, Vocab size: ~500

- Two stage training:
 - Training trackers with label cross entropy
 - Training other parts with response cross entropy

- Decoding
 - Beam search w/ beam width 10
 - Decode with average word likelihood
Response Generation Task

<table>
<thead>
<tr>
<th>Model</th>
<th>Match (%)</th>
<th>Success (%)</th>
<th>BLEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seq2Seq [Sutskever et al, 2014]</td>
<td>-</td>
<td>-</td>
<td>0.1718</td>
</tr>
<tr>
<td>HRED [Serban et al, 2015]</td>
<td>-</td>
<td>-</td>
<td>0.1861</td>
</tr>
<tr>
<td>Our model w/o req. trackers</td>
<td>89.70</td>
<td>30.60</td>
<td>0.1799</td>
</tr>
<tr>
<td>Our full model</td>
<td>86.34</td>
<td>75.16</td>
<td>0.2313</td>
</tr>
<tr>
<td>Our full model + attention</td>
<td>90.88</td>
<td>80.02</td>
<td>0.2388</td>
</tr>
</tbody>
</table>
Human evaluation

Quality assessment

<table>
<thead>
<tr>
<th>Metric</th>
<th>NN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Success</td>
<td>98%</td>
</tr>
<tr>
<td>Comprehension</td>
<td>4.11</td>
</tr>
<tr>
<td>Naturalness</td>
<td>4.05</td>
</tr>
<tr>
<td># of dialogues</td>
<td>245</td>
</tr>
</tbody>
</table>

System Comparison

<table>
<thead>
<tr>
<th>Metric</th>
<th>NN</th>
<th>HDC</th>
<th>Tie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subj. Success</td>
<td>96.95%</td>
<td>95.12%</td>
<td>-</td>
</tr>
<tr>
<td>Avg. # of Turn</td>
<td>3.95</td>
<td>4.54</td>
<td>-</td>
</tr>
</tbody>
</table>

Comparisons (%)

<table>
<thead>
<tr>
<th>Metric</th>
<th>NN</th>
<th>HDC</th>
<th>Tie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naturalness</td>
<td>46.95*</td>
<td>25.61</td>
<td>27.44</td>
</tr>
<tr>
<td>Comprehension</td>
<td>45.12*</td>
<td>21.95</td>
<td>32.93</td>
</tr>
<tr>
<td>Preference</td>
<td>50.00*</td>
<td>24.39</td>
<td>25.61</td>
</tr>
<tr>
<td>Performance</td>
<td>43.90*</td>
<td>25.61</td>
<td>30.49</td>
</tr>
</tbody>
</table>

* p <0.005, # of comparisons: 164
Example dialogues

Human: Restaurant in any area that serves Vietnamese food
Machine: thanh binh serves vietnamese food type. Is there anything else i can help you with?
Human: What is the phone number and post code
Machine: the number is 01223 362456 and the area code is c.b 3, 0 a.f. Is there anything else i can do for you?
Human: Good bye
Machine: thank you for using the cambridge restaurant system.

Human: Hi, I’m hungry for some Indonesian food
Machine: i am sorry, there are no indonesian restaurants. Would you like a different food?
Human: Oh no. How about Indian?
Machine: there are 9 restaurants serving indian types of food. Do you have a preference on side of town?
Human: East side please
Machine: sitar tandoori is a indian restaurant in the east side of town. Would you like their information?
Human: Yes, the address and phone number please
Machine: sitar tandoori is located at 43 high street cherry hinton cherry hinton and their phone number is 01223 249955.
Human: Okay, thank you
Machine: thank you, goodbye.
Example dialogues

Human : hello
Machine : what cuisine would you like ?
Human : afghan
Machine : i am sorry , there are no afghan restaurants . would you like something else ?
Human : korean
Machine : little seoul serves korean food , it is located at 108 regent street city centre .
Human : is it expensive ?
Machine : little seoul serves korean food and is in the expensive price range .
Human : what area is that
Machine : little seoul is located in the centre area of town . would you like their number ?
Human : yes
Machine : the telephone number is 01223 308681 . is there anything else i can help you with today ?
Human : no goodbye
Machine : thank you for using the cambridge restaurant system , goodbye .
Visualising action embedding
Outline

- Intro
- Neural Dialogue Systems
- Wizard-of-Oz Data Collection
- Experiments
- Conclusion
Conclusion

- An end-to-end trainable task-oriented dialogue system architecture is introduced.
- A complementary WOZ data collection is used to collect the training data (no latency, parallel, cheap).
- Results show that it can learn from human-human conversations and help users to complete tasks.
- Explicit language grounding is crucial, but what is the best way to represent semantics?
Future Work

- Latent Intention Dialogue Models (under review)
 - Learn an embedded latent policy from a supervised corpus.
 - Fine-tune policy using reinforcement learning.

- Multi-domain Neural Dialogue Systems
 - Collect WOZ data across several domains.
 - Train a neural controller to read/write memory tapes (trackers) and emit responses.
The paper

References

- M. Henderson, B. Thomson and S. Young. Word-Based Dialog State Tracking with Recurrent Neural Networks, SigDial 2014.
Thank you! Questions?

Tsung-Hsien Wen is supported by a studentship funded by Toshiba Research Europe Ltd, Cambridge Research Laboratory