
The Geometry of Statistical Machine
Translation

Aurelien Waite
Department of Engineering

University of Cambridge

This dissertation is submitted for the degree of

Doctor of Philosophy

Girton College 2014

Abstract

Most modern statistical machine translation systems are based on the linear model. There
are many reasons for the prevalence of the linear model: other component models can be
incorporated as features, there are many methods for estimating their parameters, and the
resulting model scores can be easily used in finite-state representations.

One popular method for estimating the parameters of a linear model is minimum error
rate training (MERT). Galley and Quirk describe an optimal MERT algorithm that requires
an exponential runtime for multiple sentences. We find that this form of MERT can be repre-
sented using convex geometry. Using this geometric representation we describe an optimal
algorithm that runs in polynomial time with respect to the number of feasible solutions, and
describe Projected MERT, a practical implementation of multidimensional MERT in low
dimensions.

Using this geometric representation of MERT we investigate whether the optimisation
of linear models is tractable in general. It has been believed that the number of feasible
solutions of a linear model is exponential with respect to the number of training sentences,
however we show that the exponential explosion is due to feature dimension. A result
that has important ramifications because of the current trend of building statistical machine
translation systems around a large number of sparse features.

We also show how these convex geometric descriptions of linear models can be neatly
integrated into finite-state representations using tropical geometry. The resulting semirings
provide a formulation for multidimensional MERT that can be applied to lattices and hyper-
graphs.

In contrast to this theoretical work, we also present practical descriptions of tools and
techniques used for fast parameter estimation and filtering of hierarchical phrase-based
translation models and N-gram language models. These techniques allow us to quickly
build rich models over large datasets. The resulting models are used as the basis of a ma-
chine translation system that performs competitively at international evaluations.

Contents

Contents v

List of Figures ix

List of Tables xi

Nomenclature xiii

1 Introduction 1
1.1 Minimum Error Rate Training . 2

1.2 Original Contributions . 3

1.3 Publications . 4

1.4 Organisation of Thesis . 5

2 Statistical Machine Translation Decoding 7
2.1 N-gram Language Models . 9

2.1.1 Solutions for N-gram Sparseness 9

2.2 Hierarchical Phrase-Based Translation . 12

2.2.1 Word Alignment . 12

2.2.2 Phrase-Based Translation . 13

2.2.3 Hierarchical Phrase-Based Translation 14

2.3 Statistical Machine Decoding . 16

2.3.1 HiFST . 17

2.3.2 Semirings . 18

2.3.3 Weighted Finite-State Transducers 19

2.3.4 Word Lattices . 21

2.3.5 Hierarchical Phrase-Based Decoding with WFSTs 21

2.3.6 Large Language Model Rescoring of Word Lattices 22

vi Contents

2.4 Summary . 23

3 Parameter Estimation for Linear Models 25
3.1 Automated Quality Metrics . 26

3.1.1 The BiLingual Evaluation Understudy 27

3.1.2 Translation Edit Rate . 27

3.1.3 NIST . 28

3.1.4 Metric for Evaluation of Translation with Explicit ORdering 28

3.2 Minimum Error-Rate Training . 29

3.2.1 Line Optimisation . 30

3.2.2 Choosing Directions for Line Optimisation 34

3.2.3 LP-MERT . 34

3.2.4 LP-MERT for the Training Set . 37

3.3 Large-Margin Methods . 38

3.3.1 The Structured Support Vector Machine 39

3.3.2 Margin Infused Relaxed Algorithm 40

3.4 Ranking Methods . 41

3.5 Other Methods . 41

3.6 Survey of Recent Work . 42

4 Fast Model Parameter Estimation and Filtering for Large Datasets 45
4.1 Related Work . 47

4.2 MapReduce . 49

4.2.1 MapReduce Implementation . 52

4.3 The HFile Format . 53

4.3.1 Application to Stupid Backoff Models 57

4.4 Improvements to Hierarchical Rule Extraction 59

4.4.1 Baseline Rule Extraction System Design 61

4.4.2 Improvements to Rule Extraction 64

4.4.3 Impact of Improvements . 68

4.5 Conclusion . 70

5 A Description of Minimum Error Rate Training Using Convex Polytopes 73
5.1 Introduction . 73

5.2 The Normal Fan . 75

5.2.1 Convex Geometry Basics . 76

Contents vii

5.2.2 Faces in Feature Space . 79

5.2.3 The Normal Cone . 82

5.2.4 The Normal Fan . 84

5.2.5 An Example of the Normal Fan 88

5.3 Dual Representations of Polytopes and Cones 88

5.3.1 Algorithms for Computing Dual Representations 90

5.3.2 The Dual Representation of a Normal Cone 91

5.4 Projected MERT . 92

5.4.1 Affine Projection . 93

5.4.2 Och’s Line Optimisation as a Projection Operation 93

5.4.3 Optimal Search over Many Directions using a Projected Polytope . 95

5.4.4 An Example of Och’s Line Optimisation using a Projected Polytope 97

5.5 Regularisation and the Normal Fan . 100

5.6 A Geometric Description of Ranking Methods 104

6 Training Set Geometry 107
6.1 The Minkowski Sum . 109

6.1.1 Equivalence of the Minkowski Sum and the Common Refinement . 112

6.2 A Polynomial Time Minkowski Sum Algorithm 114

6.2.1 Enumerating Vertices with a Reverse Search 114

6.2.2 Implementation of Reverse Search Functions 120

6.3 Upper Bound of the Minkowski Sum . 127

6.3.1 Upper Bound Theorems . 127

6.3.2 The Impact of Upper Bounds on SMT systems 128

6.3.3 Linear Models and the Upper Bound Theorems 129

6.4 The Minkowski Sum with Projected MERT 130

6.5 Summary . 133

7 A Description of Lattice-based MERT Using Tropical Geometry 135
7.1 Introduction . 135

7.2 Lattice-based MERT . 136

7.2.1 Lattice Line Optimisation . 136

7.2.2 Line Search using WFSTs . 137

7.3 Tropical Geometry . 138

7.3.1 Tropical Polynomials . 138

7.3.2 Canonical Form of a Tropical Polynomial 140

viii Contents

7.3.3 Integer Approximations for Tropical Monomials 141
7.3.4 Computing the Upper Envelope using the Shortest Distance Algorithm142
7.3.5 Extracting the Error Surface . 143
7.3.6 The Tropical Geometry MERT Algorithm 143
7.3.7 TGMERT Worked Example . 144
7.3.8 Tropical Polynomial Edge Pruning Algorithm 146

7.4 Experiments . 147
7.4.1 Effect of Tropical Polynomial Pruning 148

7.5 Multi-direction Lattice-based MERT . 150
7.6 Discussion . 151

8 Conclusion 153
8.1 Review of Work . 153

8.1.1 Fast Model Parameter Estimation and Filtering 154
8.1.2 A Convex Geometric Description of MERT 154
8.1.3 Projected MERT . 154
8.1.4 Tropical Geometry MERT . 155

8.2 Future Work . 155

References 159

List of Figures

2.1 A word alignment example . 12

2.2 Examples of aligned phrases . 13

3.1 The upper envelope and projected error 31

3.2 An illustration of the fundamental theorem of linear programming 36

4.1 Illustration of how MapReduce is applied to a large file 53

4.2 The internal structure of an HFile . 54

5.1 An example of a polytope . 86

5.2 An example of the normal fan . 87

5.3 An example of a projected polytope . 98

5.4 The relationship between Och’s line optimisations and the normal fan of a
projected polytope . 99

5.5 Regularisation with respect to the normal fan of a projected polytope 102

5.6 Regularisation with respect to the normal fan of the original polytope 102

5.7 A geometric representation of PRO . 104

5.8 Solving unary class PRO . 105

6.1 An illustration of the Minkowski sum for two input polytopes 110

6.2 An illustration of a common refinement 110

6.3 An undirected graph used as input for reverse search 119

6.4 A trace found by reverse search . 119

6.5 Incremental enumeration for a graph during reverse search 120

6.6 Illustration of the full execution of the reverse search of a graph 121

6.7 The error function computed by projected MERT in two dimensions 132

7.1 Redundant terms in a tropical polynomial 140

7.2 An illustration of the application of TGMERT 145

x List of Figures

7.3 Lattices with tropical monomial weights 146
7.4 Edges pruned under the tropical polynomial semiring 149

List of Tables

2.1 Semirings often used for natural language processing 20

4.1 Comparison of times and memory usage for N-gram count queries 58
4.2 An extract of a translation table . 60
4.3 A comparison of MapReduce based systems 69
4.4 A comparison of HFile based systems . 69
4.5 A comparison of HFile size . 70

5.1 An example set of two dimensional feature vectors 86
5.2 A set of example projected feature vectors 98

7.1 Comparison of TGMERT with Och’s line optimisation 147

List of Algorithms

3.1 The SweepLine algorithm . 33
5.1 The projected MERT algorithm . 96
6.1 Reverse search algorithm . 117

Chapter 1

Introduction

Machine Translation (MT) is the translation of written text from a source language to a tar-
get language by purely mechanical means. Although concise, this definition fails to reflect
the difficulty of the task. The underlying issue is that translation itself is a difficult concept
to define. For example, the form of the translation varies depending on the context of its
application. If the MT system is translating United Nations proceedings then it should be
precise and accurate. If the system translates poetry or literature the output should be beau-
tiful, pleasing, and reflect the mood of the original piece. Some argue that target languages
may not even contain the words or phrases that convey concepts from the source text. Books
have been written about the nebulous nature of translation [15].

To build an MT system, a model of language is needed. Early attempts were heavily
influenced by the work of Chomsky [41] who popularised the context-free grammar (CFG).
Famously, researchers claimed in the 1950s that using this model they would have a working
system in five years. A decade later little progress had been made, a critical report was
published [8], and funding for these programs was cut.

There are a variety of reasons for the failure of these early systems: for example unseen
grammatical phenomena in the input sentence caused the translation to fail, and they did not
capture context or semantics. Since these early efforts there have been many advances in
building effective systems driven by a statistical approach to translation. Statistical machine
translation (SMT) systems are robust, in that they can hypothesise about unseen or unusual
grammatical structure and will always offer a translation. Statistical systems often result
in surprisingly strong performance because they capture many aspects of language, such as
context, which are implicit in the training data but are difficult to model in the pure rules-
driven approach offered by a CFG.

Statistical approaches are possible because of the existence of parallel text. These texts

2 Introduction

are a pairing of original source documents with translations in other languages that can
be aligned with original text. Examples include Canadian Hansards [98] and European
Parliamentary Proceedings [87]. The first statistical approach was based on the alignment
of words between sentences [26] in parallel text. This word based method was improved by
considering larger linguistic units called phrases [91]. Interestingly, further improvements
have been found by incorporating the same CFGs that inspired the first wave of MT systems
into a phrase-based framework [35, 36].

A consequence of using statistical based models is that systems do not produce a single
translation, but a very large set of possible translations called hypotheses. These hypotheses
can be compactly encoded into word lattices [146]. The lattices are then rescored with
more sophisticated models [21, 93, 143]. Word lattices can be represented with Weighted
Finite-State Transduces (WFST) [110]. The use of WFSTs provides a rich formalism that
encompasses many disparate operations that can be applied to a lattice. An alternative
approach to the word lattice encodes derivations of a CFG parse instead of strings [77].

In recent years large commercial SMT applications have been built. A very welcome
consequence of these commercial developments has been the introduction of robust and
efficient software to process large amounts of data. In particular the MapReduce [49] and
BigTable [31] frameworks have facilitated the building of very large models, which in turn
have improved the translation quality of SMT systems.

1.1 Minimum Error Rate Training

In the previous section we briefly described a statistical approach to translation. This ap-
proach provides a robust and powerful description of translation, but there is no reason to
limit ourselves to this representation of translation. Instead this approach can be incorpo-
rated in another statistical model, and combined with other rich models and features.

One such additional model that can also be used as a feature is the statistical language
model. This second model is a probability distribution over hypotheses based on data in
a very large monolingual corpus. Both the translation and language models capture com-
plementary properties of language, and much more monolingual data is available to train a
language model than a statistical translation model. Combining both language and transla-
tion models into a single model allows us to exploit the strengths of both component models.

A commonly used method for combining models is the linear model, which provides a
framework for combining many disparate features into a single model [88]. The language
model can be applied alongside the translation model during translation using techniques

1.2 Original Contributions 3

such as cube pruning [35] or WFST operations [81]. The next step after language model
application is to augment the model with other features [114] to refine the scores of the
individual hypotheses and to improve translation quality. Example features include a second
model of the probability of the source sentence as a translation of the hypothesis, a length
penalty, and lexical models.

SMT systems are assessed using automated error metrics such as the Bilingual Eval-
uation Understudy (BLEU) [117] and Translation Edit Rate (TER) [133]. These metrics
work by comparing the output of the system with a set of references supplied by translators,
which allows for consistent and fast measurement of translation quality. Considering that
these metrics are used to judge the output of a system, it makes sense to use these metrics
to also discriminatively train linear models. Examples of such methods include Minimum
Error Rate Training (MERT) [62, 113], Margin Infused Relaxed Algorithm (MIRA) [151],
and Pairwise Ranking Optimisation (PRO) [76].

Of all the methods of discriminative training, MERT is the most widely used. Among
the reasons for its use is that the results are interpretable, it gives good performance, and is
easy to implement. The MERT formulation is as follows: hypotheses with feature vectors
that can never maximise the linear model given any parameter are discarded, the error for
the remaining hypotheses is computed, and the parameters associated with the optimal hy-
pothesis are selected. Interestingly, this discarding mechanism has been widely studied in
the field of convex geometry [162], which is the formal study of convex polytopes. One of
the contributions of this work is to describe MERT in terms of convex geometry.

1.2 Original Contributions

Our initial goal when investigating the field of convex geometry was to improve the MERT
algorithm, and during this investigation we did discover useful algorithms and techniques.
We provide a description of these algorithms, many of which have strong runtime and mem-
ory consumption guarantees.

The main outcome of the investigation was to discover that a linear model is severely
limited when modelling high feature dimension. In this respect, our work is a negative result
because we believe the performance of linear models degrades as the number of features
increase. We do discuss speculative methods for transforming models with a high feature
dimension to models of lower dimensions that may help with these limitations.

A summary of the contributions is as follows:

1. We build upon the work of Galley and Quirk [62] to give a description of single sen-

4 Introduction

tence MERT using a convex polytope. We describe how parameter space is arranged,
and a projection operation that allows us to perform MERT for any number of dimen-
sions.

2. For MERT with many sentences we describe how MERT takes the form of a Minkowski
sum of polytopes. We use convex geometry to describe a polynomial time algorithm
for computing the Minkowski sum [59], and an upper bound on the number of feature
vectors that cannot be discarded [72].

3. We give a formalism of MERT over WFSTs using a tropical polynomial semiring,
which we call TGMERT. We also discuss how this semiring can be extended to any
number of features using the previous two results.

4. We give a collection of software tricks for building a MapReduce pipeline to extract
rules. Using these tricks gives an order of magnitude improvement in terms of both
memory consumption and runtime.

1.3 Publications

The research described in this thesis has led to the following publications. We describe the
original contributions made in these publications with respect to the items of the list in the
previous section.

1. A. Waite, G. Blackwood, W. Byrne. Lattice-based Minimum Error Rate Training
Using Weighted Finite-state Transducers with Tropical Polynomial Weights. In Pro-
ceedings of the 10th International Workshop on Finite State Methods and Natural
Language Processing. July 2012.

This publication describes the formulation of the tropical polynomial semiring, cor-
responding to Item 3 in the previous section.

2. J. Pino, A. Waite, and W. Byrne. Simple and Efficient Model Filtering in Statistical
Machine Translation. The Prague Bulletin of Mathematical Linguistics 98 (2012):
5-24.

The original contribution in this publication is the description in Section 5 of fast
N-gram filtering. This description is repeated in Section 4.3.1.

1.4 Organisation of Thesis 5

3. J. Pino, A. Waite, T. Xiao, A. de Gispert, F. Flego, and W. Byrne. The University of
Cambridge Russian-English System at WMT13. In Proceedings of the Eighth Work-
shop on Statistical Machine Translation. August 2013.

This publication is a system description of a Russian-to-English system. During the
development of this system the MapReduce based rule extractor was rewritten to be
faster and consume less memory. This work corresponds to Item 4 in the list of
original contributions.

4. A.Waite and W. Byrne. The Geometry of Statistical Machine Translation. In Pro-
ceedings of the 2015 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies.

This work is a summary of items 1 and 2 from the list of original contributions.

1.4 Organisation of Thesis

The organisation of the thesis is as follows. Chapter 2 describes the approaches we use to
build translation and language models, how to build an SMT decoder, and what is needed to
build an effective SMT system with the exception of the training of parameters for a linear
model. In Chapter 3 we discuss how to set the parameters of a linear model. We review
MERT and all its variants, as well as other relevant methods for parameter tuning.

Chapter 4 describes a MapReduce pipeline for rule extraction. We then describe how to
improve the MapReduce pipeline using implementation tricks and report on runtimes and
memory usage.

Chapter 5 is the description of MERT for a single input sentence using convex geom-
etry including a discussion of available algorithms. In this chapter we introduce projected
MERT, a method of computing MERT for any number of features. We then move onto
MERT for many input sentences in Chapter 6. The main insight is that MERT for a train-
ing set can be modelled as a Minkowski sum of single sentence polytopes. We discuss
algorithms for computing this polytope and a discussion on the tractability of MERT for
systems with many features.

In Chapter 7 we discuss TGMERT and the tropical polynomial semiring. In effect this
semiring defines an algebra over convex polytopes. We describe how this semiring can be
used to extend lattice-based MERT to a multidimensional search.

Chapter 2

Statistical Machine Translation Decoding

In this Chapter we describe how, given a source sentence f, to generate a set of hypotheses
{e} in the target language, and how these hypotheses are used to generate a set of feature
vectors {h(e, f)}. The main focus of our work is the linear model, and the description of
machine translation in the context of this model.

The linear model is sometimes also referred to as the log-linear model [114]. The ad-
ditional log qualifier is due to the model taking the form of a probability distribution. For
D features the probability p(e|f) is the log-linear sum of a feature function h(e, f) weighted
by the D-dimensional parameter vector w. Following [162] we treat w as a row vector and
write a decision rule that selects the most probable hypotheses ê as:

ê = argmax
e

p(e | f)

= argmax
e

expwh(e, f)
∑e′ expwh(e′, f)

(2.1)

The task of training linear and log-linear models is to find an optimal parameter ŵ. For
simplicity we assume a single reference r, a single source sentence f, and that it is possible
to compute the feature vector h(r, f). For a log-linear model one method for finding optimal
parameters ŵ is to maximise the log-likelihood [114].

ŵ = argmax
w

{
wh(r, f)− log∑

e′
expwh(e′, f)

}
(2.2)

The term resulting from the normalisation operation plays an important role. It acts as
a penalty term that discourages the optimiser from rewarding other possible hypotheses.
The resulting distribution should have a large amount of probability mass assigned to the

8 Statistical Machine Translation Decoding

reference translation. However, computing this term is often problematic because it has to
be computed over all possible hypotheses.

Now under the log probability, the decision rule in Eqn. (2.1) takes the following linear
form:

ê = argmax
e

wh(e, f) (2.3)

Because the exponentiation and normalisation operations do not change the result of the
argmax operation we can avoid computing the normalisation term when evaluating Eqn.
(2.3).

If the normalisation term can be ignored when evaluating the decision rule, then it sug-
gests the normalisation term may not be necessary for training. Let us consider the inner
product wh(e, f) as some model score that is correlated with the quality of the translation.
In this method the optimiser maximises the function with respect to some oracle hypothesis
ê

ŵ = argmax
w
{wh(ê, f)} (2.4)

Instead of incorporating other hypotheses in the objective function using the normalisation
term, the optimisation is prevented from favouring other hypotheses by a set of constraints.
We describe methods for constrained optimisation of Eqn. (2.4) in Chapter 3 and the set of
constraints themselves are the focus of chapters 5 and 6. We prefer to use the term linear
model for these methods, to distinguish between model scores and probabilities.

The distinction between the log-linear model and linear models is somewhat artificial.
We note that the parameters found for a linear model can be substituted back into the frac-
tional term Eqn. (2.1) to give a valid probability distribution, and the log-likelihoods can be
treated as model scores. Essentially the difference is due to the training regime.

Applying the argmax operation in Eqn (2.3) is a process called decoding. This name is
derived from the source-channel model originally proposed by Brown et al. [26]. Decoding
is not a trivial operation to the size of the hypothesis set. To give an idea of scale of the
problem, word lattices for a single translation can contain in the order of 1080 hypotheses
[143], and the development of efficient decoding procedures is a major research focus.

Therefore before we can describe training of linear models, we first need to describe a
method for computing the argmax operation and the feature vector h(e, f). In the first section
we describe the N-gram language model, in the second we describe hierarchal phrase-based
translation, in the third we describe decoding, and finally in the fourth section we describe
decoding using WFSTs.

2.1 N-gram Language Models 9

2.1 N-gram Language Models

In this section we describe a statistical model applied to natural language. The N-gram
language model (as summarised in Jelinek [82], Huang et al. [78], Jurafsky and Martin [83]
and Koehn [88]) is used to assign a probability to a sequence of words. N-gram language
models are widely used because they are robust, they capture both semantics and syntax at
the surface level, and can be easily trained on large amounts of data. The log-probability of
a hypothesis under a language model is one of the key features in the feature vector h(e, f).

The language model assigns a probability to a word sequence W I
1 . Long word sequences

do not usually appear verbatim in training data so we apply the N-gram conditional inde-
pendence assumption:

P(W I
1)≈

I

∏
i=1

P(Wi |W i−1
i−n+1) (2.5)

The N-gram assumption is a type of Markov independence assumption where the prob-
ability of a word is conditioned only on the previous n−1 words. The value of n is referred
to as the N-gram order. The distribution P(Wi |W i−1

i−n+1) can be computed using maximum
likelihood estimation where f (W i

i−n+1) is a function that yields a count from a monolingual
corpus:

P(Wi |W i−1
i−n+1) =

f (W i
i−n+1)

f (W i−1
i−n+1)

(2.6)

A problem with the N-gram model is that events may not appear in the monolingual
corpus. An unseen N-gram results in P(W I

1) = 0. This sparseness problem becomes more
pronounced as high order N-grams are used.

2.1.1 Solutions for N-gram Sparseness

In the previous section we described the basic N-gram model and the sparseness problem.
In this section we describe two approaches to solving data sparseness: discounting, and the
interpolation or back-off to lower order N-grams. These approaches can be combined in
language model smoothing.

10 Statistical Machine Translation Decoding

Discounting

To create a valid probability distribution over N-grams we have to enforce the sum to 1
constraint for the number of the unique words in the vocabulary V :

V

∑
i=1

P(Wi |W i−1
i−n+1) = 1 (2.7)

If we have an unseen N-gram, this constraint does not allow any probability mass to be
assigned to it if probabilities are calculated under Eqn. (2.6). We therefore have to discount
the N-gram probability P(Wi | W i−1

i−n+1) using a discount coefficient d(·). Eqn. (2.6) is
rewritten to allow for the redistribution of probability mass:

P(Wi |W i−1
i−n+1) = d(f (W i

i−n+1))
f (W i

i−n+1)

f (W i−1
i−n+1)

(2.8)

One form of discounting is Good-Turing discounting [68]. Defining nr as the number of
N-grams occurring r times, the discount coefficient is written as:

d(r) =
(r+1)nr +1

rnr
(2.9)

Note that r > 0 because the discounting is applied to seen N-grams only. The reserved
probability mass is then distributed uniformly among the unseen N-grams in the test set.

Interpolation and Back-off

In the previous section we described discounting, which reserves probability mass in the
N-gram probability distribution P(Wi |W i−1

i−n+1) for unseen events. Instead of relying on a
discount factor, both interpolation and back-off strategies use lower order N-gram models
to guide the probability assigned to an unseen N-gram.

In an interpolated model the N-gram probabilities P(Wi |W i−1
i−n+1) are computed as a

linear interpolation of high and low order models. The interpolation makes the N-gram
model more robust as there are far fewer unseen events associated with lower order N-gram
models. The interpolated probability can be computed recursively as follows:

PINTERP(Wi |W i−1
i−n+1) = λP(Wi |W i−1

i−n+1)+(1−λ)PINTERP(Wi |W i−1
i−n+2) (2.10)

The weights of the interpolated model can be optimised on a corpus of representative

2.1 N-gram Language Models 11

held-out data using deleted interpolation [10]. The training data is split into blocks, with one
block held-out (the deleted block). The values of λ are chosen to maximise the likelihood
of the deleted block. The deleted block is then rotated and the process repeated.

The back-off model [85] differs in that a lower order N-gram model is only used if a
higher order N-gram is unavailable. The recursive form of the equation that describes an
N-gram probability is:

P(Wi |W i−1
i−n+1) =

{
ρ(Wi |W i−1

i−n+1) if f (W i
i−n+1)> 0

λW i
i−n+2

P(Wi |W i
i−n+2) otherwise

(2.11)

where the count function f (W i
i−n+1) is the number of times the N-gram was found in the

training data and ρ(Wi |W i−1
i−n+1) is an estimate of P(Wi |W i−1

i−n+1). Usually ρ(Wi |W i−1
i−n+1)

is computed as a discount of the relative frequency estimate:

ρ(Wi |W i−1
i−n+1) = d(f (W i

i−n+1))
f (Wi |W i−1

i−n+1)

f (Wi |W i−1
i−n+2)

(2.12)

Language Model Smoothing

We can combine discounting, interpolation and back-off to perform language model smooth-
ing. A simple example is additive language model smoothing [61]. This method of smooth-
ing adds a constant to each N-gram count and estimates probabilities using the relative
frequency of the modified counts.

Another example is Kneser-Ney smoothing where the smoothed probability is defined
as:

PKN(Wi |W i−1
i−n+1) =

max{ f (W i

i−n+1)−D,0}
f (W i−1

i−n+1)
if f (W i

i−n+1)> 0

γ(W i−1
i−n+1)PKN(Wi |W i−1

i−n+2) otherwise
(2.13)

where

PKN(Wi |W i
i−n+2) =

C(•W i
i−n+2)

∑Wi C(•W
i
i−n+2)

(2.14)

where C(•W i
i−n+2) = |{Wi−n+1 : f (W i

i−n+1) > 0}| is the number of unique words that pre-
cede the backed off N-gram W i

i−n+2. The motivation behind this smoothing method is that
some words naturally co-occur, such as San Francisco [33]. Therefore for any N-gram start-
ing with Francisco the value of C(•W i

i−n+2) would be low because the preceding word is
almost always San.

12 Statistical Machine Translation Decoding

Mary did not slap the green witch

Maria no dió una bofetada a la bruja verde

Fig. 2.1 Word alignment example showing the one-to-many links between source and target
words for a Spanish→ English sentence pair [83]

2.2 Hierarchical Phrase-Based Translation

In this section we describe an approach to statistical machine translation, called hierarchical
phrase-based translation [35, 36]. This approach builds upon previous work such as word
[26] and phrase translaton [91] models.

These approaches all rely on a collection of sentence pairs, called the parallel text, to
build a model based on some latent variable. For example, in the word alignment approach
it is assumed there is some hidden alignment link between words in the source and target
sentences in a sentence pair, as in Figure 2.1. By analysing parallel sentences in the parallel
text we can find occurrences of source and target words that consistently appear together
across many sentences. Phrase-based and hierarchical phrase-based approaches build on this
approach by recognising the appearance of more complex linguistic phenomena in parallel
data.

We first describe word alignment approaches, followed by phrase-based approaches. We
then describe how the rules of a synchronous context-free grammar can be extracted using
phrase pairs.

2.2.1 Word Alignment

The foundation of rule extraction is the word alignment model of Brown et al. [26]. A word
alignment is a latent linking between words of the source sentence and its translation. Links
between words correspond to syntactic functions or semantic relationships shared by the
words of a sentence and its translation. We provide an example of a parallel sentence with a
set of word alignments in Figure 2.1.

We now briefly describe word alignment of parallel text. Brown et al. [26] introduce
a series of five translation models of increasing sophistication known as IBM Model 1 to
IBM Model 5. Lower numbered models are computationally more tractable, and higher

2.2 Hierarchical Phrase-Based Translation 13

Mary did not slap the green witch

Maria no dió una bofetada a la bruja verde

Fig. 2.2 A correctly and incorrectly aligned phrase for a Spanish→ English sentence pair
[83]. The incorrect alignment has a dashed border

numbered models attempt to capture more linguistic phenomena. In addition to the IBM
models word, alignment models have also been proposed based on a hidden Markov model
[51, 148].

Brown et al. [26] also provide algorithms for the unsupervised estimation of model pa-
rameters from the set of parallel sentences. In the models, word alignments are treated as
hidden variables specifying the alignment from a word in the source sentence to a word in
the target sentence. Expectation Maximisation (EM) [50] is used as the basis of an unsuper-
vised algorithm for learning these alignments. In more sophisticated models it is possible
for EM to find a poor local minimum, which can be prevented by initialising these models
from simpler models in the series. For example, Model 2 can be initialised from a trained
Model 1.

2.2.2 Phrase-Based Translation

Given a set word alignments, we use them to extract phrases [91]. A phrase is defined
as any sequence of words. A phrase has no syntactic or semantic significance on its own,
except that it is translatable. A heuristic is used to extract phrases from a parallel sentence
(f,e) given a set of word alignments a: for example a phrase pair (f j2

j1 ,e
i2
i1) is subject to the

constraint that ∀(j, i) ∈ a(j ∈ [j1, j2]⇔ i ∈ [i1, i2]) where⇔ denotes a word alignment. In
figure 2.2 we show an example with two phrases. The phrase pair (“did not”, “no dió”)
fails to satisfy the constraint as “dió” is aligned with “slap” which is outside the phrase pair.
The phrase pair (“green witch”, “bruja verde”) has a crossing alignment but satisfies the
constraint as it appears within the phrase pair.

For a given source sentence f and target sentence e from a parallel text let us assume that
I phrase pairs have been found. Let us denote the probability of an ith target phrase ēi given
a source phrase f̄i as φ(ēi | f̄i). Using an independence assumption between phrase pairs the

14 Statistical Machine Translation Decoding

probability of the sentence can be written approximately as

φ(e | f) =
I

∏
i=1

φ(ēi | f̄i)d(starti− endi−1−1) (2.15)

where d(·) is a distance-based distortion function designed to penalise reordering, with
starti as the start position of the target phrase translated from the ith source phrase and
endi−1 as the end position of target phrase translated from the preceding source phrase.
This distance function can be estimated from parallel data or modelled as an exponential
decay [91]. More complex phrase-based translation models account for repetition, deletion,
permutation, insertion, and alternative segmentations.

The value of φ(·) is computed using the relative frequency counts from the parallel data.
The word alignments used to extract φ(·) are not considered at this stage. The maximum
likelihood estimate of the probability of translating phrase ēi given f̄i is

φ(ēi | f̄i) =
f (ēi, f̄i)

∑ē′ f (ē′, f̄ j)
(2.16)

2.2.3 Hierarchical Phrase-Based Translation

We have described a phrase-based approach to translation. This approach is successful at
capturing local reordering within phrase pairs. One disadvantage of the approach was of the
function d(·) to penalise reordering of phrases. This encourages phrase pairs to be appear
in the same order in a hypothesis as in the source sentence. For similar languages, such as
many of the European languages, this restriction is probably acceptable. For more diverse
languages, such as English, Arabic, and Chinese, we may need to capture more complex
structure between the languages.

Hierarchical Phrase Based Translation [35, 36] is based on the application of a Syn-
chronous Context-Free Grammar (SCFG) [96]. The rewrite rules of an SCFG are defined
with respect to two sets of symbols: A set of terminals T , which corresponds to the vo-
cabularies of the source and target languages, and a set of non-terminals that allow for the
hierarchical structure of the grammar to be formulated. Given a set of terminals the rules of
the grammar are:

X →< γ,α,∼>

where X is a non-terminal and, γ,α ∈ ({X}∪T)+ are sequences of terminals in T and non-
terminals in the source or target language. The relation ∼ defines a bijective mapping of
non-terminals in the source and target sides of the rule.

2.2 Hierarchical Phrase-Based Translation 15

Given an input sentence f and translation e there is a set of rules that can be applied in
such way to produce a f and e. This set of rules, and the order they are applied, is called a
derivation D. Two additional rules are specified:

S→< X ,X >

S→< SX ,SX >

these are called the “glue rules” as they complete the derivation of a sentence and allow
monotonic concatenation of terminals or rules. In addition to these rules, a set of rules
consisting of only of terminals are added.

Due to the context-free nature of the grammar it is necessary to make the assumption that
the application of a rule is independent of the previous rules. The probability of a derivation
can be written as

P(D) = ∏
(X→<γ,α,∼>)∈D

P(X →< γ,α,∼>) (2.17)

Compare this value to the probability of translation given phrases Eqn. (2.16), and note the
deletion of the distance function. The ordering of target phrase relative to the source phrases
can be modelled in the grammar directly.

Hierarchical phrase-based translation builds upon a phrase-based translation by extract-
ing a synchronous context-free grammar from a set of phrase pairs. Many phrase pairs in
this set contain smaller phrase pairs as constituents. By taking the larger phrase pairs and
substituting the constituent phrase pairs with non-terminals a rule set is generated. This can
lead to an explosion of rules so the rule set is filtered to discard infrequent and hopefully
noisy rules [35, 80]. Once a set of hierarchical rules has been extracted the weights are esti-
mated from a parallel corpus. This can be done by relative frequency [35, 36] or computed
from the word alignment models [48].

Ultimately, the derivation is a latent variable that is not of much interest to us. Our goal
is to describe a probability distribution over hypotheses, and not derivations. There is a
complication in that many derivations, denoted as the set D f , can produce the same strings.
The derivation should be marginalised out of the probability, but this can be difficult due
to the large number of hypotheses that would require this operation. Therefore the optimal
hypothesis ê is found using the max derivation approximation [23, 35, 36]

ê≈ e

(
argmax

D∈D f

P(D)

)
(2.18)

16 Statistical Machine Translation Decoding

where the notation e(D) refers to the hypothesis yielded by the derivation D. We stated in
the introduction, that we are interested in model scores as opposed to probabilities. We can
convert the probability to a score by taking the log of the derivation probability. Using the
function S(D) to denote the score of a derivation, the following can be written

S(D) = w

{
∑

(X→<γ,α,∼>)∈D
h(X →< γ,α,∼>)

}
(2.19)

We have altered the definition h so that it is evaluated with a rule as input. Most of the
features used in SMT can be extracted from the rules directly. Examples include rule log-
probabilities of both the source given the target and the target given the source, the length of
the hypotheses, the lexical log-probabilities of a rule based on a IBM Model 1 word-based
alignment model [26], the number of applications of the glue rule, and the total number
of rules in the derivation. One important exception is the language model feature, which
must be computed over N-grams. These N-grams may cross rule boundaries in the deriva-
tion, breaking the context-free property. We shall see in the next section that applying the
language model is a non-trivial problem.

2.3 Statistical Machine Decoding

In Section 2.1 we described a statistical language model and in Section 2.2 we described the
hierarchical phrase-based model. Both approaches can be used to ascribe a probability or
score to a hypothesis e, which can be incorporated as features in a linear model. Because the
set of hypotheses is so large, it is intractable to enumerate through all possible hypotheses
for scoring.

The solution to this problem is to build the hypotheses incrementally. A partial hypoth-
esis is discarded if it has a very low score compared to the partial hypothesis with the best
score. This process of building and discarding hypotheses is called decoding. We describe
the decoding process for a hierarchical phrase-based translation [36] and then describe a
hierarchical phrase-based formulation using WFSTs.

The hierarchical phrase-based decoder uses the CYK parsing algorithm [32] to parse the
input. This algorithm is designed for parsing sentences using grammars in Chomsky Normal
Form (CNF), which constrains the right hand side of a production rule to a maximum of two
symbols. A derivation for a grammar is therefore binary branching. This binary branching
structure allows the derivation to be represented as a two dimensional matrix called a chart.

2.3 Statistical Machine Decoding 17

The number of rows and columns in the chart equal the length of the input sentence, and
each element correspond to a sub-span of the sentence. E.g. the element [2,5] corresponds
to a span from the 2nd to the 5th word.

Each chart cell contains the partial derivation which span the positions [x,y]. The chart
is filled left to right and bottom to top. Each non-terminal maintains back-pointers to chart
cells from which it was derived. Once the algorithm is complete the parse tree, which
includes all possible derivations, can be generated by following the back-pointers from the
start cell.

In Section 2.2.3 we stated that the language model cannot easily be computed in a rule-
based feature function. The language model must be applied to a sequence of terminals, if
there are any non-terminals in the partial derivation then the full language model cannot be
applied. We therefore need to generate the full hypotheses associated with the derivations
before language model application. This causes a problem as there are a vast number of
derivations generated by the CYK algorithm. It is possible to prune the derivations, but the
approach should not remove hypotheses with potentially high language model scores. Cube
pruning [36] does this by considering the K derivations at each cell with the highest score
whilst following the back-pointers. At each cell the derivation consists of a sequence of
terminals and non-terminals. An approximation of the language model is applied that only
considers the N-grams in the terminals of the derivation. The approximated language model
scores are then used to rank the K-best derivations.

2.3.1 HiFST

We have described decoding for a hierarchical phrase-based model. This decoder is suffi-
cient for producing the set of K feature vectors needed for Chapters 5 and 6.

One improvement would be to generate many more derivations during decoding. Be-
cause of the very large number of possible derivations, it is not possible to store each
complete derivation. However, as a consequence of the CYK algorithm many of these
derivations share sub-derivations. By exploiting this shared structure many more deriva-
tions, and therefore hypotheses, can be considered. One data structure that exploits these
shared derivations to compactly encode a large number of derivations is the hypergraph [77].

There exists a data structure similar to the hypergraph for strings that is called a word
lattice [92, 146]. This string-based data structure can be represented as a Weighted Finite-
State Transducer (WFST)[110] giving us access to a rich formalism and software toolkits
for processing the word lattice. To use the WFST representation we are forced to convert

18 Statistical Machine Translation Decoding

the set of derivations to strings, and this allows an easier application of the string-based
language model to the word lattice.

In this section we describe HiFST [47, 81], a hierarchical phrase-based decoder that uses
a WFST. The HiFST decoder produces word lattices and applies the full language model
using WFST operations. The WFST is also needed for the tropical polynomial semiring
introduced in Chapter 7.

2.3.2 Semirings

WFST operations are defined with respect to an algebraic structure called a semiring. The
semiring is a concept taken from modern algebra, and we now provide a brief summary of
modern algebra based on Chapter 1 and Appendix A of Cox et al. [44].

An algebra is a set of values and corresponding operations. Examples of value sets
include the set of real numbers R, the set of complex numbers C, and the set of integers
Z. Operations include addition, subtraction, multiplication, and division. A requirement of
an algebra is that the application of operation must result in a value that is contained in the
value set. This requirement precludes the division operator with the use of set of integers Z,
because the result may be a rational number.

Algebras are classed by the set of operations and their properties. The algebra that we
are most familiar with is the field, which contains addition, subtraction, multiplication, and
division. The definition of a field also requires that the multiplication and addition operators
have commutative, associative, and distributive properties. For the definition of a WFST
and the tropical algebra explored in Chapter 7 we need an algebra with a looser definition.
This algebra is called a ring

Definition 2.1. A commutative ring consists of a set K and two binary operations ⊗ and ⊕
defined on K for which the following conditions are satisfied:

i (a⊕b)⊕ c = a⊕ (b⊕ c) and (a⊗b)⊗ c = a⊗ (b⊗ c) for all a,b,c ∈K (associative).

ii a⊕b = b⊕a and a⊗b = b⊗a for all a,b ∈K (commutative).

iii a⊗ (b⊕ c) = a⊗b⊕a⊗ c for all a,b,c ∈K (distributive).

iv There are 0̄, 1̄ ∈K such that a⊕ 0̄ = a⊗ 1̄ = a for all a ∈K (identities).

v Given a ∈K, there is b ∈K such that a+b = 0 (additive inverses).

2.3 Statistical Machine Decoding 19

The classical addition + and multiplication × arithmetic operations, and the set of real
numbers satisfy the conditions of a ring. We can also define more abstract rings. For exam-
ple a viable set of values is the set of all polynomials, which yields the polynomial ring.

The set of operations can also be redefined to yield new algebras. The tropical algebra
uses the min function and classical + operator as shown in Table 2.1. However, these
operators do not satisfy condition v of the ring definition. In these cases, the algebras are
called semirings.

2.3.3 Weighted Finite-State Transducers

Essentially a WFST is a type of graph. By convention vertices of the graph are called states,
and edges are called arcs. More formally, a WFST [110] T = (A ,B,Q, I,F,E,λ ,ρ) over
weight set K is defined by an input alphabet A , an output alphabet B, a set of states Q,
a set of initial states I ⊆ Q, a set of final states F ⊆ Q, a set of weighted arcs E, an initial
state weight assignment λ : F→K and a final weight state assignment ρ : F→K. The sets
A ,B,Q, I,F,E are all of finite size. For each state q ∈ Q let E[q] denote the set of all arcs
(i.e. edges) leaving state q. The weighted arcs of T form the set:

E ⊆ Q× (A ×B×K×Q)

where × is the Cartesian product of two sets.

Many algorithms and operations used with WFSTs are defined in terms of semirings
[110]. A semiring (K,⊕,⊗, 0̄, 1̄) is an algebraic structure that is defined by a set of values
K, two binary operators ⊕ and ⊗ and designated values 0̄ and 1̄. Four commonly used
semirings are shown in table 2.1.

For arc e ∈ E, let p[e] denote its source state, n[e] its target state, i[e] its input label, o[e]

its output label, and w[e] its weight. Let π = e1...eK denote a complete path T from initial
state p[e1] to final state n[ek], so that n[ek−1] = p[ek] for k = 2, ...,K. The weight of the path
π is the ⊗-product of the weights of the arcs.

In some instances we wish only to compute the weight of a string. The transduction
ability of the WFST is not needed in these cases. Following a similar definition to the
WFST, the weighted finite-state acceptor (WFSA) differs by using only a single alphabet A

in its definition.

Using this formulation many operations can be described. These operations all have
strong complexity guarantees for both runtime and memory usage. Examples of WFSA and
WFST operations include:

20 Statistical Machine Translation Decoding

Semiring Weight Set ⊕ ⊗ 0̄ 1̄
boolean {0,1} ∨ ∧ 0 1

probability R+ + × 0 1
log R∪{−∞,+∞} ⊕log + +∞ 0

tropical R∪{−∞,+∞} min + +∞ 0

Table 2.1 Semirings often used for natural language processing [110]. The log semiring
addition operator ⊕ is defined as x⊕log y =− log(e−x + e−y)

Projection Convert a WFST to a WFSA by projecting onto either the input or output labels.
This operation is denoted by A=Π1(T) for input projection and A=Π2(T) for output
projection.

Shortest Path Find the path with the lowest weight in an WSFA or WFST.

Intersection Given two WFSA representations A1 and A2, the weight associated to the
input string u by the intersection of two acceptors is (A1∩A2)(u) = A1(u)⊗A2(u).

Composition Let us assume we have two WSFT representations T1 and T2. There is a path
in T1 which maps the string u to v and another path in T2 which maps string v to string
w. The weight given to the path with the input string u and output string w in the
composed WFST is defined as

(T1 ◦T2)(u,w) =
⊕

v
{T1(u,v)⊗T2(v,w)}

Determinisation In a determinised WFST each state has at most one arc with any given in-
put. Note that although determinsiation may change the number of states and edges,
the determinised WFST representation preserves the mapping between input and out-
put strings, and their assigned weights. In a determinised WFST there exists only one
path for any given input string, therefore matching the input string is faster.

Minimisation Minimisation attempts to remove states and edges from a determinised WFST.
The minimisation operation also preserves the mapping between input and output
strings, and their assigned weights.

2.3 Statistical Machine Decoding 21

2.3.4 Word Lattices

Formally, a word lattice [92, 146] is a weighted directed acyclic graph (DAG) [43]. The
sequence of state arcs on each complete path from the initial state to a final state defines a
translation hypothesis and its cost. The total cost of the hypothesis is obtained by aggregat-
ing the costs of the individual arcs that define the path.

A word lattice can be represented as a WFST. Using WFSTs provides a set of general
purpose optimisation operations [110] to determinise and minimise the lattice for space effi-
ciency. A WFST representation also allows manipulation of arc or path weights. Hypothesis
scores can be converted to a normalised probability distribution or the weights redistributed
optimally for second pass rescoring.

2.3.5 Hierarchical Phrase-Based Decoding with WFSTs

In this section we describe the HiFST decoder [47, 79, 81]. As stated in Section 2.3.1
the CYK algorithm produces a large number of derivations that share sub-derivations. By
exploiting this shared structure many more derivations, and therefore hypotheses, can be
considered.

One method of representing this shared structure is by using a recursive transition net-
work (RTN) [107, 154]. An RTN is a family of many finite-state automata (FSA). Formally
R = (N,A ,(Tv)v∈N,S) where N is a set of non-terminals, (Tv)v∈N is a family of FSAs with
input alphabet A ∪N, and S ∈ N is the root symbol with the FSA Ts as the root FSA.

The reason that RTNs provide a more compact representation of the derivations is be-
cause FSAs can be shared between other FSAs. If two FSAs share the same FSA only one
copy of the shared FSA needs to be stored in memory. The two parent FSAs use a pointer
to the single shared FSA.

Translation in HiFST is performed in two steps. The first step parses the source sentence
according to a variant of the CYK algorithm [32]. Each cell in the CYK grid contains a non-
terminal and a span over the foreign sentence. The span contains back pointers to other cells
in the grid.

In the second step the derivations identified in the parse drives the generation of a target
language word lattice containing all possible translations and derivations of the source sen-
tence. Each span can be represented by a FSA in the RTN. HiFST starts at the top cell of
the chart, which forms the root FSA Ts. The spans are enumerated and FSAs added to the
RTN representation.

The RTN represents the set of derivations, which need to have the language model score

22 Statistical Machine Translation Decoding

applied to them. The language model is represented as a WFSA [1]. The WFSA repre-
senting the language model is then intersected with the RTN to give hypotheses a language
model score. This operation is referred to as a first pass language model. This first pass
language model is chosen to balance complexity versus modelling. After intersection with
the language model WFST the word lattice is pruned [110]. Pruning reduces the number of
hypotheses to allow for efficient decoding.

Formally this procedure can be represented as a series of WFST operations. Given a
string s which represents the source sentence, a SCFG G, and an N-gram language model
M represented as an WFSA then HiFST proceeds as follows:

1. Apply the translation grammar: T = Π2(s◦G).

2. Apply the language model via intersection: L = T ∩M.

3. Apply the shortest path algorithm on L to find the highest scoring path.

In this formulation, the construction of the translation space T requires the use of the modi-
fied CYK algorithm that we have just described. The rest of the operations can be completed
with standard WFST operations.

An RTN is not the only choice of representation for T . For example, another alternative
is a push down automata (PDA) [79]. A PDA representation can be used for a larger T at
the cost of a smaller language model M.

2.3.6 Large Language Model Rescoring of Word Lattices

The first pass language model is an expensive operation to apply because of the number of
derivations represented by the word lattice. Therefore typically a small 4-gram language
model estimated over a subset of the monolingual training data is used. Once the word
lattice has been generated by HiFST we apply a higher order second pass language model.
This changes the rank of the hypotheses in the lattice. An example of this second pass
rescoring is 5-gram language model rescoring [21].

A 5-gram language model can occupy a large amount of memory. We therefore extract
all the 5-grams from the word lattice. We then build a lattice specific language model from
these N-grams that is only suitable for rescoring the word lattice. A fast method for building
these language models is described in Chapter 4.

2.4 Summary 23

2.4 Summary

Our goal in this chapter is to frame the discussion of linear models with respect to an active
and interesting problem. We described many of the advances of the previous three decades
that allow for large-scale and performant SMT systems. A system built around smoothed
language models, hierarchical phrase-based models, and WFST based decoders is very ef-
fective. One example of such a performant system is the CUED Russian->English [125]
entry to the Eighth Workshop on Machine Translation [24]. This system was amongst the
top-scoring systems.

The final part of the description of an SMT system is the use of the linear model. We
have deliberately left this description for the next chapter so that we can provide a thorough
analysis. Even though the rest of this work treats the feature function h(e, f) as an abstract
input into an inner product, we note that the performance of a linear model is ultimately
dependent on good quality, informative features and a large hypotheses space.

Chapter 3

Parameter Estimation for Linear Models

In the previous chapter we described the decision rule in Eqn. (2.3) used to select trans-
lations under the model scores. We also described the SMT decoder that can be used to
evaluate the decision rule given the source sentence and a parameter vector w. In this Chap-
ter we describe methods for estimating w from data.

In the introduction to Chapter 1 we described two approaches to predicting the quality
of a hypothesis. One was based on defining a probability distribution over hypotheses,
the other used a model score. These two approaches are labelled by Bishop et al. [20]
as discriminatively trained models, and discriminative functions respectively. In addition,
Bishop et al. [20] defines a third type of model called the generative model.

In the generative model, the source sentence and target hypotheses are jointly modelled
in some distribution P(f,e). An example of the generative model is the source-channel for-
mulation of Brown et al. [26]. This formulation uses Bayes’ rule to compute the probability
of a hypothesis given the language and translation models. In practise, the source-channel
formulation requires scaling factors that are learnt from data. These scaling factors perform
a very similar role to the parameter vector w in the other approaches.

For the discriminatively trained model a conditional distribution P(e | f) is trained di-
rectly. An example of this model is the probabilistic model discussed in the introduction
of Chapter 2 [114]. This training method results in a unconstrained continuous objective
function.

In this Chapter we focus on the approaches that use discriminative functions. As stated
in Chapter 2 these approaches yield model scores instead of probabilities. A function, called
a discriminative function, is optimised. For SMT the discriminative function is derived from
an automated quality metric. The performance of these models can be very strong because
the same metric is used to assess the SMT system.

26 Parameter Estimation for Linear Models

These approaches rely on each hypothesis being given a quality score by the automated
quality metric. It is not possible to enumerate through the very large number of hypotheses
that can be produced by the decoder and assign quality scores. Instead, we rely on an
iterative scheme. An initial parameter w(0) is chosen and used in the decoder. The K-best
hypotheses are then selected according to their model score. These K are used in one of
the training schemes described in this Chapter, and the new parameter w(1) is used with
the decoder to find another K-best hypotheses. The process continues until the decoder no
longer finds hypotheses that improve the quality scores. At this point the training method
is said to have converged. In Chapter 7 we describe a method to train over word lattices as
opposed to K-best lists, which can reduce the number of iterations.

In this Chapter we first describe a selection of quality metrics that can be used for train-
ing. In the second section we describe minimum error training, a method for optimising
parameters directly against the error metric. In the third section we describe large-margin
based methods, and then in the fourth section we describe ranking approaches. Finally we
end with a survey of the current methods used for parameter estimation.

3.1 Automated Quality Metrics

In Chapter 1 we discussed some of the problems in defining translation. If we cannot even
define translation, then the task of assessing translation quality would seem equally hope-
less. This conundrum is circumvented by requiring a set of reference translations to be sup-
plied alongside the test and training sets of source sentences. Translation quality is therefore
implicitly defined by the references, and by the translators who produced the references. An
automated quality metric is some method of comparing the output of an SMT system with
one or more references. There exist many metrics: examples include The BiLingual Evalua-
tion Understudy (BLEU) [117], Translation Error Rate (TER) [133], NIST [53], and Metric
for Evaluation of Translation with Explicit ORdering (METEOR) [11].

Quality metrics either report results as a score, where higher results are better, or as an
error where lower results are better. By convention, the training methods we describe in this
Chapter are described with respect to minimising errors. Scores can be easily converted to
errors, for example we can use 1−BLEU to convert the BLEU score to an error metric.

The use of a quality metric is justified by measuring its correlation with quality scores
from a panel of human judges. Arguments are made that some metrics are superior to others
because of closer correlations to human judgements. We report most results in BLEU,
simply because it is one of the most commonly used metrics. It should be noted that the

3.1 Automated Quality Metrics 27

training methods described in this chapter can also be used with any of these metrics.

3.1.1 The BiLingual Evaluation Understudy

The BLEU score is based on N-gram precision. The precision at order n is the proportion
of N-grams that are matched in the references. The matched count of each N-gram un =

W1 . . .Wn is clipped by truncating it to the maximum number of times it occurs in any single
reference. This count clipping prevents artificial inflation of precision by spurious repetition
of high order N-grams.

Given S source sentences {f1, ..., fS} a set of S candidate hypotheses {e1, ...eS} is gen-
erated for scoring. For each source sentence fs, there is a set of I reference translations
{rs,1...rs,I}. The precision pn is computed by summing the matched clipped N-gram counts
over the whole set of reference mn and dividing by the sum of all the N-grams in the candi-
date hypotheses cn:

pn =
mn

cn
=

∑
S
s=1 ∑un∈es countclip(un,{rs,1, . . . ,rs,I})

∑
S
i=1 ∑un∈es count(un,es)

High precisions could be obtained by producing very short output. Ideally the candidate
translations should match the length of the reference translations. To punish systems that
produce short output, the brevity penalty (BP) is used. For each candidate hypotheses es the
reference with the closest length r∗s is found. The brevity penalty is then a function with
respect to the sum of hypothesis lengths C and sum of reference lengths R:

BP = exp
(

min
(

0,1− R
C

))
= exp

(
min

(
0,1− ∑

S
i=1 |r∗s |

∑
S
i=1 |es|

))
Finally BLEU is defined as the geometric mean of N-gram modified precisions with respect
to one or several translation references multiplied by the brevity penalty.

BLEU = BP
N

∏
n=1

p
1
N
n (3.1)

3.1.2 Translation Edit Rate

Translation Edit Rate (TER) [133] is the minimum number of edits required to modify a
translation such that it matches one of the references. For multiple references TER is the
smallest number of edits needed to transform a translation into any of the references. A

28 Parameter Estimation for Linear Models

single edit is an insertion, deletion, substitution of a single word, or a shift of a contiguous
word sequence to an alternative position in the translation. The total number of edits is then
normalised by the average length of the references.

TER =
of edits

average # of reference words
(3.2)

Finding the minimum number of edits is an NP-complete problem. An approximation is
provided by using a dynamic programming algorithm with a greedy search. Another so-
lution to the edit problem is to use humans to edit the translation to a reference, which is
known as human-targeted TER (HTER). This approach is expensive, and difficult to com-
bine with a training method which may need to score many millions of hypotheses.

3.1.3 NIST

The NIST metric [53], named after the National Institute of Standards and Technology, is
an N-gram based metric similar to BLEU. The difference to BLEU is that N-gram matches
are weighted depending on their occurrences in the references. The weights are computed
for each N-gram un =W1 . . .Wn using the counts in reference translations

Info(un) = log2
count(W1 . . .Wn−1)

count(W1 . . .Wn)
(3.3)

These weights replace the clipped counts of the BLEU score. Let Nn denote set of N-grams
in the translation output and Rn denote the set of N-grams in the references. The NIST

score is defined as

NIST =
N

∑
n=1

{
∑un∈Nn∩Rn Info(un)

|Nn|

}
exp
{

β log2

[
min

(c
r
,1
)]}

(3.4)

where N is the maximum N-gram order, c is the candidate translation length, r is the average
reference length, and β controls the impact of the brevity penalty. Note that the brevity
penalty is different from the BLEU computation because of the average reference length
and the use of the β factor.

3.1.4 Metric for Evaluation of Translation with Explicit ORdering

In information retrieval, the quality of a search result is judged using two metrics: precision
and recall. Precision is the ratio of correct results in the output vs. the size of the output,

3.2 Minimum Error-Rate Training 29

and recall is the ratio of correct results vs. all possible correct results. An automated quality
metric has elements of these two metrics. For example, the N-gram count in BLEU is similar
to recall, and the brevity penalty enforces precision.

The Metric for Evaluation of Translation with Explicit ORdering (METEOR) [11] com-
putes precision and recall with respect to an explicit one-to-one word alignment of the sys-
tem output with each reference. Word matching is performed incrementally, first exact
matches are aligned, and then stemmed morphological variants and synonyms. Each word-
to-word alignment is scored as the product of the weighted harmonic mean of unigram
precision P and unigram recall R,

Fmean =
PR

αP+(1−α)R
(3.5)

where the weight α controls the emphasis on recall. The output of the SMT system should
not just have the same words as the references, but similar phrases too. A tuneable penalty ρ

based on chunk fragmentation favours the grouping of adjacent words into longer spanning
chunks. The final METEOR score is computed as

METEOR = (1−ρ)Fmean (3.6)

3.2 Minimum Error-Rate Training

Minimum Error Rate Training (MERT) [113] is an iterative procedure for training a linear
translation model. MERT optimizes model parameters directly against a criterion based on
an automated translation quality metric, such as BLEU [117].

Following Och [113], we assume that we are given a tuning set of S parallel sentences
{({r1,1, . . . ,r1,I}, f1), ...,({rS,1, . . . ,rS,I}, fS)}, where {rs,1, . . . ,rs,I}, are the reference trans-
lations of the source sentence fs mentioned in the previous section. Recall that the decoder
selects a hypothesis using the decision rule in Eqn. (2.3). Let us reformulate the decision
rule as a function that yields a hypothesis given a source sentence fs and a D-dimensional
model parameter w vector

ê(fs;w) = argmax
e

wh(e, fs) (3.7)

For a training set of S source sentences we assume an error function of the form

E({e1, . . .eS},{{r1,1 . . . ,r1,I}, . . . ,{rS,1, . . . ,rS,I}}) (3.8)

30 Parameter Estimation for Linear Models

Note that one of the strengths of MERT is that the error is computed over the whole training
set. Methods that we describe in later sections, such as MIRA and PRO, are forced into
using a sentence level approximation and summing sentence level errors. The final objective
function is

ŵ = argmin
w

E({ê(f1;w), . . . , ê(fS;w)},{{r1,1 . . . ,r1,I}, . . . ,{rS,1, . . . ,rS,I}}) (3.9)

This objective function has two problems with respect to optimisation. The first problem is
that the function is not continuous, which excludes an analytical solution. The second is the
function is not convex, which excludes convex optimisation methods.

We describe three methods for optimising this objective function. The first, called ex-
pected BLEU, approximates the function to a continuous form that can be optimised using
gradient descent methods. The next two methods, line optimisation and LP-MERT, optimise
the discontinuous form directly.

3.2.1 Line Optimisation

Although the objective function in Eqn. (3.9) cannot be solved analytically, the line optimi-
sation procedure of Och [113] can be used to find an approximation of the optimal model
parameters. Rather than evaluating the decision rule in Eqn. (3.7) over all possible points
in parameter space, the linear search procedure considers a subset of points defined by the
line w(0)+ γd, where w(0) corresponds to an initial point in parameter space and d is the
direction along which to optimize. Eqn. (3.7) can be rewritten as:

ê(fs;γ) = argmax
e

{
(w(0)+ γd)h(e, fs)

}
= argmax

e

{
w(0)h(e, fs)︸ ︷︷ ︸

a(e,fs)

+γ dh(e, fs)︸ ︷︷ ︸
b(e,fs)

}
= argmax

e
{a(e, fs)+ γb(e, fs)︸ ︷︷ ︸

ℓe(γ)

} (3.10)

This decision rule shows that each hypothesis e is associated with a line defined by γ:
ℓe(γ) = a(e, fs)+ γb(e, fs), where a(e, fs) is the y-intercept and b(e, fs) is the gradient. The
optimisation problem can be further simplified by defining the function [118]:

Env(f) = max
e
{a(e, f)+ γb(e, f)︸ ︷︷ ︸

ℓe(γ)

: γ ∈ R} (3.11)

3.2 Minimum Error-Rate Training 31

γ

Env(fs;γ)

ℓe1

ℓe2 ℓe3

ℓe4

γ

E(rs, ê(fs;γ))
e4

e3

e1

γ1 γ2

Fig. 3.1 An upper envelope and projected error. Note that the upper envelope is completely
defined by hypotheses e4, e3, and e1, together with the intersection points γ1 and γ2 (after
Macherey et al. [102], Fig. 1).

For any value of γ the linear functions ℓe(γ) take up to K values, due to the K-best list
restriction. The function in Eq. (3.11) defines the ‘upper envelope’ of these values over all
γ . The upper envelope has the form of a continuous piecewise linear function in γ . The
piecewise linear function can be compactly described by the linear functions which form
line segments and the values of γ at which they intersect. The example in the upper part
of Figure 3.1 shows how the upper envelope associated with a set of four hypotheses can
be represented by three associated linear functions and two values of γ . The line search
procedure computes this compact representation of the upper envelope.

The advantage of this procedure is that the error function need only be evaluated for the
subset of hypotheses that contribute to the upper envelope. These errors are assigned into
intervals of γ , as shown in the lower part of Figure 3.1, so that Eq. (3.9) can be readily
solved. This piecewise constant function is called the error surface.

The Sweep Line Algorithm

To compute the upper envelope a method is needed to compute values of γ at which the
piecewise function is discontinuous. Macherey et al. [102] propose computing the piecewise
function for a single K-best list by using a geometric method called the sweep line algorithm
[19].

The piecewise linear function that the upper envelope represents can be described as a
convex polygon. This convex polygon is a convex hull of all the points enclosed by the

32 Parameter Estimation for Linear Models

lines plotted from the functions in the upper envelope. The sweep line algorithm shown
in Algorithm 3.1 builds the convex polygon from a set of lines. The convex polygon is
stored as a sequence of line objects in an array A. In the algorithmic description the linear
function ℓ is represented as a structure with three fields; a gradient m, y-intercept y, and the
x-intercept with the adjacent left edge x. Once the algorithm has completed, the values of x

contain the interval boundaries γ . An initial A is built from the K candidate hypotheses by
building K ℓ structures with gradients and y-intercepts but empty x values.

The algorithm exploits a property of the convex polygon. If a ray is swept from −∞

to +∞ along the convex polygon the gradient of the edges always increases. The first step
in computing the convex polygon is to sort the K line objects in A by their gradient m in
ascending order. Iterating through the sorted array A searches for edges in the polygon from
left to right along the γ axis.

At each iteration of the line objects in ℓ the value for x is computed between the current
and previous line objects. If the value of x is less than the value of x of a previous line then
it dominates the previous line. The previous line is deleted from A and replaced by the new
line. Parallel lines need to be considered separately. There is a check at line 8 that removes
any parallel lines with a lower y-intercept than the currently considered line.

The runtime of the algorithm is dominated by the initial sort of gradients. We can there-
fore compute the upper envelope in O(K log(K)).

Line Optimisation for the Training Set

The objective function in Eqn. (3.9) is defined in terms of a training set of S source sen-
tences, yet we have only described how to compute the upper envelope for a single source
sentence. We now describe a method for constructing a training set error surface [102, 113].

The intersections found by the sweep line algorithm mark intervals where the error count
is constant. Let γs

1 < γs
2 < ... < γs

Ns
denote a sequence of interval boundaries for the sentence

fs. The quantity ∆Es
n marks the change in error count if γ is moved from a point in the

interval [γs
n−1,γ

s
n) to a point in the interval [γs

n,γ
s
n+1). The interval boundaries and associated

error counts over all sentences in the development set are merged into one sequence of inter-
val boundaries. From this merged sequence we can then identify the interval corresponding
to the minimised error count along the entire line w(0)+ γd.

At each interval in the merged sequence there are S hypotheses for which the error in
Eqn. (3.8) can be computed. For most error metrics a faster computation can be achieved by
computing changes in error statistics; the BLEU statistics are the N-gram precision counts
(mn,cn) and length penalties (R,C). The statistics have the property that they can be summed

3.2 Minimum Error-Rate Training 33

Algorithm 3.1 The SweepLine algorithm [19]
1: sort(A : m)
2: j← 1
3: K← size(A)
4: for i← 1 to K do
5: ℓ← A[i]
6: ℓ.x←−∞

7: if 1 < j then
8: if a[j−1].m = ℓ.m then
9: if ℓ.y <= A[j−1].y then

10: continue
11: end if
12: j← j−1
13: end if
14: while 1 < j do
15: ℓ.x = (ℓ.y−A[j−1].y)/(A[j−1].m− ℓ.m)
16: if A[j−1].x < ℓ.x then
17: break
18: end if
19: j← j−1
20: end while
21: if 1=j then
22: ℓ.x←−∞

23: end if
24: j← j+1
25: A[j]← ℓ
26: else
27: j← j+1
28: A[j]← ℓ
29: end if
30: end for

34 Parameter Estimation for Linear Models

over sentences, whereas the final error metric cannot.

3.2.2 Choosing Directions for Line Optimisation

The previous algorithm finds the upper envelope along a particular direction in parame-
ter space over hypothesis sets. Because the error function is piecewise-constant and non-
convex, choosing the direction to optimise over is difficult.

A common approach to MERT is to select the direction d using Powell’s method [126].
A line optimisation is performed on each coordinate axis. The axis that gives the largest
decrease in error is replaced with a vector between the initial parameters w(0) and the opti-
mised parameters. Powell’s method halts when no further decreases in error are reported.

Instead of using Powell’s method, the Downhill Simplex algorithm [126] can be used to
explore the criterion in Eq. (3.9). This is done by defining a simplex in parameter space.
Directions where the error count decreases can be identified by considering the change in
error count at the points of the simplex. This has been applied to parameter searching over
K-best lists [157].

Both Powell’s method and the Downhill Simplex algorithms are approaches based on
heuristics to select lines. There is no theoretical reason why they are a good predictor of
local minima in the BLEU function. Therefore Cer et al. [29] choose the direction vectors
d at random.

Instead of performing a single line optimisation, which may explore a region of high
error, many line optimisations could be performed simultaneously. All these lines originate
from the same initial vector w(0). This is the approach taken by Macherey et al. [102], where
the coordinate axes and a number of random directions are all explored and w(0) is updated
with the best result.

3.2.3 LP-MERT

More recently, Quirk and Galley [62] have introduced LP-MERT as an exact search al-
gorithm that reaches the global optimum of the training criterion using linear program-
ming. The algorithm first identifies the extreme points within the convex hull of feature
vectors associated with a K-best list of K translations. Specifically, for a sentence fs, let
hs,i = h(es,i, fs) be the feature vector associated with the ith hypothesis es,i in the K-best list
for the sth sentence. This hypotheses can be selected by the decoder only if the following
holds

w(hs, j−hs,i)≤ 0 for 1≤ j ≤ K (3.12)

3.2 Minimum Error-Rate Training 35

for some parameter vector w (w ̸= 0). Any feature vector hs,i that satisfies these constraints
is denoted an extreme feature vector. This system of inequalities defines a convex region
in parameter space, and for each parameter value in the region the decoder will select the
associated hypothesis es,i from the K-best list.

The system of inequalities in (3.12) can be solved using a linear program of the following
form

maximise w(hs,i−hµ) (3.13)

subject to w(hs, j−hs,i)≤ 0, 1 < j < K

Where hµ = 1
K ∑

K
k=1 hk is the centroid of the feature vectors in the K-best list. If the feature

vector hs,i is not extreme, then the only parameter to satisfy these constraints is the zero
vector 0. If the feature vector is extreme then w is set to some parameter that satisfies the
system of inequalities in (3.12). Such a problem is called a linear programming feasibility
problem, and if hs,i is extreme then the system of inequalities in (3.12) is denoted as feasible.

Sets of feature vectors can also be denoted as separable, and this term is closely re-
lated to feasibility. In a separable problem the parameter w defines a decision boundary
which separates hs,i from the other K−1 feature vectors. The existence of such a decision
boundary implies that a feasible set of inequalities exist.

The runtime complexity of a linear program is linear with respect to the number of con-
straints and polynomial with respect to the dimension of w [84], which results in O(KD3.5)

for the testing of a single feature vector [62]. The testing of an entire K-best list is therefore
O(K2D3.5).

Each feasible parameter for the feature vector hs,i is associated with a hypothesis ei, for
which an error can be computed. Errors only need to be computed for feasible parameters.

A Note on Linear Programming

We now interrupt the description of LP-MERT to discuss a problem with the solution of
linear programs: the parameter that maximises the linear objective for a feature vector will
also yield an equal maximal model score for at least one other feature vector in the K-best
list. The error function in Eqn. 3.9 is undefined for such a parameter because we now have
more than one input hypothesis.

We note that the constraint set in (3.12) form a convex set, and that this convex set
has a geometric representation. The constraint set thus has its own extreme points, formed
where multiple constraints intersect. This geometric description of the constraints is further
explored in chapters 5 and 6.

36 Parameter Estimation for Linear Models

w1

w2

w2 < 1

w(
h s,

j−
h s,i
)<

0w
(h

s,k −
h

s.i)<0

ŵ

Fig. 3.2 An illustration of the fundamental theorem of linear programming. The gradient
of the shaded region represents the linear function to be optimised. The two solid lines
represent constraints from (3.12) and the dotted line is a bounding constraint to ensure a
well-formed solution. The dot marked ŵ is the optimal parameter vector found at an extreme
point of the constraint set.

Let us now invoke the the fundamental theorem of linear programming [101]

Theorem 3.1. If this is a finite optimal solution to a linear programming problem, there is

a finite optimal solution which is an extreme point of the constraint set.

Proof. This geometric form of the theorem is shown in Corollary 2 in Chapter 2 of Luen-
berger and Ye [101].

We illustrate this problem with an example shown in Figure 3.2. In this example we
have a two dimensional feature vector hs,i being tested for extremity. There are two other
feature vectors, hs, j and hs,k, that constrain the region of parameter space where hs,i is
maximal. We have also applied the constraint w2 < 1 to ensure a well-formed solution. The
linear objective function is represented as the gradient of the shaded region. The darker the
colour, the greater the value of the objective function. The optimum value w∗ is found at
the intersection of two constraints. The problem with this solution is that both hs,i and hs, j

are extreme at ŵ. The error function is undefined for ŵ because we now have two possible
input hypotheses.

Galley and Quirk [62] note that there is an alternative formulation for finding extreme

3.2 Minimum Error-Rate Training 37

points [60]. Let us examine this formulation

find y ∈ R and w ∈ RD (3.14)

satisfying whs, j ≤ y, 1≤ j ≤ K, i ̸= j

whs,i > y

y≥ 0

To be a linear program, this formulation needs to be expressed as the maximisation of a
linear objective

f̂ = maximise whs,i− y (3.15)

subject to whs, j− y≤ 0, 1≤ j ≤ K, i ̸= j

whs,i− y≤ 1

where f̂ is the optimal value of the linear objective and the last inequality is added to ensure
a bounded solution. If the solution is strictly positive (f̂ > 0) then the point hs,i is extreme.
Recall that this linear program performs two functions. The first is as a test for extremity of
a feature vector. In this respect the formulation of Galley and Quirk [62] and the formulation
in (3.15) identify the same extreme feature vectors.

The second function is to yield a parameter vector associated with the extreme point,
and here the two linear programs yield different results. The inclusion of the y variable in
the constraints encourages the optimiser to not place the optimal parameter on a constraint,
which is a much more robust solution.

3.2.4 LP-MERT for the Training Set

Multiple K-best lists lead to more serious computational challenges for LP-MERT. Let i be
an index vector that contains S elements. Each element is an index is to a hypothesis and a
feature vector for the sth sentence. LP-MERT builds a set of NS feature vectors associated
with index vectors of the form hi = h1,i1 + . . .+ hS,iS which are then substituted into the
system of inequalities in (3.12). It is possible to reformulate the linear program to avoid NS

constraints [62], but there are still NS such feature vectors.

A feature vector hi can be discarded if any one of the sentence level future vectors his

is not extreme. We can therefore lazily enumerate the feature vectors [62]. For example
if h1,1 +h2,1 is not extreme, then neither will be h1,1 +h2,1 +h3,1 or any other sum which
contains the terms h1,1 and h2,1.

The lazy enumeration of feature vectors is managed through a divide and conquer algo-
rithm [62]. Many index vectors share smaller subsets of common indices. The algorithm

38 Parameter Estimation for Linear Models

identifies these common subsets and tests them for extremity. If any subsets are not extreme,
then whole sets of index vectors that share common subsets can be discarded.

This algorithm does greatly reduce the number of extremity tests, but Galley and Quirk
[62] do not provide a complexity analysis for either runtime or memory consumption. Even
with this scheme, they found that exhaustive testing is impractical and heuristics are used to
avoid testing them all.

In Chapter 6 we describe the Minkowski sum algorithm of Fukuda [59], which also
identifies feasible index vectors. This algorithm has a polynomial time upper bound for the
runtime, a constant memory guarantee, and can be easily parallelized. The algorithm also
predates the algorithm of Galley and Quirk [62] by many years.

3.3 Large-Margin Methods

Let us define a sentence-level error function of the form that computes the error for the sth
sentence

E(es,{rs,1 . . . ,rs,I}) (3.16)

Such a function can be implemented by computing BLEU for each individual sentence.
Note that the sum of sentence-level BLEU is not equal to the corpus-level equivalent. Using
the same index vector notation from the description of LP-MERT in Section 3.2.3, a set of
S oracle hypotheses are indexed with the vector î.

îs = argmin
i

E(es,{rs,1 . . . ,rs,I}) for 1≤ s≤ S (3.17)

In this section we describe large-margin methods for SMT. In general, these methods select
the oracle hypotheses indexed by î, and then relax a set of constraints until a feasible pa-
rameter vector is found. This is in contrast to MERT where infeasible hypothesis sets are
rejected outright.

We start with a description of the structured Support Vector Machine (SVM) [141, 144,
145] which has been applied to SMT [34]. They are a coherent expression of the large-
margin concept and provide a clear contrast to MERT.

We then move onto the Margin Infused Relaxed Algorithm (MIRA) [45], an online
large-margin algorithm. MIRA has been applied, with different formulations, to SMT [34,
40, 151] and dependency parsing [105].

3.3 Large-Margin Methods 39

3.3.1 The Structured Support Vector Machine

Following Tsochantaridis et al. [145] the structured SVM maximises the following problem

maximise y (3.18)

subject to w(hs, j−hs,îs)+ y≤ 0, 1≤ j ≤ K,1≤ s≤ S, îs ̸= j

∥w∥= 1

This problem attempts to find a parameter that maximises a margin across all the constraints,
hence the name large-margin problem. Note the resembelance between this formulation and
the constraints defined for LP-MERT. The solution for this formulation of the structured
SVM also satisfies the system of inequalities for LP-MERT in Eqn. (3.12). This form of the
SVM will always yield a feasible parameter or fail.

With a small amount of algebraic manipulation - see Bishop et al. [20, Page 327] for
a description - the problem can be reformulated as an equivalent quadratic programming
problem

minimise
w

1
2
∥w∥2 (3.19)

subject to w(hs, j−hs,îs)+1≤ 0, 1≤ j ≤ K,1≤ s≤ S, îs ̸= j

This formulation is called the hard-margin SVM, because the system of inequalities in the
constraints must be feasible. If the oracle index vector î does not give a feasible system,
then the constraints must be altered. The solution is to introduce a set of slack variables
{ξ1, . . . ,ξS} that allow the constriants to be violated in proportion to the increase of error
caused by the violation [140]

minimise
w

1
2
∥w∥2 +

C
S

S

∑
s=1

ξs (3.20)

subject to w(hs, j−hs,îs)+∆(es,îs,es, j)−ξs ≤ 0, 1≤ j ≤ K,1≤ s≤ S, îs ̸= j

ξs ≥ 0

where ∆(es,îs,es, j) = E(es,is,{rs,1 . . . ,rs,I})−E(es, j,{rs,1 . . . ,rs,I}) and C > 0 is some con-
stant that controls the trade-off between error minimisation and margin maximisation.

This constrained problem is not solved directly, instead Lagrange multipliers are used
to create a single Lagrangian function that incorporates the constraints into the objective
function. Because of the large number of constraints, the Lagrangian cannot also be solved
directly either. Instead, Tsochantaridis et al. [145] describe an algorithm which iteratively
tightens relaxations of the original problem.

Each one of the S source sentences gives K−1 constraints. The algorithm iterates over

40 Parameter Estimation for Linear Models

these sets and identifies, for the current w, which of the K−1 constraints is most violated.
This constraint is then added to a working set and w is recomputed. The algorithm continues
until a solution is found that does not violate the constraints beyond some precision.

3.3.2 Margin Infused Relaxed Algorithm

We now move to online version of large-margin training called MIRA [45]. For a given s

the objective of this algorithm is

minimise
w(n+1)

1
2
∥w(n+1)−w(n)∥2 +C

K

∑
j=1

ξ j (3.21)

subject to w(hs, j−hs,îs)+∆(es,îs,es, j)−ξ j ≤ 0, 1≤ j ≤ K, îs ̸= j

ξ j ≥ 0

ξîs = 0

In resemblance to the algorithm of Tsochantaridis et al. [145], MIRA approximates a solu-
tion by ignoring all except the most violated constraint. The hypothesis associated with this
constraint is sometimes called the fear hypothesis [37]. As with the structured SVM, the
Lagrangian is solved with a quadratic programming solver.

Because the algorithm is online, the K-best lists are not fixed. At each update of the
parameter vector a new K-best list is generated from the decoder, allowing for a new fear
hypothesis to be chosen.

Watanabe et al. [151] make use of the online nature of the algorithm to compute a more
accurate sentence level error loss. The sth element of î is replaced with the ‘fear’ hypotheses
and the error computed using the error function in Eqn. (3.8). Chiang [37] changes the
oracle hypothesis based on a linear combination of both BLEU and model score. This new
hypotheses is called the hope hypothesis.

For fast computation MIRA requires a parallelised implementation with weight vectors
computed on different CPU cores and averaged when computation is complete [40]. This
implementation is difficult to build, so both Cherry and Foster [34], and Gimpel and Smith
[67] describe simplified versions of MIRA where the hope and fear hypotheses are selected
from reranked K-best lists instead of new hypotheses generated from the decoder. These
methods are called batch-MIRA and RAMPION respectively.

3.4 Ranking Methods 41

3.4 Ranking Methods

We have previously described MERT and large-margin methods. Both these methods iden-
tify an index vector i of 1-best hypotheses that minimise the error across a training set. In
this section we consider not just the 1-best, but all the hypotheses in the K-best lists. Our
goal is to find a parameter vector w that ranks the hypotheses in the K-best lists with respect
to the sentence level error in Eqn. (3.16).

Hopkins and May [76] note that for the sth source sentence, the parameter w that cor-
rectly ranks its K-best list must satisfy the following set of constraints

w(hs, j−hs,i)≤ 0 for 1≤ i≤ K, 1≤ j ≤ K, ∆(es,i,es, j)≥ 0 (3.22)

where ∆(es,i,es, j) is the difference in error between two hypotheses. Now consider the
difference vectors (hs, j−hs,i) associated with each constraint. These difference vectors can
be used as input vectors for a binary classification problem. The class label of the difference
vector is assigned based on whether the difference in error ∆(es,i,es, j) is positive or negative.
Because there are SK2 difference vectors across all source sentences, a subset is sampled.
Hopkins and May [76] call this algorithm Pairwise Ranking Optimisation (PRO).

Transforming the problem into a binary classification problem allows for any binary
classification algorithm to be used. There are many more binary classification algorithms
than structured prediction algorithms, with much better guarantees of performance.

Variants of PRO have been proposed. Bazrafshan et al. [13] transform the binary classi-
fication problem into a regression problem, such that the w(hs, j−hs,i) should be of a similar
magnitude to ∆(es,i,es, j). Watanabe [150] proposes an online algorithm large-margin algo-
rithm subject to the constraints in (3.22).

3.5 Other Methods

In the previous three sections we described three families of methods to estimate parameters
for SMT. We have based this division of methods on the objectives and constraints used in
these methods. Our aim has to highlight what is common, namely the constraints that bound
the objectives, rather than what differs between all these methods. This summary is far
from exhaustive, and the task of parameter estimation has been approached from different
perspectives.

One solution to optimising Eqn. (3.7) is to approximate it with a continuous function,
which is the motivation behind expected BLEU [132]. The log of the BLEU function in

42 Parameter Estimation for Linear Models

Eqn. (3.1) can be written as

min
(

0,1− R
C

)
+

1
N

N

∑
n=1

(logmn− logcn) (3.23)

where all the variables have the same denotations as the description of BLEU in Section
3.1.1. The expectation of this function is taken with respect to the log-linear model in Eqn.
(2.1). This expectation is also difficult to solve analytically so a Taylor approximation is
made. For example, the first order approximation is

min
(

0,1− R
E[C]

) N

∑
n=1

(logE[mn]− logE[cn]) (3.24)

This function can be differentiated for the computation of a gradient for an iterative solution.
This gradient has also been used to set directions for MERT [63].

Instead of smoothing the loss function, it is possible to use stochastic subgradient de-
scent methods [128] to optimise the discontinuous objective of the support vector machine.
The result is an iterative algorithm that is similar to stochastic gradient descent.

Chiang [37] notes that updates in one dimension may have much more impact that oth-
ers. For example, the language model is a very informative feature that should be tuned
conservatively. This insight guides AROW, an algorithm similar to MIRA that can adapt the
scale of its update along different dimensions.

The importance of adapting updates was also noted by Green et al. [71] who use Ada-
Grad with stochastic gradient descent. Because stochastic gradient descent requires a smooth
function, a logistic form of PRO is used as the objective.

3.6 Survey of Recent Work

One avenue of SMT research has been the adding of as many features as possible to the
linear model, especially in the form of sparse features. For example, Chiang et al. [39]
describe 11,001 new features for machine translation and use MIRA to train the model. The
assumption is that the addition of new features will improve translation performance.

We have described three approaches to parameter tuning for SMT: MERT, large-margin,
and ranking approaches. The natural question to ask is which method has the best per-
formance, especially when the problem has a large number of sparse features. Comparing
different methods is difficult because small implementation details can greatly affect opti-
miser performance. Building a strong version of an optimiser involves much work in fixing
implementation details and building two strong versions of two different optimisers is a sig-
nificant engineering challenge. Recently, we have started to see comparisons of optimiser

3.6 Survey of Recent Work 43

performance where great care has been taken to build strong baselines.
Hopkins and May [76] created synthetic high dimensional training and test sets to

demonstrate that MERT is unsuitable for systems with many features. For a system of
tens of features they show parity in the performance between MERT, MIRA, and PRO. For
a system with thousands of features, they claim the MERT does not converge and show
parity between MIRA and PRO.

Since the work of Hopkins and May [76], progress has been made on improving the line
selection for MERT. Flanigan et al. [57] use a complex scheme where a gradient is computed
for sparse features in a development set based on a smoothed version of RAMPION, and
then this gradient is used in a MERT line search in a second development set. Gains over
standard MERT are found, but Flanigan et al. [57] do not provide PRO or MIRA baselines.

Galley et al. [63] show that standard MERT can scale to many features if regularised
and search directions based on the gradient of expected BLEU are chosen. Using a system
with thousands of features they show a parity in performance with PRO. Both this result and
the results of Flanigan et al. [57] support an argument that MERT can be used for sparse
features if the directions are chosen with care.

Cherry and Foster [34] finds that batch-MIRA outperforms PRO and structured SVMs
for a number of systems build across language pairs. The difference in performance was
small, with improvements in the range of 0.1− 0.3 BLEU points. Similarly Gimpel and
Smith [67] show a parity in performance between MERT, MIRA, and RAMPION for small
feature sets, and a parity in performance between MIRA and RAMPION for large feature
sets.

It is interesting to read the justification for many of these works as stated in their ab-
stracts. For example Hopkins and May [76] state that:

Moreover, unlike recent approaches . . . , PRO is easy to implement. We
establish PRO’s scalability and effectiveness by comparing it to MERT and
MIRA and demonstrate parity on both phrase-based and syntax-based systems
in a variety of language pairs, using large scale data scenarios.

Cherry and Foster [34] state:

Among other results, we find that a simple and efficient batch version of MIRA
performs at least as well as training online.

Along similar lines Gimpel and Smith [67] state:

[We] present a training algorithm that is easy to implement and that performs
comparable to others.

44 Parameter Estimation for Linear Models

In defence of MERT, Galley et al. [63] state:

Experiments with up to 3600 features show that these extensions of MERT yield
results comparable to PRO, a learner often used with large feature sets.

What is striking, is that none of these authors claim that their methods outperform other
methods in terms of quality of output. Approaches are justified by being easier to imple-
ment, or to are less sensitive to initialisation of parameters. We also note that Green et al.
[71] have cast doubt on the effectiveness of estimating the parameters for a large number of
sparse features:

Adaptation of discriminative learning methods for these types of features to
statistical machine translation (MT) systems, which have historically used id-
iosyncratic learning techniques for a few dense features, has been an active
research area for the past half-decade. However, despite some research suc-
cesses, feature-rich models are rarely used in annual MT evaluations. For ex-
ample, among all submissions to the WMT and IWSLT 2012 shared tasks, just
one participant tuned more than 30 features [30]. Slow uptake of these methods
may be due to implementation complexities, or to practical difficulties of con-
figuring them for specific translation tasks (Gimpel and Smith [67], Simianer
et al. [131], inter alia).

These quotes raise two questions. Why do all these methods give similar performance
in research settings? And why do these research successes not translate to improvements
in MT evaluations? We believe that the answers are due to feasibility. If the oracle index
vector î is feasible then a representative parameter can be found with a hard-margin method.
The loosening of constraints is unnecessary, because the constraints are all feasible.

We note that the oracle index vector differs depending on the training method being
used. The MERT oracle lowers the corpus level error, and the SVM and MIRA oracles
differ because of the hope hypothesis. However, the oracle index vectors should still be
similar, or index similar hypotheses with low error counts.

We believe that as the feature dimension increases, the chance of any given index vector
being feasible also increases. In Chapter 6 we present theoretical evidence that supports this
argument.

Chapter 4

Fast Model Parameter Estimation and
Filtering for Large Datasets

In the previous two chapters we described models for SMT and how to estimate their pa-
rameters. In this Chapter we focus on the implementation of these models and parameter
estimation methods. Most research for building practical SMT systems has focussed on
building fast and efficient decoders, and there exist many mature and widely used open-
source decoder implementations [81, 90, 97]. We instead focus on the many tasks that need
to be completed before we can start decoding.

Building and processing SMT models is not a trivial procedure, and because larger
models yield better results [123] we must build processing systems that can scale to large
amounts of data. Developing software to process this data is an arduous task and requires
proficiency with modern programming languages and computer systems as well as a deep
understanding of the models being built.

A welcome development in SMT has been the introduction of software frameworks
from industry [31, 49]. Using these frameworks cuts down development effort and helps
researchers adopt industrial best-practice. The issue with general-purpose frameworks is
that they may not have all the features necessary to support specific models, or may not be
able to scale to the demands of large data. If this is case then the framework cannot be used
and custom solutions have to built. In this chapter we describe a general approach based on
MapReduce [49] and HFiles [5] that can be applied to many of the problems in SMT with
comparable processing times and memory characteristics to custom solutions.

Our contribution is to show that fast and efficient implementations of SMT models can
be built using general purpose industrial frameworks. We can match or even exceed the
speed and memory consumption of custom built solutions. Our conclusion is that an im-

46 Fast Model Parameter Estimation and Filtering for Large Datasets

plementation of a model using an off-the-shelf tool is usually ‘good enough’ and requires
much less time to develop than a custom solution.

Many of these software frameworks have open-source implementations provided by the
Hadoop project [6]. We believe that framework is too general a term, and it is helpful to
split the description of these frameworks into three components:

Programming Models A loose formalism of how software should be structured for cer-
tain tasks to achieve simple and fast programs. These models are also called design
patterns [64].

Software Toolkits Sets of libraries and executables that capture reusable software compo-
nents shared between many disparate tasks.

Distributed Computation Systems A method of running complex tasks across many dif-
ferent machines. They usually take the form of a set of processes that run on many
machines and communicate via interprocess-communication. These processes are re-
sponsible for scheduling tasks, and storing and serving data.

The software frameworks are best described in the context of a practical problem. In
this chapter we use the Stupid Backoff language model [25] as an example to base our
description. The Stupid Backoff N-gram relaxes the constraint that probabilities be properly
normalised. To reflect this the probability P(·), for the N-gram, is replaced with the pseudo-
probability S(·). It has the form:

S(Wi |W i−1
i−n+1) =

f (W i

i−n+1)

f (W i−1
i−n+1)

if f (W i
i−n+1)> 0

αS(Wi |W i
i−n+2) otherwise

(4.1)

where the function f (·) describes the number of times the N-gram was observed in the
language model training data and α is some constant independent of the N-gram history .
This language model is simple, but when the N-grams are estimated from a large amount of
data it has similar performance to more sophisticated models [25].

Building the Stupid Backoff model involves processing a very large monolingual corpus
contained in a file on disk, and counting the N-grams contained in the file. Once we have the
model, we only need a small fraction of the N-grams to compute a score for a hypothesis.
This is a general pattern with SMT models. Once the model parameters have been estimated,
the decoder only needs a fraction of the information contained in those models to be able to
translate a specific input source sentence or a set of input source sentences. In this Chapter

4.1 Related Work 47

we describe both how to build the models, and then how to filter them for an individual
source sentence or test set.

In the first section we describe related work. The description covers highly customised
solutions to other applications of software frameworks. In the next two sections we describe
how to use the software frameworks to build a Stupid Backoff language model rescorer for
translation lattices [21]. We start with a description of MapReduce [49], which is a batch
processing framework suited to estimating model parameters. We then describe the HFile
format, derived from components used in Bigtable [31], to quickly filter parameters for a
test set. For the filtering experiments we compare the performance of the general purpose
HFile against a custom built solution based on the suffix array, which is a specialised data
structure designed to be used for text processing.

In the fourth Section we consider an existing system [122, 124] based on MapReduce
and HFiles that is used to perform the translation rule extraction process described in Section
2.2.3. We demonstrate how a selection of “tricks” and refinements can be deployed to give
an order of magnitude improvement in terms of memory and runtime. Finally we end with
conclusions.

4.1 Related Work

In the introduction we stated that we had two tasks, estimating parameters and then filtering
them. Let us consider the types of models seen in Chapter 2. Parameter estimation can
take the form of expectation-maximisation statistics for word alignments, relative frequency
counts for rule extraction, or a modified relative frequency count for language models. In
all cases, some linguistic phenomena is extracted from text, counted, and then aggregated
over the whole corpus.

These tasks are very suited to a batch processing framework such as MapReduce, and
there has much preceding work applying MapReduce for parameter estimation. For lan-
guage model parameter estimation, Brants et al. [25] describe how to compute different
types of language models with MapReduce, including Kneser-Ney and Stupid Backoff.
Word alignments and phrase-based conditional rule probabilities have been computed using
MapReduce by Dyer et al. [55]. Software for computing hierarchical phrase-based models
using MapReduce is also readily available [97, 147, 152].

Once the parameters have been estimated, we need to find some fast efficient way to
filter the parameters for a test set. In general, we have a set of keys which could be N-
grams, word alignments, or rules. Each key is associated with a value, such as an N-gram

48 Fast Model Parameter Estimation and Filtering for Large Datasets

count, or a translation rule probability. Given a source sentence we can extract a set of keys,
which we call the query. For this query we need to find the set of associated values.

General key-value problems are a widely studied problem in computer science, with
many data structures and algorithms available. Strategies include storing the model as a
simple data structure in memory, in a plain text file, in more complicated data structures in
memory, storing fractions of the entire model, storing the raw data as opposed to a precom-
puted model or storing models in a distributed fashion.

If small enough, it may be possible to fit the model into physical memory. In this case
the model can be stored as a memory associative array, such as a hash table, for rapid query
retrieval. In-memory storage has been used to store translation tables between iterations of
expectation-maximisation for word alignment [55, 99].

For larger models, the set of key-value pairs can be stored as a table in a single text file
on local disk. Values for keys in the query set are retrieved by scanning through the entire
file. For each key in the file, its membership is tested in the query set. This is the approach
adopted in the Joshua 3.0 decoder [152], which uses regular expressions or N-grams to test
membership of translation rules. Venugopal and Zollmann [147] use MapReduce to scan
a file of translation rules concurrently: a mapper is defined that tests if the vocabulary of
a rule matches the vocabulary of a test set. The MapReduce framework then splits the file
into subsections for the mappers to scan over in parallel.

The parameters can also be stored using a trie associative array [58]. A trie is a type
of tree where each node represents a shared prefix of a set of keys represented by the child
nodes. Each node only stores the prefix it represents. The keys are therefore compactly
encoded in the structure of the trie itself. Querying the trie is a O(log(n)) operation, where
n is the number of keys in the dataset. The trie may also be small enough to fit in physical
memory to further reduce querying time. Tries have been used for storing phrase tables
[158] and hierarchical phrase-based grammars [65] as well as language models [74, 121].

One method of handling the large number of parameters associated with high order
language models is to identify and remove parameters that have minimal impact on the
predictive ability of the model. The smaller set of model parameters can then be stored in
memory, which makes computing an N-gram probability fast. Count frequency cut-offs,
probability quantisation and entropy based pruning [136] are methods used to reduce the
size of language models. These methods are often used in the first pass of a two-pass SMT
system. In the second pass the K-best lists or lattices are rescored with the larger language
model, possibly filtered to cover the words in the K-best lists.

It is also possible to create a much smaller approximate version of the full model. Ran-

4.2 MapReduce 49

domised language models [137, 139] store parameters or counts associated with N-grams in
a structure similar to a Bloom filter [22]. This structure is small in comparison to the origi-
nal language model, although the reduction in size comes at the cost of randomly corrupting
model parameters or assigning model parameters to unseen N-grams. Guthrie and Hepple
[73] propose an extension which prevents the random corruption of model parameters but
does not stop the random assignment of parameters to unseen N-grams.

Another way of building a smaller approximate version of a model is to retain items
with high frequency counts from a stream of data [104]. This technique has been applied to
language modelling [70] and translation rule extraction [127]. Levenberg and Osborne [95]
combine randomised language models with stream-based language models.

Another solution for fast filtering of the full language model during decoding is to use
a distributed computing approach based on a client-server paradigm. In this approach, de-
coder clients connect to one or more remote language model servers and request N-gram
probabilities or counts. This approach allows for the language model parameters to be
stored in memory on multiple machines.

Instead of pre-computing the dataset it is possible to compute the sufficient statistics at
query time using the suffix array [103] data structure. A suffix array is a sequence of pointers
to each suffix in a training corpus. The sequence is sorted with respect to the lexicographic
order of the referenced suffixes. Suffix arrays have been used for computing statistics for
language models [161], phrase-based systems [27, 160], and hierarchical phrase-based sys-
tems [100].

Finally, some approaches store language models in a distributed fashion. Brants et al.
[25] describe a distributed, fast, low-latency infrastructure for storing very large language
models. Zhang et al. [159] propose a distributed large language model backed by suffix
arrays. HBase has also been used to build a distributed language infrastructure [155]. The
method we propose to use is closely related to the latter but we use a more lightweight
infrastructure than HBase and we apply it to two different tasks, demonstrating the flexibility
of the infrastructure.

4.2 MapReduce

MapReduce is a framework for the batch processing of data concurrently on many machines
in a compute cluster. It is both a programming model and a distributed computing system to
support this programming model. First we describe MapReduce as a programming model.

MapReduce was inspired by functional programming [28]. It has been noted that func-

50 Fast Model Parameter Estimation and Filtering for Large Datasets

tional languages are well suited to concurrent execution [7]. There are two characteristics
of functional languages that make them amenable for concurrent execution. The first is that
data is immutable: a variable in a functional program never changes its value. The second
characteristic is that functions are strictly defined. A function transforms some input data
into an output value. The function is not allowed to alter the input data. A function is also
forbidden from exhibiting side-effects, such as writing to the filesystem or altering some
other variable unrelated to the output.

Because variables are immutable, the functional language runtime can share the variable
between many execution contexts. Because functions are strictly defined they can be exe-
cuted in any order, or concurrently, without affecting results or creating bugs due to out of
sequence execution. Even though we may use an imperative language, such as C or Java,
we can get the same benefits of a functional language by restricting ourselves to a similar
style.

Functional languages provide two families of inbuilt functions that Dean and Ghemawat
[49] classified as map and reduce functions. Let us describe these functions in the context
of the Stupid Backoff model. First, consider the problem of counting the occurrences of all
words in a file. Taking a two line text file:

(1,“the cat sat on the mat”)

(2,“the man with a telescope”)

Each line is stored with a key corresponding to the line number and a record holding the
text value. The first step is to define a map function:

(1,(W1,W2, ...Wn))−→ ((W1,1),(W2,1)...(Wn,1))

The map function takes a single key-value as input. The key is the line number and in this
example the key is equal to 1 so it is processing the first line. The value is a normal text
string which represents a collection of words from W1 to Wn. To the right-hand side of the
arrow is the output of the function. The output is a collection of key-value records with the
word as the key and an integer which represents the count for that individual token in the
sentence. If applied on the first line in the file.

(1,“the cat sat on the mat”)−→

(“the”,1),(“cat”,1),(“sat”,1),(“the”,1),(“on”,1),(“mat”,1)

4.2 MapReduce 51

The data generated from a map function is written in an intermediate file stored on disk.
Once every line has been processed the intermediate file will be full of key-value records
with the words as keys and their counts as values. Before the reduce step is executed we need
to group together all the keys with the same value. This grouping can be done efficiently
with a sort on the intermediate file of the results from the map step, using the word keys
to define the sort order. The final step is to define a reduce function. If wi appears n times
across several sentences the function would be:

((Wi,1),(Wi,1)...(Wi,1))−→ (Wi,n) (4.2)

or if this MapReduce was applied to the whole of the two line file then the reduce operation
for the token “the” would be:

(“the”,1),(“the”,1),(“the”,1)−→ (“the”,3)

A more formal definition of MapReduce can be given.

map (k1,v1) −→ list(k2,v2)
reduce (k2,v2) −→ list(k3,v3)

An important aspect of this definition is typing. The output of the map function is
allowed to transform the types k1 and v1 to k2 and v2. This can be seen in the word count
example where k1 was an integer line number and was transformed into k2 which is string.
The important constraint is the reduce function inputs has to use the same types as the map
function output.

The principle behind MapReduce is that many problems suitable for parallisation can be
expressed in these two steps. The key-value records can be processed concurrently during
the map step, and the aggregated records can be processed concurrently during the reduce
step. The only restriction in program flow is that the sort is executed sequentially. There
is a contract between the programmer and MapReduce to respect the constraints imposed
by the functional style of programming. In return MapReduce will be able to handle all the
concurrent execution of the program.

Let us now return to the Stupid Backoff model. To compute pseudo-probabilities S(·)
we need N-gram counts. To change our example to an N-gram counter, the map function
would emit N-grams to be aggregated by the reduce function.

Brants et al. [25] describe a method for computing Kneser-Ney language models using
MapReduce. This computation is a more involved process because of the requirement to
observe N-gram contexts. Instead of a single map and reduce, Kneser-Ney requires three

52 Fast Model Parameter Estimation and Filtering for Large Datasets

successive stages of maps and reduces. Because only a single map and reduce is needed
for the Stupid Backoff model, Brants et al. [25] were able to double the amount of training
data used. In general, MapReduce is suited for batch processing where model parameters
or features are extracted from a small data window and aggregated across a large dataset.

4.2.1 MapReduce Implementation

In the previous section the abstract map and reduce functions were defined. This section
describes an implementation of a framework [49] that uses these abstract functions. When
discussing a MapReduce implementation we refer to the cluster it runs on. A cluster is a set
of machines running and managed by MapReduce software. We also denote a node as an
individual machine inside the cluster.

Instead of using a small two line file we can look at how to process a much larger
file, illustrated in Figure 4.1. The framework first splits the file into smaller segments.
A map operation is applied to the records in each segment to produce an intermediate file
composed of key-value records. As a map operation is independent of neighbouring records,
map operations can be applied in any order. A MapReduce framework will send segments
to separate nodes and each node will apply the map function to each record in the segment
sequentially. In Figure 4.1 the keys of the intermediate files have been colour coded into four
shades of grey corresponding to four distinct key values. The results of the map function
are then partitioned into different segments. The distribution of keys among the partitions
is decided by taking a hash of the key. As the map functions generate keys they are placed
in the partitioned blocks in the background by a process known as fetching. Note that this is
the only time in the process that data is exchanged between segments.

Everything left of the dotted line labelled ‘barrier’ can be performed in parallel. As a
consequence of the fetching process crossing segments it is sensitive to the output of all
the map operations. Therefore all map operations on all segments must be completed and
the intermediate records placed in the correct partition before MapReduce can continue.
Once all the segments have been fetched, the barrier is crossed and parallel computation
can restart. The partitioned segments are sorted to group the records together by key. In
figure 4.1 the sort order is indicated by the lightness of the grey colour. As each node has
its own partitioned data the sort can be done in parallel. The sort algorithm is a merge sort
which allows nodes to sort partitioned data sets larger than physical memory. Once sorted it
is straightforward to collate a set of keys and input them into a reduce task. These tasks can
be again be run concurrently for each set of keys. Finally the reduce tasks will output their

4.3 The HFile Format 53

Key ValueKey Value

Key ValueKey Value

Key ValueKey Value

Key Value

Key Value

Key Value

Map Sort Reduce

Barrier
Key Value

Key Value

Fetch

Fig. 4.1 Illustration of how MapReduce is applied to a large file. The execution moves from
left to right in time. All the processing can be performed in parallel until the doted line
labelled “barrier” is reached. The fetch stage is the only part of the process where data is
moved between segments and hence forces the MapReduce to pause until all fetch functions
have completed. After all jobs to the left of the barrier are finished parallel processing of
the sort and reduce functions is allowed.

results to the final output file. The final output is not in sorted order and is sensitive to how
the data is partitioned.

The MapReduce implementation is tightly coupled to a distributed filesystem [66] called
the Hadoop Distributed Filesystem (HDFS). This filesystem takes the form of processes,
called datanodes, running on nodes in a cluster. Each process serves data from local physical
disk to a client MapReduce process. Using HDFS cuts network traffic in the cluster because
the MapReduce process is aware of which datanode stores relevant data. The map and
reduce functions are executed on the same machines where the data resides.

4.3 The HFile Format

MapReduce is useful for estimating parameters or extracting features of a model. In the
introduction, we stated that the estimated parameters can be filtered because the decoder

54 Fast Model Parameter Estimation and Filtering for Large Datasets

Data block
. . .
Leaf index block / Bloom block
. . .
Data block
. . .
Leaf index block / Bloom block
. . .
Data block

Intermediate level data index block
. . .

Root data index
File information
Bloom filter metadata

Fig. 4.2 The internal structure of an HFile, after Apache Software Foundation [5] (simpli-
fied)

only requires a small fraction of them. MapReduce is a poor choice for this task because
each key-value has to be loaded from the file system, and we should try to minimise disk
access to achieve fast filtering.

Before the introduction of Bigtable [31] the main choice of framework to solve this
problem would have been a relational database [42], which combines a rich relational for-
malism with algorithms for querying data quickly. We can disregard the use of a relational
database because it is too expressive for our problem. Our data can be adequately expressed
as key-value pairs, and so the relational formalism is not useful. Also, Bigtable uses many
of the same algorithms and techniques for fast querying. For example, the SSTable and
HFile formats we describe in this section are directly inspired by the B-tree data structure
found in database implementations [31]. Using a relational database would add additional
complexity for no benefit.

The next logical consideration would be to use Bigtable [31] as a distributed key-value
store for model parameters. HBase [5], which is the Hadoop implementation of Bigtable,
has already been used for distributed language models [155] demonstrating that such an
approach is feasible. The issue with using such a system is that it must be constantly main-
tained and available. Keeping a distributed system constantly running is beyond the re-
sources of most researchers. We therefore propose using components of HBase, as opposed
to the whole system.

4.3 The HFile Format 55

The following description of the HFile format is jointly written with Pino et al. [124].
To store a model represented as key-value pairs, we use the HFile file format [5], which is
a reimplementation of the SSTable file format [31]. The HFile is used at a lower level in
the HBase infrastructure. In this work, we reuse the HFile format directly without having
to install an HBase system. The HFile format is a lookup table with key and value columns.
The entries are free to be an arbitrary string of bytes of any length. The table is sorted
lexicographically by the key byte string for efficient record retrieval by key.

Internal structure

As can be seen in Figure 4.2, the data contained in an HFile is internally organised into data
blocks. The block size is configurable, with a default size of 64KB. Note that HFile blocks
are not to be confused with Hadoop Distributed File System (HDFS) blocks whose default
size is 64MB. If an HFile is stored on HDFS, several HFile blocks will be contained in an
HDFS block. A block index is constructed which maps the first key of an HFile block to
the location of the block in the file. For large HFiles the block index can be very large.
Therefore the block index is itself organised into blocks, which are called leaf index blocks.
These leaf index blocks are interspersed with the data blocks in the HFile. In turn, the leaf
index blocks are indexed by intermediate level data index blocks. The intermediate blocks
are then indexed by a root data index. The root data index and optionally the Bloom filter
metadata, described next, are stored at the end of the HFile. In order to distinguish block
types (data block, index block, etc.), the first 8 bytes of a block will indicate the type of
block being read. The HFile format allows for the blocks to be compressed. The choice of
compression codec is selected when the file is created. We choose the GZip compression
codec for all our experiments. Block compression is also used in other related software
[121].

Record retrieval

When the HFile is opened for reading, the root data index is loaded into memory. To retrieve
a value from the HFile given a key, the appropriate intermediate index block is located by a
binary search through the root data index. Binary searches are conducted on the intermediate
and leaf index blocks to identify the data block that contains the key. The data block is then
loaded off the disk into memory and the key-value record is retrieved by scanning the data
block sequentially.

56 Fast Model Parameter Estimation and Filtering for Large Datasets

Bloom filter optimization

It is possible to query for a key that is not contained in the HFile. This very frequently
happens in translation because of language data sparsity. Querying the existence of a key
is expensive as three blocks have to be loaded from disk and binary searched before it can
be decided that a query fails. For fast existence check queries, the HFile format allows the
inclusion of an optional Bloom filter [22]. A Bloom filter provides a probabilistic, memory
efficient representation of the key set with an O(1) membership test operation. The Bloom
filter may provide a false positive, but never a false negative for existence of a key in the
HFile. For a large HFile, the Bloom filter may also be very large. Therefore the Bloom
filter is also organised into blocks called Bloom blocks. Each block contains a smaller
Bloom filter that covers a range of keys in the HFile. Similar to the root data index, a
Bloom filter metadata or Bloom index is constructed. To check for the existence of a key, a
binary search is conducted on the Bloom index, the relevant Bloom block is loaded, and the
membership test performed. Contrary to work on Bloom filter language model [138, 139],
this filter only tests the existence of a key and does not return any statistics from the value.
If a membership test is positive, the HFile data structure still requires to do a usual search.
During the execution of a query, two keys may reference the same Bloom blocks. To prevent
these blocks from being repeatedly loaded from disk, they are cached after reading.

Local disk optimization

The HFile format is designed to be used with HDFS. Large files are split into HDFS blocks
that are stored on many nodes in a cluster. However, the HFile format can also be used
completely independently of HDFS. If its size is smaller than disk space, the entire HFile
can be stored on the local disk of one machine and accessed through the machine’s local file
system.

Query sorting optimization

Prior to HFile lookup, we sort keys in the query set lexicographically. If two keys in the
set of queries are contained in the same block, then the block is only loaded once. In ad-
dition, the computer hardware and operating system allow further automatic improvements
to the query execution. Examples of these automatic improvements include reduced disk
seek time, the operating system caching data from disk 1, or CPU caching data from main
memory [120].

1The Linux Documentation Project, The File System, http://tldp.org

4.3 The HFile Format 57

4.3.1 Application to Stupid Backoff Models

To demonstrate that HFiles are fit to store model parameters, we build a Stupid Backoff
model and measure retrieval times and memory usage. The HFile stores N-grams W j

i as
keys, and their counts f (W j

i) as values. Each word of the key is mapped to an integer so
that the N-gram becomes a string of integers. Each integer is then converted into a binary
representation with a three byte width, which is adequate for the vocabulary used by our
collections. The count is stored using a four byte integer representation.

For a baseline, we use a suffix array based on the Suffix Array Language Model toolkit
(SALM) toolkit [161]. The original SALM toolkit used a 32-bit integer representation for
each element in the suffix array. This representation has been widened to 64-bits to allow
a larger corpus to be indexed. SALM loads the suffix array and monolingual corpus into
memory for fast computation of the counts. We did not report comparisons to the KenLM
toolkit [74], which is designed for retrieving N-gram probabilities from an ARPA file as
opposed to raw N-gram counts.

We note that we compare the HFile against frameworks designed specifically for SMT,
Speech Recognition, and other tasks specific to Natural Language Processing. We are not
comparing the HFile against other ‘off the shelf’ solutions due to the arguments made in
Section 4.3. It is more than possible that a HBase cluster would be faster, but at the cost of
more spending more time maintaining and managing the cluster.

We use the following setup:

Data We use a concatenation of the Gigaword Fifth Edition [119] with the English side of
the NIST’12 parallel data for the constrained track. The SALM toolkit imposes a 256
word limit on sentence length in the corpus, therefore we truncated all sentences to
256 words. The corpus contains 5.4 billion words. From the monolingual corpus we
extract 2.5 billion word sequences and counts. These are stored in an HFile with 8
KB data block size.

Translation lattices we replicate an experiment where a set of 2816 translation lattices
are rescored using a 5-gram Stupid Backoff language model [21]. The N-gram keys
required to build the set-specific language model are extracted from the lattices using
modified counting transducers [109]. The queries take the form of 8.4 million keys,
of which 7.3 million of the keys are unique.

HFile optimization we execute four HFile based queries based on whether the HFile con-
tains a Bloom filter index, and whether the HFile is stored on local disk or a distributed

58 Fast Model Parameter Estimation and Filtering for Large Datasets

Index Query Query Total Peak
Load Processing Retrieval Time Memory

Suffix Array 8m39s - 3m20s 11m59s 90.7G
HFile, HDFS - 18s 3m54s 4m12s 3.1G

HFile, Bloom, HDFS - 1m11s 2m52s 4m3s 5.8G
HFile, Local - 18s 3m5s 3m23s 3.1G

HFile, Bloom, Local - 25s 1m56s 2m21s 5.8G

Table 4.1 Comparison of times and memory usage for N-gram count queries using various
HFile implementations and the suffix array baseline. Rows labelled HDFS or Local indicate
whether the HFile is stored in a distributed filesystem or local disk. The rows labelled with
Bloom indicated that the query used a Bloom filter.

file system.

Time measurement phases we split the query execution into distinct phases. For SALM
we record the time taken to load the suffix array and monolingual corpus into memory,
which we label index load time. We then enumerate through the unsorted keys in the
query and compute the count associated with the key. Note that for any duplicate key
in the query a duplicate count is computed. We call this phase query retrieval. For
the HFile based infrastructure, the query has to be sorted. A Bloom filter may also be
applied after the sort. We call this phase query processing. We then look up the HFile
to locate the query keys. The look up phase is also labelled query retrieval.

Hardware configuration the machine used for the query has 94GB of memory and an Intel
Xeon X5650 CPU. The distributed file system is hosted on the querying machine and
other machines with the same specification, which are used to generate the HFile.

File system caching Modern linux based operating systems buffer the results of local disk
access in RAM [142]. To achieve consistent and repeatable results, the query is ex-
ecuted twice for both SALM and the HFile based system. The time for the second
query execution is recorded.

During these experiments the only processes running on the machine are the HFile
query processes and background processes required by the operating system. The results
are shown in Table 4.1 from which we can draw the following observations:

Speed column 4 shows that the HFile infrastructure provides a competitive query speed
with respect to SALM.

4.4 Improvements to Hierarchical Rule Extraction 59

Memory column 5 shows that the memory overhead of the HFile infrastructure is much
lower than SALM. We could reduce the suffix array memory usage by doing an on-
disk binary search but this would increase the query processing time.

HFile optimizations an interesting result is the effect that the Bloom filter has on the query
processing time for the distributed query. The time spent loading the blocks that
comprise the Bloom filter offsets the time saved retrieving the counts. However, when
using local disk the Bloom filter has only a small impact on the query processing time.

In addition, although disk usage is not an issue, it is worth mentioning that the English
monolingual data together with the suffix array represent 90G of uncompressed data and
the HFile size is 11G without Bloom filter and 14G with Bloom filter. We store the English
monolingual data in a decompressed file for more efficient loading into a suffix array. On
the other hand, only HFile blocks potentially containing a key are uncompressed during an
HFile query.

4.4 Improvements to Hierarchical Rule Extraction

In this Section we move onto a more complicated problem than the Stupid Backoff language
model. We describe a system [122, 124] for computing the hierarchical rules in Section
2.2.3. We then discuss a series of “tricks” to improve the runtime and memory performance
of the system.

In Section 4.1 we noted that several translation rule extraction systems based on MapRe-
duce already exist. However, taking the general principles of MapReduce and building a
fast and memory efficient implementation is not a trivial operation. We are not aware of a
detailed implementation guide for building parameter estimation processing systems using
MapReduce.

Let us assume that we are given parallel text with word alignment links, similar to the
example in Figure 2.1. Rules are extracted following the scheme described in Section 2.2.3.
These rules take the form a pair, source u and target v strings of terminals and non-terminals.
For each rule (u,v) a set of features is computed for the rule.

Most features, such as the number of non-terminals in-each rule, can be computed di-
rectly from the strings. Two sets of features require a more complex procedure. The first set
is the rule conditional probability as computed by relatively frequency counts

φ(u | v) = f (u,v)
∑u′ f (u′,v)

(4.3)

60 Fast Model Parameter Estimation and Filtering for Large Datasets

· · · white · · · house · · ·
...
maison PM1(white |maison) PM1(house |maison)
...
blanche PM1(white | blanche) PM1(house | blanche)
...

Table 4.2 An extract of a translation table with English as the target and French as the source

where f (s, t) is the count of rules extracted from parallel data. These features are computed
in both directions, s | t and t | s.

The second set of features are called lexical features and are based on the IBM word
alignment model 1 [26]. Let us denote ũ as a subsequence of the terminals in u and simi-
larly ṽ as a subsequence of the terminals in v. The lexical features are computed using the
following method [89]:

s(ũ, ṽ) =
1

(V +1)U
U

∏
u=1

V

∑
v=0

PM1(ũu | ṽv) (4.4)

where U and V are the respective number of terminals, and PM1(ũu | ṽv) is the model 1
probability.

The probabilities PM1(ũu | ṽv) are stored in large translation table containing the proba-
bility of a terminal in u given a terminal in v. The rows of this table are indexed by words
on the source side, and the columns by the target side. An example of a translation table
with the probabilities between two words is shown in Table 4.2. The translation table is
very large because it contains a mapping between every word in the source vocabulary to
the target vocabulary, although many entries will take a zero or a default value. Because
word alignment models are not symmetrical using two translation tables to compute u | v
and v | u versions of this feature gives additional performance.

Both sets of features are estimated over the entire set of parallel data, and subsets based
on the provenance of the parallel data [38]. For example, some of the parallel data may be
from a high quality source such as translated EU parliamentary proceedings, and some may
be scraped from the world-wide-web using some automated tool. We can extract features
based on each provenance. The parallel data is also combined to create a global provenance.
This leads to accessing a fairly large (approximately a dozen) collection of translation tables.

4.4 Improvements to Hierarchical Rule Extraction 61

4.4.1 Baseline Rule Extraction System Design

One methodology for designing software design is the iterative development cycle [14]. In
this methodology an initial system is built quickly, and defects are fixed over time. The
proponents of this methodology argue that many defects only become apparent once the
system is running, and that software development is better modelled as a continuous iterative
process that fixes these defects and adds small improvements. This is in marked contrast to
the ‘big bang’ or ‘waterfall’ development model where the system is delivered in full, given
a rigid set of specifications.

In this section we describe the describe the system of Pino [122] for extracting rules
and computing their features. The system uses MapReduce to extract rules and compute
feature values, and then stores the results in an HFile for fast retrieval. We consider this to
be our initial system. In the next section we describe a second iteration of the iteration of
the system, incorporating many of the lessons learnt from this initial system. The system
proceeds over the following five stages:

Rule Extraction

In this stage, a MapReduce job extracts rules from the parallel data. The map function
extracts the rules using rule alignments as described in Section 2.2.3.

The decision was made not to aggregate the rule counts after extraction. This can be
achieved by the use of identity reducer function, which does not transform the input. The
resulting key-value records take the form:

((u,v),1)

As a result of this decision, all later stages are required to aggregate counts separately before
processing can begin.

Feature Computation

Once the rules have been extracted, a series of MapReduce jobs is executed that compute
the conditional rule probabilities and lexical features. The input into the jobs is the output
of the previous rule extraction job. Each feature is computed with a single MapReduce job,
such that two jobs are needed for each provenance.

For the rule conditional probability the MapReduce job is based on method 3 in Dyer
et al. [55]. First the pair of source and target strings is transformed using a map function

62 Fast Model Parameter Estimation and Filtering for Large Datasets

such that the key is the target side of the rule and the source side string is moved into the
value.

((u,v),1)−→ (v,(u,1))

The MapReduce framework then aggregates all the rules with the same target side. For the
reduce function, the input key is the target side string and value is a list of the source side
strings that share the same target side. From this list the occurrence counts can be computed.

The output of the reducer is a key-value record where the key is the target side strings,
and the value is a list of source side strings and their probabilities. If there are n rules that
share the same target side v then the output is

(v,((u1,P(v | u1)), . . . ,(u,P(v | un)))

For computing P(u | v) a similar job is executed, but the with the u,v strings swapped.

For the lexical features the map function does nothing, modelled by an identity map
function. The MapReduce framework aggregates the rules such that there is only a unique
key-value record for each rule. The reducer loads then loads the appropriate translation
table into memory. For each rule the lexical feature is then computed via Eqn. (4.4). Note
if many reducers are running in parallel on the same node then the translation table will be
loaded multiple times.

Merging

The feature computation stage requires a separate MapReduce job for each feature, direc-
tion, and provenance. So for example, if we compute rule probabilities and lexical features
from two provenances then we will have 12 MapReduce outputs from the previous stage:

• two sets of features in the source-to-target direction for the global provence

• two sets of features in the target-to-source direction for the global provence

• two sets of features in the source-to-target direction for the first provence

• two sets of features in the target-to-source direction for the first provence

• two sets of features in the source-to-target direction for the second provence

• two sets of features in the target-to-source direction for the second provence

4.4 Improvements to Hierarchical Rule Extraction 63

On disk these results are stored as 12 separate files of key-value pairs. The format of these
files is also varied because of the transformation required by the rule probability computa-
tion. For example source-to-target features have the target string as the key, and the target-
to-source use the source string as the key. These job outputs have to be merged into a
consistent set of records, such that for a single rule key, all the features are stored in a single
value.

The map function transforms the results of the feature computation jobs into a list of
key-value records where the key is the source side string u and value a list of triples of
target side string v, feature vector index d, and feature value hd(u,v).

The MapReduce framework aggregates the results such that all the rules with the same
source side strings are passed into the reduce function. The reducer then loads all feature
values into memory, and does a secondary sort of the triples in memory by target side v such
that the records with the same target side strings are contiguous. Note that this second sort
is done outside of the MapReduce framework and must occur in the memory of the process
executing the reduce function. The reduce function can then create sparse representations
of the feature vectors h(u,v). The final output is a key-value record where the source string
u is the key and the value is a list of pairs of targets strings and sparse feature vectors. If
there are m rules that share the same source side string then the final output is

(u,((v1,h(u,v1)), . . . ,(vm,h(u,vm)))

HFile Generation

Once the merge has been completed the Hfile is created. The Hfile is essentially the output
of the merge job converted to the Hfile format. The output of the merge must be sorted
with respect to the source side string keys so that the Hfile can be generated. Ideally the
MapReduce framework should be used to sort the records but the framework partitions keys
with respect to the hash of the key. Because of this partitioning the keys are not guaranteed
to be in sorted order across all partitions if multiple reducers are used. One solution is to tell
the framework how to partition keys using a TotalOrderPartitioner, which requires a sample
of the key distribution before the job is run. This distribution can be difficult to obtain
because it requires a previous output of the extraction job.

64 Fast Model Parameter Estimation and Filtering for Large Datasets

Rule Retrieval

To retrieve the subset of rules necessary to translate a sentence, all the possible source-sides
string are generated from the input sentences. These query strings are sorted to form a
query. The HFile is then queried to find matching source side strings, and the list of target
side strings and associated feature vectors.

The query is stored as a large associative array in memory, with rules as keys as feature
vectors as values. Once the query is complete the array is dumped to disk to become the
set-specific rule file.

4.4.2 Improvements to Rule Extraction

We now describe a set of improvements to the system of Pino [122] that result in improve-
ments in runtime and memory consumption. The fundamental design principle of our ap-
proach is to exploit the different types of data storage. There are roughly three different
types of data storage [120]: disk, RAM, and CPU cache. The disk has largest capacity but
with the slowest access, RAM has smaller capacity than disk but has faster access, and the
CPU cache has smallest capacity but with fastest access. The differences between these
types of storage vary by orders of magnitude. Therefore to improve runtimes we must min-
imise requests to disk, and if possible also minimise requests to RAM versus CPU cache ac-
cess. Similar design constraints are explored with respect to language modelling in Heafield
et al. [75].

Another design principle is the reduction of complexity. There are many jobs and data
transformations in the system that can be refined and simplified. Simplifying the design
allows us to identify bottlenecks and remove unnecessary computation. We first identify
improvements in each of the five stages of the pipeline, and then describe low-level changes
that squeeze maximum performance from the design.

Rule Extraction

The main issue to fix with rule extraction is that the rule counts are not aggregated in the
reduce function. This forces the MapReduce framework to repeatedly perform aggregation
during the feature computation. Aggregating the rule counts in this stage means that it is
slower, but time is saved in later stages.

4.4 Improvements to Hierarchical Rule Extraction 65

Feature Computation

In Section 4.2 we described MapReduce in the context of the Stupid Backoff language
model. For such a simple model the programming model offered by MapReduce is a good
fit, yielding a concise and performant system. For the more complicated hierarchical phrase-
based model, we can see problems trying to compute the model using MapReduce.

One problem that MapReduce struggles to model is the computation of lexical features.
This feature requires a large static set of data to be loaded from disk. This static set of data
is loaded by each reducer causing a large RAM requirement for the system. We believe that
such a feature is unsuitable for MapReduce style programming model. Instead, we push
this computation to the rule retrieval stage. Because the key-value records no longer contain
lexical features the MapReduce computation is faster because less data is being processed.
This one change gives us a large reduction in peak RAM consumption, because we no longer
have to load the translation table into memory multiple times.

The computation of rule conditional probabilities is a better fit for the MapReduce pro-
gramming model, but there are still problems. The representation of the rules, a pair of
strings (u,v), has to be repeatedly transformed by the mapper such that either the source or
target string is used as the key for sorting and aggregation. These transformations cause an
increase in disk activity and added complexity to the system.

The Hadoop implementation of MapReduce recognises that the programming model
can be restrictive. It allows the user to take control of how the key is treated to allow
for refinements in data processing. To simplify computing conditional rule probabilities
we treat the rule differently depending on the context. Consider the computation of the
probability P(v | u) and assume that we have extracted a set of rules where the key is of the
form (u,v).

During the fetching phase we hash only on target side string v, which ensures all rules
with the same target are in the same the same partition. During sorting we perform a lexico-
graphic sort considering the v part of the key first, and then the u part. Because the rules are
now arranged in contiguous blocks with respect to the source string the reducer implemen-
tation can stream through the results and compute the conditional probabilities. Throughout
the whole job we can keep the key intact.

The probability P(u | v) can then be computed on the same data by hashing on the u part
of the key and reversing the lexicographic sort. This improvement is intended to simplify
the system, but keeping a single representation of the key will be useful when considering
low-level tricks to improve the runtime of the feature computation.

There are other improvements we can make to system that are unrelated to the program-

66 Fast Model Parameter Estimation and Filtering for Large Datasets

ming model. We can compute all provenances in one pass, meaning that we only need two
jobs to compute all features for each u | v and v | u directions. A separate job for each fea-
ture is expensive because we have to read the entire set of rules from disk for each feature
computation.

Merging and HFile Generation

The merge job is now much simpler because all the data is stored with a source-target (u,v)
pair as the key, as opposed to some records using target-source (v,u). We can also use a
similar hashing trick for computing conditional probabilities, so that all keys with the same
source are sent to the same partition. We also reuse the lexicographic sort, meaning that
records with the same rule keys are contiguous when entering the reducer. The reducer now
no longer needs to do the custom sort, which speeds up merging.

Another bottleneck is the HFile generation job. Using a TotalOrderPartitioner requires
a prior distribution of keys and usually the partitions are not evenly distributed. Instead we
use the default hashing partitioner. We also combine the merge and generation jobs into
one, so that the output of a merge job is a HFile. This results in many HFiles with keys
distributed by their hash function.

Rule Retrieval

The HFile generation now produces many HFiles with each HFile containing keys that have
the same hash. We therefore adjust the rule retrieval step to partition the query by hash
function and query the respective HFiles. We also take advantage of having separate HFiles
by querying each of them in a separate thread, allowing us to maximise the disk throughput.

As stated before the lexical features are now computed in this stage. We use a client-
server model to compute these features. A server process loads the translation table into
RAM, and a client process requests the parameters. The translation table is loaded into
memory of a single machine, and can be shared across a network among clients running
on other machines. The feature is computed during rule retrieval, after the rules are re-
trieved from the HFile. Computing features in this stage does slow down retrieval, but this
is compensated by faster HFile querying due to the smaller size of the HFile.

We also do not store the results in an associative array before dumping the results. In-
stead we use a streaming model, where a rule and its features are written as soon as they are
retrieved. This change cuts down the memory consumption of the querying tool.

4.4 Improvements to Hierarchical Rule Extraction 67

Low-level Changes

We now describe a set of low-level improvements that do not change the overall design of
the system.

Combiner A combiner is an a function that aggregate the results of a map before a fetch.
For example, we can sum all rule counts that have been seen in the same mapper
process. The output of the mapper will be smaller and results in less network traffic
and disk access. Combiners are recommended by Dyer et al. [55] for the computation
of phrase-based models and we use them in the extraction stage.

Byte String Comparator Hadoop is implemented in the object-orientated language Java.
Keys are represented as objects, with a protocol to convert them to byte Strings repre-
sentations for storage. During the sort stage of Hadoop, chunks of intermediate data
are loaded from disk and the keys in these chunks are compared. To compare two
keys, two byte strings representations must be converted to objects. Such a process is
expensive because the Java runtime has to allocate RAM, create the objects, and then
invoke the garbage collector at a later time to clear up the objects. Although these op-
erations are fast with respect to disk access, we will be performing them many, many
times. It also means that the more data has to transferred between RAM and the CPU
cache.

We stated in the feature computation modification that the rule representation used as
a key is never transformed. Because this consistent representation is used for all fea-
ture computation and merging, we can focus on improving the speed for comparison
operations on this representation and get performance improvements across the whole
system.

Hadoop allows the user to define a byte-level comparator. This is a function that
takes two byte strings and informs the framework of their relative order. Because
the rule representation is a pairs of strings, a byte string comparator can be used to
compare two keys. The framework loads bytes strings into buffers, which are likely
to be hosted in the CPU cache, and the byte string comparator works directly from the
buffers.

Custom Collections Hadoop supplies a library of collection classes, such as sets and lists,
that can easily be converted into byte strings. These collections have a problem due
to a limitation of the Java language. In Java, the type of objects held in a collection is
erased by the compiler. At run time, Java does not know whether a collection contains

68 Fast Model Parameter Estimation and Filtering for Large Datasets

a collection of strings, integers, floats, etc. Therefore to convert a list of objects to
a byte string, the Hadoop libraries must prefix the type in front of the value. For
example, for a list of n 4-byte integers, Hadoop will prefix “integer” n times before
each integer. This dramatically increases the amount of data being stored, processed,
passed around the network, and stored in HFiles.

Hadoop provides an object-orientated mechanism to avoid such prefixing by creating
custom collections. The user inherits these collection classes and overrides methods
describing the types of the collection. Using these collections allows us to reduce
the size of records. This should result in smaller HFile sizes, and faster processing
because less data has to be loaded from disk.

4.4.3 Impact of Improvements

We now perform an experiment to measure the impact of these changes. We use the baseline
system of Pino [122] and compare it to a system incorporating all the improvements. For the
basis of the experiment we use CUED Russian->English [125] entry to Eighth Workshop on
Machine Translation [24]. As noted in Section 2.4, this system was amongst the top-scoring
systems. The grammar computed is for the CoreNLP segmentation. The output of the two
systems is identical.

We run the systems sequentially on a single node cluster. The node is a machine con-
taining 24 Intel Xeon cores with a clock speed of 2.67GHZ and has 96 gigabytes of RAM.
The machine is dedicated to experiments with no other processes running. We measure the
system in two phases. The first phase is a MapReduce phase which includes rule extraction,
feature computation, merging and HFile generation jobs. During the running of these jobs
we measure the peak resident memory of all Hadoop process. Memory is sampled by using
the Linux ps command executed every 15 minutes.

Because of the large-memory consumption of the baseline feature computation jobs, due
to loading of translation tables for lexical features, we are unable to run them concurrently
on this machine. We have to limit the maximum number of reducers that can run on the
machine to 7 so that the translation tables are only loaded a maximum of 7 times. To get a
fairer comparison we use a second configuration of baseline system that does not compute
lexical features. This second system is allowed to use more than 7 reducers. The improved
system also does not computed lexical features, because they are computed in the second
phase. The results are in Table 4.3.

The second phase is the retrieval phase which measures the time to retrieve all the rules

4.4 Improvements to Hierarchical Rule Extraction 69

Baseline (Lex) Baseline (No Lex) Improved (No Lex)
Time Mem (GB) Time Mem (GB) Time Mem (GB)

Extraction 53m 4.1 54m 4.7 1h 38m 20.2

Feature
17h 48m 81.7 4h 15m 9.6 59m 42.2

Computation

Merging 28h 59m 72.5 5h 41m 91.8 57m 32.2

HFile
5h 8m 2.3 2h 33m 2.0 - -

Generation

Table 4.3 Comparison of the runtime and peak memory usage of the baseline and improved
systems for MapReduce based tasks. The lex and no lex qualifiers indicate whether systems
computed lexical features.

Baseline (Lex) Baseline (No Lex) Improved (Lex)
Time Mem (GB) Time Mem (GB) Time Mem (GB)

Lexical
- - - - 7m 57s 60.3Server

Startup

HFile
17m 22s 37.9 12m 36 5m 47s 15.3

Retrieval

Table 4.4 Comparison of the runtime and peak memory usage of the baseline and improved
systems for retrieval tasks. The lex and no lex qualifiers indicate whether systems computed
or retrieved lexical features.

needed for the newstest2012.test test set and the peak memory usage of the retrieval process.
Memory is sampled by executing the linux ps command every 30 seconds. For the retrieval
results we execute the query twice and record the second measurement to account for file
system caching. The results are in Table 4.4. We also report the size of the resulting HFiles
in 4.5.

From the results we can see that computing the lexical features with MapReduce is not a
good fit. The memory requirements are very high, and the impact on runtimes is also high.
Even with the lexical features removed, the improved system still shows large improvements
in runtime and memory consumption. We also note that the memory consumption of the
merge job in the baseline system without lexical features is very large. This is due to the
secondary sort performed in the reducer. This is strong evidence that a lexicographic sort in
the MapReduce framework is a better approach.

In terms of retrieval time, we can see that it is faster to wait for the lexical servers to start

70 Fast Model Parameter Estimation and Filtering for Large Datasets

Size (GB)

Baseline (Lex) 51
Baseline (No Lex) 11
Improved (No Lex) 11

Table 4.5 A comparison of HFile size between the baseline system with lexical features, and
the improved and baseline systems without lexical features

up and compute the lexical features on the fly than to store the feature values in the HFile.
We note that the lexical servers only needed to be started once and can be left running in
the background. Many rule retrieval tasks can be executed using the same lexical server
processes.

In terms of retrieval memory consumption, the streaming approach taken by the im-
proved retriever cuts the memory consumption by half. Admittedly, the lexical servers do
consume a lot of memory. We note that the 60GB consumption is occupied by two 30GB
lexical servers, each holding source-to-target and target-to-source versions of the transla-
tion tables. These retrieval process could be distributed among three machines with 32GB
of RAM each.

4.5 Conclusion

This chapter we formulated the parameter estimation and filtering problems. We described
two software frameworks, MapReduce and Bigtable, than can be used to address these prob-
lems for SMT. We then moved onto the detailed description of a real system for rule extrac-
tion and how to employ these frameworks. Our results show that with care and considera-
tion, these frameworks can be the foundation of a system that efficiently extracts rules from
large amounts of parallel data and filters them quickly for decoding.

In an interesting counterpoint to chapters 5, 6, and 7 where we strongly argue for for-
malism, we believe that our results show that the MapReduce programming model is not
suitable for certain tasks in SMT. It seems that the programming model is not rich enough
to represent the many disparate operations involved in parameter estimation. We are faced
with the dilemma of trying to‘shoehorn’ the problem into the formalism or disregarding the
formalism altogether. We believe that most of the mistakes made in the baseline system de-
sign described in Section 4.4.1 were due to forcing the problem to fit into the programming
model. Our improved design took the opposite route of adapting the programming model to

4.5 Conclusion 71

fit the problem.
The inflexibility of MapReduce seems to be understood by the makers of the Hadoop

framework who are extending it to use a more general programming model [4]. One poten-
tial framework of interest that has been developed by distributed systems researchers is the
Spark framework [156], which also extends Hadoop. This framework has a programming
model that augments the map and reduce functions with a set of new functions. It also has
facilities for distributed caching data in memory of many machines. As an example where
the Spark framework could be used where MapReduce would struggle is word alignment,
where previous iterations of Expectation-Maximisation need to be accessed quickly.

The issues with the MapReduce programming model should not tarnish the many other
good ideas found in the framework. These include, but are not limited to, the tight inte-
gration of the compute framework with the distributed filesystem, the importance of fast
aggregation and sorting, and functional programming influenced designs. These ideas are
at the heart of the successor frameworks such as Spark.

Chapter 5

A Description of Minimum Error Rate
Training Using Convex Polytopes

5.1 Introduction

In this chapter we continue the study of Minimum Error Rate Training (MERT) from Chap-
ter 3. We discuss both the line optimisation procedure of Och [113], and the linear program-
ming form introduced by Galley and Quirk [62]. We note that both these approaches exploit
the geometric properties of convex sets. Interestingly, there exists a branch of mathematics
called convex geometry where the geometry of convex sets is studied in detail.

Applying geometric methods for optimisation has precedent. The linear models we dis-
cuss in this section are closely related to binary linear classifiers, such as the perceptron
Bishop et al. [20, Page 192] or the support vector machine (SVM) Bishop et al. [20, Page
325]. The perceptron is often optimised using a geometric method [17]. Typically the SVM
is transformed into a Lagrangian dual form for optimisation. However, the primary form of
the SVM is often given in an intuitive geometric form [18], and in some circumstances it is
preferable to solve the primary problem [18]. These classifiers are applied to a binary class
problem with reasonably large amounts of labelled training data for both classes. The mod-
els we study in this chapter differ in that we have many many classes with typically only a
single sample per class. Also recall that linear programming can be described geometrically,
as noted in Section 3.2.3.

This chapter provides a formal description of MERT for a single sentence using convex
geometry. The more complete case is considered later in Chapter 6. Because we only
consider the single sentence case, we simplify our notation to ignore the source sentence
index. Given the source language sentence f, let hi = h(ei, f) be the feature vector associated

74 A Description of Minimum Error Rate Training Using Convex Polytopes

with hypothesis ei.

We describe two mathematical constructions in great detail to develop an understanding
of MERT. The first is a form of the convex hull called the convex polytope [162]. Convex
hulls are typically used for MERT [62, 102, 113] but the convex polytope provides a much
richer and more formal description than has appeared before in the field of statistical ma-
chine translation. The second construction is the dual to the convex polytope: the normal fan
[162]. The normal fan is a geometric object in parameter space constructed from a convex
polytope in feature space.

Recall that the linear model of Statistical Machine Translation (SMT) introduced by
Och and Ney [114] casts translation as a search for translation hypotheses under a linear
combination of weighted features: the source language sentence f is translated as

ê(f;w) = argmax
e
{wh(e, f)} (5.1)

Translation scores are a linear combination of features h(e, f) under a set of model parame-
ters w. The key characteristic of MERT is that model parameters w are optimised such that
the hypothesis with the greatest model score should have the lowest error as judged by an
error metric.

In Section 3.2 we saw two geometric approaches to MERT. The first by Och [113]
defines an error function defined over K-best lists of translations, the optimisation criterion
becomes a piece-wise constant function over the model parameters. MERT proceeds as a
series of line optimisations that efficiently detect boundary points along the line at which the
error function is discontinuous. These boundary points define line segments in parameter
space over which the error function is constant, so that parameters can be chosen from these
segments so as to minimise the overall error objective. We refer to this operation as line
optimisation.

The second approach was LP-MERT [62], an exact search algorithm that reaches the
global optimum of the training criterion using linear programming. The algorithm first
identifies the extreme points within the convex hull of feature vectors associated with an
K-best list of hypotheses. Specfically, the hypotheses ei can be selected by the decoder only
if the following K inequalities are satisfied

w(h j−hi)≤ 0 for 1≤ j ≤ K (5.2)

for some parameter vector w (w ̸= 0). Any feature vector hi that satisfies these constraints
is denoted an extreme feature vector. Other feature vectors are redundant and not part of the

5.2 The Normal Fan 75

convex hull.

This system of inequalities defines a convex region in parameter space, and for each
parameter value in the region the decoder will select the associated hypothesis ei from the
K-best list. The system of inequalities can be solved using a linear program and if the set
is feasible then the linear program yields a parameter vector from the region. LP-MERT
requires K linear programs to yield a set of feasible parameters.

Recall that for a single input sentence, LP-MERT has a polynomial run time with respect
to the dimensionality of the feature vectors. However LP-MERT faces more serious com-
putational challenges in combining the results over many K-best lists. For a training set of
input sentences the number of systems of equations increases exponentially with respect to
the number of input sentences. In Chapter 6 we describe how only a subset of these systems
are feasible, and that an algorithm exists to enumerate these feasible systems in polynomial
time [59]. Many of the key concepts used in the algorithm are first described in this chapter,
for the simpler case of the individual sentence.

We first provide geometric descriptions of MERT with respect to two geometric objects:
the convex polytope and the normal fan. We then describe how these objects have a dual
representation, which enables us to describe a number of useful algorithms. In the fourth
section we describe how Och’s line optimisation can be generalised to many dimensions
using a projected convex polytope. We then discuss recent work on the regularisation of
MERT [63] and analyse the regularisation scheme using the normal fan. Finally we decribe
a geometric representation of ranking methods.

5.2 The Normal Fan

Most methods of training an SMT system involve finding some single, optimal parameter
w∗ that optimises a constrained function over the training data. One good example of this
form of optimisation is the MIRA algorithm described in Section 3.3.2.

MERT is unusual in that any parameter that satisfies a set of constraints is acceptable.
Instead of a single optimal parameter, there is usually a set of possible parameters to choose
from that could maximise the model score for a hypothesis. The goal of MERT is to find the
parameter set that maximises the model score of a set of oracle hypotheses, and from this
set an acceptable parameter is drawn.

LP-MERT [62] casts MERT as the computation of the extreme feature vectors of a
convex hull. A point is labelled extreme if a single parameter w from a set of parameters
can be identified which maximises the associated feature vector. The aim of this section

76 A Description of Minimum Error Rate Training Using Convex Polytopes

is to describe a method of identifying the whole parameter set associated with an extreme
feature vector, instead of a single parameter.

The normal fan divides the entire set of possible parameters into subsets which max-
imises one or many feature vectors. The description of the normal fan involves an amount of
new terminology. We endeavour to keep the presentation tight and as relevant as possible to
the task of statistical machine translation optimisation. We believe that the effort expended
on learning this new formalism is worthwhile because it allows us refer to many theorems
and algorithms that are new to SMT. Examples of these include the fast polynomial time
algorithm for multi-sentence MERT, projected parameter spaces to allow for MERT optimi-
sations in any number of dimensions, and upper bound theorems on the number of feasible
feature vectors.

We move quickly through the material. Definitions are highlighted in bold. In between
the definitions is explanatory text and theorems. Any mathematical results of note are from
Ziegler [162]. Any result which we do not attribute was deemed too trivial to be presented
by Ziegler [162], but we include to make the presentation more accessible.

This section is split into five subsections. The first is a primer where basic concepts are
introduced. In the second subsection the concept of an extreme point is extended into the
idea of a face of a polytope. In the third subsection we discuss the relationship between
faces and parameter sets, which leads to description of the normal cone. The fourth sub-
section describes how normal cones fit together to form the normal fan. Finally, in the fifth
subsection we present an example of a normal fan.

5.2.1 Convex Geometry Basics

In this subsection we present introductory material that will be useful for later sections.
Although some of this material may be familiar to many readers, the concepts in this section
lay a firm foundation for the later sections and are worth reviewing.

Vector Space The real valued vector space RD represents the space of all D finite dimen-
sional feature vectors. Each element of RD represents a D× 1 feature vector h. We
reserve the letter h for feature vectors. Occasionally we use other letters, such as x
and t, for vectors in this space but we try to only use h where possible.

Dual Vector Space The dual vector space (RD)∗ is the real vector space of linear functions
RD→ R. The linear functions are given by a 1×D dimensional row vector w. We
reserve the letter w exclusively for parameter vectors, with no other letter representing
vectors from this space.

5.2 The Normal Fan 77

Because the vector space consists of column vectors and the dual space consists of row
vectors we omit the transpose when writing the linear function wh,w ∈ (RD)∗,h ∈
RD.

Affine Subspace A linear subspace is a vector subspace of RD that contains the origin
0 ∈RD. An affine subspace is a translation of a linear subspace. The dimension of an
affine subspace is the dimension of the associated linear subspace. Examples of affine
subspaces include points, lines, planes, and hyperplanes.

We illustrate this definition with an example. Let us consider a vector space R3. We
can define a R2 linear subspace as:

{λ1

1
0
0

+λ2

0
1
0

} (5.3)

This subspace takes the form of a plane in R3 that contains the origin. An affine
subspace can be created by a translation in the third dimension:

{λ1

1
0
0

+λ2

0
1
0

+
0

0
1

} (5.4)

The affine subspace is now a plane in R3 that does not contain the origin. In this
example many unique affine subspaces can be defined depending on the length of the
third [0,0,1]T vector. All these subspaces are two dimensional.

Affine Hull Given P < D let a P-dimensional affine subspace of RD be denoted A. Con-
sider a finite set of feature vectors {h1, . . . ,hn} ⊆ A. Using the definition of an affine
subspace we can decompose the feature vectors into a term xi that is contained in the
P-dimensional linear subspace and a translation term t. We rewrite each feature vector
in terms of this decomposition hi = xi+ t where 1≤ i≤ n. The linear combination of
a finite set of feature vectors is:

h = λ1h1 + . . .+λnhn

= λ1(x1 + t)+ . . .+λn(xn + t)

= λ1x1 + . . .+λnxn + t
n

∑
i=1

λi (5.5)

78 A Description of Minimum Error Rate Training Using Convex Polytopes

If h ∈ A then h = x+ t. The value of t is fixed, therefore for h to be in the affine
subspace A the coefficients λi must sum to one. The affine subspace can be written as

A = {λ1h1 + . . .+λnhn :
n

∑
i=1

λi = 1} (5.6)

An affine subspace defined in terms of a finite set of vectors of this form is called the
affine hull. The notation aff({h1, . . . ,hn}) denotes the affine hull of a given finite set
of feature vectors.

Convex Set A set of feature vectors K ⊆RD is convex if for any two vectors hi,h j ∈K also
contains the straight line segment [hi,h j] = {λhi +1(1−λ)h j : 0≤ λ ≤ 1} between
them.

Convex Hull For the set of feature vectors K ⊆ RD the convex hull is defined as the inter-
section of all convex sets that contain K

conv(K) := ∩{K′ ⊆ RD : K ⊆ K′,K′ convex} (5.7)

It can be shown [162] that if K = {h1, . . . ,hn} is finite, then the convex hull can be
constructed as:

conv(K) = {λ1h1 + . . .+λnhn : λi ≥ 0,
n

∑
i=1

λi = 1} (5.8)

Note that the convex hull is an affine hull with an additional constraint. A convex hull
is embedded inside an affine hull. The dimensionality (dim) of a convex hull is the
dimensionality of the affine subspace defined by the affine hull of its finite point set

dim(conv(K)) = dim(aff(K))

.

Convex Polytope The convex hull of a set of finite feature vectors. Because we do not
consider non-convex polytopes we follow the convention of Ziegler [162] and drop
the convex adjective from all following discussions.

Conical Hull For a specified collection of parameter vectors C = {w1, . . . ,wn} the conical

5.2 The Normal Fan 79

hull is a finitely generated combination of parameter vectors in (RD)∗

cone(C) := {t1w1 + . . .+ tnwn : ti ≥ 0}

Unlike a convex hull the conical hull is unbounded, and always includes the origin 0.
Because the cone always contains the origin, it is embedded in some linear subspace.
The dimension of the subspace that contains cone(C), and thus dim(cone(C)) is the
rank of the matrix formed from the vectors in C.

It seems that we have made an arbitrary decision to define polytopes in RD and conical hulls
in (RD)∗. As stated in the introduction to this section, we wish to restrict the description
of convex geometry to concepts that are directly applicable to SMT. For the purposes of
describing MERT we can restrict these geometric objects to these spaces.

5.2.2 Faces in Feature Space

Recall from the introduction that a feature vector is labelled extreme if the system of in-
equalities in (5.2) can be satisfied. With an appropriate parameter an extreme feature vector
gives the maximal model score over all other feature vectors in a K-best list. An extreme
feature vector is an example of a special type of face of a polytope, called a vertex. Follow-
ing Ziegler [162] we provide a formal definition of a face and describe some its properties.

H The polytope H ∈ RD is the convex hull of the finite set of feature vectors {h1, . . . ,hK}
associated with the N hypotheses {e1, . . . ,eK}.

Valid Inequality A parameter w ∈ (RD)∗ and a value y ∈ R define a valid inequality over
H if

wh≤ y ∀h ∈ H.

Faces in RD Suppose w ∈ (RD)∗ and y ∈ R form a valid inequality. A face is defined as

F = {h ∈ H : wh = y} . (5.9)

From the definitions of a face and the valid inequalities, it also follows that

F = {h ∈ H : wh = max
h′∈H

wh′}

In this way, w defines a face F .

80 A Description of Minimum Error Rate Training Using Convex Polytopes

Vertex A face consisting of a single point is called a vertex. The concept of a vertex is
very similar to the definition of an extreme point. Note that Galley and Quirk [62]
disqualify feature vectors that lie on line segments between two extreme points from
extremity, which is consistent with the definition of a vertex.

The main difference between the two concepts is rather minor: a vertex is a set that
includes a single feature vector, whereas an extreme point is a feature vector itself.
For clarity we exclusively use the term vertex from this point on.

Vertex Set The vertices of a polytope H are denoted vert(H).

From these definitions it is possible to make a number of important statements about
faces. The following Proposition concerns the relationship between a polytope and its ver-
tices.

Proposition 5.1. Let H ⊆ RD be a polytope.

(i) Every polytope is a convex hull of its vertices: H = conv(vert(H)).

(ii) If a polytope can be written as the convex hull of a finite set of feature vectors H =

conv(vert(V)), then the set contains all the vertices of the polytope: H = conv(V)

implies that vert(H)⊆V .

Proof. See Ziegler [162, proposition 2.2]

Let us now consider all faces in the polytope, other than vertices.

Proposition 5.2. Let H ⊆ RD be a polytope, and V = vert(H). Let F be a face of H.

(i) The face F is a polytope, with vert(F) = F ∩V .

(ii) Every intersection of faces of H is a face of H.

(iii) The faces of F are exactly the faces of H that are contained in F.

(iv) F = H ∩ aff(F).

Proof. See Ziegler [162, proposition 2.3]

Let us now consider the structure of a polytope implied by these propositions. A poly-
tope contains faces, which are polytopes themselves. These polytopes in turn also contain
faces, which are again polytopes. The nesting of polytopes is continued until the vertices
are reached. From these two propositions we can make the following corollary

5.2 The Normal Fan 81

Corollary 5.3. Let H ⊆ RD be a polytope

(i) H has a finite number of faces

(ii) A face F of H has dimension dim(F) = dim(aff(F))

Proof. For Part (i) we note that vert(H) is finite. Since Proposition 5.2 states that for a face
F ⊆H the vertices of the face obey vert(F)⊆ vert(H), there are only a finite number of sets
of vertices that could define a face.

Part (ii) follows immediately from Proposition 5.2 Part (iv) and definition of the affine
hull in Section 5.2.1

There are two classes of faces with interesting properties:

Edge A face F is an edge if dim(F) = 1. An edge takes the form of a line segment
between two vertices hi and h j in the polytope H. The edge can be written as
[hi,h j] = conv(hi,h j).

Corollary 5.4. Let H ∈ RD be a polytope. Two vertices hi and h j in the polytope H form

an edge if and only if there is a linear decision boundary in (RD)∗ between the parameters

that maximise hi and those that maximise h j.

Proof. The proof follows directly from the definition of an edge. For the edge to exist the
following system of constraints must be feasible:

w(h j−hi) = 0 (5.10)

w(hk−hi)< 0, 1≤ k ≤ K,k ̸= i,k ̸= j

w(hl−h j)< 0, 1≤ l ≤ K, l ̸= i, l ̸= j

The set of parameters that can satisfy these constraints is a hyperplane of dimension D−1
in (RD)∗, which forms the decision boundary.

Facet A face F is a facet if dim(F) = D−1. Note that because the affine hull of a facet is
a D−1 hyperplane, the facet is uniquely defined by the facet normal wF .

Corollary 5.5. Let H ∈ RD be a polytope, then every face of H is contained in a facet of H

Proof. Ziegler [162, Corollary 2.14] describes how for any polytope H a polar polytope H∆

can be constructed. The faces in H are translated to H∆ such that the face F of dim(F) = P

becomes a face F∆ of dim(F∆) =D−P−1 and inclusion is reversed such that if F ′⊂F then

82 A Description of Minimum Error Rate Training Using Convex Polytopes

F
′∆ ⊃ F∆. Because facets are translated to vertices and following directly from Proposition

5.2 Part (i) the Corollary must be true otherwise the polar polytope cannot be constructed.
See Ziegler [162] for the detailed presentation.

5.2.3 The Normal Cone

We now switch to describing geometric objects in the dual vector space (RD)∗. It should
be noted that (RD)∗ is a linear space like the primary feature space RD and it is equally
valid to define geometric objects here. Because MERT is concerned with assigning error to
parameters, the geometric objects in this space are much more relevant to SMT as it is the
optimum value of parameters that are sought by training procedures.

In the previous subsection we used a single parameter vector to define a set of feature
vectors called a face. In this subsection we reverse this process and consider the set of
parameter vectors that could be used to give a single face.

Normal Cone Following from the constraints in (5.2) and the definition of a face in Section
5.2.2, for the face F in polytope H the normal cone NF takes the form

NF = {w : w(h j−hi)≤ 0,∀hi ∈ vert(F),∀h j ∈ vert(H)} (5.11)

When the face is a vertex F = {hi} then the normal cone is identical to the set of
parameters that satisfy the constraints in (5.2).

Recall the definition of an edge from the previous section. This definition allows us to make
the following statement

Lemma 5.6. Given the polytope H the set of edges contained in the polytope is denoted E.

The normal cone NF of the face F can be described by the subset of constraints that also

form edges

NF = {w : w(h j−hi)≤ 0,∀hi ∈ vert(F),∀h j ∈ vert(H), [hi,h j] ∈ E} (5.12)

Proof. Let us consider the vertex hm that does not form an edge with any vertex hi ∈ F .
Substituting hm for h j into the constraints in (5.10) results in an infeasible system. The
implication being that there is no decision boundary for these two vertices and that whi >

whm,∀hi ∈ F,∀w ∈ NF \0.

The constraints that are not essential for a normal cone are another example of redun-

dancy. It is the redundancy in constraints that is exploited for the multi-sentence MERT

5.2 The Normal Fan 83

algorithm in Chapter 6.
The name of this set, the normal cone, may seem a little mysterious at this point. We

leave the full definition of a cone to Section 5.3.2, for now we can assume that a cone is the
finite intersection of a set of closed linear half spaces that include the origin. Let us consider
the following statement about the dimensionality of NF , which explains what makes a cone
‘normal’.

Lemma 5.7. Let H be a polytope, F be a face in H, and NF the normal cone of F. The

dimensionality of NF is related to F by

dim(NF) = D−dim(F)

Proof. Consider the matrix A formed by the M vertices of F . The rank of A is equal to the
dimensionality of the affine hull containing F . Recall from Section 5.2.1 that because F is
contained in affine hull that any hi ∈ A can be written as hi = t+ xi where t is a constant
translation.

Now due to Eqn. (5.9) for any parameter w∈NF the model score will be some constant y

such that whi = y for all hi ∈ A. Let y be a M-dimensional row vector with the model scores
y = [y, . . . ,y], T be the matrix of M columns containing the constant translation T = [t, . . . , t]
and X the matrix of the feature vectors components in a linear subspace X = [xi, . . . ,xM] we
can write

w(T +X) = y

which implies that wX = 0, the condition for w to be in null space of A. The normal cone
NF is therefore contained in the null space of A which is of dimension D−dim(F).

The set of vectors in NF are all normal to the affine subspace containing the face F ,
hence the use of the adjective ‘normal’ in the term ‘normal cone’. We have seen examples
of these orthogonal spaces, the hyperplane in (RD)∗ associated with an edge is the null space
of the line that passes through both vertices in the edge. Another example is a facet, which
is a D−1 dimensional face associated with a 1-dimensional facet normal.

Face of a Cone A vector e ∈ RD defines a valid inequality for cone N ∈ (RD)∗ if

we≤ 0 ∀w ∈ N

Suppose e ∈ RD defines a valid inequality, it follows that a Face of a Cone is

(F)∗ = {w ∈ N : we = 0}

84 A Description of Minimum Error Rate Training Using Convex Polytopes

The fact that both polytopes and cones have faces may lead to some confusion. In the
definition of the normal fan we see that there is a relationship between faces of both types
of objects. To minimise confusion, if we refer to a face then we mean a face of a polytope
in RD. We always qualify references to faces in (RD)∗ by calling them a face of a cone or
a face in (RD)∗. Similarly any reference to F or F ′ refers to faces of a polytope in RD and
(F)∗ refers to a face of a cone in (RD)∗.

5.2.4 The Normal Fan

In the previous subsection the normal cone was introduced. This set of all normal cones is
called the normal fan. Let us start with the description of a fan [162].

Fan The set of cones N is a fan if it has the following two properties

1. Every nonempty face of a cone in N is also a cone in N .

2. The intersection of any two cones in N is a face of both of cones.

Let us consider characteristics of normal cones.

Lemma 5.8. For the polytope H and the face F ⊂ H, a face of the normal cone (F)∗ ⊂ NF

is the normal cone for some other face F ′ in H such that (F)∗ = NF ′ .

Proof. Let F ′ be a face in the polytope with the inclusion F ⊂ F ′. Now consider the follow-
ing vector

e = ∑(h j−hi), for all h j ∈ vert(F ′),hi ∈ vert(F) (5.13)

For any parameter wF ∈ NF the following condition is true

wFhi ≥ wFh j, for all h j ∈ vert(F ′),hi ∈ vert(F) (5.14)

Thus, the condition wFe ≤ 0 for e to form a valid inequality in (RD)∗ is satisfied. Now let
us consider the normal cone of F ′. Any parameter wF ′ ∈ NF ′ satisfies the condition

wF ′hi = wF ′h j, for all h j ∈ vert(F ′),hi ∈ vert(F) (5.15)

Implying that wF ′e = 0, which is the condition for NF ′ to be a face in the normal cone NF .
For any two faces with the inclusion F ⊂ F ′, we can always find some e that yields NF ′ as a
face of NF .

5.2 The Normal Fan 85

To complete the proof we need to show that is impossible to find a face of the cone
(F)∗ ⊂ NF , such that any parameter in w(F)∗ ∈ (F)∗ solely maximises the feature vectors in
F and not another face F ′ ∈ H. For this we note that for (F)∗ to be a face of the cone NF ,
then w(F)∗ must be on some constraint of the normal cone.

Lemma 5.6 states the all constraints are derived from edges, such that at least one of the
two vertices in the edge is contained in F . Let us consider the edge [hi,h j] with hi,h j ∈
F . Now, for all w ∈ NF we can state whi = wh j implying the normal cone of F is fully
contained in the normal cone of the edge NF ⊂ N[hi,h j], and N[hi,h j] cannot be a face of of
NF .

Let us change the edge such that hi ∈ F and h j ̸∈ F . If w(F)∗ is contained within this
constraint, then it must also maximise h j. Therefore w(F)∗ is the maximiser for some other
face F ′ ̸= F , where F ⊂ F ′ and h j ∈ F ′.

Lemma 5.9. For the polytope H with two faces F ⊂ H and F ′ ⊂ H, the intersection of the

two normal cones NF ∩NF ′ is a face in both normal cones.

Proof. If a parameter w lies in the intersection of the two cones NF ∩NF ′ then it maximises
all feature vectors in F ∪F ′, which implies that F ∪F ′ is a face itself and that NF ∩NF ′ =

NF∪F ′ . Using a similar argument to Lemma 5.8, it can be shown that NF∪F ′ is face in both
NF and NF ′ .

Corollary 5.10. For a polytope H the normal cones associated with all faces in H form a

fan.

Proof. Condition 1 is satisfied by Lemma 5.8 and Condition 2 is satisfied by Lemma 5.9.

This result leads us directly to our desired goal.

Normal Fan For a polytope H the normal fan N (H) is the fan constructed from the normal
cones of all faces of H.

In Section 5.2.2 we remarked on the nesting structure of the faces in a polytope. The normal
fan reflects this structure except with inclusion reversed, such that for two faces F and F ′ in
the polytope H with F ⊃ F ′ the normal cones have the opposite relationship NF ′ ⊃ NF .

Note that every normal fan includes the zero vector 0, which is the normal cone for the
entire polytope H. This 0-dimensional normal cone is a face of all normal cones in the
normal fan.

86 A Description of Minimum Error Rate Training Using Convex Polytopes

hLM : log(PLM(e)) hT M : log(PT M(f|e))

e1 -0.1 -1.2
e2 -1.2 -0.2
e3 -0.9 -1.6
e4 -0.9 -0.1

e5 -0.8 -0.9

Table 5.1 An example set of two dimensional feature vectors (after Cer et al. [29], Table 1)
with language model (hLM) and translation model (hT M) components. A fifth feature vector
has been added to illustrate redundancy.

hLM

hT M

h1

h2

h3

h4

h5

Fig. 5.1 The polytope constructed from the feature vectors in Table 5.1. The shaded area is
the convex hull, and the thick blue lines are the polytope’s edges.

Let us now return to the task at hand and consider what objects in the normal fan are
important for MERT.

Normal cones for vertices The set of parameters that satisfy 5.2. To perform MERT we
need to enumerate through all these cones.

Normal cones for edges These are cones embedded in D− 1 hyperplanes in (RD)∗ They
are the boundaries between the normal cones of vertices. They are also used to define
the concept of adjacency used in Chapter 6 for the polynomial-time multi-sentence
MERT algorithm.

5.2 The Normal Fan 87

wLM

wT M

N
[h

4 ,h
2] : w

(h
4 −

h
2)=0

N [h 4,
h 1]

: w(
h 4
−h 1)

=0

N[h3,h2]
: w(h3−h2)=0 N

[h
3 ,h

1] : w
(h

3 −
h

1)=0

N{h3}

N{h4}

N{h2}

N{h1}

Fig. 5.2 Reproduction of Figure 1 from Cer et al. [29] showing parameter space for the
feature vectors in Table 5.1 and the polytope in Figure 5.1. This figure is an example of
a normal fan. There are nine normal cones shown, the four associated with non-redundant
hypotheses, the four associated with edges, and the 0 vector.

88 A Description of Minimum Error Rate Training Using Convex Polytopes

5.2.5 An Example of the Normal Fan

Throughout this section we have described a formulation of sentence-level MERT using
convex geometry. We now illustrate these concepts with a worked example taken from Cer
et al. [29]. Our goal is to expand upon the description of Cer et al. [29] and give the reader
a familiar entry point into convex geometry.

Cer et al. [29] start with a singe source sentence f and an SMT system based on two
features: the translation model (PT M(f|e)) and the language model (PLM(e)). The system
produces a set of four hypotheses {e1,e2,e3,e4}. These hypotheses yield four 1×2 feature
vectors of log-probabilities {h1,h2,h3,h4} shown in Table 5.1. To this set of four hypothe-
ses, we add an fifth hypotheses e5 and feature vector h5 to illustrate redundancy of feature
vectors.

In Figure 5.1 we have drawn the polytope from the feature vectors in Table 5.1. In this
example the first four feature vectors are vertices, and h5 is redundant. We also note that
there are four edges in the polytope [h4,h2], [h4,h1], [h3,h2], and [h3,h1].

Cer et al. [29] actually show an example of a normal fan, albeit they do not name it as
such. The diagram in Figure 5.2 is a reproduction of Figure 1 from Cer et al. [29]. It shows
a normal fan for the polytope in Figure 5.1. Note how the decision boundaries in the fan
correspond to the edges in the polytope.

There are nine normal cones in the diagram. Four regions are associated with vertices,
for example the region associated with the first hypotheses is maximal is labelled N{h1}.
Additional four normal cones are the decision boundaries associated with edges, e.g. in this
example the normal cone for the edge [h1,h2] is labelled as N[h1,h2]. The final normal cone
is the 0 vector, which is the normal cone for the entire polytope.

5.3 Dual Representations of Polytopes and Cones

In the previous section we described the normal fan as a set of normal cones, which are
themselves defined by a set of decision boundaries given by edges. This description is
sufficient for understanding the rest of this chapter, and following chapters.

In this section, we describe how polytopes and cones have equivalent, dual representa-
tions. We mainly provide this description for completeness: for example, it explains why
we use the two terms ‘polytope’ and ‘convex hull’ to refer to the same geometric object.
Additionally, the dual description is an integral part of many algorithms and proofs used in
convex geometry.

5.3 Dual Representations of Polytopes and Cones 89

Let us start with a theorem that Ziegler [162] refers to as the ‘main theorem for poly-
topes’:

Theorem 5.11. A subset H ⊆ RD is the convex hull of K feature vectors (a V -polytope)

H = conv(V) for some V ∈ RD×K

if and only if it is a bounded intersection of M half spaces (an H -polytope)

H = {h ∈ RD : Ah≤ z} for some A ∈ RM×D,z ∈ RM

Proof. See Ziegler [162, Theorem 1.1]

It should be clear now why there is a distinction made between polytopes and convex
hulls. A polytope is a set of points in RD given in either representation, and the convex hull
is the V -polytope representation. The set of half spaces defined by A and z must at least
contain the half spaces given by the affine hulls of the facets of H, but the set may also
contain redundant half spaces.

The full proof of Theorem 5.11 occupies the majority of Chapter 1 of Ziegler [162],
but we can provide a short sketch of the proof. In the direction of a V -polytope to an
H -polytope a V -polytope can be written as

{h ∈ RD : ∃λλλ ∈ RK : h =V λλλ ,λλλ ≥ 0,1λλλ = 1} (5.16)

where 0 is a 1×K vector of zeros and 1 is a 1×K vector of ones. This representation can
be rewritten as

{(h,λλλ) ∈ RD+K : h =V λλλ ,λλλ ≥ 0,1λλλ = 1} (5.17)

We note that a set of K equalities in the form h =V λλλ can written as a set of 2K inequalities
of the form h≥V λλλ ,h≤V λλλ . The set in Eqn. (5.17) is therefore a H -polytope of dimension
D+K.

The key to the full proof is an operation called Fourier-Motzkin elimination. This oper-
ation applies a transformation, which is called a projection, to the H -polytope. The result
of Fourier-Motzkin elimination is a new H -polytope such that kth feature in the features
vectors is deleted

projk(H) = {h−hkek : h ∈ H} (5.18)

where ek is a unit vector along the kth axis. After K applications of Fourier-Motzkin elimi-
nation the dual representation is found.

90 A Description of Minimum Error Rate Training Using Convex Polytopes

In the other direction, a D+M dimensional V -polytope is constructed from an H -
polytope. It can be shown that the intersection of a V -polytope with a hyperplane results
in a new V -polytope. The D-dimensional V -polytope is constructed through M hyperplane
intersections.

5.3.1 Algorithms for Computing Dual Representations

We have described Theorem 5.11 that allows for two representations of polytopes. One
of the reasons that the dual representation is interesting to SMT is that the algorithms for
moving between representations also identify redundancies in the primary representation.
For example, moving from a V -polytope to a H -polytope identifies the vertices in the set
of feature vectors that form the V -polytope.

There exist two types of algorithm to compute a dual representation: one type enumer-
ates vertices of polytopes given a set of half spaces, the other enumerates facets given a
set of feature vectors [162]. The facet enumeration problem is often called the convex hull
problem [162]. The facet enumeration problems and vertex enumeration problems can be
transformed into each other by the use of the polar polytope referred to in the proof to Corol-
lary 5.5. To create the polar polytope, a feature vector interior to the polytope is needed.
This interior feature vector can be found using a linear program similar to the one in (3.15).

An interesting characteristic of the proof to Theorem 5.11 is that it describes algorithms
based upon Fourier-Motzkin elimination and hyperplane intersections of polytopes. An is-
sue with Fourier-Motzkin elimination is that it creates an exponential number of inequalities
[162] to create the projected representation. This combinatorial explosion can be amelio-
rated by keeping track of both descriptions of the polytope and using heuristics based on
this dual description to remove redundant inequalities. This is the idea behind the double
description algorithm [112].

An alternative to the double description algorithm is the QuickHull algorithm [12] for
facet enumeration. Similar to the double description algorithm, this algorithm considers
both representations simultaneously. A set of facets is computed for a minimal subset of
feature vectors. The rest of the feature vectors are then incrementally tested against facets
that divide feature vectors from the minimal polytope. If the tested feature vector is a vertex
then the facets which include the vertex are recomputed.

Another algorithm for vertex enumeration is the reverse search algorithm [9]. We de-
scribe a variant of the reverse search algorithm for computing the Minkowski sum of poly-
topes in Chapter 6.

5.3 Dual Representations of Polytopes and Cones 91

These algorithms do not have the strong polynomial time guarantees of linear program-
ming. In practise, they can be very effective for certain problems. For example, Galley and
Quirk [62] show that QuickHull performs an order of magnitude faster than linear program-
ming for problems of a low dimension.

5.3.2 The Dual Representation of a Normal Cone

Let us now move to definition of a cone. In Section 5.2.3 the normal cone was described
as the intersection of a set of half spaces. A cone also has a dual representation and there
exists a ‘main theorem for cones’:

Theorem 5.12. A cone N ⊆ (RD)∗ is a finitely generated conical hull of L vectors

N = cone({w1, . . . ,wL})

if and only if it is a finite intersection of M closed linear half spaces

N = {w ∈ (RD)∗ : EwT ≤ 0} for some E ∈ RM×D

Proof. See Ziegler [162, Theorem 1.3]

We now investigate the conical hull representation of the cone.

Ray of a Cone A face of a cone with the property dim((F)∗) = 1 is denoted a ray of
the cone. It can be defined by a single vector wr such that the ray takes the form
{w : twr, t > 0}. The rays serve a similar function for cones that vertices serve for
polytopes.

Ziegler [162] notes at the start of Chapter 2 that a version of Proposition 5.1 exists for
cones and rays. Similarly to how a polytope can be defined as the convex hull of its vertices,
a cone can be defined as the conical hull of its ray set. Now let us examine the relationship
between facets and normal cones

Lemma 5.13. Let F be a face in the polytope H ⊆ RD and let NF ⊆ (RD)∗ be the normal

cone of F. The set {P1, . . . ,PL} is the set of facets that contain F. Each facet is the intersec-

tion of the polytope with a D− 1 hyperplane given by a facet normal wPl with 1 ≤ l ≤ L.

The normal cone is the conical hull of the facet normals.

NF = cone({wP1, . . . ,wPL})

92 A Description of Minimum Error Rate Training Using Convex Polytopes

Proof. First we show that a facet normal is always a ray in the normal cone for F. For the
facet P such that F ⊂ P let us consider the inequality defined by the vector

eP = ∑(h j−hi), for all h j ∈ vert(P),hi ∈ vert(F)

For any w∈NF the model score obeys weP≤ 0 satisfying the definition of a valid inequality.
Only a facet normal wP satisfies wPeP = 0, thereby satisfying the definition of a ray.

Next we show that no other vector w′ contained in NF could form a ray. To be a ray
there must be some vector e′ that defines a valid inequality and w′ must be unique in the
sense that only scaled versions of the parameter satisfy tw′e′ = 0 where t > 0. To satisfy this
condition w′ must be a maximiser for a face F ′ ⊆ F . Because of Corollary 5.5 the face F ′ is
contained in a facet P, meaning that wPe′ = 0 which invalidates the uniqueness of w′.

This Lemma demonstrates an additional benefit of using a facet enumeration algorithm
to identify vertices in a polytope H. The algorithm computes the set of all facet normals,
giving us full representations of normal cones as a conical hull. Recall from Section 5.2.1
that the conical hull definition is

cone(C) := {t1w1 + . . .+ tLwL : ti ≥ 0,1≤ i≤ L}

We can retrieve any representative parameter for a cone by setting these variables to any
value greater than zero, or we can set them all to one to retrieve the centroid of the cone.
This property of facet enumeration algorithms has been noted in the two dimensional case
by Dyer [54] who referred to it as ‘point-line duality’.

5.4 Projected MERT

In the preceding sections we have described how sentence level MERT can be modelled
using a convex polytope and a normal fan. We illustrated this technique with a reworking of
the example from Cer et al. [29] in Section 5.2.5. Up until this point, our new formulation
has not yielded any improvements or novelty over LP-MERT or Och’s line optimisation.

We can now start applying convex geometry to solve problems that are difficult to model
with previous formulations. In this section we describe how Och’s line optimisation can
be formulated using a projected polytope. We describe an alternative formulation of 1-
dimensional optimisation and then we describe how Och’s line optimisation could be gen-
eralised to searching over M feature dimensions simultaneously, where 1≤M ≤D. We call

5.4 Projected MERT 93

this procedure projected MERT. At the end of this section we extend the example from Sec-
tion 5.2.5 to illustrate how a projected normal fan corresponds to Och’s line optimisation.

5.4.1 Affine Projection

This section introduces a form of affine transformation called a projection. We have already
encountered a form of the projection operation in Eqn. (5.18). The projection operation
that follows is more general because it is not restricted to feature directions. Consider the
polytope H ⊆ RP, the affine transformation π : Rp→ RD is any map of the form [162]

π(h) = Ah− z (5.19)

with A ∈ R(K×D) and z ∈ RK . If an affine transformation is surjective, then it is called an
affine projection [162].

5.4.2 Och’s Line Optimisation as a Projection Operation

In this section we reformulate Och’s Line Optimisation in terms of an affine projection. Let
us consider a single line optimisation. The goal is to select the optimal parameter from a set
of parameters W ⊂ (RD)∗. This set W takes the form of a line in parameter space (RD)∗.
The line is defined by two given vectors: a starting parameter w(0) ∈ (RD)∗ and a direction
vector d ∈ (RD)∗. Using the free variable γ the set can be written as:

W = {w(0)+ γd : γ ∈ R} (5.20)

This line in (RD)∗ can be used to define a projection operation in RD. We define an affine
projection in terms of the given vectors

π(hi) = A2,Dhi (5.21)

where

A2,D =

[
d1 · · · dD

w(0)
1 · · · w(0)

D

]
(5.22)

Applying this transformation to vector hi results in a transformed feature vector h̃i ∈ R2

h̃i = π(hi) =

[
h̃i,1

h̃i,2

]
=

[
dhi

w(0)hi

]
(5.23)

94 A Description of Minimum Error Rate Training Using Convex Polytopes

Now consider a parameter vector of the form

w̃γ =
[
γ 1

]
(5.24)

The matrix A2,D provides an injective map from w̃γ to a parameter wγ ∈W

w̃γA2,D =
[
γ 1

][d1 · · · dD

w(0)
1 · · · w(0)

D

]
= w(0)+ γd = wγ (5.25)

We can state the following relationship between the model scores of the full feature space
RD and the projected feature space R2

w̃γ h̃i = w̃γA2,Dhi = wγhi = γdhi +w(0)hi (5.26)

Because the model scores are consistent between the full and projected polytopes we
can now write a form of constraints that agree with the constraints in (5.2).

w̃γ(h̃ j− h̃i)≤ 0, 1 < j < K (5.27)

w̃γ

2 = 1

If a feature vector is extreme in the projected space with w̃γ it will also be extreme in the
full space for the corresponding wγ ∈W .

The constraint w̃γ

2 = 1 can be loosened. If h̃i is extreme then there may exist a parameter
w̃ ∈ Ñh̃i

⊂ (R2)∗ where w̃2 ̸= 1. From the definition of a cone we can state the following

{tw̃ : t > 0} ⊆ Ñh̃i
(5.28)

Setting t = 1
w̃2

allows the recovery of a parameter that can be mapped to (RD)∗

w̃γ =

[
w̃1
w̃2

1

]
, w̃2 > 0 (5.29)

We can therefore rewrite the constraints that need to be satisfied as:

w̃(h̃ j− h̃i)≤ 0, 1 < j < K (5.30)

w̃2 > 0

5.4 Projected MERT 95

So that any solution can be mapped to the desired form by Eqn. (5.29). We have now
reformulated Och’s line optimisation as a feasibility problem. As a consequence of this re-
formulation we are freed from the requirement of using the SweepLine algorithm and could
use other techniques, such as linear programming, that function in multiple dimensions.

5.4.3 Optimal Search over Many Directions using a Projected Polytope

The reason for representing line optimisation as a projection is that we can generalise the
method to M directions {d1 . . .dM} where 1 ≤ M ≤ D. We redefine W to be any affine
subspace within (RD)∗ with respect to a vector of M free variables γγγ = [γ1 · · ·γM]

W = {w(0)+ γγγ∆} (5.31)

where ∆ is a D×M matrix of direction vectors

∆ =

d1
...

dM

 (5.32)

The projection matrix AM+1,D is now:

AM+1,D =

[
∆

w(0)

]
(5.33)

The projection of a feature vector is performed with the operation h̃ = AM+1,Dh. The con-
straints necessary for both hi and h̃i to be satisfied for extremity can also be rewritten in
terms of M

w̃(h̃ j− h̃i)≤ 0, 1 < j < K (5.34)

w̃M+1 > 0

The major advantage of this formulation is that, for any dimension M, we can now use a
linear programming or a vertex enumeration algorithm to find the normal cone associated
with the lowest error. The mechanics of this method are similar to unprojected LP-MERT
case, except we reject all cones where the representative parameter vectors have a negative
M+1 component.

Although we can test for vertices in projected parameter space, we note that some prop-

96 A Description of Minimum Error Rate Training Using Convex Polytopes

erties of the resulting normal cones may be distorted. One of these distorted properties is
Euclidian distance, which follows the relationship

||w̃||=
√

(γ1 . . . γM 1)(γ1 . . . γM 1)T

=
√

γ2
1 + . . .+ γ2

M +1 (5.35)

We can see that this is different to the norm of the underlying parameter because it does not
take into account w(0) or the magnitude of the direction vectors {d1, . . . ,dM}

||w||=
√

(w(0)+ γ1d1 + . . .+ γMdM)(w(0)+ γ1d1 + . . .+ γMdM)T

=

√
(w(0)

1 + γ1d1,1 + . . .+ γMdM,1)2 + . . .+(w(0)
D + γ1d1,D + . . .+ γMdM,D)2 (5.36)

Note that projected MERT never uses parameters from the projected space in the final linear
model. The parameters are always transformed back into higher dimensional parameters.
The only utility of the projected space is for the identification of redundant feature vectors.

Algorithm 5.1 The projected MERT algorithm

Require: S polytopes H[s], initial parameter w(0), Direction generator generate(), Error
function E(w), Convergence criterion ε .

1: n← 1 ▷ Iteration counter
2: repeat
3: w(n) = w(n−1)

4: ∆ = generate()
5: AM+1,D =

[
∆

w(n)

]
6: for s = 1 to S do
7: H̃[s] = AM+1,DH[s]
8: end for
9: M = N (H̃[1]+ · · ·+ H̃[S]) ▷ Normal fan of the Minkowski sum

10: for all feasible i do
11: w̃ = M[i]
12: w = w̃AM+1,D

13: if w̃M+1 > 0 and E(w)> E(w(n)) then
14: w(n) = w
15: end if
16: end for
17: n← n+1
18: until E(w(n))−E(w(n−1))< ε

19: print w(n)

5.4 Projected MERT 97

We describe the full projected MERT algorithm in Algorithm 5.1. This algorithm is
described for the full multi-sentence case, where we have S polytopes. There are a number
of support functions needed for the algorithm. The error function E(w) is the same error
function used in Eqn. (3.9). The generate() function generates M directions, which could be
a subset of the feature axes, random directions, gradient based schemes, or a combination
of all three. See Section 3.2.2 for a description of possible schemes to select directions.

Because the algorithm computes the multi-sentence case we reintroduce the index vector
i notation from Section 3.2.4. We note that Line 9 refers to as yet unspecified Minkowski
sum operation. The result of the Minkowski sum is an associative array, indexed by i, of
a representative parameter vector for each feasible index vector. I.e., for a particular i the
parameter w = M[i] satisfies the constraints in (3.12) for i. Note that the Minkowski sum op-
eration also implicitly identifies the set of index vectors that are feasible. Chapter 6 defines
the Minkowski sum, describes an algorithm for computing it, and gives a thorough com-
plexity analysis. Section 6.4 describes the computation of a single iteration of the projected
MERT algorithm for a Russion-to-English SMT system.

5.4.4 An Example of Och’s Line Optimisation using a Projected Poly-
tope

We now illustrate an example of polytope projection using the example from Cer et al.
[29] described in Section 5.2.5. Cer et al. [29] describe an application of the SweepLine
algorithm on their two dimensional set of feature vectors using an initial point of w(0) =

[0.5 1] and a direction d = [1 0]. Our goal is to demonstrate how the interval boundaries
of the upper envelope can be computed without using the SweepLine algorithm described
in Section 3.2.1.

First, we must create projected feature vectors using the given initial point and direction
vectors. These can be computed using the matrix:

A2,D =

[
1 0

0.5 1

]
(5.37)

For the purposes of this example we are projecting a 2-dimensional space to another 2-
dimensional space. In practice, we would wish to project from spaces of a higher dimension
to spaces of a lower dimension. The projected feature vectors for the first feature vector is

98 A Description of Minimum Error Rate Training Using Convex Polytopes

hLM : log(PLM(e)) hT M : log(PT M(f|e)) h̃1 : b(e, f) h̃2 : a(e, f)

e1 -0.1 -1.2 -0.1 -1.25
e2 -1.2 -0.2 -1.2 -0.8
e3 -0.9 -1.6 -0.9 -2.05
e4 -0.9 -0.1 -0.9 -0.55

Table 5.2 The set of hypotheses from Table 5.1 transformed by direction d = [1 0] and
initial parameter w(0) = [0.5 1] (after Cer et al. [29], Table 2). The first pair of columns
are the original features from Table 5.1, and the second pair are the projected features.

hLM

hT M

h1

h2

h3

h4

h̃1

h̃2

h̃1

h̃2

h̃3

h̃4

Fig. 5.3 The polytope in the left part is a replication of Figure 5.1, and the polytope in the
right part is constructed from the projected feature vectors in Table 5.2.

computed as follows:

h̃1 =

[
b(e1, f)
a(e1, f)

]
= A2,Dh1 =

[
1 0

0.5 1

][
−0.1
−1.2

]
=

[
−0.1
−1.25

]
(5.38)

where the functions b(e, f) and a(e, f) are the gradient and y-intercepts of the linear function
ℓe as described in Section 3.2.1. The projected feature functions are shown in Table 5.2
and the associated polytope is shown in Figure 5.3. Note that we do not show the redundant
feature vector h5 from the previous example, because it is also redundant in projected space.

The normal fan of the projected feature functions N (H̃) is shown in the lower part of
Figure 5.4. This projected fan resembles the normal fan in Figure 5.2 but with the decision
boundaries demarking different regions of parameter space. Now consider the line drawn
at w2 = 1, the intersection of respective normal cones with this line is the set of projected

5.4 Projected MERT 99

w̃1

Env(f; w̃1)

ℓe1

ℓe2

ℓe3

ℓe4

w̃1

w̃2

N [h̃ 4,
h̃ 1]

: w̃
(h̃ 4
−

h̃ 1)
=0

N
[̃h

4 ,̃h
2] : w̃

(̃h
4 −

h̃
2)=0 w̃2 = 1

N
[h̃3 ,h̃1] : w̃(h̃3 − h̃1)=0

N[h̃3,h̃2]
: w̃(h̃3− h̃2)=0

N{h̃3}

N{h̃4}

N{h̃2} N{h̃1}

Fig. 5.4 The upper part of the Figure shows the application of Och’s Line Optimisation us-
ing the same initial parameter and direction used in Table 5.2 (after Cer et al. [29], Figure
2). The lower part of the Figure shows the equivalent normal fan for the projected polytope
in Figure 5.3. The darkened region represents infeasible parameters. This diagram illus-
trates that the line through the normal fan at w̃2 = 1 yields the solution found by Och’s line
optimisation.

100 A Description of Minimum Error Rate Training Using Convex Polytopes

parameters that satisfy the constraints in (5.27). In the upper part of the figure we have re-
produced Figure 2 from Cer et al. [29] that shows the application of Och’s line optimisation
with the upper envelope highlighted in the thick red line. We have drawn lines between the
intersections of the decision boundaries of the normal fan with the interval boundaries in
the upper envelope, to show their equivalence.

Recall from the constraints in (5.30) that any parameter in the projected normal fan with
a negative w̃2 component cannot be mapped back to a parameter in the original space, and
are infeasible. We represent this region in the lower part of Figure 5.4 by shading below the
line w̃2 = 0. Note how all the parameters that maximise h̃3 are subject to w̃2 ≤ 0 and are
entirely in this region. Thus there is no line segment is the upper envelope for the hypothesis
e3.

5.5 Regularisation and the Normal Fan

A common problem that is encountered when training parametric statistical models is that
of overfitting, where the training data is modelled exactly but we see very poor performance
on a test set. Usually this is due to noise or outliers in the training data, and a failure of the
model’s training scheme to recognise this noisy data. We wish to use models and training
schemes that generalise, which means that they are not affected by noisy data.

In Section 6.3.3 we discuss how a large feature dimension is a possible cause of over-
fitting, and that using models with lower feature dimensions is one method of guaranteeing
generalisation. The problem with models of a lower feature dimension is that they may
not be able to model the training data effectively, which also results in lower test set per-
formance. One technique for preventing overfitting without reducing feature dimension is
regularisation, where a penalty is applied to the objective function to discourage certain
values of w.

In this section we concern ourselves specifically with ℓ2 regularisation, in which the
penalty takes the form ∥w∥2. One good example of ℓ2 regularisation is the regularisation
applied to polynomial curve fitting, see Page 10 of Bishop et al. [20] for details.

Unfortunately, this form of regularisation cannot be directly applied to MERT. Let us
assume we have found an optimal parameter ŵ that satisfies the constraints in (5.2). If we
apply a scale factor t > 0, then all parameters of the form tŵ also satisfy the constraints in
(5.2). The optimiser can therefore reduce the penalty by driving t down towards 0, yielding
a very small parameter vector.

Galley et al. [63] describe methods of regularising Och’s line optimisation. Several

5.5 Regularisation and the Normal Fan 101

methods of regularisation are discussed but we focus on their adapted form of ℓ2 regular-
isation because it provides the highest gain in their experiments. Our aim is to interpret
this form of regularisation with respect to the normal fan. The first step is to define a func-
tion r(γ) that can produce a vector suitable for regularisation. Let us define the objective
function to be minimised as (after Galley et al. [63] Eqn. 5)

γ̂ = argmin
γ

{
E(γ)+

∥r(γ)∥2

2σ2

}
(5.39)

where E(γ) is the form of error function in Eqn. (3.9) used in line optimisation as described
in Section 3.2.1. We focus on a single form of r(γ), again justified by the experimental
results of Galley et al. [63]

r(γ) = γd (5.40)

where d is the direction vector used is Och’s line optimisation. Essentially, this form of
regularisation penalises parameters vectors that are far from the initial parameter w(0). We
can constrain the function, with no loss of generality, such that ∥d∥ = 1. The objective in
Eqn. (5.39) can now be written as

γ̂ = argmin
γ

{
E(γ)+

∥γ∥2

2σ2

}
(5.41)

Note that the regularisation term reaches its minimum when γ = 0 yielding w = w(0). This
regularisation encourages ŵ to be placed on the decision boundary closest to w(0), or if the
decision region includes w(0) to select w(0) itself. To break ties, an ε is added to ŵ to keep
it away from the decision boundary.

Now, let us interpret this form of regularisation with respect to the projected normal fan.
We again use the example of Cer et al. [29] to illustrate our description. First, we note that
the initial parameter can be expressed in terms of the projection matrix as w(0) = [0 1]A2,D.
Let us redraw the lower part of Figure 5.4 in Figure 5.5 with the feature vector w̃(0) = [0 1]
marked.

We also mark two further points w̃(1) = [γ̂1 1] and w̃(2) = [γ̂2 1] where γ̂1 is the optimal
value for the objective in Eqn. (5.41) if e1 has the lowest error, and γ̂2 is optimal value
if e2 has the lowest error. Note that both of these points are of a similar distance to w̃(0).
Thus, the optimiser would choose the feature vector associated with the lowest error. If both
hypotheses have similar errors, then the optimiser would struggle to find the best parameter.

Let us now consider what happens in the unprojected space. We redraw Figure 5.2 in

102 A Description of Minimum Error Rate Training Using Convex Polytopes

w̃1

w̃2

N [h̃ 4,
h̃ 1]

N
[̃h

4 ,̃h
2]

w̃2 = 1

N{h̃4}

N{h̃2} N{h̃1}

w̃(0)

w̃(1)w̃(2)

Fig. 5.5 We redraw Figure 5.4 with potential optimal parameters under the ℓ2 regularisation
scheme of Galley et al. [63] marked. The parameter w̃(0) would be picked if e4 has the
lowest error, and w̃(1) and w̃(2) represent the optimal parameters if e1 or e2 have the lowest
error respectively

wLM

wT M

N
[h

4 ,h
2]

N [h 4,
h 1]

N{h4}

N{h2} N{h1}

w(0)

w(2) w(1)

ŵ

Fig. 5.6 We redraw Figure 5.2 with potential optimal parameters under the ℓ2 regularisation
scheme of Galley et al. [63] marked. The thick red line is the subspace of (R2)∗ optimised.
The parameter w(0) would be picked if e4 has the lowest error, and w(1) and w(2) represent
the optimal parameters if e1 or e2 have the lowest error respectively. The dashed lines mark
the distances between the decision boundaries and w(0). The parameter ŵ is the optimal
point under our proposed modification of the regulation scheme

5.5 Regularisation and the Normal Fan 103

Figure 5.6 and draw in thick red the line used in the line optimisation. We reverse the
projection operation such that w(1) = w̃(1)A2,D, and w(2) = w̃(2)A2,D. Again, we can see in
this diagram that both these points are equidistant to the w(0). The results are unchanged
from the projected space in Figure 5.5.

We now break out of the affine subspace indicated by the thick red line, and mark the
distances between w(0) and the decision boundary with dashed lines. From inspection of
the diagram we can see that the decision boundary between e4 and e1 is significantly closer
than the decision boundary between e4 and e2. If e2 and e1 have similar error counts, then
we would wish to pick the optimal parameter ŵ from N{h1} shown in Figure 5.6.

We present this example as an argument that regularisation should only be performed
in the original unprojected space. Using a distance γ from Och’s line optimisation is mis-
leading because it is restricted to a projected affine subspace of the original unprojected
space. We need to be careful about distinguishing which properties of the normal fan are
invariant under the projection implied by Och’s line optimisation and which are not. If a
feature vector is found to be a vertex, then this is a property that is invariant. The feature
vector is also a vertex in the original space, hence the use of Och’s line search as redun-
dancy test. Distances, however, are not invariant under a projection and should not be used
for regularisation.

The application of regularisation for MERT and ℓ2 regularisation seems similar. Both
schemes attempt to minimise Euclidian distances, but the affect of projection on distances,
as shown in Eqn. (5.35) and Eqn. (5.36), means that the results of regularisation with MERT
are not always well defined. We therefore propose a modification to regularisation scheme
of Galley et al. [63] that reflects the distances in the original space.

1. Compute the line search as normal, with the result of a set of line segments given as
a sequence of γ values of the form (γ1, . . . ,γn, . . . ,γN). Each γ is associated with a
feature vector hn.

2. For each γn compute the distance between the initial parameter w(0) and the decision
boundary δn = w(0)(hn−hn−1).

3. For each interval, add the regularisation term ∥δn∥2

2σ
to the error E(γn).

4. If the optimal interval contains w(0) then ŵ = w(0), otherwise set ŵ to the feature
vector in N{hn} closest to w(0) with the addition of an ε to break ties.

The extra computations of steps 2 and 4 can be performed in linear time with respect to the
dimension D.

104 A Description of Minimum Error Rate Training Using Convex Polytopes

g1

g2

ŵg
=

0

G+

G−

Fig. 5.7 A geometric representation of PRO to illustrate the symmetry in the ranking prob-
lem. The G+ and G− polytopes include the set of positively labelled and negatively labelled
g vectors. The dashed line represents the decision boundary given by the optimal parameter
vector ŵ ∈ (RD)∗.

5.6 A Geometric Description of Ranking Methods

Recall from Section 3.4 that in PRO the ranking of a K-best list can by described by the pair-
wise comparison of feature vectors. These pairwise comparisons form the set of constraints
in 3.22. Each of these constraints correspond to an edge in the polytope H.

Now recall from Section 5.2.2 that the edge of two vertices hi and h j in the polytope
H form is a line segment [hi,h j]. Note that this line segment is undirected. By Corollary
5.4 we know the edge defines a decision boundary in (RD)∗ such that any parameter on the
boundary yields equal model scores for any feature vector h ∈ [hi,h j].

The decision boundary is embedded in a hyperplane in (RD)∗ given by the equation
gw = 0 where g ∈ RD. We have two choices for the value of the vector g: either h j−hi

or hi−h j. Both of these vectors are parallel to line segment [hi,h j] but point in opposite
directions. Let us denote both vectors as g j,i = h j−hi and gi, j = hi−h j.

The choice of vector determines which hypothesis has a higher model score in each half
space. For example, all parameters that satisfy wg j,i < 0 imply that the model scores obey
whi > wh j. Following Hopkins and May [76] the vectors are labelled with two classes

5.6 A Geometric Description of Ranking Methods 105

g1

g2

ŵg
=

y

G+

g−

Fig. 5.8 An illustration of how the method of Schölkopf et al. [130] can be used to solve the
problem in Figure 5.7. The dashed line represents the decision boundary given by ŵ and the
offset y. This decision boundary defines a face of the polytope G+. The origin is labelled as
the g− vector, and is used to ensure the symmetry of the solution

depending on the relative error rate of the hypotheses. We denote these two classes as
positive + and negative −. If the error rate of the hypothesis ei is lower than the hypothesis
e j , then then the positively labelled vector is g j,i. We can use these two labels to generate
two polytopes: a G+ polytope of g vectors with positive labels, and a G− polytope of
negatively labelled g vectors.

There is an implicit symmetry in this geometric representation. For each vector g ∈ G+

there exists a second vector −g ∈G−. We illustrate this symmetry in Figure 5.7 with an ex-
ample showing two symmetric polytopes. In between the polytopes we have drawn a dashed
decision boundary, which is normal to an optimal parameter vector ŵ. From inspection of
this example we can see that the decision boundary satisfies both the constraints

ŵg < 0 for all g ∈ G+ (5.42)

and the following
ŵg > 0 for all g ∈ G− (5.43)

Not only are both these constraints satisfied but the magnitude of the distances of symmetric
vectors from the decision boundary are equal, such that ŵg =−ŵ(−g), where g ∈ G+ and
−g ∈ G−. This relationship is true for any parameter vector w ∈ (RD)∗ because they all
result in a decision boundary that includes the origin. This symmetry is noted by Hopkins
and May [76] who use the complement of a g vector when building their sample set to
‘ensure balance’ in their binary class problem.

106 A Description of Minimum Error Rate Training Using Convex Polytopes

Because of this symmetry in the ranking problem Green et al. [71] have observed that
pairwise ranking can be modelled as a unary class separation problem. One form of pa-
rameter estimation in a unary class problem is the method of Schölkopf et al. [130], which
elegantly estimates a parameter vector ŵ for a binary class SVM using only the G+ poly-
tope. Let us constrain the solution such that ŵ, along with some y ∈ R, yield a face in G+

as defined by Eqn. 5.9. The ŵ parameter and y offset are found using a binary class SVM
under this constraint and with the polytope G+ as the set of positive examples. This trick
behind this method is to also include the origin as a negatively labelled g− vector, which
then ensures the required symmetry.

We illustrate the method of Schölkopf et al. [130] in Figure 5.8. The resulting hyperplane
satisfies the constraint that is encloses a face of G+ and also maximises the margin for all
g ∈ G+ and g−. After ŵ and y have been estimated, we can discard y. The resulting ŵ is
identical to the ŵ used in Figure 5.7.

Chapter 6

Training Set Geometry

In the previous chapter we built upon the formulation of LP-MERT [62] by using the poly-
tope and the normal fan to describe MERT for a single sentence. Using this description
we were able to provide a novel generalisation of Och’s Line Optimisation [113] to multi-
ple dimensions by using a projected polytope. In this chapter we continue to make novel
contributions to SMT using convex geometry.

The main work of this chapter is to extend the use of polytopes to a training set of many
sentences. To find a parameter vector that will generalise we need to consider the error
across a large training set. Our goal is to find a parameter set that lowers the error across a
training set of S sentences.

Because we now have multiple source sentences we return to the notation used in Section
3.2.4. Recall that we denote the S-dimensional vector i as the index vector. Each element
is an index i to a hypothesis in the K-best list for the sth sentence. Let us consider the set
of K×S constraints necessary for a parameter w to yield the hypotheses as selected by the
index vector i

w(hs, j−hs,is)≤ 0 for 1≤ j ≤ K,1≤ s≤ S (6.1)

Consider the polytope Hs constructed from the feature vectors of the K-best list of the
sth sentence. From our previous discussion of the normal fan, we know that the set of
parameters that satisfy the constraints for each individual sentence take the form of a normal
cone N{hs,is} ∈N (Hs). The set of parameters that agree with all the constraints in (6.1) are

S⋂
s=1

N{hs,is} (6.2)

If this parameter set is equal to the zero-vector set {0} then we label the index vector as

108 Training Set Geometry

infeasible and discard it. For a single sentence training set, if a feature vector is found to
be infeasible then we continue testing feature vectors in the K-best. The next feature vector
is chosen in the order of the error associated with its hypothesis. However, for the training
set of many sentences we encounter problems with this approach. Because there are KS

possible values of i we cannot even compute the error associated with every index vector,
let alone test them for feasibility.

Recall from Section 3.2.4 that Galley and Quirk [62] do not explicitly search for a feasi-
ble set of constraints. Instead they create a linear combination of all features associated with
hypotheses identified by i. With the index vector notation we can write this sum in terms of
i

hi =
S

∑
s=1

hs,is (6.3)

This operation gives a set of KS summed feature vectors {hi : i∈ I}. This finite set of vectors
can be used to define a polytope conv({hi : i ∈ I}). Galley and Quirk [62] do not make the
connection that the polytope conv({hi : i ∈ I}) is the Minkowski sum of all the sentence
level polytopes. Making this connection is valuable because convex geometry describes the
relation between the Minkowksi sum and the parameters defined in Eqn. (6.2).

This chapter applies convex geometry to the problem of finding a feasible parameter
that yields a low error hypothesis set for the training data. We start by considering the
intersection of normal fans, an operation called the common refinement. We follow a proof
of Gritzmann and Sturmfels [72] to show that the normal fan of the Minkowski sum of
polytopes is equivalent to the common refinement of the normal fans of the polytopes. This
result formalises the relationship described by Galley and Quirk [62].

The exhaustive version of the algorithm of Galley and Quirk [62] for computing the
complete Minkowski sum has a complexity of O(KS). Remarkably, there already exists an
algorithm by Fukuda [59] that can compute the Minkowski sum in polynomial-time with
respect to the number of feasible index vectors. The reason this algorithm is so much faster
is that it exploits the geometry of the normal fan. Testing the feasibility of a normal cone
only requires the constraints implied by edges in the polytope. The full fan does not need to
be known. We give a full description of this algorithm in the second section.

The reader may note that we have given the complexity in terms of an unknown quan-
tity: the number of feasible index vectors. In the third section we consider the study of
Minkowski sums by Gritzmann and Sturmfels [72] that explores the size of this set. In short
the number of feasible index vectors has the upper bound O(SD−1K2(D−1)). So, instead of
KS, we have SD−1K2(D−1), indicating that the exponential complexity is in the dimension-

6.1 The Minkowski Sum 109

ality of the feature vector rather than the size of the training data.
In the fourth section we use projected MERT and the Minkowski sum algorithm to

compute the 3-dimensional error surface for an SMT system. We use an implementation of
the Minkowski sum algorithm [153] and discuss how it can be improved for SMT tasks.

Finally we continue discussion of linear models in Section 3.6, in which we discussed
the suitability of linear models for high dimensional problems. We present the upper bounds
theorems as an argument for why linear models are of limited use for systems of many
features.

6.1 The Minkowski Sum

Consider the sth and the tth sentences of the training set. From these sentences two K-best
lists are generated. The hypotheses in each of the K-best lists are used to define two sets of
feature vectors. Recall from Chapter 5 that these two polytopes Hs and Ht can be defined by
taking the convex hulls of their feature vectors.

For the two polytopes Hs and Ht , the Minkowski sum is defined as [72, 162]

Hs +Ht := {h+h′ : h ∈ Hs,h′ ∈ Ht} (6.4)

Hs and Ht are called summands of Hs +Ht . The Minkowski sum is commutative and asso-
ciative and generalises naturally to more than two polytopes [72].

Recall from Chapter 5 that the set of all normal cones of a polytope is called the normal
fan. To understand why the Minkowski sum is relevant a second operation called the com-
mon refinement has to be defined. The common refinement of two normal fans N (Hs) and
N (Hs) is [162]

N (Hs)∧N (Ht) := {N∩N′ : N ∈N (Hs),N′ ∈N (Ht)} (6.5)

Each normal cone in the normal fan is the set of parameters that define a face in the
associated polytope. The common refinement defines a new set of cones. Each cone is
associated with two faces, one from Hs and one from Ht . The parameters in the cone will
yield both those faces when substituted into Eqn. 5.9 with the respective polytopes.

The common refinement contains cones that are equal to the sets in (6.2). For a training
set of S sentences with S normal fans, the common refinement contains a cone for each
feasible index vector i. Each parameter vector in a cone satisfies the constraints in (6.1) for
the cone’s associated index vector. The common refinement is thus the desired geometric

110 Training Set Geometry

h1,1

h1,2 h1,3

h1,4 h2,1

h2,2

h2,3

h1,1 +h2,1

h1,2 +h2,1

h1,1 +h2,2

h1,2 +h2,2 h1,3 +h2,2

h1,4 +h2,2

{h1,4 + h2,1,
h1,1 + h2,3}

{h1,3 + h2,1,
h1,2 + h2,3}

h1,3 +h2,3

h1,4 +h2,3

H1 H2 H1+H2

Fig. 6.1 An illustration of the Minkowski sum for two input polytopes. H1 is the square
polytope on the left, H2 is the triangular polytope in the middle, and the sum polytope H1 +
H2 is the on the right. There are 12 resultant feature vectors but only 10 dots because some
feature vectors in the sum polytope are not unique, for example h1,3 +h2,1 = h1,2 +h2,3.

N[h1,4,h1,3]N[h1,2,h1,1]

N
[h

1,
4,

h 1
,1
]

N
[h

1,
3,

h 1
,2
]

N
[h

2,
3,

h 2
,1
]

N [h2,3
,h2,2

]N
[h2,1 ,h2,2]

N[h1,4,h1,3]N[h1,2,h1,1]

N
[h

1,
4,

h 1
,1
]

N
[h

1,
3,

h 1
,2
]

N
[h

2,
3,

h 2
,1
]

N [h2,3
,h2,2

]N
[h2,1 ,h2,2]

N (H1) N (H2) N (H1)∧N (H2)

Fig. 6.2 The equivalent common refinement to the Minkowski sum in Figure 6.1. The labels
N[h1,4,h1,1] and N[h2,3,h2,1] refer to the same decision boundary because the edges [h1,4,h1,1]

and [h2,3,h2,1] are parallel.

6.1 The Minkowski Sum 111

object for multi-sentence MERT, and an optimal MERT algorithm should yield it.

If the common refinement is the required operation, then it may seem odd that the focus
of this chapter is the Minkowski sum. The reason for this focus is because the normal fan of
the Minkowski sum is equal to the common refinement of the normal fans of the summands,
a relationship proved in Section 6.1.1

Proposition 6.1. N (Hs +Ht) = N (Hs)∧N (Ht)

Before we start describing the characteterstics of these operations in detail, let us illus-
trate their application with an example. In Figure 6.1 we show an example of the Minkowski
sum. There are two summands: H1 is a square and H2 a triangle. To compute the Minkowski
sum polytope, we take the vertices of the summand polytopes and follow the definition in
(6.4). We compute a total of 4×3 = 12 summed feature vectors, yet only half of these are
vertices in the sum polytope H1 +H2.

Now consider the equivalent common refinement shown in Figure 6.2. In this example
very little has to be computed. The common refinement appears as if one normal fan was
superimposed on the other. We can see there are six decision boundaries associated with the
six edges of the Minkowski sum. Even in this simple example, we can see that the common
refinement is an easier quantity to compute than the Minkowski sum.

The convex geometry literature treats the Minkowski sum, the left hand side of Propo-
sition 6.1, as the primary problem to solve. Because of this treatment the descriptions in
this chapter are made with respect to the Minkowski sum. In terms of computation it is the
common refinement, on the right hand side of Proposition 6.1, that is often easier to solve.
In fact, the Minkowski sum algorithm of Fukuda [59] described in Section 6.2 actually
computes the common refinement, and extracts the resulting Minkowski sum.

A major difference between our work and that of Galley and Quirk [62] is that they com-
pute the Minkowski sum directly and we compute the common refinement. The advantage
of their approach is that the same techniques for finding vertices in the single sentence case
can be redeployed in the multi-sentence case. In our approach we have to introduce new
terminology and concepts, such as the normal fan. However, once we are comfortable with
these concepts the computation becomes much simpler. The result is also closer to the prob-
lem domain we wish to solve in SMT, namely identifying a good parameter to maximise a
set of feature vectors.

112 Training Set Geometry

6.1.1 Equivalence of the Minkowski Sum and the Common Refinement

We now describe a proof of Proposition 6.1 as given by Gritzmann and Sturmfels [72].
Recall that for a given w a face is defined as:

F = {h ∈ H : wh = max
h′∈H

wh′} (6.6)

Much of the work to be done in this section considers a single face that can be determined by
many parameters. To make the these relationships explicit a function P(H;w) is introduced
which determines a face given a parameter

P(H;w) = {h ∈ H : wh = max
h′∈H

wh′} (6.7)

so that P(H;w) = F . Now consider polytopes associated with two sentences Hs and Ht for
the sth and tth input sentences. First of all, we note that the linear nature of the model score
using w allows us to make the following statement

whs +wht = w(hs +ht), ∀hs ∈ P(Hs;w) and ∀ht ∈ P(Ht ;w) (6.8)

> w(h′s +h′t), ∀h′s ̸∈ P(Hs;w) and ∀h′t ̸∈ P(Ht ;w) (6.9)

This implies that the Minkowski sum of faces in the two summands is a face in the Minkwoski
sum of the polytope

P(Hs +Ht ;w) = P(Hs;w)+P(Ht ;w) (6.10)

Let us consider S polytopes in RD. Because of the associativity and commutativity of the
addition operations the result can be extended across S polytopes such that

P(H1 +H1 + . . .+HS;w) = P(H1;w)+P(H2;w)+ . . .+P(HS;w) (6.11)

Let the polytope resultant from the Minkowski sum be denoted as H such that H =

H1 +H2 + . . .+HS. Also let us denote the face Fs as a face in the sth polytope Hs. From
Eqn. (6.11) we know that the face F ⊆ H is formed as the result of a Minkowksi sum
F = F1 +F2 . . .+FS. The set of summands {F1,F2, . . . ,FS} for F is called the Minkowski
decomposition of F [59]. We can state the following about the Minkowski decomposition
[59]

6.1 The Minkowski Sum 113

Lemma 6.2. Given the parameters w and w′ such that

F = P(H1;w)+P(H2;w)+ . . .+P(HS;w) = P(H1;w′)+P(H2;w′)+ . . .+P(HS;w′)

then the Minkowski decomposition is unique, i.e. P(Hs;w) = P(Hs;w′) for all s.

Proof. The uniqueness of decomposition is proved by contradiction. Consider the Minkowski
sum of all S faces such that all S summands are equal except for the sth sentence. Let be h∗ a
vertex in a reduced Minkowski sum that excludes the sth face P(H1;w)+ . . .+P(Hs−1;w)+

P(Hs+1;w)+ . . .+P(HS;w). Let h′ satisfy h′ ∈ P(Hs;w′) and h′ ̸∈ P(Hs;w). The face F

must contain h∗+h′s, yet this point is not in the face F under w, a contradiction. We can
show the other direction by substituting w with w′, which gives P(Hs;w) = P(Hs;w′).

It is now possible to prove Proposition 6.1 [72].

Proof. It is sufficient to show that a cone in the normal fan of the Minkowski sum is equal
to a cone in the common refinement.

NP(H;w) = {w′ ∈ (RD)∗ : P(H1 + . . .+HS;w′) = P(H1 + . . .+HS;w)}

= {w′ ∈ (RD)∗ : P(H1;w)+ . . .+P(HS;w) = P(H1;w′)+ . . .+P(HS;w′)}
(6.12)

= {w′ ∈ (RD)∗ : P(H1;w) = P(H1;w′), . . . ,P(HS;w) = P(HS;w′)} (6.13)

= NP(H1;w)∩ . . .∩NP(HS;w)

The step from line (6.12) to line (6.13) is justified by the uniqueness of the Minkowski
decomposition. Each normal cone of a face in the Minkowski sum is the intersection of the
normal cones of faces in the summands.

The dimension of F is at least as large as the dimension of each Fi in the decomposition.
Thus following can be stated [59]

Corollary 6.3. Let H1,H2, . . . ,HS be polytopes in RD and let H = H1 +H2 + . . .+HS. A

feature vector h∈H is a vertex of H if and only if there exists some w∈ (R)∗ such that each

element of the decomposition is a vertex, i.e. {hs}= P(Hs;w) for all s.

This corollary is important because it means that the Minkowski decomposition of a
vertex in the polytope H maps bijectively to an index vector i. For example, for the vertex
hi ∈ H we can write hi = h1,i1 +h2,i2 + . . .+hS,iS .

114 Training Set Geometry

6.2 A Polynomial Time Minkowski Sum Algorithm

In this section we describe the algorithm of Fukuda [59], which computes the Minkowski
sum in polynomial time. For this description we define polynomial time as an algorithm
that runs in time bounded by a polynomial function of both the input size and output size.
The full complexity analysis is withheld until the end of the section, because it requires an
understanding of the algorithm’s mechanics.

The idea is to exploit the properties of edges as described in Section 5.2.2. If two vertices
share an edge, then they are denoted as adjacent. Recall from Lemma 5.6 that a normal cone
can be defined by a subset of the decision boundaries associated with adjacent vertices. In
brief, the algorithm identifies an initial normal cone of the common refinement, removes
redundant decision boundaries, and then enumerates through the remaining adjacent vertices
of the Minkowski sum.

The full algorithm is an example of a reverse search [9]. The reverse search is a general
technique that can be applied to many problems. For example, as noted in Section 5.3.1,
a reverse search can be used to compute vertices of a single polytope. A reverse search is
suited to the enumeration of a graph where we do not know the full structure of a graph, but
do have information about adjacent vertices.

The reverse search specifies two functions, the local search function and the adjacency
oracle, but does not provide an implementation for them. Different implementations of
these functions can be ‘plugged in’ to the algorithm to solve different problems. We must
therefore describe the reverse search first, because it provides a specification of these two
supporting functions. We can then provide a thorough description of these functions.

6.2.1 Enumerating Vertices with a Reverse Search

We first describe reverse search with respect to the general problem of enumerating the
vertices of any polytope H. After the description of the reverse search technique, we can
then describe the supporting functions that are specific to the Minkowski sum enumeration
problem.

Recall from Section 5.2.2 that the vertex set of H is defined as V = vert(H). An undi-
rected graph G(H) = (V,E) can be constructed from the polytope where E is an edge set.
Each edge E corresponds to an edge face in the polytope. We also denote the degree of a
vertex in the graph as the number of edges incident to a vertex, and the maximum degree of
a graph is the maximum degree of its vertices.

What makes a reverse search algorithm interesting is that the full graph G(H) does

6.2 A Polynomial Time Minkowski Sum Algorithm 115

not need to be given explicitly. Instead the graph can be built up incrementally through a
function called the adjacency oracle. A second function called the local search function
defines the enumeration order of vertices.

The Adjacency Oracle

Not all graphs can have their vertices enumerated with a reverse search. If the graph G(H)

is suitable for the application of the search, then it is said to be ‘given’ by an adjacency
oracle (adj). Specifically, if the graph is given by an adjacency oracle then the following
conditions have to be satisfied:

(A1) The vertices are represented by nonzero integers

To avoid the proliferation of index variables we use h ∈ V to refer to a vertex, noting that
while it is not a nonzero integer it can be readily mapped to an integer index to satisfy
condition A1.

(A2) An integer δ is explicitly given which is an upper bound on the maximum degree of
G

(A3) The adjacency oracle (adj) satisfying the following conditions is given:

1. for each vertex h and each number k with 1≤ k ≤ δ the oracle returns adj(h,k),
a vertex adjacent to h or extraneous 0 (zero),

2. if adj(h,k) = adj(h,k′) ̸= 0 for some h ∈V,k and k′, then k = k′,

3. for each vertex h,{adj(h,k) : adj(h,k) ̸= 0,1≤ k ≤ δ} is exactly the set of ver-
tices adjacent to h.

It will be shown in Section 6.2.2 that δ can be established from the summand polytopes of
the Minkowski sum. The conditions in A3 imply that adj returns each adjacent vertex to h
exactly once in a consistent order during the δ inquiries adj(h,k),1≤ k≤ δ for each vertex
h.

The Local Search Function

It would be possible to enumerate through the vertices of the graph using the adjacency
oracle, but we to need to decide upon an enumeration order for vertices. Unless we store
every vertex visited in memory, then the algorithm may end up cycling around previously

116 Training Set Geometry

enumerated vertices. The algorithm would no longer be compact and the memory size
would be proportional to the output.

The key insight behind a reverse search is that enumeration is much easier if the graph is
transformed into a tree. We do not know the structure of the graph before the reverse search,
which means that we have to perform this transformation incrementally during enumeration.
This incremental transformation is guided by the local search search function.

Let us denote some vertex in the the graph as h(0). For the purposes of reverse search
this vertex is considered to be some ‘optimal’ vertex in the graph. Note that this does not
imply that h(0) has any special significance outside of the reverse search, it could be any
vertex in the graph. Using the optimal vertex is it now possible to specify a local search
function.

Consider the undirected graph G(H) = (V,E), where V and E are the vertex and edge
sets respectively. A triple (G,h(0), f) is a called a local search if h(0) ∈V and f is a mapping
V \h(0)→V that satisfies

(L1) {h, f (h)} ∈ E for each h ∈V \h(0).

A local search is considered finite if it satisfies the following

(L2) for each h ∈V \h(0), there exists a positive integer k such that f k(h) = h(0).

If the graph G(H) is given by an adjacency oracle, then the local search is also said to be
given by the adjacency oracle. Starting from any vertex in the graph, following the output
of a finite local search function gives a path that ends in optimal vertex h(0). The union of
all these paths is called the trace T of the local search. The trace is a directed subgraph of
G(H) taking the form T (H) = (V,E(f)) where V is the same vertex set used in G(H) and
E(f) = {(h, f (h)) : h ∈V \h(0)}

Property 6.4. If (G(H),h(0), f) is a finite local search then its trace T (H) is a spanning

directed tree of G(H) with edges pointing to h(0) as the unique sink node of the tree.

The Search

We can now describe the enumeration order of a reverse search. Starting at the optimal
vertex h(0) we then proceed to do a depth first search of the trace T (H), moving away from
the optimal vertex. The technique is called a reverse search due to this characteristic of
searching in the opposite direction to the optimal vertex.

Because the search is a depth first search, once a leaf vertex has been enumerated the
search must return back towards h(0) to find branches that have not yet been enumerated.

6.2 A Polynomial Time Minkowski Sum Algorithm 117

The trace is thus traversed in two directions: a reverse traversal descends to the leaves of the
tree, and a forward traversal ascends back towards the root. The full algorithm is stated in
Algorithm 6.1.

Algorithm 6.1 Reverse search algorithm. After Avis and Fukuda [9]

Require: adj,δ ,h(0), f
1: h← h(0)

2: j← 0 ▷ neighbour counter
3: repeat
4: while j < δ do
5: j← j+1
6: next← adj(h, j)
7: if next ̸= 0 then
8: if f (next) = h then ▷ reverse traverse
9: print h ▷ output an enumerated vertex

10: h← next
11: j← 0
12: end if
13: end if
14: end while
15: if h ̸= h(0) then ▷ forward traverse
16: h′← h
17: h← f (h)
18: j← 0
19: repeat ▷ restore j
20: j← j+1
21: until adj(h, j) = h′
22: end if
23: until h = h(0) and j = δ

Note that each vertex h ∈ V \h(0) is associated with a single forward traversal. Let us
denote t(f) and t(adj) as the time taken to evaluate the local search function and adjacency
oracle. The complexity of the reverse search can now be given [9].

Theorem 6.5. Suppose that a local search (G,h(0), f) is given by an adjacency oracle. Then

the complexity of the reverse search algorithm is O(δ t(adj)|V |+ t(f)|E|)

Proof. The time complexity is determined by lines 6, 8 for reverse traversal and lines 17,
21 for forward traversal. Line 6 is executed at most δ times for each vertex, resulting in
total time of O(δ t(adj)|V |). Line 8 is executed for each edge incident with the vertex h for
a total time of O(δ t(f)|E|). The two lines in the forward traversal are executed for each

118 Training Set Geometry

vertex h ∈ V \h(0) and hence the total total time for line 17 is O(t(f)(|V |−1)). Similarly,
the total time for line 21 is O(δ t(adj)(|V |−1). Since |V |−1 ≤ |E|, by adding up the four
complexities we have the claimed result.

Corollary 6.6. Suppose that a local search (G,h(0), f) is given by an adjacency oracle.

Then the time complexity of the reverse search algorithm is O(δ |V |(t(adj) + t(f))). In

particular if δ , t(f), and t(adj) are independent of the number of vertices |V | in G then the

complexity is linear in the output size |V |.

Proof. The claim immediately follows from Theorem 6.5 and the fact that 2|E| ≤ δV

Now that the algorithm has been formally described we make some observations about
the implementation details of reverse search. Because the reverse search is a depth-first
search of a tree, Avis and Fukuda [9] note that a parallel implementation of reverse search
is very easy to build. Branches can be enumerated independently of each other, with very
little communication needed between different execution contexts.

Another potential improvement in line 19 is that during forward traversal the adjacency
oracle is executed several times to restore the neighbour counter j. Instead the counter
could be cached after each reverse traverse, which would reduce the compute time at the
cost of increasing memory. Weibel [153] makes this change for his implementation of the
Minkowski sum algorithm and reports only a modest increase in memory usage.

Example

The preceding description was a formal definition of the reverse search. To complement this
description we illustrate the pseudo-code listing in Algorithm 6.1 with an example. For this
example, we assume we have a polytope H and we show the full undirected cyclic graph
associated with this polytope in Figure 6.3. Note that the complete graph is not a required
input into the algorithm, but we provide it for clarity.

We are given a local search. Recall from Property 6.4 that a local search implies a trace
of the graph. The trace of the graph in Figure 6.3 is shown in Figure 6.4. Note that the
optimal vertex h(0) can be reached from every other vertex in the trace.

The two previous figures show all the vertices in the graph, yet the reverse search algo-
rithm is designed to enumerate the vertices without the complete graph. In Figure 6.5 we
show in a subgraph the first two consecutive reverse traversals as bent blue directed edges.
The edges are labelled with the order they are completed by the algorithm. The first reverse
traversal sets the h variable to vertex h1. At this point the algorithm consults the adjacency-
oracle for the next edge and finds the edge between h1 and h6. This edge is shown with a

6.2 A Polynomial Time Minkowski Sum Algorithm 119

h(0)

h1

h2

h3 h4

h5

h6

h7

h8h9

Fig. 6.3 An example undirected graph that represents the adjacency in a polytope

h(0)

h1

h2

h3 h4

h5

h6

h7

h8h9

Fig. 6.4 An example trace of the graph in Figure 6.3 given a local search.

120 Training Set Geometry

h8h9 h(0)

h1

h2

h6

2

1

Fig. 6.5 Incremental enumeration for a subgraph of the graph in Figure 6.3. The undirected
edges represent the original edges in the graph G(H) that will form part of the trace. The
bent blue directed lines represent iterations of reversal traversal. The dashed line is an edge
in G(H) that is rejected by the local search and does not form part of the trace.

dashed line in the figure. The algorithm then consults the local search function to find that
it is not part of the trace h1 ̸= f (h6). The edge is discarded and the algorithm moves to the
edge between h1 and h2. This edge satisfies the local search function h1 = f (h2) and the
second reverse traversal is executed.

Finally in Figure 6.6 we show the full enumeration order of the graph in terms of forward
and reverse traversals. The traversals are shown as directed edges, labelled by the order of
execution. Note that each vertex, except for h(0), has exactly one forward traversal leaving
the vertex.

6.2.2 Implementation of Reverse Search Functions

It is now possible to describe the full Minkowski sum vertex enumeration algorithm. The
final step is to provide implementations of the adjacency oracle and the local search function.
Both these implementations are based on linear programming. Recall from Section 3.2.3
that the complexity of a linear program can be reasonably approximated to O(D3.5M) where
D is the number of variables and M is the number of constraints. Once these descriptions
are complete, it will be possible to prove the following result [59].

Theorem 6.7. There is a polynomial algorithm for the Minkowski addition of S polytopes

that runs in time O(δ (D3.5δ)|V |) with O(1) memory consumption.

The Adjacency Oracle

Let us assume that we are given a vertex in the Minkowski sum polytope, associated with a
index vector i. Because of Proposition 6.1, the normal cone of this vertex is defined by the

6.2 A Polynomial Time Minkowski Sum Algorithm 121

h(0)

h1

h2

h3 h4

h5

h6

h7

h8h9
1

2

5

6
8

11

16

1213
4

3

10
7

9

18
17

1514

Fig. 6.6 Full execution of the reverse search of the graph in Figure 6.3. Reverse traversal is
marked by thin blue edges, forward traversal in thick red edges

the set of constraints in (6.1).

Fukuda [59] defines an adjacency oracle based on these set of constraints. Recall from
Corollary 5.4 that each non-redundant constraint corresponds to an edge in the polytope.
Thus if there exists a constraint in (6.1) that is essential to the definition of the normal cone
then it implies the existence of an adjacent vertex in the Minkowski sum.

Given two adjacent vertices in the sth polytope, hs, j and hs,is , we can test whether a
constraint associated with these two vertices is redundant in the normal come of hi using
the following feasibility problem

w(hs, j−hs,is)< 0

w(ht,k−ht,it)≥ 0 for all 1≤ t ≤ S,1≤ j ≤ K (6.14)

This linear program to test this feasibility problem would have to be executed K× S times
for each constraint of the cone, and it contains approximately K × S constraints. Even
though this is not an exponential quantity and would be acceptable for the algorithm, we
can improve upon it.

A important property of adjacency in the Minkowski sum polytope, is that it is derived
from the adjacency of the summand polytopes. The formal relationship between the adja-
cency of vertices in the sum and summands is defined by the following proposition from

122 Training Set Geometry

Fukuda [59].

Proposition 6.8. Let H1,H2, . . . ,HS be polytopes in (R)D and let H = H1 +H2 + . . .+HS.

Let hi and hj be two adjacent vertices in H with the Minkowski decompositions hi = h1,i1 +

h2,i2 + . . .+hS,iS and hj = h1, j1 +h2, j2 + . . .+hS, jS . Then hs,is and hs, js are either equal or

adjacent in Hs for all s.

Proof. It is sufficient to show that the Minkowski decomposition for an edge in the Minkowski
sum H is formed of edges from the summands

[hi,hj] = [h1,i1,h1, j1]+ [h2,i2,h2, j2]+ . . .+[hS,iS ,hS, jS] (6.15)

where each [hs,is,hs, js] is a face of Hs. The statement is proved in two steps. First, for a given
weight w such that [hi,hj] = P(H;w) the Minkowski decomposition is [hi,hj] = P(H1;w)+

P(H2;w)+ . . .+P(HS;w). If the edge [hi,hj] contains both the vertices hi and hj then each
element of the vertices’ decomposition must be contained in the edge’s decomposition

[hs,is,hs, js]⊆ P(Hs;w), for all s. (6.16)

For the second step, note the that edge in H must be contained in the Minkowski sum of the
S edges.

[hi,hj]⊆ [h1,i1,h1, j1]+ [h2,i2,h2, j2]+ . . .+[hS,iS ,hS, jS] (6.17)

Both Eqn. (6.16) and Eqn. (6.17) can only be true if Eqn. (6.15) is true.

Because of this proposition, we only need to consider the subset of constraints in (6.1)
that are associated with adjacent vertices in the sentence-level polytopes. The other con-
straints can be removed, as they are redundant. Let us now characterise the adjacency of the
vertices in the graph G(Hs) with respect to an index vector i. We define

∆(i) = {(s, j) : s = 1, . . . ,S and j = 1, . . . ,δs} (6.18)

where δs is the maximum degree of G(Hs) and each element (s, j) of ∆(i) is called a pair.
Because δs is the maximum degree of G(Hs), for some index vectors i and polytopes (Hs)

there will be pairs where j is greater than the number of edges incident to the vertex his ∈Hs.
The subset of pairs that do correspond to edges are called valid pairs.

To be able to reference a specific adjacent vertex in Hs we need a function a(s, j) that
maps a pair to an index in an K-best list of the sth sentence. For brevity we omit the first

6.2 A Polynomial Time Minkowski Sum Algorithm 123

argument where it is obvious which sentence we are referring to, for example the feature
vector hs,a(j) is associated with the sth sentence only.

We are almost in a position to rewrite the feasibility problem in (6.14) with only the
subset of constraints associated with adjacent vertices. However, there is a detail that we
need to consider due to the following corollary [59]:

Corollary 6.9. Let H1,H2, . . . ,HS be polytopes in RD and let H = H1 +H2 + . . .+HS. For

some parameter w ∈ (R)∗ a subset E of H is an edge of H if and only if E = P(H1;w)+

P(H2;w)+ . . .+P(HS;w) such that dim(P(Hs;w)) = 0 or 1 and all faces of dimension 1

are parallel.

As a brief but important aside, this corollary shows that all edges of H incident with hi

are parallel to at least one edge in an input polytope. This implies that δ = δ1+δ2+ . . .+δS

is an upper bound of the maximum degree in H.

The occurrence of parallel edges cause a problem, because they yield identical con-
straints in (6.14). In practise, the decomposition of an edge in the Minkowski sum polytope
will almost always contain a single edge and S−1 vertices. However to be correct, we must
cover the rare case where we have two or more parallel edges in the summand polytopes.

For each pair (s, j) let us group together the parallel edges as

∆(i,s, j) = {(t,k) ∈ ∆(i) : ht,a(k)−ht,it ∥ hs,a(j)−hs,is,(s, j) and (t,k) are valid} (6.19)

Now we can finally rewrite the feasibility problem is (6.14) as a problem with a maxi-
mum of δ constraints

w(hs,a(j)−hs,is)< 0

w(ht,a(k)−ht,ik)≥ 0 For all valid (t,k) ̸∈ ∆(i,s, j) (6.20)

This feasibility problem is an improvement upon the problem in (6.14) because δ ≤ K×S

If the problem in (6.20) is feasible, then there is edge incident to hi parallel to (hs, j−
hs,is). By Proposition 6.8 the adjacent index vector î is given by

î = [î1, î2, . . . , îS]T (6.21)

îs =

{
a(j) if there exists j such that (s, j) ∈ ∆(i,s, j)

is otherwise
(6.22)

The last step is to give the adjacency oracle in a form that satisfies the conditions A1, A2,

124 Training Set Geometry

and A3 in Section 6.2.1. According to these conditions the adjacency oracle accepts a non-
zero integer k, with 1≤ k ≤ δ , as an argument to indicate adjacency. In an effort to reduce
the number of index variables we note that |∆| = δ and that pairs are countable, allowing
the adjacency oracle to be written with respect to a pair and vertex of the Minkowski sum.
The specification of the adjacency oracle is therefore [59]

adj(hi,(s, j)) =

{
hî if (s, j) ∈ ∆(i) and a valid pair
0 otherwise

(6.23)

Lemma 6.10. The adjacency oracle adj(h,(s, j)) can be evaluated in time O(D3.5δ).

Proof. The adjacency oracle is dominated by solving the system in (6.20). The feasibility
problem is solved with a linear program with D variables and at most δ inequalities and thus
the claim follows.

The Local Search Function

The final piece of the full algorithm is the local search function, and we now describe a
local search function defined by Fukuda [59]. An arbitrary parameter w(0) is selected. This
parameter has no special significance in terms of the algorithm, but for relevance to SMT
let us use the starting parameter for an iteration of MERT. Using this parameter we rank the
feature vectors in K-best lists with respect to model score. The feature vector h(0) is the sum
of the 1-best feature vectors.

Recall that from Section 6.2.1 that the local search is a triple with the undefined element
f , which is a mapping V \ h(0) → V . For the Minkowski sum algorithm, the function f

identifies the adjacent vertex with the highest model score under w(0).
This implementation of f starts by noting a geometric property of normal fans [59].

Proposition 6.11. Let h and h(0) be two distinct extreme points of H, and let w ∈ N{h}
and w(0) ∈ N{h(0)}. Then there exists a vertex h′ adjacent to h such that N{h′} contains a

parameter in (RD)∗ of the form (1−θ)w+θw(0) for some 0≤ θ ≤ 1.

Proof. Since h(0) ̸= h, their normal cones are two distinct full dimensional cones in the
normal fan N (H). This means the parametrised point t(θ) := w+θ(w(0)−w)(0≤ θ ≤ 1)
in the line segment [w(0),w] must leave at least one of the decision boundaries of the first
cone N{h} as θ increases from 0 to 1. Since the decision boundaries are in one-to-one
correspondence with the edges of G incident with h, any one of the half-spaces violated first
corresponds to a vertex h′ adjacent to h claimed by the proposition.

6.2 A Polynomial Time Minkowski Sum Algorithm 125

The next step is to define a method for selecting a single representative parameter for
a cone, which is called the canonical parameter. We demand the parameter must lie in the
interior in the cone, and not some shared face. This canonical parameter is found using a
linear program similar to the program for finding interior points in (3.15). Given a vertex
hi ∈ H a canonical parameter for N{hi} is found by

maximise w0

subject to w(hs,a(j)−hs,is)+w0 ≤ 0 for all valid (s, j) ∈ ∆(i) (6.24)

w0 ≤C

where C is any positive constant to bound the solution. The solution set to this problem is not
unique and different linear programming solvers will yield different results. The assumption
is made that the same solver is used throughout the algorithm to ensure a unique solution.

It is now possible to provide an implementation for f . First we assume that w(0) is
interior to the cone N{h(0)} and compute the canonical parameter w for N{hi}. These two
parameters define the oriented line t(θ) := w+ θ(w(0)−w). The function then iterates
through δ possible edges, solving for θ to find the intersection between the line t(θ) and
the bounding hyperplane associated with the edge. The edge associated with the smallest
value of θ determines the vertex returned by the function.

This implementation of f may introduce a degeneracy if the line hits the intersection of
two or more decision boundaries, which causes a tie. The function would select multiple
edges, making reverse search untenable. Ties are broken by a symbolic perturbation of w as
w+(ε1,ε2, . . . ,εD) for sufficiently small ε .

Before the function can be used it must be shown to yield a valid trace T (f) that satisfies
Property 6.4. The property is recast as a proposition to be proved [59].

Proposition 6.12. The directed graph of T (f) = (V,E(f)) is a spanning tree of G(H) (an

undirected graph) and h(0) is a unique sink node of T (f).

Proof. By the construction, h(0) is a unique sink node of T (f). It is sufficient to show that
T (f) has no directed cycles. For this, take any edge (h,h′ = f (h)) ∈ E(f). Let w and w(0)

be the canonical vector for h and h(0) respectively. Since w is an interior point of N{h}

w(h′−h)< 0 (6.25)

Because the canonical points are selected as interior points of the associated normal cones,
there exists 0 < θ < 1 such that w′ := (1−θ)w+θw(0) ∈ Nh′ . Again, because w′ is interior

126 Training Set Geometry

to the normal cone Nh′ the following derivation can be made

0≤ ((1−θ)w+θw(0))(h′−h)

= (1−θ)w(h′−h)+θw(0)(h′−h)

< θw(0)(h′−h) by (6.25)

This implies that the vertex h′ attains a strictly higher model score than h under w(0). There-
fore, there is no directed cycle in T (f).

The last part of the description of the local search function is to provide a complexity
analysis of the time taken to execute the function [59].

Lemma 6.13. There is an implementation of the local search function f (h) with evaluation

time O(δ (D3.5δ)), for each h ∈ V \ h0 with the Minkowski decomposition h = h1 + h2 +

. . .+hS.

Proof. The local search function implementation can be split into two stages. The first is
the computation of the canonical parameter. The second is to determine the first bounding
hyperplane of N{h} that hits the line segment t(θ). The first stage is computed by the linear
program in (6.24) with D+1 variables and at most δ +1 inequalities, giving a complexity of
O(D3.5δ). The second stage consists of solving at most δ one-variable equations. Therefore
the computation is dominated by the first stage and the total complexity is O(D3.5δ).

Complexity of the Full Algorithm

One of the main claims of this chapter is that it is possible to define a compact polynomial
time algorithm to compute the Minkowski sum. We are now in a position to take the various
complexity results from the reverse search and support functions to finalise this claim.

An aspect of the algorithm we have not described is how to compute the edges in the
summand polytopes. One method would be to infer the edges from a set of facets computed
by a facet enumeration algorithm. Another method would be the use of a linear program to
test all pairs in a K-best list, which would result is SK2 linear programs. This computation
is dwarfed by the time spent enumerating vertices and can be ignored.

Let us now combine the complexity results of the reverse search algorithm together with
the complexity statements of the support functions to prove Theorem 6.7 [59].

Proof. Recall from Corollary 6.6 that the complexity of the reverse search is O(δ (t(adj)+
t(f)|V |). By Lemmas 6.10 and 6.13 both t(adj) and t(f) can be replaced by O(D3.5δ) and

6.3 Upper Bound of the Minkowski Sum 127

the claimed time complexity follows. The space complexity is dominated by those of the
functions f and adj which are linear in the input size.

This is a significant result. Galley and Quirk [62] describe the Minkowski sum as a
problem with NS vertices to test for feasibility. They do give a divide-and-conquer algorithm
to reduce the number of tests, but they do not give time or memory complexities for this
algorithm. It is also not clear how to adapt their algorithm for parallelisation, when the
algorithm of Fukuda [59] can easily be adapted to parallel execution.

We should be clear that this result is heavily dependent on the output size |V |. This quan-
tity is the number of feasible index vectors, which correspond to sets of feasible constraints
in (6.1).

6.3 Upper Bound of the Minkowski Sum

We have described the Minkowski sum of many polytopes and a method for computing it
in polynomial time with respect to the number of vertices |V | in the Minkowski sum. Thus,
the number of vertices is critical to the computability of MERT. If |V | does not increase
exponentially with respect to S, K, or D then the algorithm will identify a global minimum
in polynomial time.

This section investigates the upper bounds on |V |. We first describe a collection of upper
bound theorems that state that |V | does increase exponentially with respect to D, we then
discuss what impact these upper bounds have on SMT systems before moving on to the
implications of the upper bound theorems on linear models in general.

6.3.1 Upper Bound Theorems

In Section 7.2.1 we describe how MERT can be applied to lattices and hypergraphs. In
this description, there are certain operations concerning Och’s line optimisation that are
formulated using a 2-dimensional Minkowski sum [54, 94]. This use of the Minkowski sum
is said to be tractable because of the following theorem

Theorem 6.14. Let H1,,HS be polytopes in R2 with at most K vertices each. Then the

number of vertices of H1 + . . .+HS is O(SK).

Proof. de Berg et al. [46, Theorem 13.5] states that the same upper bound exists for edges
in a Minkowski sum. We note that the number of edges in a 2-dimensional polytope is equal
to the number of vertices.

128 Training Set Geometry

For 2-dimensional polytopes the Minkowski sum is a very computationally efficient
operation. Recall from Section 5.4.2 that Och’s line optimisation can be formulated as the
projection of a polytope into a 2-dimensional space. This result confirms that Och’s line
optimisation is very cheap to compute for many source sentences. Let us now move onto
the case where D > 2

Theorem 6.15. Let H1,,HS be polytopes in RD with at most K vertices each. Then the

upper bound on the number of vertices of H1 + . . .+HS is O(SD−1K2(D−1)).

Proof. See Gritzmann and Sturmfels [72, Corollary 2.1.11]

We cannot understate the significance of this result. Essentially, this result states that the
upper bound on the number of feasible index vectors increases exponentially with dimen-
sion. We also note that it is not just the number of feasible index vectors that explodes with
an increase in dimension. Consider the following upper bound theorem for edges:

Theorem 6.16. If H is a D-dimensional polytope with |V| vertices, then for D ≥ 3 the

following is an upper bound on the number of edges |E|

|E| ≤
(
|V |
2

)
(6.26)

Proof. This is a special case of the upper bound theorem. See Ziegler [162, Theorem 8.23].

Because Theorem 6.15 states that the upper bound on |V| grows exponentially with di-
mension, then the possible number of edges also increases. Recall that a vertex corresponds
to a normal cone in the normal fan and edge to a feasible decision boundary between the
normal cones. Thus not only does the possible number of normal cones increase exponen-
tially as dimension increases, the possible number of decision boundaries increases, and the
upper bound on the max degree δ of the associated graph also increases.

6.3.2 The Impact of Upper Bounds on SMT systems

We have described theoretical results based around upper bound theorems. The next step
is to investigate what role these upper bounds have when estimating the parameters for a
typical SMT systems.

Let us conduct this investigation by plugging in some hard numbers into the theorems.
Consider the CUED Russian-to-English [125] entry to the Eighth Workshop on Machine

6.3 Upper Bound of the Minkowski Sum 129

Translation (WMT’13) [24]. This entry used MERT to estimate parameters for a linear
model on a training set of 1502 parallel sentences and 1000-best lists. The maximum pos-
sible number of index vectors is KS = 10001502. The upper bound in Theorem 6.15 reaches
this value at D = 492.

An argument might be made that this is an unreasonable calculation because we have
not taken into account the redundancy of feature vectors in the K-best lists. Let us then set
K=10 to model a 99% redundency in feature vectors. The maximum possible number of
index vectors is 101502 and this value is reached at D = 291. Both of these values of D are
well below what is used in the SMT systems with sparse features surveyed in Section 3.6.

Instead of varying D, we can keep it fixed to illustrate how the size of the training set
would need to increase to hit the upper bound in Theorem 6.15. Let us assume that feature
dimension is D = 1000 and the K-best list size is fixed at K = 1000 then we would need
the training set size to be S = 3164 for us to have enough vertices in the Minkowski sum to
hit the upper bound. If the feature dimension is increased to D = 2000 then the training set
would have to increase to S = 6540. In the CUED Russian-to-English entry to WMT’13 we
used a training set of S = 1502, and we note there were only 3003 sentences available in the
Russian-to-English track to cover both the training and test data.

These numbers show that due to high feature dimension and limited amounts of training
data the upper bound on feasible index vectors for an SMT system greatly exceeds the
number of possible index vectors. We believe that it is therefore plausible for every index
vector in an SMT system to be feasible.

6.3.3 Linear Models and the Upper Bound Theorems

We have described a set of upper bound theorems. We have then established that these upper
bounds could be hit in an SMT system with a relatively low feature dimension D. It is our
belief that this upper bound needs to be taken into account when estimating the parameters
of a linear model. We now discuss the implications of these upper bounds with respect to
MERT, large-margin methods, and ranking methods.

We note when we have a low feature dimension then due to Theorem 6.15 it is impossible
for all index vectors in a training set to be feasible. We believe that limiting the number of
feasible index vectors aids generalisation. This limit constrains the ability of the optimiser to
boost the model score of a hypothesis without affecting the model score of other hypotheses.
If the optimiser boosts the model score of one hypothesis in a K-best list, it may penalise
the model score of another hypothesis in a second K-best list.

130 Training Set Geometry

For example, the CUED Russian-to-English entry to WMT’13 uses 12 features which
means that a maximum of 150211100022 index vectors are feasible. Although this is a large
number, it is a minuscule fraction of the 10001502 total possible index vectors. The rest
of the possible index vectors are discarded, and we believe that all parameter estimation
methods for linear models benefit from this discarding mechanism.

Next we consider what happens as feature dimension increases. This discarding mech-
anism affects fewer hypotheses, until eventually the discarding mechanism ceases. At this
point, it will be possible for each index vector to be feasible. Let us assume we have some
oracle index vector î with the lowest possible error. If all index vectors are feasible, then it
follows that î is feasible.

It is possible to argue that ranking methods avoid this problem due to the large number of
additional constraints in (3.22). It is more difficult to satisfy all these additional constraints,
and thus the number of feasible solutions is limited. In response to this argument we note
that each constraint is associated with an edge, and by Theorem 6.16 it will become possible
to satisfy more of these constraints.

This feasibility of î raises two questions. Is it possible to find a parameter ŵ that yields
î? If so, then will ŵ generalise to a test set? Let us assume that the answer to first question
is yes, then we have to decide whether ŵ will generalise. One recent result that seems to
answer this question is that of Green et al. [71] where gains of over 13 BLEU points are
reported in the training set with the addition of many features, yet only 2 to 3 BLEU points
are found in the test set.

If overtraining is already happening, then the question as to whether we can find ŵ
seems irrelevant. The systems surveyed in Section 3.6 exhibit lower training set gains, but
test set gains found by adding sparse features tends to be more modest within the range of
1
2 to 1 BLEU points. Although we cannot categorically say that overtraining is inherit in
linear models with a large feature dimension the evidence, both theoretical and empirical in
the literature, does seem to suggest that this is not a fruitful avenue to pursue without good
means to ensure generalisation.

6.4 The Minkowski Sum with Projected MERT

By Theorem 6.15, MERT is impractical for a large D-dimensional SMT system, but it can
still be applied to problems of a lower dimension using projected MERT. In this section we
demonstrate that the Minkowski sum could be computable for low values of D.

We are fortunate that there is an open-source implementation of the Minkowski sum

6.4 The Minkowski Sum with Projected MERT 131

algorithm described in Section 6.2 [153]. Using the CUED Russian-to-English [125] entry
to WMT’13 [24] we build a tune set of 1502 sentences. The system uses 12 features which
we initially tune with lattice MERT [102] to get a parameter w(0). Using this parameter we
generate 1000-best lists. We then project the feature functions in the 1000-best lists to a
3-dimensional representation that includes the source-to-target phrase probability (UtoV),
the word insertion penalty (WIP), and the model score due to w(0). In our experimental
setup these two features are the 2nd and 4th features respectively, yielding the following
projection matrix

A3,12 =

 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0

w(0)
1 w(0)

2 w(0)
3 w(0)

4 w(0)
5 w(0)

6 w(0)
7 w(0)

8 w(0)
9 w(0)

10 w(0)
11 w(0)

12

We use the Minkowski sum algorithm to compute BLEU as a ∆ is applied to the param-

eters from w(0). By Theorem 6.15 the upper bound on the number of vertices when D = 3
is O(S2K4) = O(1502210004).

The implementation was executed was on a machine with 12 CPU cores for several
weeks and terminated it before completion. Because the final computation did not terminate
we only have partially enumerated the vertices of the Minkowski sum.

Figure 6.7 is the plot of the error surface as computed by the Minkowski sum algorithm.
It is the 3-dimensional equivalent to the 2-dimensional diagram in the lower part of Figure
3.1. Because we used a parallel implementation, the algorithm has enumerated distinct
search regions. Another point to note is because of the nature of the depth-first search, the
algorithm chooses to explore regions away from w(0).

Even with only a subset of the vertices, we can draw some conclusions. The two param-
eters seem to be closely correlated, in that increasing them both equally leaves the BLEU
score unchanged. Increasing one parameter at the expense of another results in a drop in
performance, and decreasing the UtoV parameter seems to be catastrophic.

Weibel [153] designed and built this algorithm as a general tool for mathematicians. In
its current form it is not suited for SMT, but it does show that the Minkowski sum could be
a computable quantity in lower dimensions with some changes to the implementation.

The first change would be to switch to some form of breadth-first search, at the ex-
pense of higher memory consumption. We could also compute the error as vertices are
enumerated, which could be used to guide the algorithm to enumerate regions of low er-
ror. The Minkowski sum algorithm is very suited to parallelisation over many machines
because very little communication and coordination is needed to enumerate the branches of

132 Training Set Geometry

-0.2

-0.1

0

0.1

0.2

-0.2 -0.1 0 0.1 0.2

W
IP

Pa
ra

m
et

er
∆

UtoV Parameter ∆

0.331 0.334 0.337

w(0)

Fig. 6.7 The BLEU score over a 1502 sentence tune set for the CUED Russian-to-English
system plotted over the change ∆ in two parameters from w(0). Due to the long runtime of
the algorithm only a subset of the vertices of the Minkowski sum were enumerated, with
enumerated vertices shown in the shaded regions.

6.5 Summary 133

the trace. We could also explore using the double-description or quick-hull algorithms in
the adjacency oracle or local search functions.

The directions chosen in this experiment were selected at random to illustrate the appli-
cation of the Minkowski sum algorithm. Another issue with projected MERT is that we do
not have a good method to select directions. There is no guarantee that the projected space
would contain parameters associated with low errors.

6.5 Summary

We now summarise the points made in this chapter. Section 6.1 describes the equivalence
of the common refinement and the normal fan of the Minkowski sum. We reiterate that our
method of computing the common refinement, based on the algorithm of Fukuda [59], is
more computationally efficient than the of method Galley and Quirk [62] which computes
the Minkowski sum. We believe the investment made in learning new terminology and
techniques is worthwhile because we can build the required normal fan in parameter space
directly. This normal fan is a much more useful representation of MERT because our final
goal is to identify parameter vectors that maximise a set of feature vectors.

Section 6.3.3 discusses the some of the fundamental problems involved for estimating
parameters for linear models. In summary, we believe that the combinatoric explosion in
the number of feasible index vectors due to a large feature dimension results in overtraining.
One possible to solution to this problem is to project the feature vectors to a lower dimension
and perform error-based training in this projected space.

Chapter 7

A Description of Lattice-based MERT
Using Tropical Geometry

7.1 Introduction

In Chapter 2 we described how, given a source sentence, we can generate a very large
number of hypotheses. Section 3.2 described MERT, a method for finding a parameter
vector that assigns the highest model score to the lowest error hypotheses from a set of K

hypotheses. Typically K = 1000, which means that MERT only considers a small number
of the billions of possible hypotheses.

Section 2.3.4 describes how hypotheses can be compactly encoded in a word lattice.
This lattice representation allows for a much larger representation of hypotheses space.
Macherey et al. [102] describe a method for performing MERT using the word lattice as
input. Because the word lattice contains many more hypotheses, a fewer number of itera-
tions are needed until convergence. This treatment was expanded to hypergraphs by Kumar
et al. [94].

It has been noted that the operations described by Macherey et al. [102] can be for-
mulated as a semiring for WFSTs and hypergraphs. The first reference was in the CDEC
system description [56] to a ‘MERT semiring’, although no formulation of this semiring
was given. Sokolov and Yvon [134] provided a formulation for a MERT semiring, based on
sets of lines and the SweepLine algorithm. Finally, Dyer [54] provide a description based
on ‘point-line duality’, which as noted in Section 5.3.2 is an instance of the well-known dual
representation of polytopes.

Our approach is to a MERT formalism for WFSTs is based on tropical geometry [135].
Essentially, tropical geometry is an algebra based around operations on polytopes and which

136 A Description of Lattice-based MERT Using Tropical Geometry

neatly ties together WFSTs with convex geometry. Our approach also immediately extends
to multiple dimensions because polynomials can be expressed in terms of many variables.
We published an early version of this work in Waite et al. [149], independently of Sokolov
and Yvon [134] and preceding Dyer [54]. In Section 7.6 we discuss the advantages of our
formulation relative to these others.

We first describe the method of Macherey et al. [102] for lattice MERT, and describe the
WFST shortest distance algorithm. The next section is a description of the tropical polyno-

mial [135], which forms the set of values in our semiring. Using an example we illustrate
how the tropical polynomial provides a concise and expressive description of MERT. We
conduct experiments to show that the tropical polynomial formalism yields identical results
to lattice MERT. Finally, we describe an extension of our work to lattice-based MERT over
multiple dimensions and then end with a discussion.

7.2 Lattice-based MERT

We now describe lattice-based MERT for statistical machine translation. The original de-
scription by Macherey et al. [102] was given as two operations preformed over a directed
acyclic graph and so we present it in this form. We then describe the WFST shortest distance
and how it can be used to model lattice-based MERT.

7.2.1 Lattice Line Optimisation

Recall from Section 3.2.1 that Och’s line optimisation for a source sentence f considers the
points in (RD)∗ along a line w(0)+ γd. The application of this line to a feature function
h(e, f) create a linear function ℓe. Also recall from Section 2.3.4 that a word lattice is a
weighted directed acyclic graph that encodes a very large set of hypotheses.

Macherey et al. [102] use methods from computational geometry to develop a procedure
for conducting line search directly over a word lattice. Each lattice edge is labelled with a
word e from a hypothesis e and has a weight defined by the vector of word specific feature
function values h(e, f) so that the weight of a path in the lattice is found by summing over
the word specific feature function values on that path. Given a line through parameter space,
the goal is to extract from a lattice its upper envelope and the associated hypotheses.

We summarise here the Macherey et al. [102] formulation. The procedure proceeds node
by node through the lattice. Suppose that for a lattice state q the upper envelope is known
for all the partial hypotheses on all paths leading to q. The upper envelope defines a set of

7.2 Lattice-based MERT 137

functions {ℓẽ1(γ), ..., ℓẽN (γ)} over the partial hypotheses ẽn. Two operations propagate the
upper envelope to other lattice nodes.

We refer to the first operation as the ‘extend’ operation. Consider a single edge from
state q to state q′. This edge defines a linear function associated with a single word ℓe(γ). A
path following this edge transforms all the partial hypotheses leading to q by concatenating
the word e. The upper envelope associated with the edge from q to q′ is changed by adding
ℓe(γ) to the set of linear functions. The intersection points are not changed by this operation.

The second operation is a union. Suppose q′ has another incoming edge from a state q′′

where q ̸= q′′. There are now two upper envelopes representing two sets of linear functions.
The first upper envelope is associated with the paths from the initial state to state q′ via the
state q. Similarly the second upper envelope is associated with paths from the initial state to
state q′ via the state q′′. The upper envelope that is associated with all paths from the initial
state to state q′ via both q and q′′ is the union of the two sets of linear functions. This union
is no longer a compact representation of the upper envelope as there may be functions which
never achieve a maximum for any value of γ . The SweepLine algorithm [19] is applied to
the union to discard redundant linear functions and their associated hypotheses [102].

The union and extend operations are applied to states in topological order until the final
state is reached. The upper envelope computed at the final state compactly encodes all the
hypotheses that maximise Eqn. (5.1) along the line.

7.2.2 Line Search using WFSTs

We now describe how the computation of the upper envelope of a lattice can be formulated
as a shortest distance problem in a weighted finite-state transducer (WFST). We use the
definition of a WFST used in Section 2.3.3. Recall that the weight of a path π is

w[π] =
K⊗

k=1

w[ek] = w[e1]⊗·· ·⊗w[eK] (7.1)

If P(q) denotes the set of all paths in T starting from an initial state in I and ending in
state q, then the shortest distance d[q] is defined as the generalised sum ⊕ of the weights of
all paths leading to q [108]:

d[q] =⊕π∈P(q)w[π] (7.2)

For some semirings, such as the tropical semiring, the shortest distance is the weight of
the shortest path. For other semirings, the shortest distance is associated with multiple paths
through a WFST [108]; for these semirings there are shortest distances but in general no

138 A Description of Lattice-based MERT Using Tropical Geometry

shortest paths. That will be the case in what follows.
The crux of the formulation of Sokolov and Yvon [134] is that the operations in Section

7.2.1 can be expressed as a semiring. The generalised times ⊗ is the extend operation,
and the generalised plus⊕ is the union operation. Under this semiring, the shortest distance
corresponds to the upper envelope. Note that this formulation does not describe how to keep
track of the partial hypotheses, and the hypotheses must be tracked or extracted outside of
the WFST formulation. We describe how to extract these hypotheses using a WFST in
Section 7.3.5.

7.3 Tropical Geometry

Tropical geometry [135] is a relatively new branch of algebraic geometry [44] concerned
with algebraic representations of piecewise linear functions. It has been used for machine
learning and bioinformatics [115, 116]. The Bank of England has also applied tropical
geometry for modelling auctions during the recent financial crises [86].

We first describe tropical polynomials [135] and demonstrate that they form a suitable
semiring for the line optimisation problem. We then describe how to compute the upper
envelope over translation lattices by mapping edge weights to tropical polynomials and
computing shortest distances under the tropical polynomial semiring. We pull these results
together into an algorithm we call tropical geometry MERT (TGMERT). Finally we work
through an example of TGMERT.

7.3.1 Tropical Polynomials

A polynomial is a linear combination of a finite number of non-zero monomials. A mono-
mial consists of a real valued coefficient multiplied by a variable, and this variable may have
an exponent that is a non-negative integer. A polynomial function is defined by evaluating
a polynomial:

f (γ) = anγ
n +an−1γ

n−1 + · · ·+a2γ
2 +a1γ +a0

A useful property of polynomials is that they form a ring1 [44] and therefore are candidates
for use as weights in WFSTs.

Speyer and Sturmfels [135] apply the definition of a classical polynomial to the formu-
lation of a tropical polynomial. The tropical semiring uses summation for the generalised
product ⊗ and a min operation for the generalised sum ⊕. In this form, let γ be a variable

1A ring is a semiring that includes negation.

7.3 Tropical Geometry 139

that represents an element in the tropical semiring weight set K∪{−∞,+∞}. We can write
a monomial of γ raised to an integer exponent as

γ
i = γ⊗·· ·⊗ γ︸ ︷︷ ︸

i

,

where i is a non-negative integer and ⊗ is classical addition. The monomial can also have
a constant coefficient: a⊗ γ i, a ∈ R. We can define a function that evaluates a tropical
monomial for a particular value of γ . For example, the tropical monomial a⊗γ i is evaluated
as:

f (γ) = a⊗ γ
i = a+ iγ

This shows that a tropical monomial is a linear function with the coefficient a as its y-
intercept and the integer exponent i as its gradient. A tropical polynomial is the generalised
sum of tropical monomials where the generalised sum is evaluated using the min operation.
For example:

f (γ) = (a⊗ γ
i)⊕ (b⊗ γ

j) = min(a+ iγ,b+ jγ)

Evaluating tropical polynomials in classical arithmetic gives the minimum of a finite collec-
tion of linear functions.

Tropical polynomials can also be multiplied by a monomial to form another tropical
polynomial. For example:

f (γ) = [(a⊗ γ
i)⊕ (b⊗ γ

j)]⊗ (c⊗ γ
k)

= [(a+ c)⊗ γ
i+k]⊕ [(b+ c)⊗ γ

j+k]

= min((a+ c)+(i+ k)γ,(b+ c)+(j+ k)γ)

The product of two tropical polynomials is a Minkowski sum, as defined in Section 6.1.
Suppose A, B, C, and D are tropical monomials in γ , so that A = a⊗ γ i and the equivalent
linear function of A is ℓA = a+ iγ . An example of a product of two tropical polynomials is:

f (γ) = (A⊕B)⊗ (C⊕D)

= (A⊗C)⊕ (A⊗D)⊕ (B⊗C)⊕ (B⊗D)

= min(ℓA + ℓB, ℓA + ℓD, ℓB + ℓC, ℓB + ℓD)

The tropical semiring is distributive over the generalised product. Evaluating the product of
two tropical polynomials in classical arithmetic gives the minimum of the Minkowski sum

140 A Description of Lattice-based MERT Using Tropical Geometry

γ

f (γ)

0

a⊗ γ i

(a⊗ γ i)⊕ (b⊗ γ j)⊕ (c⊗ γk)

b⊗ γ j
c⊗ γk

Fig. 7.1 Redundant terms in a tropical polynomial and their associated lines. In this case
(a⊗ γ i)⊕ (b⊗ γ j)⊕ (c⊗ γk) = (a⊗ γ i)⊕ (c⊗ γk).

of two sets of linear functions [135].

A tropical polynomial in one variable represents a continuous piecewise linear function
R→ R with a finite number of segments [135]. The function f (γ) defines the lower enve-
lope. If we change Eqn. (3.11) to use an argmin instead of an argmax and negate the feature
functions we can now see a parallel between the upper envelope and a tropical polynomial.
Inverting the upper envelope in this fashion does not change the values of γ at which the
intersection points occur.

7.3.2 Canonical Form of a Tropical Polynomial

We noted in Section 3.2.1 that linear functions induced by some hypotheses do not con-
tribute to the upper envelope and can be discarded. Terms in a tropical polynomial can have
similar behaviour. Figure 7.1 plots the lines associated with the three terms of the example
polynomial function f (γ) = (a⊗γ i)⊕ (b⊗γ j)⊕ (c⊗γk). We note that the piecewise linear
function can also be described with the polynomial f (γ) = (a⊗ γ i)⊕ (c⊗ γk). The latter
representation is simpler but equivalent.

Having multiple representations of the same polynomial causes problems when imple-
menting the shortest distance algorithm defined by Mohri [108]. This algorithm performs an
equality test between values in the semiring used to weight the WFST. The behaviour of the
equality test is ambiguous when there are multiple polynomial representations of the same
piecewise linear function. We therefore require a canonical form of a tropical polynomial
so that a single polynomial represents a single function. We define the canonical form of
a tropical polynomial to be the tropical polynomial that contains only the monomial terms
necessary to describe the piecewise linear function it represents.

7.3 Tropical Geometry 141

We remove redundant terms from a tropical polynomial after computing the generalised
sum. Each term corresponds to a linear function; linear functions that do not contribute
to the upper envelope are discarded. Only monomials which correspond to the remaining
linear functions are kept in the canonical form. The canonical form of a tropical polynomial
thus corresponds to a unique and minimal representation of the upper envelope.

7.3.3 Integer Approximations for Tropical Monomials

In Section 7.3.1 we noted that the function defined by the upper envelope in Eqn. (3.11) is
similar to the function represented by a tropical polynomial. A significant difference is that
the formal definition of a polynomial only allows integer exponents, whereas the gradients
in Eqn. (3.11) are real numbers. The upper envelope can therefore encode a larger set of
model parameters than can the tropical polynomial.

To create an equivalence between the upper envelope and tropical polynomials we can
approximate the linear functions {ℓe(γ)= a(e, fs)+γ ·b(e, fs)} that compose segments of the
upper envelope. We define ã(e, fs) = [a(e, fs) · 10n]int and b̃(e, fs) = [b(e, fs) · 10n]int where
[x]int denotes the integer part of x. The approximation to ℓe(γ) is:

ℓe(γ)≈ ℓ̃e(γ) =
ã(e, fs)

10n + γ · b̃(e, fs)

10n (7.3)

=
[a(e, fs) ·10n]int

10n + γ · [b(e, fs) ·10n]int

10n

The result of this operation is to approximate the y-intercept and gradient of ℓe(γ) to n

decimal places. We can now represent the linear function ℓ̃e(γ) as the tropical monomial
−ã(e, fs)⊗ γ−b̃(e,fs). Note that ã(e, fs) and b̃(e, fs) are negated since tropical polynomials
define the lower envelope as opposed to the upper envelope defined by Eqn. (3.11).

The linear function represented by the tropical monomial is a scaled version of ℓe(γ),
but the upper envelope is unchanged (to the accuracy allowed by n). If for a particular value
of γ , ℓei(γ)> ℓe j(γ), then ℓ̃ei(γ)> ℓ̃e j(γ). Similarly, the boundary points are unchanged: if
ℓei(γ) = ℓe j(γ), then ℓ̃ei(γ) = ℓ̃e j(γ).

Using a scaled version of ℓe(γ) as the basis for a tropical monomial may cause negative
exponents to be created. Following Speyer and Sturmfels [135], we widen the definition of
a tropical polynomial to allow for these negative exponents.

142 A Description of Lattice-based MERT Using Tropical Geometry

7.3.4 Computing the Upper Envelope using the Shortest Distance Al-
gorithm

In lattice line optimisation a word specific linear function ℓe(γ) is associated with each edge.
Each path from an initial state in I to a state q ∈ Q corresponds to a partial translation hy-
pothesis so that the path weight can be interpreted as a linear function where the y-intercept
and gradient are the arithmetic sum of the word specific linear functions. The upper enve-
lope at state q is the maximum of the lines associated with the paths from the initial state to
q.

Analogously, we create tropical monomials to represent the word specific linear func-
tions ℓe(γ) using the integer approximation described in Section 7.3.3. We transform the
word lattice so that each edge weight is a tropical monomial. The weight of each path from
the initial state to a state q is defined as the generalised product ⊗ of the word specific
monomials; this path weight is itself a monomial. The shortest distance d[q] from the initial
state to state q is the generalised sum ⊕ of the weights of paths to q defined by Eqn. (7.2),
which forms a canonical tropical polynomial. This tropical polynomial is equivalent to the
upper envelope at state q. The upper envelope of the full lattice is given by the generalised
sum ⊕ of tropical polynomials in the lattice final states F .

This suggests an alternate explanation for what the shortest distance computed using
the tropical polynomial semiring represents. Conceptually, there is a continuum of lattices
which have identical edges and vertices but with varying, real-valued edge weights deter-
mined by values of γ ∈R, so that each lattice in the continuum is indexed by γ . The tropical
polynomial computed by the shortest distance algorithm agrees with the shortest distance
through each lattice in the continuum.

A Note on Hypergraphs

We do not discuss the application of the tropical polynomial semiring to hypergraphs. How-
ever, one interesting aspect of the hypergraph application is that the operands of the gener-
alised times⊗might be full polynomials, i.e. contain more than one monomial term. In this
case, the generalised times takes the form of a Minkowski sum. It has been noted elsewhere
that the generalised times for the other MERT semiring formulations is also a Minkowski
sum [54, 94]. This is the other use of the Minkowski sum for MERT that was alluded to in
Section 6.3.

We only mention this aspect of MERT for hypergraphs because of the upper bound theo-
rems described in Section 6.3. The implication being that the number of feasible derivations

7.3 Tropical Geometry 143

after a generalised times increase exponentially with dimension. Consequently, given a high
feature dimensionality the number of feasible hypotheses encoded in the hypergraph could
be very large. This effect is not seen in a lattice because edges can only be weighted with
monomial terms.

7.3.5 Extracting the Error Surface

Tropical monomial weights can be transformed into regular tropical weights by evaluating
the tropical monomial for a specific value of γ . For example, a tropical polynomial evaluated
at γ = 1 corresponds to the tropical weight:

f (1) =−ã(e, fs)⊗1−b̃(e,fs) =−ã(e, fs)− b̃(e, fs)

Each monomial term in the tropical polynomial shortest distance represents a linear
function. The intersection points of these linear functions define intervals of γ (as in figures
3.1 and 7.1). To compute the error surface we need to find the lowest cost hypothesis for
each interval. Let us assume we have n+1 intervals separated by n interval boundaries. We
use the midpoint at of each interval to transform the lattice of tropical monomial weights
into a lattice of tropical weights. The sequence of words that label the shortest path through
the transformed lattice is the lowest cost hypothesis for the interval. The shortest path
can be extracted using the WFST shortest path algorithm [111]. As a technical matter,
the midpoints of the first interval [−∞,γ1) and last interval [γn,∞) are not defined. We
therefore evaluate the tropical polynomial at γ = γ1− 1 and γ = γn + 1 to find the lowest
cost hypothesis in the first and last intervals, respectively.

7.3.6 The Tropical Geometry MERT Algorithm

We now describe an alternative algorithm to Lattice MERT that is formulated using the
tropical polynomial shortest distance. As input to this procedure we use a word lattice
weighted with word specific feature functions h(e, f), a starting point w(0), and a direction
d in parameter space.

1. Convert the word specific feature functions h(e, f) to a linear function ℓe(γ) using w(0)

and d, as in Eqn. (3.10).

2. Convert ℓe(γ) to ℓ̃e(γ) by approximating y-intercepts and gradients to n decimal
places, as in Eqn. (7.3).

144 A Description of Lattice-based MERT Using Tropical Geometry

3. Convert ℓ̃e(γ) in Eqn. (7.3) to the tropical monomial −ã(e, fs)⊗ γ−b̃(e,fs).

4. Compute the WFST shortest distance to the exit states [108] with generalised sum ⊕
and generalised product⊗ defined by the tropical polynomial semiring. The resulting
tropical polynomial represents the upper envelope of the lattice.

5. Compute the intersection points of the linear functions corresponding to the monomial
terms of the tropical polynomial shortest distance. These intersection points define
intervals of γ in which the lowest cost hypothesis does not change.

6. Using the midpoint of each interval convert the tropical monomial−ã(e, fs)⊗γ−b̃(e,fs)

to a regular tropical weight. Find the lowest cost hypothesis for this interval by ex-
tracting the shortest path using the WFST shortest path algorithm [111].

TGMERT is implemented using the OpenFst Toolkit [2]. A weight class is added for
tropical polynomials which maintains them in canonical form. The ⊗ and ⊕ operations are
implemented for piecewise linear functions, with the SweepLine algorithm used to remove
redundant monomials.

7.3.7 TGMERT Worked Example

This section presents a worked example showing how we can use the TGMERT algorithm
to compute the upper envelope of a lattice. We start with a three state lattice with a two
dimensional feature vector shown in the upper part of Figure 7.2.

We want to optimize the parameters along a line in two-dimensional feature space. Sup-
pose the initial parameters are λ 2

1 = [0.7,0.4] and the direction is d2
1 = [0.3,0.5]. Step 1

of the TGMERT algorithm (Section 7.3.6) maps each edge weight to a word specific lin-
ear function. For example, the weight of the edge labelled “x” between states 0 and 1 is
transformed as follows:

ℓe(γ) =
2

∑
m=1

λmhM
1 (e, f)︸ ︷︷ ︸

a(e,f)

+γ

2

∑
m=1

dmhM
1 (e,fs)︸ ︷︷ ︸

b(e,f)

= 0.7 ·−1.4+0.4 ·0.3︸ ︷︷ ︸
a(e,f)

+γ ·0.3 ·−1.4+0.5 ·0.3︸ ︷︷ ︸
b(e,f)

=−0.86−0.27γ

7.3 Tropical Geometry 145

0 1 2

z/[−0.2,0.7]′

x/[−1.4,0.3]′

y/[−0.9,−0.8]′

z/[−0.2,−0.6]′

0 1 2

z/−14⊗ γ−29

x/86⊗ γ27

y/95⊗ γ67

z/38⊗ γ36

Fig. 7.2 The upper part is a translation lattice with 2-dimensional log feature vector weights
hM

1 (e, f) where M = 2. The lower part is the lattice from the upper part with weights trans-
formed into tropical monomials.

Step 2 of the TGMERT algorithm converts the word specific linear functions into tropi-
cal monomial weights. Since all y-intercepts and gradients have a precision of two decimal
places, we scale the linear functions ℓe(γ) by 102 and negate them to create tropical mono-
mials (Step 3). The edge labelled “x” now has the monomial weight of 86⊗ γ27. The
transformed lattice with weights mapped to the tropical polynomial semiring is shown in
the lower part of Figure 7.2.

We can now compute the shortest distance [108] from the transformed example lattice
with tropical monomial weights. There are three unique paths through the lattice corre-
sponding to three distinct hypotheses. The weights associated with these hypotheses are:

−14⊗ γ
−29⊗38⊗ γ

36 = 24⊗ γ
7 z z

86⊗ γ
27⊗38⊗ γ

36 = 122⊗ γ
63 x z

95⊗ γ
67⊗38⊗ γ

36 = 133⊗ γ
103 y z

The shortest distance from initial to final state is the generalised sum of the path weights:
(24⊗ γ7)⊕ (133⊗ γ103). The monomial term 122⊗ γ63 corresponding to “x z” can be
dropped because it is not part of the canonical form of the polynomial (Section 7.3.2). The
shortest distance to the exit state can be represented as the minimum of two linear functions:
min(24+7γ,133+103γ).

We now wish to find the hypotheses that define the error surface by performing Steps 5
and 6 of the TGMERT algorithm. These two linear functions define two intervals of γ . The

146 A Description of Lattice-based MERT Using Tropical Geometry

0 1 2

z/-2.4

x/75.2

y/68.2

z/23.6

0 1 2

z/55.6

x/21.2

y/-65.8

z/-48.4

Fig. 7.3 The lattice in the lower part of Figure 7.2 transformed to regular tropical weights:
γ =−0.4 (top) and γ =−1.4 (bottom).

linear functions intersect at γ ≈−1.4; at this value of γ the lowest cost hypothesis changes.
Two lattices with regular tropical weights are created using γ =−0.4 and γ =−2.4. These
are shown in Figure 7.3. For the lattice shown in the upper part the value for the edge
labelled “x” is computed as 86⊗−0.427 = 86+0.4 ·27 = 75.2.

When γ = −0.4 the lattice in the upper part in Figure 7.3 shows that the shortest path
is associated with the hypothesis “z z”, which is the lowest cost hypothesis for the range
γ < 1.4. The lattice in the lower part of Figure 7.3 shows that when γ = −2.4 the shortest
path is associated with the hypothesis “y z”, which is the lowest cost hypothesis when
γ > 1.4.

7.3.8 Tropical Polynomial Edge Pruning Algorithm

An inefficiency of Step 6 in the TGMERT algorithm (Section 7.3.6) is the repeated use
of the shortest path algorithm on lattices with regular tropical weights to extract lowest
cost hypotheses. There are many paths in these lattices that do not correspond to a lowest
cost hypothesis for any value of γ . We describe a prune algorithm that deletes edges from
the tropical monomial weighted lattice that do not belong to a shortest path of any of the
associated regular tropical weighted lattices. This algorithm is applied to reduce the size of
the tropical monomial lattice produced by TGMERT.

If R(q) denotes the set of all paths from state q to a final state in F , then the reverse
distance d′[q] is defined as the generalised sum ⊕ of the weights of the paths in R(q):
d′[q] = ⊕π∈R(q)w[π]. At state q, the edge ei ∈ E[q] can be deleted if its weight does not
contribute to the tropical polynomial shortest distance. The edge ei does not contribute and

7.4 Experiments 147

Arabic-to-English
MERT LMERT TGMERT

Tune Test Tune Test Tune Test

1
36.2 36.2 36.2
42.1 40.9 44.5 40.3 44.5 37.7

2
42.0 41.4 38.7
45.1 43.2 45.7 44.2 45.7 44.0

3
44.5 45.8 45.7
45.5 44.1 45.8 44.2 45.8 44.2

4
45.6
45.7 44.0

Chinese-to-English
MERT LMERT TGMERT

Tune Test Tune Test Tune Test

1
19.5 19.5 19.6
25.3 16.7 29.3 21.4 29.3 21.4

2
16.4 21.2 21.2
18.9 23.9 30.1 31.2 30.1 31.3

3
23.6 30.9 30.9
28.2 29.1 32.3 32.2 32.3 32.4

4
29.2 32.3 32.4
31.3 31.5 32.3 32.2 32.4 32.4

5
31.3
31.8 32.1

6
32.1
32.4 32.3

7
32.4
32.4 32.3

Table 7.1 GALE AR→EN and ZH→EN BLEU scores by MERT iteration. BLEU scores at
the initial and final points of each iteration are shown for the Tune sets.

can therefore be deleted if the following equality is satisfied:

⊕
{e j∈E[q]:e j ̸=ei}

(w[e j]⊗d′[n[e j]]) = d′[q] (7.4)

7.4 Experiments

We compare feature weight optimization using K-best MERT [113], lattice MERT [102],
and tropical geometry MERT. We refer to these as MERT, LMERT, and TGMERT, resp.

We investigate MERT performance in the context of the Arabic-to-English GALE P4

148 A Description of Lattice-based MERT Using Tropical Geometry

and Chinese-to-English GALE P3 evaluations2. For Arabic-to-English translation, word
alignments are generated over around 9M sentences of GALE P4 parallel text. Following
de Gispert et al. [48], word alignments for Chinese-to-English translation are trained from
a subset of 2M sentences of GALE P3 parallel text. Hierarchical rules are extracted from
alignments using the constraints described in [36] with additional count and pattern filters
[80]. We use a hierarchical phrase-based decoder [81] that supports direct generation of
word lattices that encode large numbers of alternative hypotheses. For K-best MERT opti-
misation, we extract the top 1000-best hypotheses.

MERT optimizes the weights of the following 13 features: target language model,
source-to-target and target-to-source translation models, word and rule penalties, number
of usages of the glue rule, word deletion scale factor, source-to-target and target-to-source
lexical models, and three count-based features that track the frequency of rules in the par-
allel data [16]. In both Arabic-to-English and Chinese-to-English experiments all MERT
implementations start from a flat feature weight initialization. At each iteration new lattices
and K-best lists are generated from the best parameters at the previous iteration, and each
subsequent iteration includes 100 hypotheses from the previous iteration. For Arabic-to-
English we consider an additional twenty random starting parameters at every iteration. All
translation scores are reported for the IBM implementation of BLEU using case-insensitive
matching. We report BLEU scores for the Tune set at the start and end of each iteration.

The results for Arabic-to-English and Chinese-to-English are shown in Table 7.1. Both
TGMERT and LMERT converge to a comparable performance level in fewer iterations than
MERT, consistent with previous reports [102]. The differences observed between LMERT
and TGMERT are mainly due to the accumulation of numerical differences.

7.4.1 Effect of Tropical Polynomial Pruning

We now investigate the number of edges that can be removed from a lattice using a tropical
polynomial prune (Section 7.3.8). Using lattices generated at the start of iteration 2 for the
Chinese-to-English experiments we perform line searches over each coordinate axis. Before
each line search we prune the lattice, recording the number of edges in the lattice before and
after pruning. Figure 7.4 shows the effect of pruning on two features. We observe that the
number of pruned edges differs substantially, suggesting varying diversity of lowest cost
hypotheses as a function of the two different features.

2See http://projects.ldc.upenn.edu/gale/data/catalog.html

7.4 Experiments 149

Fig. 7.4 The proportion of edges pruned from each lattice on a sentence-by-sentence basis.

150 A Description of Lattice-based MERT Using Tropical Geometry

7.5 Multi-direction Lattice-based MERT

Section 5.4 describes a version of MERT for multiple directions over K-best lists called pro-
jected MERT. This algorithm is presented with respect to the affine projection of a polytope.
As tropical geometry is an algebra over polytopes, we can extend the formalism to represent
projected polytopes for lattices.

In the description of TGMERT we used tropical polynomials expressed in terms of a
single variable γ , which represents a piecewise linear function and an associated set of
intervals along a line. Following the steps of the algorithm described in Section 7.3.6 it is
possible to define a tropical polynomial in two variables where each monomial takes the
form a⊗ γ i

1⊗ γ
j

2 . These monomial terms can be used to represent the projected polytope
resultant from applying the projection matrix A3,D as described in Section 5.4.2.

Richter-Gebert et al. [129] describe tropical polynomials in multiple variables and an
algorithm called the tropical curve drawing algorithm. The result of this algorithm is a set
of values of γ1,γ2 where two or more monomial terms have the same cost. This set is called
the tropical hypersurface H .

The hypersurface is derived from the normal fan for a projected polytope, which was
described in Section 5.4.2. In this section we present a brief description of the tropical
curve drawing with respect to a projected polytope. The motivation for this presentation is
to show that tropical polynomials have a multiple variable formulation, rather than for any
deep insight into tropical hypersurfaces. We refer the reader to Speyer and Sturmfels [135]
and Richter-Gebert et al. [129] for detailed descriptions with examples of polynomials and
their associated hypersurfaces.

The tropical curve drawing algorithm is as follows

1. Transform each monomial term a⊗ γ i
1⊗ γ

j
2 into a point (i, j,a) in R3.

2. Compute the convex hull of these points.

3. Project the lower envelope of the convex hull onto the plane R3 7→R2 by deleting the
last coordinate such that (i, j,a) 7→ (i, j). The result is a graph embedded in the plane
formed from the vertices and edges of the convex hull.

4. Compute the dual graph, this is the tropical hypersurface H .

This algorithm seems a little mysterious at first, but let us work through each item in turn
to show the connection to a projected polytope. The first step converts a tropical polynomial

7.6 Discussion 151

to set of points that correspond to the projected feature vectors in Eqn. (5.23). The second
item computes the set of faces for the polytope of the feature vectors.

The reason we only require the lower envelope in item 3 is due to the constraints in
(5.30). We only require parameter vectors that have a negative final component - note the
switch in sign because of the tropical representation - to describe the lower envelope. Recall
from Section 5.3.2 that the normal cones can be defined with respect to the facet normals.
Therefore we only need the facets that form the lower envelope, because they are the facets
that have normals with a negative third component. The resultant primary graph exists in
R2. Note that the primary graph yields the tropical polynomial representation of the shortest
distance. Each vertex in the primary graph corresponds a monomial term in the tropical
polynomial.

Recall from Lemma 5.7 that the normal cone of the edge is orthogonal to the edge. To
represent the decision boundary between two hypotheses on the plane, we can draw a line
normal to the edge. The set of these orthogonal lines form the dual graph in (R2)∗ and yield
the hypersurface. Hence item 4.

Each line in the hypersurface corresponds to a decision boundary, where two hypothe-
ses have equal low costs. These decision boundaries are associated with the the essential
constraints in (5.27). Thus, the hypersurface can be characterised as the intersection of the
decision boundaries for all normal cones in (R3)∗ and the plane at w̃3 = 1.

The resultant hypersurface corresponds to the lattice for a single input sentence. To
perform MERT we need to compute a Minkowski sum of the projected feature vectors, as
represented by the tropical polynomial shortest distances, for the entire training set. We can
use the information in the primary graph in step 3 to identify the vertices and adjacencies
necessary for the Minkowski sum algorithm of [59] as described in Section 6.2.

We can then compute the error surface from the resulting Minkowski sum, allowing
us to perform MERT. This relates the presentation in this chapter to the projected MERT
algorithm described in Algorithm 5.1 and the description of the Minkowski sum in Chapter
6.

7.6 Discussion

We have described a lattice-based line search algorithm which can be incorporated into
MERT for parameter tuning of SMT systems and systems based on linear models. The
approach recasts the problem in terms of tropical geometry, and once the problem is formu-
lated, implementation is relatively straightforward using available WFST algorithms.

152 A Description of Lattice-based MERT Using Tropical Geometry

As noted in the introduction, there are other formulations of the MERT semiring. We
believe our formulation to have many advantages over these other formulations. The first,
and main advantage, is that it ties SMT research with existing research from algebraic and
tropical geometry. We note that due to the work of researchers in tropical geometry, only
the tropical polynomial formulation allows for search over multiple dimensions.

Another advantage is that the formulation makes the links between the existing tropical
and MERT semirings somewhat obvious. For example, in Section 7.3.5 we were able to
represent a WFST with tropical polynomial weights as a continuum of WFSTs with tropical
weights.

We also note how concise the notation is, a tropical polynomial can be written and
manipulated much like a classical polynomial. The other formulations require expressions
of the shortest distance in terms of geometric objects, which results in difficult and clumsy
notation.

One criticism of our formulation is that the geometric representations of semirings are
somehow more ‘intuitive’ than the algebraic notation. To answer this criticism we note
that the whole field of algebraic geometry is dedicated to finding common characteristics
of algebra and geometry. Some problems which appear hard and obtuse in one domain can
suddenly become simple and clear in the other. For example, it is not immediately obvious
that the generalised times operation for a hypergraph should result in a Minkowski sum, but
the multiplication of two polynomials immediately gives the desired quantity.

Chapter 8

Conclusion

Our goal throughout this thesis has been to take a fresh perspective on a familiar topic.
From the review in Chapter 3 we can see that linear models are widely used in the statistical
machine translation community. Yet despite their prevalence and their simplicity, we can
still find many new interesting theorems and algorithms.

We now discuss the various results and ideas developed in this thesis. First we review the
original contributions, the next section describes the publications and presentations resulting
from the research, and finally we discuss extensions and future work.

8.1 Review of Work

This thesis developed a geometric formalism of minimum error rate training. Using this
formalism, we were able to able to describe new algorithms, and investigate the properties
of these algorithms. Finally, through the lens of this geometric formalism we were able to
make important deductions about linear models in high dimensional spaces.

In contrast to the very theoretical nature of the work on linear models, we also presented
a set of practical tips, tricks, and design heuristics for building an efficient and fast system
that has strong performance in evaluations.

Much of our work is spent considering the benefits and disadvantages of formalism. In
our work in linear models we believe that a rich formalism is needed to understand their
properties. However, with MapReduce we argued that is important not to be a slave to a
formalism that is not rich enough to capture the intricacies of the task at hand. Ultimately
we believe that we should always start by understanding problems, and that solutions should
be justified with respect to solving these problems.

154 Conclusion

8.1.1 Fast Model Parameter Estimation and Filtering

Chapter 4 separates model building into two separate tasks: estimation and filtering. We
find that the HFile provides a solution that is ‘good enough’ for most parameter filtering
tasks for SMT systems. We would recommend that when building new systems researchers
consider a simple HFile based system and only reject HFiles if they do not meet specific
requirements. For example in real time translation, where the whole filtering and decoding
pipeline should execute in the space of a few seconds, the HFile may not be fast enough.

For parameter estimation we would still recommend using a MapReduce based solution,
but with a caveat. That caveat is that not all problems fit neatly into the MapReduce for-
malism, and care should be taken that extra steps or inefficiencies are not being put into the
system just to conform to this formalism. The key is to have a good understanding of the
underlying model and the framework to craft a fast and efficient solution.

8.1.2 A Convex Geometric Description of MERT

In Section 3.6 we observed that the forms of linear models such as MERT, Structured SVMs,
MIRA, and Pro yield similar levels of performance. Motivated by this survey, and the
difficulty in achieving performance gains, we studied linear models under lens of the convex
geometric description of MERT.

Using convex geometry we built a novel formalism of MERT. We described a geomet-
ric object called the normal fan, which provides a mapping of regions of parameter space
to maximal feature vectors. Using the normal fan we were able to provide new insights
into single sentence MERT, such as representing Och’s line optimisation as a projection
operation.

We were able to formalise multi-sentence MERT as the Minkowski sum of many poly-
topes and show that the vertices of the Minkowski sum can be enumerated in polynomial
time. Using the upper bound theorem we found that the exponential explosion of vertices
of the Minkowski sum is due to feature dimension, and not the number of sentences in the
training set.

8.1.3 Projected MERT

Due to the exponential relationship between vertices in the Minkowski sum and feature di-
mension we should consider methods that reduce the feature dimension during optimisation.
One method is Och’s line optimisation, where we reduce the feature dimension to a two di-

8.2 Future Work 155

mensional projected space. We extended this approach so that we can project to an arbitrary
number of dimensions.

We have found that we can use an existing implementation of the Minkowski sum algo-
rithm to computer the error surface in two dimensions. In its current state, this implemen-
tation is too slow for practical use. It does demonstrate that the algorithm is tractable and,
with engineering effort, we could create a usable implementation.

8.1.4 Tropical Geometry MERT

We found that tropical geometry can be used to form a semiring for WFST operations. The
tropical polynomial semiring can be used with the shortest distance algorithm to compute
the upper envelope for MERT. We also saw that the tropical polynomial can be readily
extended to many dimensions.

8.2 Future Work

We divide our discussion of future work in two. First, we discuss further improvements that
can be made to model parameter estimation and filtering. Then we discuss the direction of
research suggested by convex geometry.

For parameter estimation, we have seen that the MapReduce programming model strug-
gles to represent many of the estimation techniques used in SMT. Ideally we want a frame-
work that can abstract much of the engineering work through a rich programming model,
allowing us to focus on the task of estimating parameters. We should investigate frame-
works with richer programming models and believe that the Spark framework would be
a good first step. It would be interesting to test whether this framework would allow the
easy implementation of word alignment models, which require expectation-maximisation
statistics to be shared between nodes, or lexical feature computation.

For model parameter filtering, we found the HFile to be a versatile and efficient method
of storing model parameters. However, because industry continues to move quickly, we
should continue to investigate new developments. For example, in Section 4.3 the moti-
vation for using an HFile was that maintaining a dedicated HBase cluster was beyond the
resources of most researchers. Recently industry has introduced cloud key-value stores
based on either HBase [3, 106], or BigTable [69]. These key-value stores are constantly
online and fully maintained, potentially making parameter filtering even easier.

We now move to a discussion of convex geometry. The scientific cliché found often in a

156 Conclusion

conclusion section is that more research is needed. Our analysis of linear models suggests
the opposite, we believe that linear models have reached the limit of their effectiveness.
Because the hypothesis space used for estimating linear model parameters is already so
huge, it is unlikely that expanding it would result in a performance increase. The only other
avenue for an improvement is to increase feature dimension, which as we have seen has
many problems.

If linear models suffer from such severe limitations, then it is strange that they are so
widely used in SMT. To understand their prevalence, we need to frame the discussion within
the context of finite-state methods. We note that both hierarchical phrase-based models and
language models have finite-state representations: the hypergraph and the WFSA. These
representations are possible due to the independence constraints in the models, which means
that the resulting log-probabilities are part of the tropical semiring. These finite-state meth-
ods allows for very large hypothesis spaces to be considered, which contribute greatly to
strong modern systems. We note that MERT can be represented as a tropical polynomial
semiring, which is generalisation of the tropical semiring. This suggests that linear mod-
els are popular because they can either be represented by finite-state methods or be easily
converted to a finite-state representation by the means of an inner product.

The natural reaction to our work is to ask: what could replace linear models? One
option would be to pursue a non-linear representation such as a neural network or a random
decision forrest. We must be careful when selecting our non-linear representation. For
example, we could use the kernel trick to introduce non-linearities into a support vector
machine. However, these kernels result in an increase in feature dimension. The result is
that more feature vectors are feasible.

Unfortunately, due to the restrictions enforced by the use of finite-state methods non-
linear models, such as neural networks, are difficult to apply. One way forward may be to
accept the limitations of linear models and include these non-linear models as features. For
example, Devlin et al. [52] found impressive BLEU gains by using a neural network as a
joint language model, which then formed a feature in an expected BLEU based system.

One issue blocking the adoption of projected MERT is that we have not solved the un-
derlying issue with MERT. Namely, the problem of picking directions. We have recast the
problem from picking directions to picking projections, which may allow for new solutions.
For example, a dimensionality reduction scheme such as PCA could be used to select inter-
esting affine subspaces.

Another avenue would be to consider many parameters when decoding. We note that
given a parameter w(0) and a set of directions, projected MERT can compute an error surface

8.2 Future Work 157

for a projected parameter space. We should be able to refer to the entire error surface when
decoding, as opposed to relying on a single parameter vector. Polytopes could be generated
for test sentences, and their projected normal fans could be intersected with the error surface
to find normal cones that contain consistently low errors. We admit that this method is
highly speculative and would require the investment in building a good Minkowski sum
implementation, but it should be tractable.

References

[1] Allauzen, C., Mohri, M., and Roark, B. (2003). Generalized algorithms for constructing
statistical language models. In Proceedings of the 41st Annual Meeting of the Association
for Computational Linguistics, pages 40–47, Sapporo, Japan. Association for Computa-
tional Linguistics.

[2] Allauzen, C., Riley, M., Schalkwyk, J., Skut, W., and Mohri, M. (2007). Openfst:
A general and efficient weighted finite-state transducer library. In Implementation and
Application of Automata, pages 11–23. Springer.

[3] Amazon.com, Inc. (2014). Store data with HBase - Amazon elastic mapreduce.
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/
emr-hbase.html.

[4] Apache Software Foundation (2014a). Apache Hadoop 2.4.1 - YARN.
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/
YARN.html.

[5] Apache Software Foundation (2014b). The Apache HBase reference guide.
http://hbase.apache.org/book/book.html.

[6] Apache Software Foundation (2014c). Welcome to Apache Hadoop.
http://hadoop.apache.org.

[7] Armstrong, J. L. and Virdin, S. R. (1990). Erlang - an experimental telephony program-
ming language. In In XIII International Switching Symposium, pages 2–7.

[8] Automatic Language Processing Advisory Committee (1966). Language and Ma-
chines: Computers in Translation and Linguistics. The National Academies Press.

[9] Avis, D. and Fukuda, K. (1993). Reverse search for enumeration. Discrete Applied
Mathematics, 65:21–46.

[10] Bahl, L. R., Jelinek, F., and Mercer, R. (1983). A maximum likelihood approach to
continuous speech recognition. Pattern Analysis and Machine Intelligence, IEEE Trans-
actions on, pages 179–190.

[11] Banerjee, S. and Lavie, A. (2005). METEOR: An automatic metric for MT evaluation
with improved correlation with human judgments. In Proceedings of the ACL Workshop
on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summa-
rization, pages 65–72, Ann Arbor, Michigan. Association for Computational Linguistics.

http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-hbase.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-hbase.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hbase.apache.org/book/book.html
http://hadoop.apache.org

160 References

[12] Barber, C. B., Dobkin, D. P., and Huhdanpaa, H. (1996). The Quickhull algorithm for
convex hulls. ACM Transactions on Mathematical Software (TOMS), 22(4):469–483.

[13] Bazrafshan, M., Chung, T., and Gildea, D. (2012). Tuning as linear regression. In Pro-
ceedings of the 2012 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 543–547, Montréal,
Canada. Association for Computational Linguistics.

[14] Beck, K. and Andres, C. (2004). Extreme Programming Explained: Embrace Change
(2Nd Edition). Addison-Wesley Professional.

[15] Bellos, D. (2011). Is That a Fish in Your Ear?: Translation and the Meaning of
Everything. Penguin Books Limited.

[16] Bender, O., Matusov, E., Hahn, S., Hasan, S., Khadivi, S., and Ney, H. (2007). The
RWTH Arabic-to-English spoken language translation system. In Automatic Speech
Recognition Understanding, pages 396 –401.

[17] Bennett, K. P. and Bredensteiner, E. J. (1997). Geometry in learning. In In Geometry
at Work.

[18] Bennett, K. P. and Bredensteiner, E. J. (2000). Duality and geometry in SVM classi-
fiers. In ICML, pages 57–64.

[19] Bentley, J. L. and Ottmann, T. A. (1979). Algorithms for reporting and counting
geometric intersections. Computers, IEEE Transactions on, 100(9):643–647.

[20] Bishop, C. M. et al. (2006). Pattern recognition and machine learning, volume 1.
springer New York.

[21] Blackwood, G. (2010). Lattice Rescoring Methods for Statistical Machine Translation.
PhD thesis, University of Cambridge, Cambridge, United Kingdom.

[22] Bloom, B. H. (1970). Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, 13(7):422–426.

[23] Blunsom, P., Cohn, T., and Osborne, M. (2008). A discriminative latent variable model
for statistical machine translation. In Proceedings of ACL-08: HLT, pages 200–208,
Columbus, Ohio. Association for Computational Linguistics.

[24] Bojar, O., Buck, C., Callison-Burch, C., Federmann, C., Haddow, B., Koehn, P., Monz,
C., Post, M., Soricut, R., and Specia, L. (2013). Findings of the 2013 Workshop on Statis-
tical Machine Translation. In Proceedings of the Eighth Workshop on Statistical Machine
Translation, pages 1–44, Sofia, Bulgaria. Association for Computational Linguistics.

[25] Brants, T., Popat, A. C., Xu, P., Och, F. J., and Dean, J. (2007). Large language
models in machine translation. In Proceedings of the 2007 Joint Conference on Em-
pirical Methods in Natural Language Processing and Computational Natural Language
Learning (EMNLP-CoNLL), pages 858–867, Prague, Czech Republic. Association for
Computational Linguistics.

References 161

[26] Brown, P. F., Pietra, V. J., Pietra, S. A. D., and Mercer, R. L. (1993). The mathemat-
ics of statistical machine translation: Parameter estimation. Computational Linguistics,
19:263–311.

[27] Callison-Burch, C., Bannard, C., and Schroeder, J. (2005). Scaling phrase-based sta-
tistical machine translation to larger corpora and longer phrases. In Proceedings of the
43rd Annual Meeting of the Association for Computational Linguistics (ACL’05), pages
255–262, Ann Arbor, Michigan. Association for Computational Linguistics.

[28] C.Clack, C.Myers, E. (1994). Programming with Miranda. Prentice Hall International.

[29] Cer, D., Jurafsky, D., and Manning, C. D. (2008). Regularization and search for min-
imum error rate training. In Proceedings of the Third Workshop on Statistical Machine
Translation, pages 26–34, Columbus, Ohio. Association for Computational Linguistics.

[30] Cettolo, M. F. M., Bentivogli, L., Paul, M., and Stüker, S. (2012). Overview of the
iwslt 2012 evaluation campaign. Proceedings IWSLT 2012.

[31] Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M., Chan-
dra, T., Fikes, A., and Gruber, R. E. (2008). BigTable: A distributed storage system for
structured data. ACM Transactions on Computer Systems (TOCS), 26(2):4.

[32] Chappelier, J.-C., Rajman, M., et al. (1998). A generalized CYK algorithm for parsing
stochastic CFG. TAPD, 98:133–137.

[33] Chen, S. F. and Goodman, J. (1999). An empirical study of smoothing techniques for
language modeling. Computer Speech & Language, 13(4):359–393.

[34] Cherry, C. and Foster, G. (2012). Batch tuning strategies for statistical machine transla-
tion. In Proceedings of the 2012 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, pages 427–436,
Montréal, Canada. Association for Computational Linguistics.

[35] Chiang, D. (2005). A hierarchical phrase-based model for statistical machine transla-
tion. In Proceedings of the 43rd Annual Meeting of the Association for Computational
Linguistics (ACL’05), pages 263–270, Ann Arbor, Michigan. Association for Computa-
tional Linguistics.

[36] Chiang, D. (2007). Hierarchical phrase-based translation. Computational Linguistics,
33.

[37] Chiang, D. (2012). Hope and fear for discriminative training of statistical translation
models. The Journal of Machine Learning Research, 13(1):1159–1187.

[38] Chiang, D., DeNeefe, S., and Pust, M. (2011). Two easy improvements to lexical
weighting. In Proceedings of the 49th Annual Meeting of the Association for Compu-
tational Linguistics: Human Language Technologies, pages 455–460, Portland, Oregon,
USA. Association for Computational Linguistics.

[39] Chiang, D., Knight, K., and Wang, W. (2009). 11,001 new features for statistical ma-
chine translation. In Proceedings of Human Language Technologies: The 2009 Annual
Conference of the North American Chapter of the Association for Computational Lin-
guistics, pages 218–226, Boulder, Colorado. Association for Computational Linguistics.

162 References

[40] Chiang, D., Marton, Y., and Resnik, P. (2008). Online large-margin training of syn-
tactic and structural translation features. In Proceedings of the 2008 Conference on Em-
pirical Methods in Natural Language Processing, pages 224–233, Honolulu, Hawaii.
Association for Computational Linguistics.

[41] Chomsky, N. (2002). Syntactic Structures. Mouton classic. Bod Third Party Titles.

[42] Connolly, T. M. and Begg, C. E. (2005). Database systems: a practical approach to
design, implementation, and management. Pearson Education.

[43] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2001). Introduction to
Algorithms. MIT Press.

[44] Cox, D. A., Little, J., and O’Shea, D. (2007). Ideals, varieties, and algorithms: an
introduction to computational algebraic geometry and commutative algebra. Springer.

[45] Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., and Singer, Y. (2006). Online
passive-aggressive algorithms. The Journal of Machine Learning Research, 7:551–585.

[46] de Berg, M., van Kreveld, M., Overmars, M., and Schwarzkopf, O. (2008). Computa-
tional Geometry: Algorithms and Applications. Springer-Verlag, third edition.

[47] de Gispert, A., Iglesias, G., Blackwood, G., Banga, E. R., and Byrne, W. (2010a).
Hierarchical phrase-based translation with weighted finite-state transducers and shallow-
n grammars. Computational Linguistics, 36(3):505–533.

[48] de Gispert, A., Pino, J., and Byrne, W. (2010b). Hierarchical phrase-based translation
grammars extracted from alignment posterior probabilities. In Proceedings of the 2010
Conference on Empirical Methods in Natural Language Processing, pages 545–554,
Cambridge, MA. Association for Computational Linguistics.

[49] Dean, J. and Ghemawat, S. (2008). MapReduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113.

[50] Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B
(Methodological), pages 1–38.

[51] Deng, Y. and Byrne, W. (2005). HMM word and phrase alignment for statistical ma-
chine translation. In Proceedings of Human Language Technology Conference and Con-
ference on Empirical Methods in Natural Language Processing, pages 169–176, Van-
couver, British Columbia, Canada. Association for Computational Linguistics.

[52] Devlin, J., Zbib, R., Huang, Z., Lamar, T., Schwartz, R., and Makhoul, J. (2014). Fast
and robust neural network joint models for statistical machine translation. In Proceedings
of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 1370–1380, Baltimore, Maryland. Association for Computational
Linguistics.

[53] Doddington, G. (2002). Automatic evaluation of machine translation quality using n-
gram co-occurrence statistics. In Proceedings of the second international conference on
Human Language Technology Research, pages 138–145. Morgan Kaufmann Publishers
Inc.

References 163

[54] Dyer, C. (2013). Minimum error rate training and the convex hull semiring. CoRR,
abs/1307.3675.

[55] Dyer, C., Cordova, A., Mont, A., and Lin, J. (2008). Fast, easy, and cheap: Construc-
tion of statistical machine translation models with MapReduce. In Proceedings of the
Third Workshop on Statistical Machine Translation, pages 199–207, Columbus, Ohio.
Association for Computational Linguistics.

[56] Dyer, C., Lopez, A., Ganitkevitch, J., Weese, J., Ture, F., Blunsom, P., Setiawan, H.,
Eidelman, V., and Resnik, P. (2010). cdec: A decoder, alignment, and learning framework
for finite-state and context-free translation models. In Proceedings of the ACL 2010
System Demonstrations, pages 7–12, Uppsala, Sweden. Association for Computational
Linguistics.

[57] Flanigan, J., Dyer, C., and Carbonell, J. (2013). Large-scale discriminative training
for statistical machine translation using held-out line search. In Proceedings of the 2013
Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 248–258, Atlanta, Georgia. Association
for Computational Linguistics.

[58] Fredkin, E. (1960). Trie memory. Communications of the ACM, 3(9):490–499.

[59] Fukuda, K. (2004). From the zonotope construction to the Minkowski addition of
convex polytopes. Journal of Symbolic Computation, 38(4):1261–1272.

[60] Fukuda, K. (2014). Frequently asked questions in polyhedral computation.
ftp://ftp.ifor.math.ethz.ch/pub/fukuda/reports/polyfaq040618.pdf.

[61] Gale, W. A. and Church, K. W. (1993). A program for aligning sentences in bilingual
corpora. Computational linguistics, 19(1):75–102.

[62] Galley, M. and Quirk, C. (2011). Optimal search for minimum error rate training.
In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 38–49, Edinburgh, Scotland, UK. Association for Computational Linguis-
tics.

[63] Galley, M., Quirk, C., Cherry, C., and Toutanova, K. (2013). Regularized minimum
error rate training. In Proceedings of the 2013 Conference on Empirical Methods in
Natural Language Processing, pages 1948–1959, Seattle, Washington, USA. Association
for Computational Linguistics.

[64] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994). Design patterns: elements
of reusable object-oriented software. Pearson Education.

[65] Ganitkevitch, J., Cao, Y., Weese, J., Post, M., and Callison-Burch, C. (2012). Joshua
4.0: Packing, pro, and paraphrases. In Proceedings of the Seventh Workshop on Statistical
Machine Translation, pages 283–291, Montréal, Canada. Association for Computational
Linguistics.

[66] Ghemawat, S., Gobioff, H., and Leung, S.-T. (2003). The Google file system. In ACM
SIGOPS Operating Systems Review, volume 37, pages 29–43. ACM.

ftp://ftp.ifor.math.ethz.ch/pub/fukuda/reports/polyfaq040618.pdf

164 References

[67] Gimpel, K. and Smith, N. A. (2012). Structured ramp loss minimization for machine
translation. In Proceedings of the 2012 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pages
221–231, Montréal, Canada. Association for Computational Linguistics.

[68] Good, I. J. (1953). The population frequencies of species and the estimation of popu-
lation parameters. Biometrika, 40(3-4):237–264.

[69] Google Inc. (2014). Cloud datastore - NoSQL database for cloud data storage - google
cloud platform. https://cloud.google.com/datastore/.

[70] Goyal, A., Daume III, H., and Venkatasubramanian, S. (2009). Streaming for large
scale NLP: Language modeling. In Proceedings of Human Language Technologies: The
2009 Annual Conference of the North American Chapter of the Association for Compu-
tational Linguistics, pages 512–520, Boulder, Colorado. Association for Computational
Linguistics.

[71] Green, S., Wang, S., Cer, D., and Manning, C. D. (2013). Fast and adaptive online
training of feature-rich translation models. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pages 311–321,
Sofia, Bulgaria. Association for Computational Linguistics.

[72] Gritzmann, P. and Sturmfels, B. (1992). Minkowski addition of polytopes: Com-
putational complexity and applications to Gröbner bases. SIAM Journal on Discrete
Mathematics, 6(2).

[73] Guthrie, D. and Hepple, M. (2010). Storing the web in memory: Space efficient
language models with constant time retrieval. In Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Processing, pages 262–272, Cambridge, MA.
Association for Computational Linguistics.

[74] Heafield, K. (2011). Kenlm: Faster and smaller language model queries. In Proceed-
ings of the Sixth Workshop on Statistical Machine Translation, pages 187–197, Edin-
burgh, Scotland. Association for Computational Linguistics.

[75] Heafield, K., Pouzyrevsky, I., Clark, J. H., and Koehn, P. (2013). Scalable modified
Kneser-Ney language model estimation. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics, pages 690–696, Sofia, Bulgaria.

[76] Hopkins, M. and May, J. (2011). Tuning as ranking. In Proceedings of the 2011
Conference on Empirical Methods in Natural Language Processing, pages 1352–1362,
Edinburgh, Scotland, UK. Association for Computational Linguistics.

[77] Huang, L. (2008). Advanced dynamic programming in semiring and hypergraph
frameworks. In Coling 2008: Advanced Dynamic Programming in Computational Lin-
guistics: Theory, Algorithms and Applications - Tutorial notes, pages 1–18, Manchester,
UK. Coling 2008 Organizing Committee.

[78] Huang, X., Acero, A., and Hon, H.-W. (2001). Spoken Language Processing: A Guide
to Theory, Algorithm, and System Development. Prentice Hall PTR, Upper Saddle River,
NJ, USA, 1st edition.

https://cloud.google.com/datastore/

References 165

[79] Iglesias, G., Allauzen, C., Byrne, W., de Gispert, A., and Riley, M. (2011). Hierar-
chical phrase-based translation representations. In Proceedings of the 2011 Conference
on Empirical Methods in Natural Language Processing, pages 1373–1383, Edinburgh,
Scotland, UK. Association for Computational Linguistics.

[80] Iglesias, G., de Gispert, A., Banga, E. R., and Byrne, W. (2009a). Rule filtering by
pattern for efficient hierarchical translation. In Proceedings of the 12th Conference of the
European Chapter of the ACL (EACL 2009), pages 380–388, Athens, Greece. Associa-
tion for Computational Linguistics.

[81] Iglesias, G., de Gispert, A., R. Banga, E., and Byrne, W. (2009b). Hierarchical phrase-
based translation with weighted finite state transducers. In Proceedings of Human Lan-
guage Technologies: The 2009 Annual Conference of the North American Chapter of the
Association for Computational Linguistics, pages 433–441, Boulder, Colorado. Associa-
tion for Computational Linguistics.

[82] Jelinek, F. (1997). Statistical methods for speech recognition. MIT Press, Cambridge,
MA, USA.

[83] Jurafsky, D. and Martin, J. H. (2008). Speech and Language Processing. Prentice
Hall, 2nd edition.

[84] Karmarkar, N. (1984). A new polynomial-time algorithm for linear programming. In
Proceedings of the sixteenth annual ACM symposium on Theory of computing, pages
302–311. ACM.

[85] Katz, S. M. (1987). Estimation of probabilities from sparse data for the language
model component of a speech recognizer. In IEEE Transactions on Acoustics, Speech
and Signal Processing, pages 400–401.

[86] Klemperer, P. (2010). The product-mix auction: A new auction design for differenti-
ated goods. Journal of the European Economic Association, 8(2-3):526–536.

[87] Koehn, P. (2005). Europarl: A parallel corpus for statistical machine translation. In
MT summit, volume 5, pages 79–86.

[88] Koehn, P. (2010). Statistical Machine Translation. Cambridge University Press.

[89] Koehn, P., Axelrod, A., Callison-Burch, C., Osborne, M., and Talbot, D. (2005). Ed-
inburgh system description for the 2005 IWSLT speech translation evaluation. In Inter-
national Workshop on Spoken Language Translation, volume 8.

[90] Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N.,
Cowan, B., Shen, W., Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin, A., and
Herbst, E. (2007). Moses: Open source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the Association for Computational Linguis-
tics Companion Volume Proceedings of the Demo and Poster Sessions, pages 177–180,
Prague, Czech Republic. Association for Computational Linguistics.

166 References

[91] Koehn, P., Och, F. J., and Marcu, D. (2003). Statistical phrase-based translation. In
Proceedings of the 2003 Conference of the North American Chapter of the Association
for Computational Linguistics on Human Language Technology - Volume 1, NAACL ’03,
pages 48–54. Association for Computational Linguistics.

[92] Kumar, S. and Byrne, W. (2003). A weighted finite state transducer implementation of
the alignment template model for statistical machine translation. In Proceedings of the
2003 Conference of the North American Chapter of the Association for Computational
Linguistics on Human Language Technology-Volume 1, pages 63–70. Association for
Computational Linguistics.

[93] Kumar, S. and Byrne, W. (2004). Minimum Bayes-risk decoding for statistical ma-
chine translation. In Susan Dumais, D. M. and Roukos, S., editors, HLT-NAACL 2004:
Main Proceedings, pages 169–176, Boston, Massachusetts, USA. Association for Com-
putational Linguistics.

[94] Kumar, S., Macherey, W., Dyer, C., and Och, F. (2009). Efficient minimum error rate
training and minimum Bayes-risk decoding for translation hypergraphs and lattices. In
Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th
International Joint Conference on Natural Language Processing of the AFNLP, pages
163–171, Suntec, Singapore. Association for Computational Linguistics.

[95] Levenberg, A. and Osborne, M. (2009). Stream-based randomised language mod-
els for SMT. In Proceedings of the 2009 Conference on Empirical Methods in Natural
Language Processing, pages 756–764, Singapore. Association for Computational Lin-
guistics.

[96] Lewis II, P. M. and Stearns, R. E. (1968). Syntax-directed transduction. Journal of the
ACM (JACM), 15(3):465–488.

[97] Li, Z., Callison-Burch, C., Dyer, C., Khudanpur, S., Schwartz, L., Thornton, W.,
Weese, J., and Zaidan, O. (2009). Joshua: An open source toolkit for parsing-based ma-
chine translation. In Proceedings of the Fourth Workshop on Statistical Machine Trans-
lation, pages 135–139, Athens, Greece. Association for Computational Linguistics.

[98] Library of Parliament (2014). Historical debates of the parliament of canada.
http://parl.canadiana.ca.

[99] Lin, J. and Dyer, C. (2010). Data-intensive Text Processing with MapReduce. Morgan
& Claypool.

[100] Lopez, A. (2007). Hierarchical phrase-based translation with suffix arrays. In Pro-
ceedings of the 2007 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning (EMNLP-CoNLL), pages
976–985, Prague, Czech Republic. Association for Computational Linguistics.

[101] Luenberger, D. G. and Ye, Y. (2008). Linear and nonlinear programming, volume
116. Springer.

References 167

[102] Macherey, W., Och, F., Thayer, I., and Uszkoreit, J. (2008). Lattice-based minimum
error rate training for statistical machine translation. In Proceedings of the 2008 Confer-
ence on Empirical Methods in Natural Language Processing, pages 725–734, Honolulu,
Hawaii. Association for Computational Linguistics.

[103] Manber, U. and Myers, G. (1993). Suffix arrays: a new method for on-line string
searches. siam Journal on Computing, 22(5):935–948.

[104] Manku, G. S. and Motwani, R. (2002). Approximate frequency counts over data
streams. In Proceedings of the 28th International Conference on Very Large Data Bases,
pages 346–357. VLDB Endowment.

[105] McDonald, R., Crammer, K., and Pereira, F. (2005). Online large-margin training of
dependency parsers. In Proceedings of the 43rd Annual Meeting of the Association for
Computational Linguistics (ACL’05), pages 91–98, Ann Arbor, Michigan. Association
for Computational Linguistics.

[106] Microsoft Corporation (2014). Get started using HBase with Hadoop in HDIn-
sight | Azure. http://azure.microsoft.com/en-us/documentation/articles/
hdinsight-hbase-get-started/.

[107] Mohri, M. (1997). Finite-state transducers in language and speech processing. Com-
putational linguistics, 23(2):269–311.

[108] Mohri, M. (2002). Semiring frameworks and algorithms for shortest-distance prob-
lems. Journal of Automata, Languages and Combinatorics, 7(3):321–350.

[109] Mohri, M. (2003). Edit-distance of weighted automata: General definitions and al-
gorithms. International Journal of Foundations of Computer Science, 14(6):957–982.

[110] Mohri, M., Pereira, F. C. N., and Riley, M. (2008). Speech recognition with weighted
finite-state transducers. Handbook on Speech Processing and Speech Communication.

[111] Mohri, M. and Riley, M. (2002). An efficient algorithm for the n-best-strings prob-
lem. In Proceedings of the International Conference on Spoken Language Processing
2002.

[112] Motzkin, T. S., Raiffa, H., Thompson, G. L., and Thrall, R. M. (1953). The double
description method. In Contributions to the Theory of Games, Vol. II (Kuhn, HW and AW
Tucker, eds.), Annals of Math 28, pages 81–103. Princeton University Press, Princeton.

[113] Och, F. J. (2003). Minimum error rate training in statistical machine translation. In
Proceedings of the 41st Annual Meeting of the Association for Computational Linguis-
tics, pages 160–167, Sapporo, Japan. Association for Computational Linguistics.

[114] Och, F. J. and Ney, H. (2002). Discriminative training and maximum entropy models
for statistical machine translation. In Proceedings of 40th Annual Meeting of the Associ-
ation for Computational Linguistics, pages 295–302, Philadelphia, Pennsylvania, USA.
Association for Computational Linguistics.

http://azure.microsoft.com/en-us/documentation/articles/hdinsight-hbase-get-started/
http://azure.microsoft.com/en-us/documentation/articles/hdinsight-hbase-get-started/

168 References

[115] Pachter, L. and Sturmfels, B. (2004). Parametric inference for biological sequence
analysis. Proceedings of the National Academy of Sciences of the United States of Amer-
ica, 101(46):16138–16143.

[116] Pachter, L. and Sturmfels, B. (2007). The mathematics of phylogenomics. SIAM
review, 49(1):3–31.

[117] Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). Bleu: a method for auto-
matic evaluation of machine translation. In Proceedings of 40th Annual Meeting of the
Association for Computational Linguistics, pages 311–318, Philadelphia, Pennsylvania,
USA. Association for Computational Linguistics.

[118] Papineni, K. A. (1999). Discriminative training via linear programming. In Acoustics,
Speech, and Signal Processing, 1999. Proceedings., 1999 IEEE International Conference
on, volume 2, pages 561–564. IEEE.

[119] Parker, R., Graff, D., Kong, J., Chen, K., and Maeda, K. (2011). English Gigaword
fifth edition. In Linguistic Data Consortium, Phildelphia.

[120] Patterson, D. A. and Hennessy, J. L. (2009). Computer Organization and Design:
The Hardware/software Interface. Morgan Kaufmann.

[121] Pauls, A. and Klein, D. (2011). Faster and smaller n-gram language models. In Pro-
ceedings of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies, pages 258–267, Portland, Oregon, USA. Association for
Computational Linguistics.

[122] Pino, J. (2014). Refinements in Hierarchical Phrase-Based Translation. PhD thesis,
University of Cambridge, Cambridge, United Kingdom.

[123] Pino, J., Iglesias, G., de Gispert, A., Blackwood, G., Brunning, J., and Byrne, W.
(2010). The cued hifst system for the wmt10 translation shared task. In Proceedings
of the Joint Fifth Workshop on Statistical Machine Translation and MetricsMATR, pages
155–160, Uppsala, Sweden. Association for Computational Linguistics.

[124] Pino, J., Waite, A., and Byrne, W. (2012). Simple and efficient model filtering in sta-
tistical machine translation. The Prague Bulletin of Mathematical Linguistics, 98:5–24.

[125] Pino, J., Waite, A., Xiao, T., de Gispert, A., Flego, F., and Byrne, W. (2013). The
University of Cambridge Russian-English system at WMT13. In Proceedings of the
Eighth Workshop on Statistical Machine Translation, pages 200–205, Sofia, Bulgaria.
Association for Computational Linguistics.

[126] Press, W. H., Vetterling, W. T., Teukolsky, S. A., and Flannery, B. P. (2002). Numer-
ical Recipes in C++: the art of scientific computing. Cambridge University Press.

[127] Przywara, Č. and Bojar, O. (2011). eppex: Epochal phrase table extraction for statis-
tical machine translation. The Prague Bulletin of Mathematical Linguistics, 96:89–98.

[128] Ratliff, N., Bagnell, J. A., and Zinkevich, M. (2006). Subgradient methods for max-
imum margin structured learning. In ICML Workshop on Learning in Structured Output
Spaces, volume 46. Citeseer.

References 169

[129] Richter-Gebert, J., Sturmfels, B., and Theobald, T. (2005). First steps in tropical
geometry. In Idempotent mathematics and mathematical physics.

[130] Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J., and Williamson, R. C.
(2001). Estimating the support of a high-dimensional distribution. Neural computation,
13(7):1443–1471.

[131] Simianer, P., Riezler, S., and Dyer, C. (2012). Joint feature selection in distributed
stochastic learning for large-scale discriminative training in smt. In Proceedings of the
50th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 11–21, Jeju Island, Korea. Association for Computational Linguistics.

[132] Smith, D. A. and Eisner, J. (2006). Minimum risk annealing for training log-linear
models. In Proceedings of the COLING/ACL 2006 Main Conference Poster Sessions,
pages 787–794, Sydney, Australia. Association for Computational Linguistics.

[133] Snover, M., Dorr, B., Schwartz, R., Micciulla, L., and Makhoul, J. (2006). A study
of translation edit rate with targeted human annotation. In Proceedings of association for
machine translation in the Americas, pages 223–231.

[134] Sokolov, A. and Yvon, F. (2011). Minimum error rate training semiring. In Proceed-
ings of the European Association for Machine Translation.

[135] Speyer, D. and Sturmfels, B. (2009). Tropical mathematics. Mathematics Magazine.

[136] Stolcke, A. (2000). Entropy-based pruning of backoff language models. CoRR,
cs.CL/0006025.

[137] Talbot, D. and Brants, T. (2008). Randomized language models via perfect hash func-
tions. In Proceedings of ACL-08: HLT, pages 505–513, Columbus, Ohio. Association
for Computational Linguistics.

[138] Talbot, D. and Osborne, M. (2007a). Randomised language modelling for statisti-
cal machine translation. In Proceedings of the 45th Annual Meeting of the Association
of Computational Linguistics, pages 512–519, Prague, Czech Republic. Association for
Computational Linguistics.

[139] Talbot, D. and Osborne, M. (2007b). Smoothed Bloom filter language models: Tera-
scale LMs on the cheap. In Proceedings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language Learn-
ing (EMNLP-CoNLL), pages 468–476, Prague, Czech Republic. Association for Com-
putational Linguistics.

[140] Taskar, B., Guestrin, C., and Koller, D. (2004a). Max-margin Markov networks.
Advances in neural information processing systems, 16:25.

[141] Taskar, B., Klein, D., Collins, M., Koller, D., and Manning, C. (2004b). Max-
margin parsing. In Lin, D. and Wu, D., editors, Proceedings of EMNLP 2004, pages
1–8, Barcelona, Spain. Association for Computational Linguistics.

[142] The Linux Documentation Project (2014). The buffer cache.
http://www.tldp.org/LDP/sag/html/buffer-cache.html.

170 References

[143] Tromble, R., Kumar, S., Och, F., and Macherey, W. (2008). Lattice Minimum Bayes-
Risk decoding for statistical machine translation. In Proceedings of the 2008 Confer-
ence on Empirical Methods in Natural Language Processing, pages 620–629, Honolulu,
Hawaii. Association for Computational Linguistics.

[144] Tsochantaridis, I., Hofmann, T., Joachims, T., and Altun, Y. (2004). Support vector
machine learning for interdependent and structured output spaces. In Proceedings of the
twenty-first international conference on Machine learning, page 104. ACM.

[145] Tsochantaridis, I., Joachims, T., Hofmann, T., and Altun, Y. (2005). Large mar-
gin methods for structured and interdependent output variables. In Journal of Machine
Learning Research, pages 1453–1484.

[146] Ueffing, N., Och, F. J., and Ney, H. (2002). Generation of word graphs in statistical
machine translation. In Proceedings of the 2002 Conference on Empirical Methods in
Natural Language Processing, pages 156–163. Association for Computational Linguis-
tics.

[147] Venugopal, A. and Zollmann, A. (2009). Grammar based statistical mt on hadoop.
The Prague Bulletin of Mathematical Linguistics, 91.

[148] Vogel, S., Ney, H., and Tillmann, C. (1996). HMM-based word alignment in statis-
tical translation. In Proceedings of the 16th Conference on Computational Linguistics -
Volume 2, COLING ’96, pages 836–841, Stroudsburg, PA, USA. Association for Com-
putational Linguistics.

[149] Waite, A., Blackwood, G., and Byrne, W. (2012). Lattice-based minimum error rate
training using weighted finite-state transducers with tropical polynomial weights. In
Proceedings of the 10th International Workshop on Finite State Methods and Natural
Language Processing, pages 116–125, Donostia–San SebastiÃąn. Association for Com-
putational Linguistics.

[150] Watanabe, T. (2012). Optimized online rank learning for machine translation. In Pro-
ceedings of the 2012 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 253–262, Montréal,
Canada. Association for Computational Linguistics.

[151] Watanabe, T., Suzuki, J., Tsukada, H., and Isozaki, H. (2007). Online large-margin
training for statistical machine translation. In Proceedings of the 2007 Joint Conference
on Empirical Methods in Natural Language Processing and Computational Natural Lan-
guage Learning, pages 764–773.

[152] Weese, J., Ganitkevitch, J., Callison-Burch, C., Post, M., and Lopez, A. (2011).
Joshua 3.0: Syntax-based machine translation with the Thrax grammar extractor. In
Proceedings of the Sixth Workshop on Statistical Machine Translation, pages 478–484,
Edinburgh, Scotland. Association for Computational Linguistics.

[153] Weibel, C. (2010). Implementation and parallelization of a reverse-search algorithm
for minkowski sums. In In Proceedings of the 12th Workshop on Algorithm Engineering
and Experiments (ALENEX 2010), pages 34–42. SIAM.

References 171

[154] Woods, W. A. (1970). Transition network grammars for natural language analysis.
Communications of the ACM, 13(10):591–606.

[155] Yu, X. (2008). Estimating language models using hadoop and hbase. Master’s thesis,
University of Edinburgh, Edinburgh.

[156] Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., and Stoica, I. (2010).
Spark: cluster computing with working sets. In Proceedings of the 2nd USENIX confer-
ence on Hot topics in cloud computing, pages 10–10.

[157] Zens, R., Hasan, S., and Ney, H. (2007). A systematic comparison of training criteria
for statistical machine translation. In Proceedings of the 2007 Joint Conference on Em-
pirical Methods in Natural Language Processing and Computational Natural Language
Learning (EMNLP-CoNLL), pages 524–532, Prague, Czech Republic. Association for
Computational Linguistics.

[158] Zens, R. and Ney, H. (2007). Efficient phrase-table representation for machine trans-
lation with applications to online MT and speech translation. In Human Language
Technologies 2007: The Conference of the North American Chapter of the Association
for Computational Linguistics; Proceedings of the Main Conference, pages 492–499,
Rochester, New York. Association for Computational Linguistics.

[159] Zhang, Y., Hildebrand, A. S., and Vogel, S. (2006). Distributed language modeling
for n-best list re-ranking. In Proceedings of the 2006 Conference on Empirical Meth-
ods in Natural Language Processing, pages 216–223, Sydney, Australia. Association for
Computational Linguistics.

[160] Zhang, Y. and Vogel, S. (2005). An efficient phrase-to-phrase alignment model for
arbitrarily long phrase and large corpora. In Proceedings of the 10th Conference of the
European Association for Machine Translation (EAMT-05), pages 294–301.

[161] Zhang, Y. and Vogel, S. (2006). Suffix array and its applications in empirical natural
language processing. Technical Report CMU-LTI-06-010, Language Technologies Insti-
tute, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA.

[162] Ziegler, G. (1995). Lectures on Polytopes. Springer-Verlag.

	Contents
	List of Figures
	List of Tables
	Nomenclature
	1 Introduction
	1.1 Minimum Error Rate Training
	1.2 Original Contributions
	1.3 Publications
	1.4 Organisation of Thesis

	2 Statistical Machine Translation Decoding
	2.1 N-gram Language Models
	2.1.1 Solutions for N-gram Sparseness

	2.2 Hierarchical Phrase-Based Translation
	2.2.1 Word Alignment
	2.2.2 Phrase-Based Translation
	2.2.3 Hierarchical Phrase-Based Translation

	2.3 Statistical Machine Decoding
	2.3.1 HiFST
	2.3.2 Semirings
	2.3.3 Weighted Finite-State Transducers
	2.3.4 Word Lattices
	2.3.5 Hierarchical Phrase-Based Decoding with WFSTs
	2.3.6 Large Language Model Rescoring of Word Lattices

	2.4 Summary

	3 Parameter Estimation for Linear Models
	3.1 Automated Quality Metrics
	3.1.1 The BiLingual Evaluation Understudy
	3.1.2 Translation Edit Rate
	3.1.3 NIST
	3.1.4 Metric for Evaluation of Translation with Explicit ORdering

	3.2 Minimum Error-Rate Training
	3.2.1 Line Optimisation
	3.2.2 Choosing Directions for Line Optimisation
	3.2.3 LP-MERT
	3.2.4 LP-MERT for the Training Set

	3.3 Large-Margin Methods
	3.3.1 The Structured Support Vector Machine
	3.3.2 Margin Infused Relaxed Algorithm

	3.4 Ranking Methods
	3.5 Other Methods
	3.6 Survey of Recent Work

	4 Fast Model Parameter Estimation and Filtering for Large Datasets
	4.1 Related Work
	4.2 MapReduce
	4.2.1 MapReduce Implementation

	4.3 The HFile Format
	4.3.1 Application to Stupid Backoff Models

	4.4 Improvements to Hierarchical Rule Extraction
	4.4.1 Baseline Rule Extraction System Design
	4.4.2 Improvements to Rule Extraction
	4.4.3 Impact of Improvements

	4.5 Conclusion

	5 A Description of Minimum Error Rate Training Using Convex Polytopes
	5.1 Introduction
	5.2 The Normal Fan
	5.2.1 Convex Geometry Basics
	5.2.2 Faces in Feature Space
	5.2.3 The Normal Cone
	5.2.4 The Normal Fan
	5.2.5 An Example of the Normal Fan

	5.3 Dual Representations of Polytopes and Cones
	5.3.1 Algorithms for Computing Dual Representations
	5.3.2 The Dual Representation of a Normal Cone

	5.4 Projected MERT
	5.4.1 Affine Projection
	5.4.2 Och's Line Optimisation as a Projection Operation
	5.4.3 Optimal Search over Many Directions using a Projected Polytope
	5.4.4 An Example of Och's Line Optimisation using a Projected Polytope

	5.5 Regularisation and the Normal Fan
	5.6 A Geometric Description of Ranking Methods

	6 Training Set Geometry
	6.1 The Minkowski Sum
	6.1.1 Equivalence of the Minkowski Sum and the Common Refinement

	6.2 A Polynomial Time Minkowski Sum Algorithm
	6.2.1 Enumerating Vertices with a Reverse Search
	6.2.2 Implementation of Reverse Search Functions

	6.3 Upper Bound of the Minkowski Sum
	6.3.1 Upper Bound Theorems
	6.3.2 The Impact of Upper Bounds on SMT systems
	6.3.3 Linear Models and the Upper Bound Theorems

	6.4 The Minkowski Sum with Projected MERT
	6.5 Summary

	7 A Description of Lattice-based MERT Using Tropical Geometry
	7.1 Introduction
	7.2 Lattice-based MERT
	7.2.1 Lattice Line Optimisation
	7.2.2 Line Search using WFSTs

	7.3 Tropical Geometry
	7.3.1 Tropical Polynomials
	7.3.2 Canonical Form of a Tropical Polynomial
	7.3.3 Integer Approximations for Tropical Monomials
	7.3.4 Computing the Upper Envelope using the Shortest Distance Algorithm
	7.3.5 Extracting the Error Surface
	7.3.6 The Tropical Geometry MERT Algorithm
	7.3.7 TGMERT Worked Example
	7.3.8 Tropical Polynomial Edge Pruning Algorithm

	7.4 Experiments
	7.4.1 Effect of Tropical Polynomial Pruning

	7.5 Multi-direction Lattice-based MERT
	7.6 Discussion

	8 Conclusion
	8.1 Review of Work
	8.1.1 Fast Model Parameter Estimation and Filtering
	8.1.2 A Convex Geometric Description of MERT
	8.1.3 Projected MERT
	8.1.4 Tropical Geometry MERT

	8.2 Future Work

	References

