Scalable Neural Language Generation for Open Domain Dialogue Systems

Speaker: Tsung-Hsien Wen
Supervisor: Professor Steve Young
Problem Definition

• Given a meaning representation, map it into a natural language representation
 • inform(type=Seven_days,food=Chinese)
 • Seven_days serves good Chinese food.

• What we care about?
 • adequacy, fluency, readability, variation (Stent et al 2005)
Motivation

• Traditionally, NLG is not scalable because:
 • Embrace a rule-based regime
 • Highly specialised for in-domain applications

• Talking to NLG is not enjoyable because of:
 • Frequent repetition of certain output forms
 • Awkward responses that are not colloquial
Why RNN for NLG?

- Elegant structure for modeling **sequences**.
- Flexible architecture for adding **auxiliary information**.
- Collecting data is convenient and quick (**crowdsourcing**).
- More human-like and **colloquial**.
- **No expert** knowledge is required.
- **Extensible**, adaptation techniques exist.
- **Distributed representation**
- **Less cost**, **quicker** development cycle
- **End-to-End** trainable
Challenges

• How to render the exact information we want (with the existence of language variation)?

• Adopted methods:
 • Overgeneration – Reranking paradigm (Oh and Rudnicky 2000)
 • Sample words from a Recurrent Generation Model output.
 • Select top candidates based on some scoring criteria.
Part 1
Heuristically Gated RNN Generator
Outline

• Recurrent Generation Model
• Convolutional Semantic Reranker
• Backward RNN Reranker
• Experiments
 • Setup
 • Automatic Evaluation
 • Human Evaluation
Outline

• **Recurrent Generation Model**
• Convolutional Semantic Reranker
• Backward RNN Reranker
• Experiments
 • Setup
 • Automatic Evaluation
 • Human Evaluation
Recurrent Generation Model (1/2)

Inform(name=Seven_Days, food=Chinese)

\[
\begin{bmatrix}
0, 0, 1, 0, 0, \ldots, 1, 0, 0, \ldots, 1, 0, 0, 0, 0, 0, \ldots
\end{bmatrix}
\]

data act 1-hot representation

delexicalisation

(Mikolov et al 2010)
Recurrent Generation Model (2/2)

- Heuristically check **exact match** whether a given slot token has been generated.
- Apply a decay factor $\delta < 1$ on generated feature values.
- Use features to configure the network NOT to re-generate slots that have already generated.
- Binary slots and don’t care values cannot be handled.

<table>
<thead>
<tr>
<th>Feature value</th>
<th>$<$s$>$</th>
<th>SLOT_NAME</th>
<th>serves</th>
<th>SLOT_FOOD</th>
<th>.</th>
<th>$<$s$>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>1</td>
<td>1</td>
<td>δ</td>
<td>δ^2</td>
<td>δ^3</td>
<td>δ^4</td>
</tr>
<tr>
<td>FOOD</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>δ</td>
<td>δ^2</td>
</tr>
</tbody>
</table>
Recurrent Generation Model (3/3)

- ERR: # of missing/redundant slots
- BLEU: BLEU-4 against multiple references
Outline

• Recurrent Generation Model
• **Convolutional Semantic Reranker**
• Backward RNN Reranker
• Experiments
 • Setup
 • Automatic Evaluation
 • Human Evaluation
• Designed to handle:
 • Binary slots: ALLOW_KID=yes/no
 • “don’t care” values: AREA=dont_care
 • Use CNN for semantic validation
Convolutional Semantic Reranker (2/2)

Target dialogue act: inform(name=Seven_days, food=Chinese)
Generated candidate: </s> SLOT_NAME serves SLOT_FOOD . </s>
Convolutional Semantic Reranker (3/3)

The graph shows the BLEU scores for different scenarios of data inclusion:

- **w/o CNN**: The scores range from 0.48 to 0.68.
- **w/ CNN**: The scores range from 0.73 to 0.73.

Data Inclusion:
- **Hard** data includes a BLEU score of 0.53.
- **All** data includes a BLEU score of <0.5%.

The graph indicates a significant improvement in BLEU scores when using CNN in all data scenarios.
Outline

- Recurrent Generation Model
- Convolutional Semantic Reranker
- Backward RNN Reranker
- Experiments
 - Setup
 - Automatic Evaluation
 - Human Evaluation
Backward RNN Reranker

• Motivation:
 • Considering backward context can reduce grammatical errors.
 • Ex. “Seven Days is an exceptional restaurant.”
• Integrating information from both directions is tricky.
 • The generation procedure is sequential in one direction only.
• Alternative => train an RNN in reverse direction and use it for rescoring.
Backward RNN Reranker (3/3)

![Graph showing BLEU scores for different TopN/beam values with and without BLEU w/o and BLEU w/.]
Outline

• Recurrent Generation Model
• Convolutional Semantic Reranker
• Backward RNN Reranker
• Experiments
 • Setup
 • Automatic Evaluation
 • Human Evaluation
Setup

• Data collection:
 • SFX Restaurant domain: 8 system act types, 12 slots (1 is binary).
 • Workers recruited from Amazon MT
 • Asked to generate system responses given a dialogue act.
 • Result in ~5.1K utterances, 228 distinct acts

• Training: BPTT, L2 regularisation, SGD w/ early stopping.
 train/valid/test: 3/1/1, data up-sampling
Outline

• Recurrent Generation Model
• Convolutional Semantic Reranker
• Backward RNN Reranker
• Experiments
 • Setup
 • **Automatic Evaluation**
 • Human Evaluation
Automatic Evaluation (1/2)

- Test set: 1039 utterances, 1848 required slots.
- Metrics: BLEU-4 (against multiple references), ERR(slot errors)
- Results averaged over 10 random initialised networks
- Compared with class-based LM (classlm), handcrafted generator (hdc), and kNN based model.
Automatic Evaluation (2/2)

BLEU

<table>
<thead>
<tr>
<th>Selection Beam</th>
<th>hdc</th>
<th>knn</th>
<th>classlm</th>
<th>rnn</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/20</td>
<td>0.440</td>
<td>0.591</td>
<td>0.757</td>
<td>0.777</td>
</tr>
<tr>
<td>5/20</td>
<td>-</td>
<td>-</td>
<td>0.678</td>
<td>0.712</td>
</tr>
</tbody>
</table>

ERR

<table>
<thead>
<tr>
<th>Selection Beam</th>
<th>hdc</th>
<th>knn</th>
<th>classlm</th>
<th>rnn</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/20</td>
<td>0</td>
<td>17.2</td>
<td>47.8</td>
<td>0</td>
</tr>
<tr>
<td>5/20</td>
<td>-</td>
<td>-</td>
<td>104.6</td>
<td>3.1</td>
</tr>
</tbody>
</table>
Outline

• Recurrent Generation Model
• Convolutional Semantic Reranker
• Backward RNN Reranker
• Experiments
 • Setup
 • Automatic Evaluation
 • **Human Evaluation**
• Setup

 • Judges (~60) recruited from Amazon MT.
 • Asked to evaluate two system responses pairwise.
 • Comparing handcrafted (hdc), RNN top-1 (rnn₁), RNN sample from top-5 (rnn₅), and class-based LM sampled from top-5 (classlm₅).

• Metrics:
 • Informativeness, Naturalness (rating out of 5)
 • Preference
Human Evaluation (2/3)

<table>
<thead>
<tr>
<th>Metrics</th>
<th>hdc</th>
<th>rnn1</th>
<th>hdc</th>
<th>rnn5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Info.</td>
<td>3.75</td>
<td>3.81</td>
<td>3.85</td>
<td>3.93*</td>
</tr>
<tr>
<td>Nat.</td>
<td>3.58</td>
<td>3.74**</td>
<td>3.57</td>
<td>3.94**</td>
</tr>
<tr>
<td>Pref.</td>
<td>44.8%</td>
<td>55.2%*</td>
<td>37.2%</td>
<td>62.8%**</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metrics</th>
<th>rnn1</th>
<th>rnn5</th>
<th>classlm5</th>
<th>rnn5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Info.</td>
<td>3.75</td>
<td>3.72</td>
<td>4.02</td>
<td>4.15%*</td>
</tr>
<tr>
<td>Nat.</td>
<td>3.67</td>
<td>3.58</td>
<td>3.91</td>
<td>4.02</td>
</tr>
<tr>
<td>Pref.</td>
<td>47.5%</td>
<td>52.5%</td>
<td>47.1%</td>
<td>52.9%</td>
</tr>
</tbody>
</table>

* = p < .05, ** < .005
Human Evaluation (2/3)

<table>
<thead>
<tr>
<th>Metrics</th>
<th>hdc</th>
<th>rnn1</th>
<th>hdc</th>
<th>rnn5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Info.</td>
<td>3.75</td>
<td>3.81</td>
<td>3.85</td>
<td>3.93*</td>
</tr>
<tr>
<td>Nat.</td>
<td>3.58</td>
<td>3.74**</td>
<td>3.57</td>
<td>3.94**</td>
</tr>
<tr>
<td>Pref.</td>
<td>44.8%</td>
<td>55.2%*</td>
<td>37.2%</td>
<td>62.8%**</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metrics</th>
<th>rnn1</th>
<th>rnn5</th>
<th>classlm5</th>
<th>rnn5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Info.</td>
<td>3.75</td>
<td>3.72</td>
<td>4.02</td>
<td>4.15%*</td>
</tr>
<tr>
<td>Nat.</td>
<td>3.67</td>
<td>3.58</td>
<td>3.91</td>
<td>4.02</td>
</tr>
<tr>
<td>Pref.</td>
<td>47.5%</td>
<td>52.5%</td>
<td>47.1%</td>
<td>52.9%</td>
</tr>
</tbody>
</table>

* = p<.05, ** = <.005
<table>
<thead>
<tr>
<th>Metrics</th>
<th>hdc</th>
<th>rnn1</th>
<th>hdc</th>
<th>rnn5</th>
<th>*p<.05, **<.005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Info.</td>
<td>3.75</td>
<td>3.81</td>
<td>3.85</td>
<td>3.93*</td>
<td></td>
</tr>
<tr>
<td>Nat.</td>
<td>3.58</td>
<td>3.74**</td>
<td>3.57</td>
<td>3.94**</td>
<td></td>
</tr>
<tr>
<td>Pref.</td>
<td>44.8%</td>
<td>55.2%*</td>
<td>37.2%</td>
<td>62.8%**</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metrics</th>
<th>rnn1</th>
<th>rnn5</th>
<th>classlm5</th>
<th>rnn5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Info.</td>
<td>3.75</td>
<td>3.72</td>
<td>4.02</td>
<td>4.15%*</td>
</tr>
<tr>
<td>Nat.</td>
<td>3.67</td>
<td>3.58</td>
<td>3.91</td>
<td>4.02</td>
</tr>
<tr>
<td>Pref.</td>
<td>47.5%</td>
<td>52.5%</td>
<td>47.1%</td>
<td>52.9%</td>
</tr>
</tbody>
</table>
Human Evaluation (2/3)

<table>
<thead>
<tr>
<th>Metrics</th>
<th>hdc</th>
<th>rnn1</th>
<th>hdc</th>
<th>rnn5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Info.</td>
<td>3.75</td>
<td>3.81</td>
<td>3.85</td>
<td>3.93*</td>
</tr>
<tr>
<td>Nat.</td>
<td>3.58</td>
<td>3.74**</td>
<td>3.57</td>
<td>3.94**</td>
</tr>
<tr>
<td>Pref.</td>
<td>44.8%</td>
<td>55.2%*</td>
<td>37.2%</td>
<td>62.8%**</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metrics</th>
<th>rnn1</th>
<th>rnn5</th>
<th>classlm5</th>
<th>rnn5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Info.</td>
<td>3.75</td>
<td>3.72</td>
<td>4.02</td>
<td>4.15%*</td>
</tr>
<tr>
<td>Nat.</td>
<td>3.67</td>
<td>3.58</td>
<td>3.91</td>
<td>4.02</td>
</tr>
<tr>
<td>Pref.</td>
<td>47.5%</td>
<td>52.5%</td>
<td>47.1%</td>
<td>52.9%</td>
</tr>
</tbody>
</table>

* = p < .05, ** = p < .005
Human Evaluation (2/3)

<table>
<thead>
<tr>
<th>Metrics</th>
<th>hdc</th>
<th>rnn1</th>
<th>hdc</th>
<th>rnn5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Info.</td>
<td>3.75</td>
<td>3.81</td>
<td>3.85</td>
<td>3.93*</td>
</tr>
<tr>
<td>Nat.</td>
<td>3.58</td>
<td>3.74**</td>
<td>3.57</td>
<td>3.94**</td>
</tr>
<tr>
<td>Pref.</td>
<td>44.8%</td>
<td>55.2%*</td>
<td>37.2%</td>
<td>62.8%**</td>
</tr>
<tr>
<td>Metrics</td>
<td>rnn1</td>
<td>rnn5</td>
<td>classlm5</td>
<td>rnn5</td>
</tr>
<tr>
<td>Info.</td>
<td>3.75</td>
<td>3.72</td>
<td>4.02</td>
<td>4.15%*</td>
</tr>
<tr>
<td>Nat.</td>
<td>3.67</td>
<td>3.58</td>
<td>3.91</td>
<td>4.02</td>
</tr>
<tr>
<td>Pref.</td>
<td>47.5%</td>
<td>52.5%</td>
<td>47.1%</td>
<td>52.9%</td>
</tr>
</tbody>
</table>

*=p<.05, **<.005
<table>
<thead>
<tr>
<th>#</th>
<th>Dialogue act and example realisations of our system, by sampling from top-5 candidates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>inform(name=”stroganoff restaurant”,pricerange=cheap,near=”fishermans wharf”)</td>
</tr>
<tr>
<td></td>
<td>stroganoff restaurant is a cheap restaurant near fishermans wharf.</td>
</tr>
<tr>
<td></td>
<td>stroganoff restaurant is in the cheap price range near fishermans wharf.</td>
</tr>
<tr>
<td>2</td>
<td>reject(kidsallowed=yes,food=”basque”)</td>
</tr>
<tr>
<td></td>
<td>unfortunately there are 0 restaurants that allow kids and serve basque.</td>
</tr>
<tr>
<td>3</td>
<td>informonly(name=”bund shanghai restaurant”, food=”shanghainese”)</td>
</tr>
<tr>
<td></td>
<td>i apologize, no other restaurant except bund shanghai restaurant that serves shanghainese.</td>
</tr>
<tr>
<td></td>
<td>sorry but there is no place other than the restaurant bund shanghai restaurant for shanghainese.</td>
</tr>
<tr>
<td>4</td>
<td>confirm(goodformeal=dontcare)</td>
</tr>
<tr>
<td></td>
<td>i am sorry. just to confirm. you are looking for a restaurant good for any meal?</td>
</tr>
<tr>
<td></td>
<td>can i confirm that you do not care about what meal they offer?</td>
</tr>
<tr>
<td>5</td>
<td>request(near)</td>
</tr>
<tr>
<td></td>
<td>would you like to dine near a particular location?</td>
</tr>
<tr>
<td>6</td>
<td>reqmore()</td>
</tr>
<tr>
<td></td>
<td>is there anything else i can do for you ?</td>
</tr>
<tr>
<td>7</td>
<td>select(kidsallowed=yes, kidsallowed=no)</td>
</tr>
<tr>
<td></td>
<td>are you looking for a restaurant that allows kids, or does not allow kids ?</td>
</tr>
<tr>
<td>8</td>
<td>goodbye()</td>
</tr>
<tr>
<td></td>
<td>thank you for calling. good bye.</td>
</tr>
</tbody>
</table>
A Brief Summary

• RGM learns generation decisions from corpus.

• No rules, grammars, semantic alignments, or heavy feature engineering are required.

• Can we do better?
 • No heuristic rules for gates.
 • Direct control of generating arbitrary slot-value pairs.
 • Better performance.
Part 2
Semantically Controlled LSTM Generator
Outline

• SC-LSTM
• Deep Model
• Experiments
 • Automatic Evaluation
 • Human Evaluation
SC-LSTM (1/4)

• Original LSTM cell

\[
\begin{align*}
 i_t &= \sigma(W_{wi}w_t + W_{hi}h_{t-1}) \\
 f_t &= \sigma(W_{wf}w_t + W_{hf}h_{t-1}) \\
 o_t &= \sigma(W_{wo}w_t + W_{ho}h_{t-1}) \\
 \hat{c}_t &= \tanh(W_{wc}w_t + W_{hc}h_{t-1}) \\
 c_t &= f_t \odot c_{t-1} + i_t \odot \hat{c}_t \\
 h_t &= o_t \odot \tanh(c_t)
\end{align*}
\]

(Hochreiter and Schmidhuber, 1997)
SC-LSTM (2/4)

- **Original LSTM cell**

 \[
 i_t = \sigma(W_{wi}w_t + W_{hi}h_{t-1}) \quad (1)
 \]

 \[
 f_t = \sigma(W_{wf}w_t + W_{hf}h_{t-1}) \quad (2)
 \]

 \[
 o_t = \sigma(W_{wo}w_t + W_{ho}h_{t-1}) \quad (3)
 \]

 \[
 \hat{c}_t = \tanh(W_{wc}w_t + W_{hc}h_{t-1}) \quad (4)
 \]

 \[
 c_t = f_t \odot c_{t-1} + i_t \odot \hat{c}_t \quad (5)
 \]

 \[
 h_t = o_t \odot \tanh(c_t) \quad (6)
 \]

- **DA cell**

 \[
 r_t = \sigma(W_{wr}w_t + \alpha W_{hr}h_{t-1}) \quad (7)
 \]

 \[
 d_t = r_t \odot d_{t-1} \quad (8)
 \]

(Hochreiter and Schmidhuber, 1997)
SC-LSTM (3/4)

- Original LSTM cell

\[
i_t = \sigma(W_{wi}w_t + W_{hi} h_{t-1}) \quad (1)
\]
\[
f_t = \sigma(W_{wf}w_t + W_{hf} h_{t-1}) \quad (2)
\]
\[
o_t = \sigma(W_{wo}w_t + W_{ho} h_{t-1}) \quad (3)
\]
\[
\hat{c}_t = \tanh(W_{wc}w_t + W_{hc} h_{t-1}) \quad (4)
\]
\[
c_t = f_t \odot c_{t-1} + i_t \odot \hat{c}_t \quad (5)
\]
\[
h_t = o_t \odot \tanh(c_t) \quad (6)
\]

- DA cell

\[
r_t = \sigma(W_{wr}w_t + \alpha W_{hr} h_{t-1}) \quad (7)
\]
\[
d_t = r_t \odot d_{t-1} \quad (8)
\]

- Modify eq. (6) to

\[
c_t = f_t \odot c_{t-1} + i_t \odot \hat{c}_t + \tanh(W_{dc}d_t) \quad (9)
\]

(Hochreiter and Schmidhuber, 1997)
Cost function

\[
F(\theta) = \sum_t p_t^T \log(y_t) + \|d_T\| + \sum_{t=0}^{T-1} \eta \xi \|d_{t+1} - d_t\|
\]

- 1st term: cross entropy error
- 2nd term: make sure rendering all the information needed
- 3rd term: prevent undesirable gating behaviors

(Hochreiter and Schmidhuber, 1997)
Outline

• SC-LSTM
• **Deep Model**
• Experiments
 • Automatic Evaluation
 • Human Evaluation
Deep Model (1/2)
Deep Model (2/2)

- Techniques applied
 - Skip connection (Graves et al. 2013)
 - RNN dropout (Srivastava et al. 2014)

- Gating Equation is modified

\[r_t = \sigma \left(W_{wr} w_t + \alpha W_{hr} h_{t-1} \right) \] (7)

- To

\[r_t = \sigma \left(W_{wr} w_t + \sum_l \alpha_l W_{hr}^l h_{t-1}^l \right) \] (12)
Outline

• SC-LSTM
• Deep Model
• Experiments
 • Automatic Evaluation
 • Human Evaluation
Automatic Evaluation (1/3)

• Dataset: SFX Restaurant & SFX Hotel Domains
 • 5K utterances, 3:1:1 splitting
 • 248/164 distinct acts, 2.25/1.95 # of slot per DA

• Ontologies:

<table>
<thead>
<tr>
<th>act type</th>
<th>SF Restaurant</th>
<th>SF Hotel</th>
</tr>
</thead>
<tbody>
<tr>
<td>inform, inform_only, reject, confirm, select, request, reqmore, goodbye</td>
<td>name, type, *pricerange, price, phone, address, postcode, *area, *near</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>shared</th>
<th>*food</th>
<th>*hasinternet</th>
</tr>
</thead>
<tbody>
<tr>
<td>*goodformeal</td>
<td>*acceptscards</td>
<td>*dogs-allowed</td>
</tr>
</tbody>
</table>

bold=binary slots, **=*slots can take “don’t care” value
Automatic Evaluation (2/3)

Selection scheme: 5/20

Model: hdc, knn, classlm, rnn, sc-lstm, +deep

BLEU scores for Restaurant and Hotel predictions.
Outline

• SC-LSTM
• Deep Model
• Experiments
 • Automatic Evaluation
 • Human Evaluation
Human Evaluation (1/3)

• Setting
 • Done on SFX Restaurant domain
 • Comparing classlm, rnn w/, sc-lstm and +deep

• Metrics
 • Informativeness, Naturalness, Preference
Human Evaluation (2/3)

<table>
<thead>
<tr>
<th>Method</th>
<th>Informativeness</th>
<th>Naturalness</th>
</tr>
</thead>
<tbody>
<tr>
<td>+deep</td>
<td>2.58</td>
<td>2.51</td>
</tr>
<tr>
<td>sc-lstm</td>
<td>2.59</td>
<td>2.50</td>
</tr>
<tr>
<td>rnn w/</td>
<td>2.53</td>
<td>2.42*</td>
</tr>
<tr>
<td>classlm</td>
<td>2.46**</td>
<td>2.45</td>
</tr>
</tbody>
</table>

* $p < 0.05$ ** $p < 0.005$
Human Evaluation (3/3)

<table>
<thead>
<tr>
<th>Pref. %</th>
<th>classlm</th>
<th>rnn w/</th>
<th>sc-lstm</th>
<th>+deep</th>
</tr>
</thead>
<tbody>
<tr>
<td>classlm</td>
<td>-</td>
<td>46.0</td>
<td>40.9**</td>
<td>37.7**</td>
</tr>
<tr>
<td>rnn w/</td>
<td>54.0</td>
<td>-</td>
<td>43.0</td>
<td>35.7*</td>
</tr>
<tr>
<td>sc-lstm</td>
<td>59.1*</td>
<td>57</td>
<td>-</td>
<td>47.6</td>
</tr>
<tr>
<td>+deep</td>
<td>62.3**</td>
<td>64.3**</td>
<td>52.4</td>
<td>-</td>
</tr>
</tbody>
</table>

* *p < 0.05* ** *p < 0.005*
Example
Example
Conclusion
Conclusion – Why RNN for NLG?

✔ Elegant structure for modeling *sequences*.
 - Flexible architecture for adding *auxiliary information*.

✔ Collecting data is convenient and quick (*crowdsourcing*).

✔ More human-like and *colloquial*.

✔ **No expert** knowledge is required.
 - *Extensible*, adaptation techniques exist.
 - *Distributed representation*

✔ **Less cost, quicker** development cycle

✔ **End-to-End** trainable

Reference

Thank you! Questions?

This project is supported by Toshiba Research Europe Ltd, Cambridge Research Laboratory.

Dialogue Systems Group